1/** 2 * \file macros.h 3 * A collection of useful macros. 4 */ 5 6/* 7 * Mesa 3-D graphics library 8 * 9 * Copyright (C) 1999-2006 Brian Paul All Rights Reserved. 10 * 11 * Permission is hereby granted, free of charge, to any person obtaining a 12 * copy of this software and associated documentation files (the "Software"), 13 * to deal in the Software without restriction, including without limitation 14 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 15 * and/or sell copies of the Software, and to permit persons to whom the 16 * Software is furnished to do so, subject to the following conditions: 17 * 18 * The above copyright notice and this permission notice shall be included 19 * in all copies or substantial portions of the Software. 20 * 21 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 22 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 23 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 24 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 25 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 26 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 27 * OTHER DEALINGS IN THE SOFTWARE. 28 */ 29 30 31#ifndef MACROS_H 32#define MACROS_H 33 34#include "util/macros.h" 35#include "util/u_math.h" 36#include "util/rounding.h" 37#include "util/compiler.h" 38#include "main/glheader.h" 39#include "mesa_private.h" 40 41 42/** 43 * \name Integer / float conversion for colors, normals, etc. 44 */ 45/*@{*/ 46 47/** Convert GLubyte in [0,255] to GLfloat in [0.0,1.0] */ 48extern GLfloat _mesa_ubyte_to_float_color_tab[256]; 49#define UBYTE_TO_FLOAT(u) _mesa_ubyte_to_float_color_tab[(unsigned int)(u)] 50 51/** Convert GLfloat in [0.0,1.0] to GLubyte in [0,255] */ 52#define FLOAT_TO_UBYTE(X) ((GLubyte) (GLint) ((X) * 255.0F)) 53 54 55/** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0] */ 56#define BYTE_TO_FLOAT(B) ((2.0F * (B) + 1.0F) * (1.0F/255.0F)) 57 58/** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127] */ 59#define FLOAT_TO_BYTE(X) ( (((GLint) (255.0F * (X))) - 1) / 2 ) 60 61 62/** Convert GLbyte to GLfloat while preserving zero */ 63#define BYTE_TO_FLOATZ(B) ((B) == 0 ? 0.0F : BYTE_TO_FLOAT(B)) 64 65 66/** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0], texture/fb data */ 67#define BYTE_TO_FLOAT_TEX(B) ((B) == -128 ? -1.0F : (B) * (1.0F/127.0F)) 68 69/** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127], texture/fb data */ 70#define FLOAT_TO_BYTE_TEX(X) CLAMP( (GLint) (127.0F * (X)), -128, 127 ) 71 72/** Convert GLushort in [0,65535] to GLfloat in [0.0,1.0] */ 73#define USHORT_TO_FLOAT(S) ((GLfloat) (S) * (1.0F / 65535.0F)) 74 75/** Convert GLfloat in [0.0,1.0] to GLushort in [0, 65535] */ 76#define FLOAT_TO_USHORT(X) ((GLuint) ((X) * 65535.0F)) 77 78 79/** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0] */ 80#define SHORT_TO_FLOAT(S) ((2.0F * (S) + 1.0F) * (1.0F/65535.0F)) 81 82/** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767] */ 83#define FLOAT_TO_SHORT(X) ( (((GLint) (65535.0F * (X))) - 1) / 2 ) 84 85/** Convert GLshort to GLfloat while preserving zero */ 86#define SHORT_TO_FLOATZ(S) ((S) == 0 ? 