1/**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 * Copyright 2009 VMware, Inc.  All Rights Reserved.
6 * Copyright © 2010-2011 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 **************************************************************************/
29
30#include "main/glheader.h"
31#include "main/context.h"
32
33#include "main/macros.h"
34#include "main/samplerobj.h"
35#include "main/shaderobj.h"
36#include "main/state.h"
37#include "main/texenvprogram.h"
38#include "main/texobj.h"
39#include "main/uniforms.h"
40#include "compiler/glsl/ir_builder.h"
41#include "compiler/glsl/ir_optimization.h"
42#include "compiler/glsl/glsl_parser_extras.h"
43#include "compiler/glsl/glsl_symbol_table.h"
44#include "compiler/glsl_types.h"
45#include "program/link_program.h"
46#include "program/program.h"
47#include "program/programopt.h"
48#include "program/prog_cache.h"
49#include "program/prog_instruction.h"
50#include "program/prog_parameter.h"
51#include "program/prog_print.h"
52#include "program/prog_statevars.h"
53#include "util/bitscan.h"
54
55using namespace ir_builder;
56
57/*
58 * Note on texture units:
59 *
60 * The number of texture units supported by fixed-function fragment
61 * processing is MAX_TEXTURE_COORD_UNITS, not MAX_TEXTURE_IMAGE_UNITS.
62 * That's because there's a one-to-one correspondence between texture
63 * coordinates and samplers in fixed-function processing.
64 *
65 * Since fixed-function vertex processing is limited to MAX_TEXTURE_COORD_UNITS
66 * sets of texcoords, so is fixed-function fragment processing.
67 *
68 * We can safely use ctx->Const.MaxTextureUnits for loop bounds.
69 */
70
71
72static GLboolean
73texenv_doing_secondary_color(struct gl_context *ctx)
74{
75   if (ctx->Light.Enabled &&
76       (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR))
77      return GL_TRUE;
78
79   if (ctx->Fog.ColorSumEnabled)
80      return GL_TRUE;
81
82   return GL_FALSE;
83}
84
85struct state_key {
86   GLuint nr_enabled_units:4;
87   GLuint separate_specular:1;
88   GLuint fog_mode:2;          /**< FOG_x */
89   GLuint inputs_available:12;
90   GLuint num_draw_buffers:4;
91
92   /* NOTE: This array of structs must be last! (see "keySize" below) */
93   struct {
94      GLuint enabled:1;
95      GLuint source_index:4;   /**< TEXTURE_x_INDEX */
96      GLuint shadow:1;
97
98      /***
99       * These are taken from struct gl_tex_env_combine_packed
100       * @{
101       */
102      GLuint ModeRGB:4;
103      GLuint ModeA:4;
104      GLuint ScaleShiftRGB:2;
105      GLuint ScaleShiftA:2;
106      GLuint NumArgsRGB:3;
107      GLuint NumArgsA:3;
108      struct gl_tex_env_argument ArgsRGB[MAX_COMBINER_TERMS];
109      struct gl_tex_env_argument ArgsA[MAX_COMBINER_TERMS];
110      /** @} */
111   } unit[MAX_TEXTURE_COORD_UNITS];
112};
113
114
115/**
116 * Do we need to clamp the results of the given texture env/combine mode?
117 * If the inputs to the mode are in [0,1] we don't always have to clamp
118 * the results.
119 */
120static GLboolean
121need_saturate( GLuint mode )
122{
123   switch (mode) {
124   case TEXENV_MODE_REPLACE:
125   case TEXENV_MODE_MODULATE:
126   case TEXENV_MODE_INTERPOLATE:
127      return GL_FALSE;
128   case TEXENV_MODE_ADD:
129   case TEXENV_MODE_ADD_SIGNED:
130   case TEXENV_MODE_SUBTRACT:
131   case TEXENV_MODE_DOT3_RGB:
132   case TEXENV_MODE_DOT3_RGB_EXT:
133   case TEXENV_MODE_DOT3_RGBA:
134   case TEXENV_MODE_DOT3_RGBA_EXT:
135   case TEXENV_MODE_MODULATE_ADD_ATI:
136   case TEXENV_MODE_MODULATE_SIGNED_ADD_ATI:
137   case TEXENV_MODE_MODULATE_SUBTRACT_ATI:
138   case TEXENV_MODE_ADD_PRODUCTS_NV:
139   case TEXENV_MODE_ADD_PRODUCTS_SIGNED_NV:
140      return GL_TRUE;
141   default:
142      assert(0);
143      return GL_FALSE;
144   }
145}
146
147#define VERT_BIT_TEX_ANY    (0xff << VERT_ATTRIB_TEX0)
148
149/**
150 * Identify all possible varying inputs.  The fragment program will
151 * never reference non-varying inputs, but will track them via state
152 * constants instead.
153 *
154 * This function figures out all the inputs that the fragment program
155 * has access to and filters input bitmask.
156 */
157static GLbitfield filter_fp_input_mask( GLbitfield fp_inputs,
158		    struct gl_context *ctx )
159{
160   if (ctx->VertexProgram._Overriden) {
161      /* Somebody's messing with the vertex program and we don't have
162       * a clue what's happening.  Assume that it could be producing
163       * all possible outputs.
