1bf215546Sopenharmony_ci
2bf215546Sopenharmony_ci/*
3bf215546Sopenharmony_ci * Mesa 3-D graphics library
4bf215546Sopenharmony_ci *
5bf215546Sopenharmony_ci * Copyright (C) 1999-2001  Brian Paul   All Rights Reserved.
6bf215546Sopenharmony_ci *
7bf215546Sopenharmony_ci * Permission is hereby granted, free of charge, to any person obtaining a
8bf215546Sopenharmony_ci * copy of this software and associated documentation files (the "Software"),
9bf215546Sopenharmony_ci * to deal in the Software without restriction, including without limitation
10bf215546Sopenharmony_ci * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11bf215546Sopenharmony_ci * and/or sell copies of the Software, and to permit persons to whom the
12bf215546Sopenharmony_ci * Software is furnished to do so, subject to the following conditions:
13bf215546Sopenharmony_ci *
14bf215546Sopenharmony_ci * The above copyright notice and this permission notice shall be included
15bf215546Sopenharmony_ci * in all copies or substantial portions of the Software.
16bf215546Sopenharmony_ci *
17bf215546Sopenharmony_ci * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18bf215546Sopenharmony_ci * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19bf215546Sopenharmony_ci * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20bf215546Sopenharmony_ci * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
21bf215546Sopenharmony_ci * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
22bf215546Sopenharmony_ci * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
23bf215546Sopenharmony_ci * OTHER DEALINGS IN THE SOFTWARE.
24bf215546Sopenharmony_ci */
25bf215546Sopenharmony_ci
26bf215546Sopenharmony_ci#ifndef _M_EVAL_H
27bf215546Sopenharmony_ci#define _M_EVAL_H
28bf215546Sopenharmony_ci
29bf215546Sopenharmony_ci#include "main/glheader.h"
30bf215546Sopenharmony_ci
31bf215546Sopenharmony_civoid _math_init_eval( void );
32bf215546Sopenharmony_ci
33bf215546Sopenharmony_ci
34bf215546Sopenharmony_ci/*
35bf215546Sopenharmony_ci * Horner scheme for Bezier curves
36bf215546Sopenharmony_ci *
37bf215546Sopenharmony_ci * Bezier curves can be computed via a Horner scheme.
38bf215546Sopenharmony_ci * Horner is numerically less stable than the de Casteljau
39bf215546Sopenharmony_ci * algorithm, but it is faster. For curves of degree n
40bf215546Sopenharmony_ci * the complexity of Horner is O(n) and de Casteljau is O(n^2).
41bf215546Sopenharmony_ci * Since stability is not important for displaying curve
42bf215546Sopenharmony_ci * points I decided to use the Horner scheme.
43bf215546Sopenharmony_ci *
44bf215546Sopenharmony_ci * A cubic Bezier curve with control points b0, b1, b2, b3 can be
45bf215546Sopenharmony_ci * written as
46bf215546Sopenharmony_ci *
47bf215546Sopenharmony_ci *        (([3]        [3]     )     [3]       )     [3]
48bf215546Sopenharmony_ci * c(t) = (([0]*s*b0 + [1]*t*b1)*s + [2]*t^2*b2)*s + [3]*t^2*b3
49bf215546Sopenharmony_ci *
50bf215546Sopenharmony_ci *                                           [n]
51bf215546Sopenharmony_ci * where s=1-t and the binomial coefficients [i]. These can
52bf215546Sopenharmony_ci * be computed iteratively using the identity:
53bf215546Sopenharmony_ci *
54bf215546Sopenharmony_ci * [n]               [n  ]             [n]
55bf215546Sopenharmony_ci * [i] = (n-i+1)/i * [i-1]     and     [0] = 1
56bf215546Sopenharmony_ci */
57bf215546Sopenharmony_ci
58bf215546Sopenharmony_ci
59bf215546Sopenharmony_civoid
60bf215546Sopenharmony_ci_math_horner_bezier_curve(const GLfloat *cp, GLfloat *out, GLfloat t,
61bf215546Sopenharmony_ci			  GLuint dim, GLuint order);
62bf215546Sopenharmony_ci
63bf215546Sopenharmony_ci
64bf215546Sopenharmony_ci/*
65bf215546Sopenharmony_ci * Tensor product Bezier surfaces
66bf215546Sopenharmony_ci *
67bf215546Sopenharmony_ci * Again the Horner scheme is used to compute a point on a
68bf215546Sopenharmony_ci * TP Bezier surface. First a control polygon for a curve
69bf215546Sopenharmony_ci * on the surface in one parameter direction is computed,
70bf215546Sopenharmony_ci * then the point on the curve for the other parameter
71bf215546Sopenharmony_ci * direction is evaluated.
72bf215546Sopenharmony_ci *
73bf215546Sopenharmony_ci * To store the curve control polygon additional storage
74bf215546Sopenharmony_ci * for max(uorder,vorder) points is needed in the
75bf215546Sopenharmony_ci * control net cn.
76bf215546Sopenharmony_ci */
77bf215546Sopenharmony_ci
78bf215546Sopenharmony_civoid
79bf215546Sopenharmony_ci_math_horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v,
80bf215546Sopenharmony_ci			 GLuint dim, GLuint uorder, GLuint vorder);
81bf215546Sopenharmony_ci
82bf215546Sopenharmony_ci
83bf215546Sopenharmony_ci/*
84bf215546Sopenharmony_ci * The direct de Casteljau algorithm is used when a point on the
85bf215546Sopenharmony_ci * surface and the tangent directions spanning the tangent plane
86bf215546Sopenharmony_ci * should be computed (this is needed to compute normals to the
87bf215546Sopenharmony_ci * surface). In this case the de Casteljau algorithm approach is
88bf215546Sopenharmony_ci * nicer because a point and the partial derivatives can be computed
89bf215546Sopenharmony_ci * at the same time. To get the correct tangent length du and dv
90bf215546Sopenharmony_ci * must be multiplied with the (u2-u1)/uorder-1 and (v2-v1)/vorder-1.
91bf215546Sopenharmony_ci * Since only the directions are needed, this scaling step is omitted.
92bf215546Sopenharmony_ci *
93bf215546Sopenharmony_ci * De Casteljau needs additional storage for uorder*vorder
94bf215546Sopenharmony_ci * values in the control net cn.
95bf215546Sopenharmony_ci */
96bf215546Sopenharmony_ci
97bf215546Sopenharmony_civoid
98bf215546Sopenharmony_ci_math_de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv,
99bf215546Sopenharmony_ci			GLfloat u, GLfloat v, GLuint dim,
100bf215546Sopenharmony_ci			GLuint uorder, GLuint vorder);
101bf215546Sopenharmony_ci
102bf215546Sopenharmony_ci
103bf215546Sopenharmony_ci#endif
104