0.0F : SHORT_TO_FLOAT(S)) 87 88 89/** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0], texture/fb data */ 90#define SHORT_TO_FLOAT_TEX(S) ((S) == -32768 ? -1.0F : (S) * (1.0F/32767.0F)) 91 92/** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767], texture/fb data */ 93#define FLOAT_TO_SHORT_TEX(X) ( (GLint) (32767.0F * (X)) ) 94 95 96/** Convert GLuint in [0,4294967295] to GLfloat in [0.0,1.0] */ 97#define UINT_TO_FLOAT(U) ((GLfloat) ((U) * (1.0F / 4294967295.0))) 98 99/** Convert GLfloat in [0.0,1.0] to GLuint in [0,4294967295] */ 100#define FLOAT_TO_UINT(X) ((GLuint) ((X) * 4294967295.0)) 101 102 103/** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0] */ 104#define INT_TO_FLOAT(I) ((GLfloat) ((2.0F * (I) + 1.0F) * (1.0F/4294967294.0))) 105 106/** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647] */ 107/* causes overflow: 108#define FLOAT_TO_INT(X) ( (((GLint) (4294967294.0 * (X))) - 1) / 2 ) 109*/ 110/* a close approximation: */ 111#define FLOAT_TO_INT(X) ( (GLint) (2147483647.0 * (X)) ) 112 113/** Convert GLfloat in [-1.0,1.0] to GLint64 in [-(1<<63),(1 << 63) -1] */ 114#define FLOAT_TO_INT64(X) ( (GLint64) (9223372036854775807.0 * (double)(X)) ) 115 116 117/** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0], texture/fb data */ 118#define INT_TO_FLOAT_TEX(I) ((I) == -2147483648 ? -1.0F : (I) * (1.0F/2147483647.0)) 119 120/** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647], texture/fb data */ 121#define FLOAT_TO_INT_TEX(X) ( (GLint) (2147483647.0 * (X)) ) 122 123 124#define BYTE_TO_UBYTE(b) ((GLubyte) ((b) < 0 ? 0 : (GLubyte) (b))) 125#define SHORT_TO_UBYTE(s) ((GLubyte) ((s) < 0 ? 0 : (GLubyte) ((s) >> 7))) 126#define USHORT_TO_UBYTE(s) ((GLubyte) ((s) >> 8)) 127#define INT_TO_UBYTE(i) ((GLubyte) ((i) < 0 ? 0 : (GLubyte) ((i) >> 23))) 128#define UINT_TO_UBYTE(i) ((GLubyte) ((i) >> 24)) 129 130 131#define BYTE_TO_USHORT(b) ((b) < 0 ? 0 : ((GLushort) (((b) * 65535) / 255))) 132#define UBYTE_TO_USHORT(b) (((GLushort) (b) << 8) | (GLushort) (b)) 133#define SHORT_TO_USHORT(s) ((s) < 0 ? 0 : ((GLushort) (((s) * 65535 / 32767)))) 134#define INT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 15))) 135#define UINT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 16))) 136#define UNCLAMPED_FLOAT_TO_USHORT(us, f) \ 137 us = ( (GLushort) _mesa_lroundevenf( CLAMP((f), 0.0F, 1.0F) * 65535.0F) ) 138#define CLAMPED_FLOAT_TO_USHORT(us, f) \ 139 us = ( (GLushort) _mesa_lroundevenf( (f) * 65535.0F) ) 140 141#define UNCLAMPED_FLOAT_TO_SHORT(s, f) \ 142 s = ( (GLshort) _mesa_lroundevenf( CLAMP((f), -1.0F, 1.0F) * 32767.0F) ) 143 144/*** 145 *** UNCLAMPED_FLOAT_TO_UBYTE: clamp float to [0,1] and map to ubyte in [0,255] 146 *** CLAMPED_FLOAT_TO_UBYTE: map float known to be in [0,1] to ubyte in [0,255] 147 ***/ 148#ifndef DEBUG 149/* This function/macro is sensitive to precision. Test very carefully 150 * if you change it! 151 */ 152#define UNCLAMPED_FLOAT_TO_UBYTE(UB, FLT) \ 153 do { \ 154 fi_type __tmp; \ 155 __tmp.f = (FLT); \ 156 if (__tmp.i < 0) \ 157 UB = (GLubyte) 0; \ 158 else if (__tmp.i >= IEEE_ONE) \ 159 UB = (GLubyte) 255; \ 160 else { \ 161 __tmp.f = __tmp.f * (255.0F/256.0F) + 32768.0F; \ 162 UB = (GLubyte) __tmp.i; \ 163 } \ 164 } while (0) 165#define CLAMPED_FLOAT_TO_UBYTE(UB, FLT) \ 166 do { \ 167 fi_type __tmp; \ 168 __tmp.f = (FLT) * (255.0F/256.0F) + 32768.0F; \ 169 UB = (GLubyte) __tmp.i; \ 170 } while (0) 171#else 172#define UNCLAMPED_FLOAT_TO_UBYTE(ub, f) \ 173 ub = ((GLubyte) _mesa_lroundevenf(CLAMP((f), 0.0F, 1.0F) * 255.0F)) 174#define CLAMPED_FLOAT_TO_UBYTE(ub, f) \ 175 ub = ((GLubyte) _mesa_lroundevenf((f) * 255.0F)) 176#endif 177 178static fi_type UINT_AS_UNION(GLuint u) 179{ 180 fi_type tmp; 181 tmp.u = u; 182 return tmp; 183} 184 185static inline fi_type INT_AS_UNION(GLint i) 186{ 187 fi_type tmp; 188 tmp.i = i; 189 return tmp; 190} 191 192static inline fi_type FLOAT_AS_UNION(GLfloat f) 193{ 194 fi_type tmp; 195 tmp.f = f; 196 return tmp; 197} 198 199static inline uint64_t DOUBLE_AS_UINT64(double d) 200{ 201 union { 202 double d; 203 uint64_t u64; 204 } tmp; 205 tmp.d = d; 206 return tmp.u64; 207} 208 209static inline double UINT64_AS_DOUBLE(uint64_t u) 210{ 211 union { 212 double d; 213 uint64_t u64; 214 } tmp; 215 tmp.u64 = u; 216 return tmp.d; 217} 218 219/* First sign-extend x, then return uint32_t. */ 220#define INT_AS_UINT(x) ((uint32_t)((int32_t)(x))) 221#define FLOAT_AS_UINT(x) (FLOAT_AS_UNION(x).u) 222 223/** 224 * Convert a floating point value to an unsigned fixed point value. 225 * 226 * \param frac_bits The number of bits used to store the fractional part. 227 */ 228static inline uint32_t 229U_FIXED(float value, uint32_t frac_bits) 230{ 231 value *= (1 << frac_bits); 232 return value < 0.0f ? 0 : (uint32_t) value; 233} 234 235/** 236 * Convert a floating point value to an signed fixed point value. 237 * 238 * \param frac_bits The number of bits used to store the fractional part. 239 */ 240static inline int32_t 241S_FIXED(float value, uint32_t frac_bits) 242{ 243 return (int32_t) (value * (1 << frac_bits)); 244} 245/*@}*/ 246 247 248/** Stepping a GLfloat pointer by a byte stride */ 249#define STRIDE_F(p, i) (p = (GLfloat *)((GLubyte *)p + i)) 250/** Stepping a GLuint pointer by a byte stride */ 251#define STRIDE_UI(p, i) (p = (GLuint *)((GLubyte *)p + i)) 252/** Stepping a GLubyte[4] pointer by a byte stride */ 253#define STRIDE_4UB(p, i) (p = (GLubyte (*)[4])((GLubyte *)p + i)) 254/** Stepping a GLfloat[4] pointer by a byte stride */ 255#define STRIDE_4F(p, i) (p = (GLfloat (*)[4])((GLubyte *)p + i)) 256/** Stepping a \p t pointer by a byte stride */ 257#define STRIDE_T(p, t, i) (p = (t)((GLubyte *)p + i)) 258 259 260/**********************************************************************/ 261/** \name 4-element vector operations */ 262/*@{*/ 263 264/** Zero */ 265#define ZERO_4V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = (DST)[3] = 0 266 267/** Test for equality */ 268#define TEST_EQ_4V(a,b) ((a)[0] == (b)[0] && \ 269 (a)[1] == (b)[1] && \ 270 (a)[2] == (b)[2] && \ 271 (a)[3] == (b)[3]) 272 273/** Test for equality (unsigned bytes) */ 274static inline GLboolean 275TEST_EQ_4UBV(const GLubyte a[4], const GLubyte b[4]) 276{ 277#if defined(__i386__) 278 return *((const GLuint *) a) == *((const GLuint *) b); 279#else 280 return TEST_EQ_4V(a, b); 281#endif 282} 283 284 285/** Copy a 4-element vector */ 286#define COPY_4V( DST, SRC ) \ 287do { \ 288 (DST)[0] = (SRC)[0]; \ 289 (DST)[1] = (SRC)[1]; \ 290 (DST)[2] = (SRC)[2]; \ 291 (DST)[3] = (SRC)[3]; \ 292} while (0) 293 294/** Copy a 4-element unsigned byte vector */ 295static inline void 296COPY_4UBV(GLubyte dst[4], const GLubyte