1/*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include "anv_private.h"
25
26#include "genxml/gen_macros.h"
27#include "genxml/genX_pack.h"
28#include "genxml/gen_rt_pack.h"
29
30#include "common/intel_l3_config.h"
31#include "common/intel_sample_positions.h"
32#include "nir/nir_xfb_info.h"
33#include "vk_util.h"
34#include "vk_format.h"
35#include "vk_log.h"
36#include "vk_render_pass.h"
37
38static uint32_t
39vertex_element_comp_control(enum isl_format format, unsigned comp)
40{
41   uint8_t bits;
42   switch (comp) {
43   case 0: bits = isl_format_layouts[format].channels.r.bits; break;
44   case 1: bits = isl_format_layouts[format].channels.g.bits; break;
45   case 2: bits = isl_format_layouts[format].channels.b.bits; break;
46   case 3: bits = isl_format_layouts[format].channels.a.bits; break;
47   default: unreachable("Invalid component");
48   }
49
50   /*
51    * Take in account hardware restrictions when dealing with 64-bit floats.
52    *
53    * From Broadwell spec, command reference structures, page 586:
54    *  "When SourceElementFormat is set to one of the *64*_PASSTHRU formats,
55    *   64-bit components are stored * in the URB without any conversion. In
56    *   this case, vertex elements must be written as 128 or 256 bits, with
57    *   VFCOMP_STORE_0 being used to pad the output as required. E.g., if
58    *   R64_PASSTHRU is used to copy a 64-bit Red component into the URB,
59    *   Component 1 must be specified as VFCOMP_STORE_0 (with Components 2,3
60    *   set to VFCOMP_NOSTORE) in order to output a 128-bit vertex element, or
61    *   Components 1-3 must be specified as VFCOMP_STORE_0 in order to output
62    *   a 256-bit vertex element. Likewise, use of R64G64B64_PASSTHRU requires
63    *   Component 3 to be specified as VFCOMP_STORE_0 in order to output a
64    *   256-bit vertex element."
65    */
66   if (bits) {
67      return VFCOMP_STORE_SRC;
68   } else if (comp >= 2 &&
69              !isl_format_layouts[format].channels.b.bits &&
70              isl_format_layouts[format].channels.r.type == ISL_RAW) {
71      /* When emitting 64-bit attributes, we need to write either 128 or 256
72       * bit chunks, using VFCOMP_NOSTORE when not writing the chunk, and
73       * VFCOMP_STORE_0 to pad the written chunk */
74      return VFCOMP_NOSTORE;
75   } else if (comp < 3 ||
76              isl_format_layouts[format].channels.r.type == ISL_RAW) {
77      /* Note we need to pad with value 0, not 1, due hardware restrictions
78       * (see comment above) */
79      return VFCOMP_STORE_0;
80   } else if (isl_format_layouts[format].channels.r.type == ISL_UINT ||
81            isl_format_layouts[format].channels.r.type == ISL_SINT) {
82      assert(comp == 3);
83      return VFCOMP_STORE_1_INT;
84   } else {
85      assert(comp == 3);
86      return VFCOMP_STORE_1_FP;
87   }
88}
89
90static void
91emit_vertex_input(struct anv_graphics_pipeline *pipeline,
92                  const struct vk_vertex_input_state *vi)
93{
94   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
95
96   /* Pull inputs_read out of the VS prog data */
97   const uint64_t inputs_read = vs_prog_data->inputs_read;
98   const uint64_t double_inputs_read =
99      vs_prog_data->double_inputs_read & inputs_read;
100   assert((inputs_read & ((1 << VERT_ATTRIB_GENERIC0) - 1)) == 0);
101   const uint32_t elements = inputs_read >> VERT_ATTRIB_GENERIC0;
102   const uint32_t elements_double = double_inputs_read >> VERT_ATTRIB_GENERIC0;
103   const bool needs_svgs_elem = vs_prog_data->uses_vertexid ||
104                                vs_prog_data->uses_instanceid ||
105                                vs_prog_data->uses_firstvertex ||
106                                vs_prog_data->uses_baseinstance;
107
108   uint32_t elem_count = __builtin_popcount(elements) -
109      __builtin_popcount(elements_double) / 2;
110
111   const uint32_t total_elems =
112      MAX2(1, elem_count + needs_svgs_elem + vs_prog_data->uses_drawid);
113
114   uint32_t *p;
115
116   const uint32_t num_dwords = 1 + total_elems * 2;
117   p = anv_batch_emitn(&pipeline->base.batch, num_dwords,
118                       GENX(3DSTATE_VERTEX_ELEMENTS));
119   if (!p)
120      return;
121
122   for (uint32_t i = 0; i < total_elems; i++) {
123      /* The SKL docs for VERTEX_ELEMENT_STATE say:
124       *
125       *    "All elements must be valid from Element[0] to the last valid
126       *    element. (I.e. if Element[2] is valid then Element[1] and
127       *    Element[0] must also be valid)."