164       */
165      return fp_inputs;
166   }
167
168   if (ctx->RenderMode == GL_FEEDBACK) {
169      /* _NEW_RENDERMODE */
170      return fp_inputs & (VARYING_BIT_COL0 | VARYING_BIT_TEX0);
171   }
172
173   /* _NEW_PROGRAM */
174   const GLboolean vertexShader =
175         ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX] != NULL;
176   const GLboolean vertexProgram = _mesa_arb_vertex_program_enabled(ctx);
177
178   if (!(vertexProgram || vertexShader)) {
179      /* Fixed function vertex logic */
180      GLbitfield possible_inputs = 0;
181
182      GLbitfield varying_inputs = ctx->VertexProgram._VaryingInputs;
183      /* We only update ctx->VertexProgram._VaryingInputs when in VP_MODE_FF _VPMode */
184      assert(VP_MODE_FF == ctx->VertexProgram._VPMode);
185
186      /* These get generated in the setup routine regardless of the
187       * vertex program:
188       */
189      /* _NEW_POINT */
190      if (ctx->Point.PointSprite) {
191         /* All texture varyings are possible to use */
192         possible_inputs = VARYING_BITS_TEX_ANY;
193      }
194      else {
195         const GLbitfield possible_tex_inputs =
196               ctx->Texture._TexGenEnabled |
197               ctx->Texture._TexMatEnabled |
198               ((varying_inputs & VERT_BIT_TEX_ANY) >> VERT_ATTRIB_TEX0);
199
200         possible_inputs = (possible_tex_inputs << VARYING_SLOT_TEX0);
201      }
202
203      /* First look at what values may be computed by the generated
204       * vertex program:
205       */
206      if (ctx->Light.Enabled) {
207         possible_inputs |= VARYING_BIT_COL0;
208
209         if (texenv_doing_secondary_color(ctx))
210            possible_inputs |= VARYING_BIT_COL1;
211      }
212
213      /* Then look at what might be varying as a result of enabled
214       * arrays, etc:
215       */
216      if (varying_inputs & VERT_BIT_COLOR0)
217         possible_inputs |= VARYING_BIT_COL0;
218      if (varying_inputs & VERT_BIT_COLOR1)
219         possible_inputs |= VARYING_BIT_COL1;
220
221      return fp_inputs & possible_inputs;
222   }
223
224   /* calculate from vp->outputs */
225   struct gl_program *vprog;
226
227   /* Choose GLSL vertex shader over ARB vertex program.  Need this
228    * since vertex shader state validation comes after fragment state
229    * validation (see additional comments in state.c).
230    */
231   if (ctx->_Shader->CurrentProgram[MESA_SHADER_GEOMETRY] != NULL)
232      vprog = ctx->_Shader->CurrentProgram[MESA_SHADER_GEOMETRY];
233   else if (ctx->_Shader->CurrentProgram[MESA_SHADER_TESS_EVAL] != NULL)
234      vprog = ctx->_Shader->CurrentProgram[MESA_SHADER_TESS_EVAL];
235   else if (vertexShader)
236      vprog = ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX];
237   else
238      vprog = ctx->VertexProgram.Current;
239
240   GLbitfield possible_inputs = vprog->info.outputs_written;
241
242   /* These get generated in the setup routine regardless of the
243    * vertex program:
244    */
245   /* _NEW_POINT */
246   if (ctx->Point.PointSprite) {
247      /* All texture varyings are possible to use */
248      possible_inputs |= VARYING_BITS_TEX_ANY;
249   }
250
251   return fp_inputs & possible_inputs;
252}
253
254
255/**
256 * Examine current texture environment state and generate a unique
257 * key to identify it.
258 */
259static GLuint make_state_key( struct gl_context *ctx,  struct state_key *key )
260{
261   GLbitfield inputs_referenced = VARYING_BIT_COL0;
262   GLbitfield mask;
263   GLuint keySize;
264
265   memset(key, 0, sizeof(*key));
266
267   /* _NEW_TEXTURE_OBJECT | _NEW_TEXTURE_STATE */
268   mask = ctx->Texture._EnabledCoordUnits;
269   int i = -1;
270   while (mask) {
271      i = u_bit_scan(&mask);
272      const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
273      const struct gl_texture_object *texObj = texUnit->_Current;
274      const struct gl_tex_env_combine_packed *comb =
275         &ctx->Texture.FixedFuncUnit[i]._CurrentCombinePacked;
276
277      if (!texObj)
278         continue;
279
280      key->unit[i].enabled = 1;
281      inputs_referenced |= VARYING_BIT_TEX(i);
282
283      key->unit[i].source_index = texObj->TargetIndex;
284
285      const struct gl_sampler_object *samp = _mesa_get_samplerobj(ctx, i);
286      if (samp->Attrib.CompareMode == GL_COMPARE_R_TO_TEXTURE) {
287         const GLenum format = _mesa_texture_base_format(texObj);
288         key->unit[i].shadow = (format == GL_DEPTH_COMPONENT ||
289				format == GL_DEPTH_STENCIL_EXT);
290      }
291
292      key->unit[i].ModeRGB = comb->ModeRGB;
293      key->unit[i].ModeA = comb->ModeA;
294      key->unit[i].ScaleShiftRGB = comb->ScaleShiftRGB;
295      key->unit[i].ScaleShiftA = comb->ScaleShiftA;
296      key->unit[i].NumArgsRGB = comb->NumArgsRGB;
297      key->unit[i].NumArgsA = comb->NumArgsA;
298
299      memcpy(key->unit[i].ArgsRGB, comb->ArgsRGB, sizeof comb->ArgsRGB);