src[4]) 297{ 298#if defined(__i386__) 299 *((GLuint *) dst) = *((GLuint *) src); 300#else 301 /* The GLuint cast might fail if DST or SRC are not dword-aligned (RISC) */ 302 COPY_4V(dst, src); 303#endif 304} 305 306/** Copy \p SZ elements into a 4-element vector */ 307#define COPY_SZ_4V(DST, SZ, SRC) \ 308do { \ 309 switch (SZ) { \ 310 case 4: (DST)[3] = (SRC)[3]; \ 311 FALLTHROUGH; \ 312 case 3: (DST)[2] = (SRC)[2]; \ 313 FALLTHROUGH; \ 314 case 2: (DST)[1] = (SRC)[1]; \ 315 FALLTHROUGH; \ 316 case 1: (DST)[0] = (SRC)[0]; \ 317 } \ 318} while(0) 319 320/** Copy \p SZ elements into a homegeneous (4-element) vector, giving 321 * default values to the remaining */ 322#define COPY_CLEAN_4V(DST, SZ, SRC) \ 323do { \ 324 ASSIGN_4V( DST, 0, 0, 0, 1 ); \ 325 COPY_SZ_4V( DST, SZ, SRC ); \ 326} while (0) 327 328/** Subtraction */ 329#define SUB_4V( DST, SRCA, SRCB ) \ 330do { \ 331 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \ 332 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \ 333 (DST)[2] = (SRCA)[2] - (SRCB)[2]; \ 334 (DST)[3] = (SRCA)[3] - (SRCB)[3]; \ 335} while (0) 336 337/** Addition */ 338#define ADD_4V( DST, SRCA, SRCB ) \ 339do { \ 340 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \ 341 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \ 342 (DST)[2] = (SRCA)[2] + (SRCB)[2]; \ 343 (DST)[3] = (SRCA)[3] + (SRCB)[3]; \ 344} while (0) 345 346/** Element-wise multiplication */ 347#define SCALE_4V( DST, SRCA, SRCB ) \ 348do { \ 349 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \ 350 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \ 351 (DST)[2] = (SRCA)[2] * (SRCB)[2]; \ 352 (DST)[3] = (SRCA)[3] * (SRCB)[3]; \ 353} while (0) 354 355/** In-place addition */ 356#define ACC_4V( DST, SRC ) \ 357do { \ 358 (DST)[0] += (SRC)[0]; \ 359 (DST)[1] += (SRC)[1]; \ 360 (DST)[2] += (SRC)[2]; \ 361 (DST)[3] += (SRC)[3]; \ 362} while (0) 363 364/** Element-wise multiplication and addition */ 365#define ACC_SCALE_4V( DST, SRCA, SRCB ) \ 366do { \ 367 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \ 368 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \ 369 (DST)[2] += (SRCA)[2] * (SRCB)[2]; \ 370 (DST)[3] += (SRCA)[3] * (SRCB)[3]; \ 371} while (0) 372 373/** In-place scalar multiplication and addition */ 374#define ACC_SCALE_SCALAR_4V( DST, S, SRCB ) \ 375do { \ 376 (DST)[0] += S * (SRCB)[0]; \ 377 (DST)[1] += S * (SRCB)[1]; \ 378 (DST)[2] += S * (SRCB)[2]; \ 379 (DST)[3] += S * (SRCB)[3]; \ 380} while (0) 381 382/** Scalar multiplication */ 383#define SCALE_SCALAR_4V( DST, S, SRCB ) \ 384do { \ 385 (DST)[0] = S * (SRCB)[0]; \ 386 (DST)[1] = S * (SRCB)[1]; \ 387 (DST)[2] = S * (SRCB)[2]; \ 388 (DST)[3] = S * (SRCB)[3]; \ 389} while (0) 390 391/** In-place scalar multiplication */ 392#define SELF_SCALE_SCALAR_4V( DST, S ) \ 393do { \ 394 (DST)[0] *= S; \ 395 (DST)[1] *= S; \ 396 (DST)[2] *= S; \ 397 (DST)[3] *= S; \ 398} while (0) 399 400/*@}*/ 401 402 403/**********************************************************************/ 404/** \name 3-element vector operations*/ 405/*@{*/ 406 407/** Zero */ 408#define ZERO_3V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = 0 409 410/** Test for equality */ 411#define TEST_EQ_3V(a,b) \ 412 ((a)[0] == (b)[0] && \ 413 (a)[1] == (b)[1] && \ 