128       *
129       * The SKL docs for 3D_Vertex_Component_Control say:
130       *
131       *    "Don't store this component. (Not valid for Component 0, but can
132       *    be used for Component 1-3)."
133       *
134       * So we can't just leave a vertex element blank and hope for the best.
135       * We have to tell the VF hardware to put something in it; so we just
136       * store a bunch of zero.
137       *
138       * TODO: Compact vertex elements so we never end up with holes.
139       */
140      struct GENX(VERTEX_ELEMENT_STATE) element = {
141         .Valid = true,
142         .Component0Control = VFCOMP_STORE_0,
143         .Component1Control = VFCOMP_STORE_0,
144         .Component2Control = VFCOMP_STORE_0,
145         .Component3Control = VFCOMP_STORE_0,
146      };
147      GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + i * 2], &element);
148   }
149
150   u_foreach_bit(a, vi->attributes_valid) {
151      enum isl_format format = anv_get_isl_format(&pipeline->base.device->info,
152                                                  vi->attributes[a].format,
153                                                  VK_IMAGE_ASPECT_COLOR_BIT,
154                                                  VK_IMAGE_TILING_LINEAR);
155
156      uint32_t binding = vi->attributes[a].binding;
157      assert(binding < MAX_VBS);
158
159      if ((elements & (1 << a)) == 0)
160         continue; /* Binding unused */
161
162      uint32_t slot =
163         __builtin_popcount(elements & ((1 << a) - 1)) -
164         DIV_ROUND_UP(__builtin_popcount(elements_double &
165                                        ((1 << a) -1)), 2);
166
167      struct GENX(VERTEX_ELEMENT_STATE) element = {
168         .VertexBufferIndex = vi->attributes[a].binding,
169         .Valid = true,
170         .SourceElementFormat = format,
171         .EdgeFlagEnable = false,
172         .SourceElementOffset = vi->attributes[a].offset,
173         .Component0Control = vertex_element_comp_control(format, 0),
174         .Component1Control = vertex_element_comp_control(format, 1),
175         .Component2Control = vertex_element_comp_control(format, 2),
176         .Component3Control = vertex_element_comp_control(format, 3),
177      };
178      GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + slot * 2], &element);
179
180#if GFX_VER >= 8
181      /* On Broadwell and later, we have a separate VF_INSTANCING packet
182       * that controls instancing.  On Haswell and prior, that's part of
183       * VERTEX_BUFFER_STATE which we emit later.
184       */
185      anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
186         bool per_instance = pipeline->vb[binding].instanced;
187         uint32_t divisor = pipeline->vb[binding].instance_divisor *
188                            pipeline->instance_multiplier;
189
190         vfi.InstancingEnable = per_instance;
191         vfi.VertexElementIndex = slot;
192         vfi.InstanceDataStepRate = per_instance ? divisor : 1;
193      }
194#endif
195   }
196
197   const uint32_t id_slot = elem_count;
198   if (needs_svgs_elem) {
199      /* From the Broadwell PRM for the 3D_Vertex_Component_Control enum:
200       *    "Within a VERTEX_ELEMENT_STATE structure, if a Component
201       *    Control field is set to something other than VFCOMP_STORE_SRC,
202       *    no higher-numbered Component Control fields may be set to
203       *    VFCOMP_STORE_SRC"
204       *
205       * This means, that if we have BaseInstance, we need BaseVertex as
206       * well.  Just do all or nothing.