300      memcpy(key->unit[i].ArgsA, comb->ArgsA, sizeof comb->ArgsA);
301   }
302
303   key->nr_enabled_units = i + 1;
304
305   /* _NEW_FOG */
306   if (texenv_doing_secondary_color(ctx)) {
307      key->separate_specular = 1;
308      inputs_referenced |= VARYING_BIT_COL1;
309   }
310
311   /* _NEW_FOG */
312   key->fog_mode = ctx->Fog._PackedEnabledMode;
313
314   /* _NEW_BUFFERS */
315   key->num_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
316
317   /* _NEW_COLOR */
318   if (ctx->Color.AlphaEnabled && key->num_draw_buffers == 0) {
319      /* if alpha test is enabled we need to emit at least one color */
320      key->num_draw_buffers = 1;
321   }
322
323   key->inputs_available = filter_fp_input_mask(inputs_referenced, ctx);
324
325   /* compute size of state key, ignoring unused texture units */
326   keySize = sizeof(*key) - sizeof(key->unit)
327      + key->nr_enabled_units * sizeof(key->unit[0]);
328
329   return keySize;
330}
331
332
333/** State used to build the fragment program:
334 */
335class texenv_fragment_program : public ir_factory {
336public:
337   struct gl_shader_program *shader_program;
338   struct gl_shader *shader;
339   exec_list *top_instructions;
340   struct state_key *state;
341
342   ir_variable *src_texture[MAX_TEXTURE_COORD_UNITS];
343   /* Reg containing each texture unit's sampled texture color,
344    * else undef.
345    */
346
347   ir_rvalue *src_previous;	/**< Reg containing color from previous
348				 * stage.  May need to be decl'd.
349				 */
350};
351
352static ir_rvalue *
353get_current_attrib(texenv_fragment_program *p, GLuint attrib)
354{
355   ir_variable *current;
356   char name[128];
357
358   snprintf(name, sizeof(name), "gl_CurrentAttribFrag%uMESA", attrib);
359
360   current = p->shader->symbols->get_variable(name);
361   assert(current);
362   return new(p->mem_ctx) ir_dereference_variable(current);
363}
364
365static ir_rvalue *
366get_gl_Color(texenv_fragment_program *p)
367{
368   if (p->state->inputs_available & VARYING_BIT_COL0) {
369      ir_variable *var = p->shader->symbols->get_variable("gl_Color");
370      assert(var);
371      return new(p->mem_ctx) ir_dereference_variable(var);
372   } else {
373      return get_current_attrib(p, VERT_ATTRIB_COLOR0);
374   }
375}
376
377static ir_rvalue *
378get_source(texenv_fragment_program *p,
379	   GLuint src, GLuint unit)
380{
381   ir_variable *var;
382   ir_dereference *deref;
383
384   switch (src) {
385   case TEXENV_SRC_TEXTURE:
386      return new(p->mem_ctx) ir_dereference_variable(p->src_texture[unit]);
387
388   case TEXENV_SRC_TEXTURE0:
389   case TEXENV_SRC_TEXTURE1:
390   case TEXENV_SRC_TEXTURE2:
391   case TEXENV_SRC_TEXTURE3:
392   case TEXENV_SRC_TEXTURE4:
393   case TEXENV_SRC_TEXTURE5:
394   case TEXENV_SRC_TEXTURE6:
395   case TEXENV_SRC_TEXTURE7:
396      return new(p->mem_ctx)
397	 ir_dereference_variable(p->src_texture[src - TEXENV_SRC_TEXTURE0]);
398
399   case TEXENV_SRC_CONSTANT:
400      var = p->shader->symbols->get_variable("gl_TextureEnvColor");
401      assert(var);
402      deref = new(p->mem_ctx) ir_dereference_variable(var);
403      var->data.max_array_access = MAX2(var->data.max_array_access, (int)unit);
404      return new(p->mem_ctx) ir_dereference_array(deref,
405						  new(p->mem_ctx) ir_constant(unit));
406
407   case TEXENV_SRC_PRIMARY_COLOR:
408      var = p->shader->symbols->get_variable("gl_Color");
409      assert(var);
410      return new(p->mem_ctx) ir_dereference_variable(var);
411
412   case TEXENV_SRC_ZERO:
413      return new(p->mem_ctx) ir_constant(0.0f);
414
415   case TEXENV_SRC_ONE:
416      return new(p->mem_ctx) ir_constant(1.0f);
417
418   case TEXENV_SRC_PREVIOUS:
419      if (!p->src_previous) {
420	 return get_gl_Color(p);
421      } else {
422	 return p->src_previous->clone(p->mem_ctx, NULL);
423      }
424
425   default:
426      assert(0);
427      return NULL;
428   }
429}
430
431static ir_rvalue *
432emit_combine_source(texenv_fragment_program *p,
433		    GLuint unit,
434		    GLuint source,
435		    GLuint operand)
436{
437   ir_rvalue *src;
438
439   src = get_source(p, source, unit);
440
441   switch (operand) {
442   case TEXENV_OPR_ONE_MINUS_COLOR:
443      return sub(new(p->mem_ctx) ir_constant(1.0f), src);
444
445   case TEXENV_OPR_ALPHA:
446      return src->type->is_scalar() ? src : swizzle_w(src);
447
448   case TEXENV_OPR_ONE_MINUS_ALPHA: {
449      ir_rvalue *const scalar = src->type->is_scalar() ? src : swizzle_w(src);
450
451      return sub(new(p->mem_ctx) ir_constant(1.0f), scalar);
452   }
453
454   case TEXENV_OPR_COLOR:
455      return src;
456
457   default:
458      assert(0);
459      return src;
460   }
461}
462
463/**
464 * Check if the RGB and Alpha sources and operands match for the given
465 * texture unit's combinder state.  When the RGB and A sources and
466 * operands match, we can emit fewer instructions.