414 (a)[2] == (b)[2]) 415 416/** Copy a 3-element vector */ 417#define COPY_3V( DST, SRC ) \ 418do { \ 419 (DST)[0] = (SRC)[0]; \ 420 (DST)[1] = (SRC)[1]; \ 421 (DST)[2] = (SRC)[2]; \ 422} while (0) 423 424/** Copy a 3-element vector with cast */ 425#define COPY_3V_CAST( DST, SRC, CAST ) \ 426do { \ 427 (DST)[0] = (CAST)(SRC)[0]; \ 428 (DST)[1] = (CAST)(SRC)[1]; \ 429 (DST)[2] = (CAST)(SRC)[2]; \ 430} while (0) 431 432/** Copy a 3-element float vector */ 433#define COPY_3FV( DST, SRC ) \ 434do { \ 435 const GLfloat *_tmp = (SRC); \ 436 (DST)[0] = _tmp[0]; \ 437 (DST)[1] = _tmp[1]; \ 438 (DST)[2] = _tmp[2]; \ 439} while (0) 440 441/** Subtraction */ 442#define SUB_3V( DST, SRCA, SRCB ) \ 443do { \ 444 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \ 445 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \ 446 (DST)[2] = (SRCA)[2] - (SRCB)[2]; \ 447} while (0) 448 449/** Addition */ 450#define ADD_3V( DST, SRCA, SRCB ) \ 451do { \ 452 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \ 453 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \ 454 (DST)[2] = (SRCA)[2] + (SRCB)[2]; \ 455} while (0) 456 457/** In-place scalar multiplication */ 458#define SCALE_3V( DST, SRCA, SRCB ) \ 459do { \ 460 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \ 461 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \ 462 (DST)[2] = (SRCA)[2] * (SRCB)[2]; \ 463} while (0) 464 465/** In-place element-wise multiplication */ 466#define SELF_SCALE_3V( DST, SRC ) \ 467do { \ 468 (DST)[0] *= (SRC)[0]; \ 469 (DST)[1] *= (SRC)[1]; \ 470 (DST)[2] *= (SRC)[2]; \ 471} while (0) 472 473/** In-place addition */ 474#define ACC_3V( DST, SRC ) \ 475do { \ 476 (DST)[0] += (SRC)[0]; \ 477 (DST)[1] += (SRC)[1]; \ 478 (DST)[2] += (SRC)[2]; \ 479} while (0) 480 481/** Element-wise multiplication and addition */ 482#define ACC_SCALE_3V( DST, SRCA, SRCB ) \ 483do { \ 484 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \ 485 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \ 486 (DST)[2] += (SRCA)[2] * (SRCB)[2]; \ 487} while (0) 488 489/** Scalar multiplication */ 490#define SCALE_SCALAR_3V( DST, S, SRCB ) \ 491do { \ 492 (DST)[0] = S * (SRCB)[0]; \ 493 (DST)[1] = S * (SRCB)[1]; \ 494 (DST)[2] = S * (SRCB)[2]; \ 495} while (0) 496 497/** In-place scalar multiplication and addition */ 498#define ACC_SCALE_SCALAR_3V( DST, S, SRCB ) \ 499do { \ 500 (DST)[0] += S * (SRCB)[0]; \ 501 (DST)[1] += S * (SRCB)[1]; \ 502 (DST)[2] += S * (SRCB)[2]; \ 503} while (0) 504 505/** In-place scalar multiplication */ 506#define SELF_SCALE_SCALAR_3V( DST, S ) \ 507do { \ 508 (DST)[0] *= S; \ 509 (DST)[1] *= S; \ 510 (DST)[2] *= S; \ 511} while (0) 512 513/** In-place scalar addition */ 514#define ACC_SCALAR_3V( DST, S ) \ 515do { \ 516 (DST)[0] += S; \ 517 (DST)[1] += S; \ 518 (DST)[2] += S; \ 519} while (0) 520 521/** Assignment */ 522#define ASSIGN_3V( V, V0, V1, V2 ) \ 523do { \ 524 V[0] = V0; \ 525 V[1] = V1; \ 526 V[2] = V2; \ 527} while(0) 528 529/*@}*/ 530 531 532/**********************************************************************/ 533/** \name 2-element vector operations*/ 534/*@{*/ 535 536/** Zero */ 537#define ZERO_2V( DST ) (DST)[0] = (DST)[1] = 0 538 539/** Copy a 2-element vector */ 540#define COPY_2V( DST, SRC ) \ 541do { \ 542 (DST)[0] = (SRC)[0]; \ 543 (DST)[1] = (SRC)[1]; \ 544} while (0) 545 546/** Copy a 2-element vector with cast */ 547#define COPY_2V_CAST( DST, SRC, CAST ) \ 548do { \ 549 (DST)[0] = (CAST)(SRC)[0]; \ 550 (DST)[1] = (CAST)(SRC)[1]; \ 551} while (0) 552 553/** Copy a 2-element float vector */ 554#define COPY_2FV( DST, SRC ) \ 555do { \ 556 const GLfloat *_tmp = (SRC); \ 557 (DST)[0] = _tmp[0]; \ 558 (DST)[1] = _tmp[1]; \ 559} while (0) 560 561/** Subtraction */ 562#define SUB_2V( DST, SRCA, SRCB ) \ 563do { \ 564 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \ 565 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \ 566} while (0) 567 568/** Addition */ 569#define ADD_2V( DST, SRCA, SRCB ) \ 570do { \ 571 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \ 572 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \ 573} while (0) 574 575/** In-place scalar multiplication */ 576#define SCALE_2V( DST, SRCA, SRCB ) \ 577do { \ 578 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \ 579 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \ 580} while (0) 581 582/** In-place addition */ 583#define ACC_2V( DST, SRC ) \ 584do { \ 585 (DST)[0] += (SRC)[0]; \ 586 (DST)[1] += (SRC)[1]; \ 587} while (0) 588 589/** Element-wise multiplication and addition */ 590#define ACC_SCALE_2V( DST, SRCA, SRCB ) \ 591do { \ 592 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \ 593 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \ 594} while (0) 595 596/** Scalar multiplication */ 597#define SCALE_SCALAR_2V( DST, S, SRCB ) \ 598do { \ 599 (DST)[0] = S * (SRCB)[0]; \ 600 (DST)[1] = S * (SRCB)[1]; \ 601} while (0) 602 603/** In-place scalar multiplication and addition */ 604#define ACC_SCALE_SCALAR_2V( DST, S, SRCB ) \ 605do { \ 606 (DST)[0] += S * (SRCB)[0]; \ 607 (DST)[1] += S * (SRCB)[1]; \ 608} while (0) 609 610/** In-place scalar multiplication */ 611#define SELF_SCALE_SCALAR_2V( DST, S ) \ 612do { \ 613 (DST)[0] *= S; \ 614 (DST)[1] *= S; \ 615} while (0) 616 617/** In-place scalar addition */ 618#define ACC_SCALAR_2V( DST, S ) \ 619do { \ 620 (DST)[0] += S; \ 621 (DST)[1] += S; \ 622} while (0) 623 624/** Assign scalers to short vectors */ 625#define ASSIGN_2V( V, V0, V1 ) \ 626do { \ 627 V[0] = V0; \ 628 V[1] = V1; \ 629} while(0) 630 631/*@}*/ 632 633/** Copy \p sz elements into a homegeneous (4-element) vector, giving 634 * default values to the remaining components. 635 * The default values are chosen based on \p type. 636 */ 637static inline void 638COPY_CLEAN_4V_TYPE_AS_UNION(fi_type dst[4], int sz, const fi_type src[4], 639 GLenum type) 640{ 641 switch (type) { 642 case GL_FLOAT: 643 ASSIGN_4V(dst, FLOAT_AS_UNION(0), FLOAT_AS_UNION(0), 644 FLOAT_AS_UNION(0), FLOAT_AS_UNION(1)); 645 break; 646 case GL_INT: 647 ASSIGN_4V(dst, INT_AS_UNION(0), INT_AS_UNION(0), 648 INT_AS_UNION(0), INT_AS_UNION(1)); 649 break; 650 case GL_UNSIGNED_INT: 651 ASSIGN_4V(dst, UINT_AS_UNION(0), UINT_AS_UNION(0), 652 UINT_AS_UNION(0), UINT_AS_UNION(1)); 653 break; 654 default: 655 ASSIGN_4V(dst, FLOAT_AS_UNION(0), FLOAT_AS_UNION(0), 656 FLOAT_AS_UNION(0), FLOAT_AS_UNION(1)); /* silence warnings */ 657 assert(!"Unexpected type in COPY_CLEAN_4V_TYPE_AS_UNION macro"); 658 } 659 COPY_SZ_4V(dst, sz, src); 660} 661 662/** \name Linear