207       */
208      uint32_t base_ctrl = (vs_prog_data->uses_firstvertex ||
209                            vs_prog_data->uses_baseinstance) ?
210                           VFCOMP_STORE_SRC : VFCOMP_STORE_0;
211
212      struct GENX(VERTEX_ELEMENT_STATE) element = {
213         .VertexBufferIndex = ANV_SVGS_VB_INDEX,
214         .Valid = true,
215         .SourceElementFormat = ISL_FORMAT_R32G32_UINT,
216         .Component0Control = base_ctrl,
217         .Component1Control = base_ctrl,
218#if GFX_VER >= 8
219         .Component2Control = VFCOMP_STORE_0,
220         .Component3Control = VFCOMP_STORE_0,
221#else
222         .Component2Control = VFCOMP_STORE_VID,
223         .Component3Control = VFCOMP_STORE_IID,
224#endif
225      };
226      GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + id_slot * 2], &element);
227
228#if GFX_VER >= 8
229      anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
230         vfi.VertexElementIndex = id_slot;
231      }
232#endif
233   }
234
235#if GFX_VER >= 8
236   anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_VF_SGVS), sgvs) {
237      sgvs.VertexIDEnable              = vs_prog_data->uses_vertexid;
238      sgvs.VertexIDComponentNumber     = 2;
239      sgvs.VertexIDElementOffset       = id_slot;
240      sgvs.InstanceIDEnable            = vs_prog_data->uses_instanceid;
241      sgvs.InstanceIDComponentNumber   = 3;
242      sgvs.InstanceIDElementOffset     = id_slot;
243   }
244#endif
245
246   const uint32_t drawid_slot = elem_count + needs_svgs_elem;
247   if (vs_prog_data->uses_drawid) {
248      struct GENX(VERTEX_ELEMENT_STATE) element = {
249         .VertexBufferIndex = ANV_DRAWID_VB_INDEX,
250         .Valid = true,
251         .SourceElementFormat = ISL_FORMAT_R32_UINT,
252         .Component0Control = VFCOMP_STORE_SRC,
253         .Component1Control = VFCOMP_STORE_0,
254         .Component2Control = VFCOMP_STORE_0,
255         .Component3Control = VFCOMP_STORE_0,
256      };
257      GENX(VERTEX_ELEMENT_STATE_pack)(NULL,
258                                      &p[1 + drawid_slot * 2],
259                                      &element);
260
261#if GFX_VER >= 8
262      anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
263         vfi.VertexElementIndex = drawid_slot;
264      }
265#endif
266   }
267}
268
269void
270genX(emit_urb_setup)(struct anv_device *device, struct anv_batch *batch,
271                     const struct intel_l3_config *l3_config,
272                     VkShaderStageFlags active_stages,
273                     const unsigned entry_size[4],
274                     enum intel_urb_deref_block_size *deref_block_size)
275{
276   const struct intel_device_info *devinfo = &device->info;
277
278   unsigned entries[4];
279   unsigned start[4];
280   bool constrained;
281   intel_get_urb_config(devinfo, l3_config,
282                        active_stages &
283                           VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
284                        active_stages & VK_SHADER_STAGE_GEOMETRY_BIT,
285                        entry_size, entries, start, deref_block_size,
286                        &constrained);
287
288#if GFX_VERx10 == 70
289   /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
290    *
291    *    "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth stall
292    *    needs to be sent just prior to any 3DSTATE_VS, 3DSTATE_URB_VS,
293    *    3DSTATE_CONSTANT_VS, 3DSTATE_BINDING_TABLE_POINTER_VS,
294    *    3DSTATE_SAMPLER_STATE_POINTER_VS command.  Only one PIPE_CONTROL
295    *    needs to be sent before any combination of VS associated 3DSTATE."