467 */
468static GLboolean args_match( const struct state_key *key, GLuint unit )
469{
470   GLuint i, numArgs = key->unit[unit].NumArgsRGB;
471
472   for (i = 0; i < numArgs; i++) {
473      if (key->unit[unit].ArgsA[i].Source != key->unit[unit].ArgsRGB[i].Source)
474	 return GL_FALSE;
475
476      switch (key->unit[unit].ArgsA[i].Operand) {
477      case TEXENV_OPR_ALPHA:
478	 switch (key->unit[unit].ArgsRGB[i].Operand) {
479	 case TEXENV_OPR_COLOR:
480	 case TEXENV_OPR_ALPHA:
481	    break;
482	 default:
483	    return GL_FALSE;
484	 }
485	 break;
486      case TEXENV_OPR_ONE_MINUS_ALPHA:
487	 switch (key->unit[unit].ArgsRGB[i].Operand) {
488	 case TEXENV_OPR_ONE_MINUS_COLOR:
489	 case TEXENV_OPR_ONE_MINUS_ALPHA:
490	    break;
491	 default:
492	    return GL_FALSE;
493	 }
494	 break;
495      default:
496	 return GL_FALSE;	/* impossible */
497      }
498   }
499
500   return GL_TRUE;
501}
502
503static ir_rvalue *
504smear(ir_rvalue *val)
505{
506   if (!val->type->is_scalar())
507      return val;
508
509   return swizzle_xxxx(val);
510}
511
512static ir_rvalue *
513emit_combine(texenv_fragment_program *p,
514	     GLuint unit,
515	     GLuint nr,
516	     GLuint mode,
517	     const struct gl_tex_env_argument *opt)
518{
519   ir_rvalue *src[MAX_COMBINER_TERMS];
520   ir_rvalue *tmp0, *tmp1;
521   GLuint i;
522
523   assert(nr <= MAX_COMBINER_TERMS);
524
525   for (i = 0; i < nr; i++)
526      src[i] = emit_combine_source( p, unit, opt[i].Source, opt[i].Operand );
527
528   switch (mode) {
529   case TEXENV_MODE_REPLACE:
530      return src[0];
531
532   case TEXENV_MODE_MODULATE:
533      return mul(src[0], src[1]);
534
535   case TEXENV_MODE_ADD:
536      return add(src[0], src[1]);
537
538   case TEXENV_MODE_ADD_SIGNED:
539      return add(add(src[0], src[1]), new(p->mem_ctx) ir_constant(-0.5f));
540
541   case TEXENV_MODE_INTERPOLATE:
542      /* Arg0 * (Arg2) + Arg1 * (1-Arg2) */
543      tmp0 = mul(src[0], src[2]);
544      tmp1 = mul(src[1], sub(new(p->mem_ctx) ir_constant(1.0f),
545			     src[2]->clone(p->mem_ctx, NULL)));
546      return add(tmp0, tmp1);
547
548   case TEXENV_MODE_SUBTRACT:
549      return sub(src[0], src[1]);
550
551   case TEXENV_MODE_DOT3_RGBA:
552   case TEXENV_MODE_DOT3_RGBA_EXT:
553   case TEXENV_MODE_DOT3_RGB_EXT:
554   case TEXENV_MODE_DOT3_RGB: {
555      tmp0 = mul(src[0], new(p->mem_ctx) ir_constant(2.0f));
556      tmp0 = add(tmp0, new(p->mem_ctx) ir_constant(-1.0f));
557
558      tmp1 = mul(src[1], new(p->mem_ctx) ir_constant(2.0f));
559      tmp1 = add(tmp1, new(p->mem_ctx) ir_constant(-1.0f));
560
561      return dot(swizzle_xyz(smear(tmp0)), swizzle_xyz(smear(tmp1)));
562   }
563   case TEXENV_MODE_MODULATE_ADD_ATI:
564      return add(mul(src[0], src[2]), src[1]);
565
566   case TEXENV_MODE_MODULATE_SIGNED_ADD_ATI:
567      return add(add(mul(src[0], src[2]), src[1]),
568		 new(p->mem_ctx) ir_constant(-0.5f));
569
570   case TEXENV_MODE_MODULATE_SUBTRACT_ATI:
571      return sub(mul(src[0], src[2]), src[1]);
572
573   case TEXENV_MODE_ADD_PRODUCTS_NV:
574      return add(mul(src[0], src[1]), mul(src[2], src[3]));
575
576   case TEXENV_MODE_ADD_PRODUCTS_SIGNED_NV:
577      return add(add(mul(src[0], src[1]), mul(src[2], src[3])),
578		 new(p->mem_ctx) ir_constant(-0.5f));
579   default:
580      assert(0);
581      return src[0];
582   }
583}
584
585/**
586 * Generate instructions for one texture unit's env/combiner mode.