interpolation functions */ 663/*@{*/ 664 665static inline GLfloat 666LINTERP(GLfloat t, GLfloat out, GLfloat in) 667{ 668 return out + t * (in - out); 669} 670 671static inline void 672INTERP_3F(GLfloat t, GLfloat dst[3], const GLfloat out[3], const GLfloat in[3]) 673{ 674 dst[0] = LINTERP( t, out[0], in[0] ); 675 dst[1] = LINTERP( t, out[1], in[1] ); 676 dst[2] = LINTERP( t, out[2], in[2] ); 677} 678 679static inline void 680INTERP_4F(GLfloat t, GLfloat dst[4], const GLfloat out[4], const GLfloat in[4]) 681{ 682 dst[0] = LINTERP( t, out[0], in[0] ); 683 dst[1] = LINTERP( t, out[1], in[1] ); 684 dst[2] = LINTERP( t, out[2], in[2] ); 685 dst[3] = LINTERP( t, out[3], in[3] ); 686} 687 688/*@}*/ 689 690 691 692/** Cross product of two 3-element vectors */ 693static inline void 694CROSS3(GLfloat n[3], const GLfloat u[3], const GLfloat v[3]) 695{ 696 n[0] = u[1] * v[2] - u[2] * v[1]; 697 n[1] = u[2] * v[0] - u[0] * v[2]; 698 n[2] = u[0] * v[1] - u[1] * v[0]; 699} 700 701 702/** Dot product of two 2-element vectors */ 703static inline GLfloat 704DOT2(const GLfloat a[2], const GLfloat b[2]) 705{ 706 return a[0] * b[0] + a[1] * b[1]; 707} 708 709static inline GLfloat 710DOT3(const GLfloat a[3], const GLfloat b[3]) 711{ 712 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; 713} 714 715static inline GLfloat 716DOT4(const GLfloat a[4], const GLfloat b[4]) 717{ 718 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3]; 719} 720 721 722static inline GLfloat 723LEN_SQUARED_3FV(const GLfloat v[3]) 724{ 725 return DOT3(v, v); 726} 727 728static inline GLfloat 729LEN_SQUARED_2FV(const GLfloat v[2]) 730{ 731 return DOT2(v, v); 732} 733 734 735static inline GLfloat 736LEN_3FV(const GLfloat v[3]) 737{ 738 return sqrtf(LEN_SQUARED_3FV(v)); 739} 740 741static inline GLfloat 742LEN_2FV(const GLfloat v[2]) 743{ 744 return sqrtf(LEN_SQUARED_2FV(v)); 745} 746 747 748/* Normalize a 3-element vector to unit length. */ 749static inline void 750NORMALIZE_3FV(GLfloat v[3]) 751{ 752 GLfloat len = (GLfloat) LEN_SQUARED_3FV(v); 753 if (len) { 754 len = 1.0f / sqrtf(len); 755 v[0] *= len; 756 v[1] *= len; 757 v[2] *= len; 758 } 759} 760 761 762/** Test two floats have opposite signs */ 763static inline GLboolean 764DIFFERENT_SIGNS(GLfloat x, GLfloat y) 765{ 766#ifdef _MSC_VER 767#pragma warning( push ) 768#pragma warning( disable : 6334 ) /* sizeof operator applied to an expression with an operator may yield unexpected results */ 769#endif 770 return signbit(x) != signbit(y); 771#ifdef _MSC_VER 772#pragma warning( pop ) 773#endif 774} 775 776 777/** casts to silence warnings with some compilers */ 778#define ENUM_TO_INT(E) ((GLint)(E)) 779#define ENUM_TO_FLOAT(E) ((GLfloat)(GLint)(E)) 780#define ENUM_TO_DOUBLE(E) ((GLdouble)(GLint)(E)) 781#define ENUM_TO_BOOLEAN(E) ((E) ? GL_TRUE : GL_FALSE) 782 783 784/* Stringify */ 785#define STRINGIFY(x) #x 786 787/* 788 * For GL_ARB_vertex_buffer_object we need to treat vertex array pointers 789 * as offsets into buffer stores. Since the vertex array pointer and 790 * buffer store pointer are both pointers and we need to add them, we use 791 * this macro. 792 * Both pointers/offsets are expressed in bytes. 793 */ 794#define ADD_POINTERS(A, B) ( (GLubyte *) (A) + (uintptr_t) (B) ) 795 796#endif 797