296    */
297   anv_batch_emit(batch, GFX7_PIPE_CONTROL, pc) {
298      pc.DepthStallEnable  = true;
299      pc.PostSyncOperation = WriteImmediateData;
300      pc.Address           = device->workaround_address;
301   }
302#endif
303
304   for (int i = 0; i <= MESA_SHADER_GEOMETRY; i++) {
305      anv_batch_emit(batch, GENX(3DSTATE_URB_VS), urb) {
306         urb._3DCommandSubOpcode      += i;
307         urb.VSURBStartingAddress      = start[i];
308         urb.VSURBEntryAllocationSize  = entry_size[i] - 1;
309         urb.VSNumberofURBEntries      = entries[i];
310      }
311   }
312#if GFX_VERx10 >= 125
313   if (device->physical->vk.supported_extensions.NV_mesh_shader) {
314      anv_batch_emit(batch, GENX(3DSTATE_URB_ALLOC_MESH), zero);
315      anv_batch_emit(batch, GENX(3DSTATE_URB_ALLOC_TASK), zero);
316   }
317#endif
318}
319
320#if GFX_VERx10 >= 125
321static void
322emit_urb_setup_mesh(struct anv_graphics_pipeline *pipeline,
323                    enum intel_urb_deref_block_size *deref_block_size)
324{
325   const struct intel_device_info *devinfo = &pipeline->base.device->info;
326
327   const struct brw_task_prog_data *task_prog_data =
328      anv_pipeline_has_stage(pipeline, MESA_SHADER_TASK) ?
329      get_task_prog_data(pipeline) : NULL;
330   const struct brw_mesh_prog_data *mesh_prog_data = get_mesh_prog_data(pipeline);
331
332   const struct intel_mesh_urb_allocation alloc =
333      intel_get_mesh_urb_config(devinfo, pipeline->base.l3_config,
334                                task_prog_data ? task_prog_data->map.size_dw : 0,
335                                mesh_prog_data->map.size_dw);
336
337   /* Zero out the primitive pipeline URB allocations. */
338   for (int i = 0; i <= MESA_SHADER_GEOMETRY; i++) {
339      anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_URB_VS), urb) {
340         urb._3DCommandSubOpcode += i;
341      }
342   }
343
344   anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_URB_ALLOC_TASK), urb) {
345      if (task_prog_data) {
346         urb.TASKURBEntryAllocationSize   = alloc.task_entry_size_64b - 1;
347         urb.TASKNumberofURBEntriesSlice0 = alloc.task_entries;
348         urb.TASKNumberofURBEntriesSliceN = alloc.task_entries;
349         urb.TASKURBStartingAddressSlice0 = alloc.task_starting_address_8kb;
350         urb.TASKURBStartingAddressSliceN = alloc.task_starting_address_8kb;
351      }
352   }
353
354   anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_URB_ALLOC_MESH), urb) {
355      urb.MESHURBEntryAllocationSize   = alloc.mesh_entry_size_64b - 1;
356      urb.MESHNumberofURBEntriesSlice0 = alloc.mesh_entries;
357      urb.MESHNumberofURBEntriesSliceN = alloc.mesh_entries;
358      urb.MESHURBStartingAddressSlice0 = alloc.mesh_starting_address_8kb;
359      urb.MESHURBStartingAddressSliceN = alloc.mesh_starting_address_8kb;
360   }
361
362   *deref_block_size = alloc.deref_block_size;
363}
364#endif
365
366static void
367emit_urb_setup(struct anv_graphics_pipeline *pipeline,
368               enum intel_urb_deref_block_size *deref_block_size)
369{
370#if GFX_VERx10 >= 125
371   if (anv_pipeline_is_mesh(pipeline)) {
372      emit_urb_setup_mesh(pipeline, deref_block_size);
373      return;
374   }
375#endif
376
377   unsigned entry_size[4];
378   for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
379      const struct brw_vue_prog_data *prog_data =
380         !anv_pipeline_has_stage(pipeline, i) ? NULL :
381         (const struct brw_vue_prog_data *) pipeline->shaders[i]->prog_data;
382
383      entry_size[i] = prog_data ? prog_data->urb_entry_size : 1;
384   }
385
386   genX(emit_urb_setup)(pipeline->base.device, &pipeline->base.batch,
387                        pipeline->base.l3_config,
388                        pipeline->active_stages, entry_size,
389                        deref_block_size);
390}
391
392static void
393emit_3dstate_sbe(struct anv_graphics_pipeline *pipeline)
394{
395   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
396
397   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
398      anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_SBE), sbe);
399#if GFX_VER >= 8
400      anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_SBE_SWIZ), sbe);
401#endif
402#if GFX_VERx10 >= 125
403      if (anv_pipeline_is_mesh(pipeline))
404         anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_SBE_MESH), sbe_mesh);
405#endif
406      return;
407   }
408
409   struct GENX(3DSTATE_SBE) sbe = {
410      GENX(3DSTATE_SBE_header),
411      /* TODO(mesh): Figure out cases where we need attribute swizzling.  See also
412       * calculate_urb_setup() and related functions.