587 */
588static ir_rvalue *
589emit_texenv(texenv_fragment_program *p, GLuint unit)
590{
591   const struct state_key *key = p->state;
592   GLboolean rgb_saturate, alpha_saturate;
593   GLuint rgb_shift, alpha_shift;
594
595   if (!key->unit[unit].enabled) {
596      return get_source(p, TEXENV_SRC_PREVIOUS, 0);
597   }
598
599   switch (key->unit[unit].ModeRGB) {
600   case TEXENV_MODE_DOT3_RGB_EXT:
601      alpha_shift = key->unit[unit].ScaleShiftA;
602      rgb_shift = 0;
603      break;
604   case TEXENV_MODE_DOT3_RGBA_EXT:
605      alpha_shift = 0;
606      rgb_shift = 0;
607      break;
608   default:
609      rgb_shift = key->unit[unit].ScaleShiftRGB;
610      alpha_shift = key->unit[unit].ScaleShiftA;
611      break;
612   }
613
614   /* If we'll do rgb/alpha shifting don't saturate in emit_combine().
615    * We don't want to clamp twice.
616    */
617   if (rgb_shift)
618      rgb_saturate = GL_FALSE;  /* saturate after rgb shift */
619   else if (need_saturate(key->unit[unit].ModeRGB))
620      rgb_saturate = GL_TRUE;
621   else
622      rgb_saturate = GL_FALSE;
623
624   if (alpha_shift)
625      alpha_saturate = GL_FALSE;  /* saturate after alpha shift */
626   else if (need_saturate(key->unit[unit].ModeA))
627      alpha_saturate = GL_TRUE;
628   else
629      alpha_saturate = GL_FALSE;
630
631   ir_variable *temp_var = p->make_temp(glsl_type::vec4_type, "texenv_combine");
632   ir_dereference *deref;
633   ir_rvalue *val;
634
635   /* Emit the RGB and A combine ops
636    */
637   if (key->unit[unit].ModeRGB == key->unit[unit].ModeA &&
638       args_match(key, unit)) {
639      val = emit_combine(p, unit,
640			 key->unit[unit].NumArgsRGB,
641			 key->unit[unit].ModeRGB,
642			 key->unit[unit].ArgsRGB);
643      val = smear(val);
644      if (rgb_saturate)
645	 val = saturate(val);
646
647      p->emit(assign(temp_var, val));
648   }
649   else if (key->unit[unit].ModeRGB == TEXENV_MODE_DOT3_RGBA_EXT ||
650	    key->unit[unit].ModeRGB == TEXENV_MODE_DOT3_RGBA) {
651      ir_rvalue *val = emit_combine(p, unit,
652				    key->unit[unit].NumArgsRGB,
653				    key->unit[unit].ModeRGB,
654				    key->unit[unit].ArgsRGB);
655      val = smear(val);
656      if (rgb_saturate)
657	 val = saturate(val);
658      p->emit(assign(temp_var, val));
659   }
660   else {
661      /* Need to do something to stop from re-emitting identical
662       * argument calculations here:
663       */
664      val = emit_combine(p, unit,
665			 key->unit[unit].NumArgsRGB,
666			 key->unit[unit].ModeRGB,
667			 key->unit[unit].ArgsRGB);
668      val = swizzle_xyz(smear(val));
669      if (rgb_saturate)
670	 val = saturate(val);
671      p->emit(assign(temp_var, val, WRITEMASK_XYZ));
672
673      val = emit_combine(p, unit,
674			 key->unit[unit].NumArgsA,
675			 key->unit[unit].ModeA,
676			 key->unit[unit].ArgsA);
677      val = swizzle_w(smear(val));
678      if (alpha_saturate)
679	 val = saturate(val);
680      p->emit(assign(temp_var, val, WRITEMASK_W));
681   }
682
683   deref = new(p->mem_ctx) ir_dereference_variable(temp_var);
684
685   /* Deal with the final shift:
686    */
687   if (alpha_shift || rgb_shift) {
688      ir_constant *shift;
689
690      if (rgb_shift == alpha_shift) {
691	 shift = new(p->mem_ctx) ir_constant((float)(1 << rgb_shift));
692      }
693      else {
694         ir_constant_data const_data;
695
696         const_data.f[0] = float(1 << rgb_shift);
697         const_data.f[1] = float(1 << rgb_shift);
698         const_data.f[2] = float(1 << rgb_shift);
699         const_data.f[3] = float(1 << alpha_shift);
700
701         shift = new(p->mem_ctx) ir_constant(glsl_type::vec4_type,
702                                             &const_data);
703      }
704
705      return saturate(mul(deref, shift));
706   }
707   else
708      return deref;
709}
710
711
712/**
713 * Generate instruction for getting a texture source term.