413       */
414      .AttributeSwizzleEnable = anv_pipeline_is_primitive(pipeline),
415      .PointSpriteTextureCoordinateOrigin = UPPERLEFT,
416      .NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs,
417      .ConstantInterpolationEnable = wm_prog_data->flat_inputs,
418   };
419
420#if GFX_VER >= 9
421   for (unsigned i = 0; i < 32; i++)
422      sbe.AttributeActiveComponentFormat[i] = ACF_XYZW;
423#endif
424
425#if GFX_VER >= 8
426   /* On Broadwell, they broke 3DSTATE_SBE into two packets */
427   struct GENX(3DSTATE_SBE_SWIZ) swiz = {
428      GENX(3DSTATE_SBE_SWIZ_header),
429   };
430#else
431#  define swiz sbe
432#endif
433
434   if (anv_pipeline_is_primitive(pipeline)) {
435      const struct brw_vue_map *fs_input_map =
436         &anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map;
437
438      int first_slot = brw_compute_first_urb_slot_required(wm_prog_data->inputs,
439                                                           fs_input_map);
440      assert(first_slot % 2 == 0);
441      unsigned urb_entry_read_offset = first_slot / 2;
442      int max_source_attr = 0;
443      for (uint8_t idx = 0; idx < wm_prog_data->urb_setup_attribs_count; idx++) {
444         uint8_t attr = wm_prog_data->urb_setup_attribs[idx];
445         int input_index = wm_prog_data->urb_setup[attr];
446
447         assert(0 <= input_index);
448
449         /* gl_Viewport, gl_Layer and FragmentShadingRateKHR are stored in the
450          * VUE header
451          */
452         if (attr == VARYING_SLOT_VIEWPORT ||
453             attr == VARYING_SLOT_LAYER ||
454             attr == VARYING_SLOT_PRIMITIVE_SHADING_RATE) {
455            continue;
456         }
457
458         if (attr == VARYING_SLOT_PNTC) {
459            sbe.PointSpriteTextureCoordinateEnable = 1 << input_index;
460            continue;
461         }
462
463         const int slot = fs_input_map->varying_to_slot[attr];
464
465         if (slot == -1) {
466            /* This attribute does not exist in the VUE--that means that the
467             * vertex shader did not write to it.  It could be that it's a
468             * regular varying read by the fragment shader but not written by
469             * the vertex shader or it's gl_PrimitiveID. In the first case the
470             * value is undefined, in the second it needs to be
471             * gl_PrimitiveID.
472             */
473            swiz.Attribute[input_index].ConstantSource = PRIM_ID;
474            swiz.Attribute[input_index].ComponentOverrideX = true;
475            swiz.Attribute[input_index].ComponentOverrideY = true;
476            swiz.Attribute[input_index].ComponentOverrideZ = true;
477            swiz.Attribute[input_index].ComponentOverrideW = true;
478            continue;
479         }
480
481         /* We have to subtract two slots to account for the URB entry output
482          * read offset in the VS and GS stages.