714 */
715static void load_texture( texenv_fragment_program *p, GLuint unit )
716{
717   ir_dereference *deref;
718
719   if (p->src_texture[unit])
720      return;
721
722   const GLuint texTarget = p->state->unit[unit].source_index;
723   ir_rvalue *texcoord;
724
725   if (!(p->state->inputs_available & (VARYING_BIT_TEX0 << unit))) {
726      texcoord = get_current_attrib(p, VERT_ATTRIB_TEX0 + unit);
727   } else {
728      ir_variable *tc_array = p->shader->symbols->get_variable("gl_TexCoord");
729      assert(tc_array);
730      texcoord = new(p->mem_ctx) ir_dereference_variable(tc_array);
731      ir_rvalue *index = new(p->mem_ctx) ir_constant(unit);
732      texcoord = new(p->mem_ctx) ir_dereference_array(texcoord, index);
733      tc_array->data.max_array_access = MAX2(tc_array->data.max_array_access, (int)unit);
734   }
735
736   if (!p->state->unit[unit].enabled) {
737      p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
738					  "dummy_tex");
739      p->emit(p->src_texture[unit]);
740
741      p->emit(assign(p->src_texture[unit], new(p->mem_ctx) ir_constant(0.0f)));
742      return ;
743   }
744
745   const glsl_type *sampler_type = NULL;
746   int coords = 0;
747
748   switch (texTarget) {
749   case TEXTURE_1D_INDEX:
750      if (p->state->unit[unit].shadow)
751	 sampler_type = glsl_type::sampler1DShadow_type;
752      else
753	 sampler_type = glsl_type::sampler1D_type;
754      coords = 1;
755      break;
756   case TEXTURE_1D_ARRAY_INDEX:
757      if (p->state->unit[unit].shadow)
758	 sampler_type = glsl_type::sampler1DArrayShadow_type;
759      else
760	 sampler_type = glsl_type::sampler1DArray_type;
761      coords = 2;
762      break;
763   case TEXTURE_2D_INDEX:
764      if (p->state->unit[unit].shadow)
765	 sampler_type = glsl_type::sampler2DShadow_type;
766      else
767	 sampler_type = glsl_type::sampler2D_type;
768      coords = 2;
769      break;
770   case TEXTURE_2D_ARRAY_INDEX:
771      if (p->state->unit[unit].shadow)
772	 sampler_type = glsl_type::sampler2DArrayShadow_type;
773      else
774	 sampler_type = glsl_type::sampler2DArray_type;
775      coords = 3;
776      break;
777   case TEXTURE_RECT_INDEX:
778      if (p->state->unit[unit].shadow)
779	 sampler_type = glsl_type::sampler2DRectShadow_type;
780      else
781	 sampler_type = glsl_type::sampler2DRect_type;
782      coords = 2;
783      break;
784   case TEXTURE_3D_INDEX:
785      assert(!p->state->unit[unit].shadow);
786      sampler_type = glsl_type::sampler3D_type;
787      coords = 3;
788      break;
789   case TEXTURE_CUBE_INDEX:
790      if (p->state->unit[unit].shadow)
791	 sampler_type = glsl_type::samplerCubeShadow_type;
792      else
793	 sampler_type = glsl_type::samplerCube_type;
794      coords = 3;
795      break;
796   case TEXTURE_EXTERNAL_INDEX:
797      assert(!p->state->unit[unit].shadow);
798      sampler_type = glsl_type::samplerExternalOES_type;
799      coords = 2;
800      break;
801   }
802
803   p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
804				       "tex");
805
806   ir_texture *tex = new(p->mem_ctx) ir_texture(ir_tex);
807
808
809   char *sampler_name = ralloc_asprintf(p->mem_ctx, "sampler_%d", unit);
810   ir_variable *sampler = new(p->mem_ctx) ir_variable(sampler_type,
811						      sampler_name,
812						      ir_var_uniform);
813   p->top_instructions->push_head(sampler);
814
815   /* Set the texture unit for this sampler in the same way that
816    * layout(binding=X) would.
817    */
818   sampler->data.explicit_binding = true;
819   sampler->data.binding = unit;
820
821   deref = new(p->mem_ctx) ir_dereference_variable(sampler);
822   tex->set_sampler(deref, glsl_type::vec4_type);
823
824   tex->coordinate = new(p->mem_ctx) ir_swizzle(texcoord, 0, 1, 2, 3, coords);
825
826   if (p->state->unit[unit].shadow) {
827      texcoord = texcoord->clone(p->mem_ctx, NULL);
828      tex->shadow_comparator = new(p->mem_ctx) ir_swizzle(texcoord,
829							  coords, 0, 0, 0,
830							  1);
831      coords++;
832   }
833
834   texcoord = texcoord->clone(p->mem_ctx, NULL);
835   tex->projector = swizzle_w(texcoord);
836
837   p->emit(assign(p->src_texture[unit], tex));
838}
839
840static void
841load_texenv_source(texenv_fragment_program *p,
842		   GLuint src, GLuint unit)
843{
844   switch (src) {
845   case TEXENV_SRC_TEXTURE:
846      load_texture(p, unit);
847      break;
848
849   case TEXENV_SRC_TEXTURE0:
850   case TEXENV_SRC_TEXTURE1:
851   case TEXENV_SRC_TEXTURE2:
852   case TEXENV_SRC_TEXTURE3:
853   case TEXENV_SRC_TEXTURE4:
854   case TEXENV_SRC_TEXTURE5:
855   case TEXENV_SRC_TEXTURE6:
856   case TEXENV_SRC_TEXTURE7:
857      load_texture(p, src - TEXENV_SRC_TEXTURE0);
858      break;
859
860   default:
861      /* not a texture src - do nothing */
862      break;
863   }
864}
865
866
867/**
868 * Generate instructions for loading all texture source terms.
869 */
870static GLboolean
871load_texunit_sources( texenv_fragment_program *p, GLuint unit )
872{
873   const struct state_key *key = p->state;
874   GLuint i;
875
876   for (i = 0; i < key->unit[unit].NumArgsRGB; i++) {
877      load_texenv_source( p, key->unit[unit].ArgsRGB[i].Source, unit );
878   }
879
880   for (i = 0; i < key->unit[unit].NumArgsA; i++) {
881      load_texenv_source( p, key->unit[unit].ArgsA[i].Source, unit );
882   }
883
884   return GL_TRUE;
885}
886
887/**
888 * Applies the fog calculations.
889 *
890 * This is basically like the ARB_fragment_prorgam fog options.  Note
891 * that ffvertex_prog.c produces fogcoord for us when
892 * GL_FOG_COORDINATE_EXT is set to GL_FRAGMENT_DEPTH_EXT.
893 */
894static ir_rvalue *
895emit_fog_instructions(texenv_fragment_program *p,
896		      ir_rvalue *fragcolor)
897{
898   struct state_key *key = p->state;
899   ir_rvalue *f, *temp;
900   ir_variable *params, *oparams;
901   ir_variable *fogcoord;
902
903   /* Temporary storage for the whole fog result.  Fog calculations
904    * only affect rgb so we're hanging on to the .a value of fragcolor
905    * this way.
906    */
907   ir_variable *fog_result = p->make_temp(glsl_type::vec4_type, "fog_result");
908   p->emit(assign(fog_result, fragcolor));
909
910   fragcolor = swizzle_xyz(fog_result);
911
912   oparams = p->shader->symbols->get_variable("gl_FogParamsOptimizedMESA");
913   assert(oparams);
914   fogcoord = p->shader->symbols->get_variable("gl_FogFragCoord");
915   assert(fogcoord);
916   params = p->shader->symbols->get_variable("gl_Fog");
917   assert(params);
918   f = new(p->mem_ctx) ir_dereference_variable(fogcoord);
919
920   ir_variable *f_var = p->make_temp(glsl_type::float_type, "fog_factor");
921
922   switch (key->fog_mode) {
923   case FOG_LINEAR:
924      /* f = (end - z) / (end - start)
925       *
926       * gl_MesaFogParamsOptimized gives us (-1 / (end - start)) and
927       * (end / (end - start)) so we can generate a single MAD.
928       */
929      f = add(mul(f, swizzle_x(oparams)), swizzle_y(oparams));
930      break;
931   case FOG_EXP:
932      /* f = e^(-(density * fogcoord))
933       *
934       * gl_MesaFogParamsOptimized gives us density/ln(2) so we can
935       * use EXP2 which is generally the native instruction without
936       * having to do any further math on the fog density uniform.
937       */
938      f = mul(f, swizzle_z(oparams));
939      f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
940      f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
941      break;
942   case FOG_EXP2:
943      /* f = e^(-(density * fogcoord)^2)
944       *
945       * gl_MesaFogParamsOptimized gives us density/sqrt(ln(2)) so we
946       * can do this like FOG_EXP but with a squaring after the
947       * multiply by density.
948       */
949      ir_variable *temp_var = p->make_temp(glsl_type::float_type, "fog_temp");
950      p->emit(assign(temp_var, mul(f, swizzle_w(oparams))));
951
952      f = mul(temp_var, temp_var);
953      f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
954      f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
955      break;
956   }
957
958   p->emit(assign(f_var, saturate(f)));
959
960   f = sub(new(p->mem_ctx) ir_constant(1.0f), f_var);
961   temp = new(p->mem_ctx) ir_dereference_variable(params);
962   temp = new(p->mem_ctx) ir_dereference_record(temp, "color");
963   temp = mul(swizzle_xyz(temp), f);
964
965   p->emit(assign(fog_result, add(temp, mul(fragcolor, f_var)), WRITEMASK_XYZ));
966
967   return new(p->mem_ctx) ir_dereference_variable(fog_result);
968}
969
970static void
971emit_instructions(texenv_fragment_program *p)
972{
973   struct state_key *key = p->state;
974   GLuint unit;
975
976   if (key->nr_enabled_units) {
977      /* First pass - to support texture_env_crossbar, first identify
978       * all referenced texture sources and emit texld instructions
979       * for each:
980       */
981      for (unit = 0; unit < key->nr_enabled_units; unit++)
982	 if (key->unit[unit].enabled) {
983	    load_texunit_sources(p, unit);
984	 }
985
986      /* Second pass - emit combine instructions to build final color:
987       */
988      for (unit = 0; unit < key->nr_enabled_units; unit++) {
989	 if (key->unit[unit].enabled) {
990	    p->src_previous = emit_texenv(p, unit);
991	 }
992      }
993   }
994
995   ir_rvalue *cf = get_source(p, TEXENV_SRC_PREVIOUS, 0);
996
997   if (key->separate_specular) {
998      ir_variable *spec_result = p->make_temp(glsl_type::vec4_type,
999					      "specular_add");
1000      p->emit(assign(spec_result, cf));
1001
1002      ir_rvalue *secondary;
1003      if (p->state->inputs_available & VARYING_BIT_COL1) {
1004	 ir_variable *var =
1005	    p->shader->symbols->get_variable("gl_SecondaryColor");
1006	 assert(var);
1007	 secondary = swizzle_xyz(var);
1008      } else {
1009	 secondary = swizzle_xyz(get_current_attrib(p, VERT_ATTRIB_COLOR1));
1010      }
1011
1012      p->emit(assign(spec_result, add(swizzle_xyz(spec_result), secondary),
1013		     WRITEMASK_XYZ));
1014
1015      cf = new(p->mem_ctx) ir_dereference_variable(spec_result);
1016   }
1017
1018   if (key->fog_mode) {
1019      cf = emit_fog_instructions(p, cf);
1020   }
1021
1022   ir_variable *frag_color = p->shader->symbols->get_variable("gl_FragColor");
1023   assert(frag_color);
1024   p->emit(assign(frag_color, cf));
1025}
1026
1027/**
1028 * Generate a new fragment program which implements the context's
1029 * current texture env/combine mode.