483          */
484         const int source_attr = slot - 2 * urb_entry_read_offset;
485         assert(source_attr >= 0 && source_attr < 32);
486         max_source_attr = MAX2(max_source_attr, source_attr);
487         /* The hardware can only do overrides on 16 overrides at a time, and the
488          * other up to 16 have to be lined up so that the input index = the
489          * output index. We'll need to do some tweaking to make sure that's the
490          * case.
491          */
492         if (input_index < 16)
493            swiz.Attribute[input_index].SourceAttribute = source_attr;
494         else
495            assert(source_attr == input_index);
496      }
497
498      sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
499      sbe.VertexURBEntryReadLength = DIV_ROUND_UP(max_source_attr + 1, 2);
500#if GFX_VER >= 8
501      sbe.ForceVertexURBEntryReadOffset = true;
502      sbe.ForceVertexURBEntryReadLength = true;
503#endif
504   } else {
505      assert(anv_pipeline_is_mesh(pipeline));
506#if GFX_VERx10 >= 125
507      const struct brw_mesh_prog_data *mesh_prog_data = get_mesh_prog_data(pipeline);
508      anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_SBE_MESH), sbe_mesh) {
509         const struct brw_mue_map *mue = &mesh_prog_data->map;
510
511         assert(mue->per_vertex_header_size_dw % 8 == 0);
512         sbe_mesh.PerVertexURBEntryOutputReadOffset = mue->per_vertex_header_size_dw / 8;
513         sbe_mesh.PerVertexURBEntryOutputReadLength = DIV_ROUND_UP(mue->per_vertex_data_size_dw, 8);
514
515         /* Clip distance array is passed in the per-vertex header so that
516          * it can be consumed by the HW. If user wants to read it in the FS,
517          * adjust the offset and length to cover it. Conveniently it is at
518          * the end of the per-vertex header, right before per-vertex
519          * attributes.
520          *
521          * Note that FS attribute reading must be aware that the clip
522          * distances have fixed position.
523          */
524         if (mue->per_vertex_header_size_dw > 8 &&
525               (wm_prog_data->urb_setup[VARYING_SLOT_CLIP_DIST0] >= 0 ||
526                wm_prog_data->urb_setup[VARYING_SLOT_CLIP_DIST1] >= 0)) {
527            sbe_mesh.PerVertexURBEntryOutputReadOffset -= 1;
528            sbe_mesh.PerVertexURBEntryOutputReadLength += 1;
529         }
530
531         assert(mue->per_primitive_header_size_dw % 8 == 0);
532         sbe_mesh.PerPrimitiveURBEntryOutputReadOffset = mue->per_primitive_header_size_dw / 8;
533         sbe_mesh.PerPrimitiveURBEntryOutputReadLength = DIV_ROUND_UP(mue->per_primitive_data_size_dw, 8);
534
535         /* Just like with clip distances, if Primitive Shading Rate,
536          * Viewport Index or Layer is read back in the FS, adjust
537          * the offset and length to cover the Primitive Header, where
538          * PSR, Viewport Index & Layer are stored.
539          */
540         if (wm_prog_data->urb_setup[VARYING_SLOT_VIEWPORT] >= 0 ||
541             wm_prog_data->urb_setup[VARYING_SLOT_PRIMITIVE_SHADING_RATE] >= 0 ||
542             wm_prog_data->urb_setup[VARYING_SLOT_LAYER] >= 0) {
543            assert(sbe_mesh.PerPrimitiveURBEntryOutputReadOffset > 0);
544            sbe_mesh.PerPrimitiveURBEntryOutputReadOffset -= 1;
545            sbe_mesh.PerPrimitiveURBEntryOutputReadLength += 1;
546         }
547      }
548#endif
549   }
550
551   uint32_t *dw = anv_batch_emit_dwords(&pipeline->base.batch,
552                                        GENX(3DSTATE_SBE_length));
553   if (!dw)
554      return;
555   GENX(3DSTATE_SBE_pack)(&pipeline->base.batch, dw, &sbe);
556
557#if GFX_VER >= 8
558   dw = anv_batch_emit_dwords(&pipeline->base.batch, GENX(3DSTATE_SBE_SWIZ_length));
559   if (!dw)
560      return;
561   GENX(3DSTATE_SBE_SWIZ_pack)(&pipeline->base.batch, dw, &swiz);
562#endif
563}
564
565/** Returns the final polygon mode for rasterization
566 *
567 * This function takes into account polygon mode, primitive topology and the
568 * different shader stages which might generate their own type of primitives.
569 */
570VkPolygonMode
571genX(raster_polygon_mode)(struct anv_graphics_pipeline *pipeline,
572                          VkPrimitiveTopology primitive_topology)
573{
574   if (anv_pipeline_is_mesh(pipeline)) {
575      switch (get_mesh_prog_data(pipeline)->primitive_type) {
576      case SHADER_PRIM_POINTS:
577         return VK_POLYGON_MODE_POINT;
578      case SHADER_PRIM_LINES:
579         return VK_POLYGON_MODE_LINE;
580      case SHADER_PRIM_TRIANGLES:
581         return pipeline->polygon_mode;
582      default:
583         unreachable("invalid primitive type for mesh");
584      }
585   } else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
586      switch (get_gs_prog_data(pipeline)->output_topology) {
587      case _3DPRIM_POINTLIST:
588         return VK_POLYGON_MODE_POINT;
589
590      case _3DPRIM_LINELIST:
591      case _3DPRIM_LINESTRIP:
592      case _3DPRIM_LINELOOP:
593         return VK_POLYGON_MODE_LINE;
594
595      case _3DPRIM_TRILIST:
596      case _3DPRIM_TRIFAN:
597      case _3DPRIM_TRISTRIP:
598      case _3DPRIM_RECTLIST:
599      case _3DPRIM_QUADLIST:
600      case _3DPRIM_QUADSTRIP:
601      case _3DPRIM_POLYGON:
602         return pipeline->polygon_mode;
603      }
604      unreachable("Unsupported GS output topology");
605   } else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
606      switch (get_tes_prog_data(pipeline)->output_topology) {
607      case BRW_TESS_OUTPUT_TOPOLOGY_POINT:
608         return VK_POLYGON_MODE_POINT;
609
610      case BRW_TESS_OUTPUT_TOPOLOGY_LINE:
611         return VK_POLYGON_MODE_LINE;
612
613      case BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW:
614      case BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW:
615         return pipeline->polygon_mode;
616      }
617      unreachable("Unsupported TCS output topology");
618   } else {
619      switch (primitive_topology) {
620      case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
621         return VK_POLYGON_MODE_POINT;
622
623      case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
624      case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
625      case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
626      case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
627         return VK_POLYGON_MODE_LINE;
628
629      case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
630      case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
631      case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
632      case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
633      case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
634         return pipeline->polygon_mode;
635
636      default:
637         unreachable("Unsupported primitive topology");
638      }
639   }
640}
641
642uint32_t
643genX(ms_rasterization_mode)(struct anv_graphics_pipeline *pipeline,
644                            VkPolygonMode raster_mode)
645{
646#if GFX_VER <= 7
647   if (raster_mode == VK_POLYGON_MODE_LINE) {
648      switch (pipeline->line_mode) {
649      case VK_LINE_RASTERIZATION_MODE_RECTANGULAR_EXT:
650         return MSRASTMODE_ON_PATTERN;
651
652      case VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT:
653      case VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_EXT:
654         return MSRASTMODE_OFF_PIXEL;
655
656      default:
657         unreachable("Unsupported line rasterization mode");
658      }
659   } else {
660      return pipeline->rasterization_samples > 1 ?