1030 */
1031static struct gl_shader_program *
1032create_new_program(struct gl_context *ctx, struct state_key *key)
1033{
1034   texenv_fragment_program p;
1035   unsigned int unit;
1036   _mesa_glsl_parse_state *state;
1037
1038   p.mem_ctx = ralloc_context(NULL);
1039   p.shader = _mesa_new_shader(0, MESA_SHADER_FRAGMENT);
1040   p.shader->ir = new(p.shader) exec_list;
1041   state = new(p.shader) _mesa_glsl_parse_state(ctx, MESA_SHADER_FRAGMENT,
1042						p.shader);
1043   p.shader->symbols = state->symbols;
1044   p.top_instructions = p.shader->ir;
1045   p.instructions = p.shader->ir;
1046   p.state = key;
1047   p.shader_program = _mesa_new_shader_program(0);
1048
1049   /* Tell the linker to ignore the fact that we're building a
1050    * separate shader, in case we're in a GLES2 context that would
1051    * normally reject that.  The real problem is that we're building a
1052    * fixed function program in a GLES2 context at all, but that's a
1053    * big mess to clean up.
1054    */
1055   p.shader_program->SeparateShader = GL_TRUE;
1056
1057   /* The legacy GLSL shadow functions follow the depth texture
1058    * mode and return vec4. The GLSL 1.30 shadow functions return float and
1059    * ignore the depth texture mode. That's a shader and state dependency
1060    * that's difficult to deal with. st/mesa uses a simple but not
1061    * completely correct solution: if the shader declares GLSL >= 1.30 and
1062    * the depth texture mode is GL_ALPHA (000X), it sets the XXXX swizzle
1063    * instead. Thus, the GLSL 1.30 shadow function will get the result in .x
1064    * and legacy shadow functions will get it in .w as expected.
1065    * For the fixed-function fragment shader, use 120 to get correct behavior
1066    * for GL_ALPHA.
1067    */
1068   state->language_version = 120;
1069
1070   state->es_shader = false;
1071   if (_mesa_is_gles(ctx) && ctx->Extensions.OES_EGL_image_external)
1072      state->OES_EGL_image_external_enable = true;
1073   _mesa_glsl_initialize_types(state);
1074   _mesa_glsl_initialize_variables(p.instructions, state);
1075
1076   for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++)
1077      p.src_texture[unit] = NULL;
1078
1079   p.src_previous = NULL;
1080
1081   ir_function *main_f = new(p.mem_ctx) ir_function("main");
1082   p.emit(main_f);
1083   state->symbols->add_function(main_f);
1084
1085   ir_function_signature *main_sig =
1086      new(p.mem_ctx) ir_function_signature(glsl_type::void_type);
1087   main_sig->is_defined = true;
1088   main_f->add_signature(main_sig);
1089
1090   p.instructions = &main_sig->body;
1091   if (key->num_draw_buffers)
1092      emit_instructions(&p);
1093
1094   validate_ir_tree(p.shader->ir);
1095
1096   reparent_ir(p.shader->ir, p.shader->ir);
1097
1098   p.shader->CompileStatus = COMPILE_SUCCESS;
1099   p.shader->Version = state->language_version;
1100   p.shader_program->Shaders =
1101      (gl_shader **)malloc(sizeof(*p.shader_program->Shaders));
1102   p.shader_program->Shaders[0] = p.shader;
1103   p.shader_program->NumShaders = 1;
1104
1105   _mesa_glsl_link_shader(ctx, p.shader_program);
1106
1107   if (!p.shader_program->data->LinkStatus)
1108      _mesa_problem(ctx, "Failed to link fixed function fragment shader: %s\n",
1109                    p.shader_program->data->InfoLog);
1110
1111   ralloc_free(p.mem_ctx);
1112   return p.shader_program;
1113}
1114
1115extern "C" {
1116
1117/**
1118 * Return a fragment program which implements the current
1119 * fixed-function texture, fog and color-sum operations.
1120 */
1121struct gl_shader_program *
1122_mesa_get_fixed_func_fragment_program(struct gl_context *ctx)
1123{
1124   struct gl_shader_program *shader_program;
1125   struct state_key key;
1126   GLuint keySize;
1127
1128   keySize = make_state_key(ctx, &key);
1129
1130   shader_program = (struct gl_shader_program *)
1131      _mesa_search_program_cache(ctx->FragmentProgram.Cache,
1132                                 &key, keySize);
1133
1134   if (!shader_program) {
1135      shader_program = create_new_program(ctx, &key);
1136
1137      _mesa_shader_cache_insert(ctx, ctx->FragmentProgram.Cache,
1138				&key, keySize, shader_program);
1139   }
1140
1141   return shader_program;
1142}
1143
1144}
1145