661         MSRASTMODE_ON_PATTERN : MSRASTMODE_OFF_PIXEL;
662   }
663#else
664   unreachable("Only on gen7");
665#endif
666}
667
668const uint32_t genX(vk_to_intel_cullmode)[] = {
669   [VK_CULL_MODE_NONE]                       = CULLMODE_NONE,
670   [VK_CULL_MODE_FRONT_BIT]                  = CULLMODE_FRONT,
671   [VK_CULL_MODE_BACK_BIT]                   = CULLMODE_BACK,
672   [VK_CULL_MODE_FRONT_AND_BACK]             = CULLMODE_BOTH
673};
674
675const uint32_t genX(vk_to_intel_fillmode)[] = {
676   [VK_POLYGON_MODE_FILL]                    = FILL_MODE_SOLID,
677   [VK_POLYGON_MODE_LINE]                    = FILL_MODE_WIREFRAME,
678   [VK_POLYGON_MODE_POINT]                   = FILL_MODE_POINT,
679};
680
681const uint32_t genX(vk_to_intel_front_face)[] = {
682   [VK_FRONT_FACE_COUNTER_CLOCKWISE]         = 1,
683   [VK_FRONT_FACE_CLOCKWISE]                 = 0
684};
685
686void
687genX(rasterization_mode)(VkPolygonMode raster_mode,
688                         VkLineRasterizationModeEXT line_mode,
689                         float line_width,
690                         uint32_t *api_mode,
691                         bool *msaa_rasterization_enable)
692{
693#if GFX_VER >= 8
694   if (raster_mode == VK_POLYGON_MODE_LINE) {
695      /* Unfortunately, configuring our line rasterization hardware on gfx8
696       * and later is rather painful.  Instead of giving us bits to tell the
697       * hardware what line mode to use like we had on gfx7, we now have an
698       * arcane combination of API Mode and MSAA enable bits which do things
699       * in a table which are expected to magically put the hardware into the
700       * right mode for your API.  Sadly, Vulkan isn't any of the APIs the
701       * hardware people thought of so nothing works the way you want it to.
702       *
703       * Look at the table titled "Multisample Rasterization Modes" in Vol 7
704       * of the Skylake PRM for more details.
705       */
706      switch (line_mode) {
707      case VK_LINE_RASTERIZATION_MODE_RECTANGULAR_EXT:
708         *api_mode = DX100;
709#if GFX_VER <= 9
710         /* Prior to ICL, the algorithm the HW uses to draw wide lines
711          * doesn't quite match what the CTS expects, at least for rectangular
712          * lines, so we set this to false here, making it draw parallelograms
713          * instead, which work well enough.
714          */
715         *msaa_rasterization_enable = line_width < 1.0078125;
716#else
717         *msaa_rasterization_enable = true;
718#endif
719         break;
720
721      case VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_EXT:
722      case VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT:
723         *api_mode = DX9OGL;
724         *msaa_rasterization_enable = false;
725         break;
726
727      default:
728         unreachable("Unsupported line rasterization mode");
729      }
730   } else {
731      *api_mode = DX100;
732      *msaa_rasterization_enable = true;
733   }
734#else
735   unreachable("Invalid call");
736#endif
737}
738
739static void
740emit_rs_state(struct anv_graphics_pipeline *pipeline,
741              const struct vk_input_assembly_state *ia,
742              const struct vk_rasterization_state *rs,
743              const struct vk_multisample_state *ms,
744              const struct vk_render_pass_state *rp,
745              enum intel_urb_deref_block_size urb_deref_block_size)
746{
747   struct GENX(3DSTATE_SF) sf = {
748      GENX(3DSTATE_SF_header),
749   };
750
751   sf.ViewportTransformEnable = true;
752   sf.StatisticsEnable = true;
753   sf.VertexSubPixelPrecisionSelect = _8Bit;
754   sf.AALineDistanceMode = true;
755
756   switch (rs->provoking_vertex) {
757   case VK_PROVOKING_VERTEX_MODE_FIRST_VERTEX_EXT:
758      sf.TriangleStripListProvokingVertexSelect = 0;
759      sf.LineStripListProvokingVertexSelect = 0;
760      sf.TriangleFanProvokingVertexSelect = 1;
761      break;
762
763   case VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT:
764      sf.TriangleStripListProvokingVertexSelect = 2;
765      sf.LineStripListProvokingVertexSelect = 1;
766      sf.TriangleFanProvokingVertexSelect = 2;
767      break;
768
769   default:
770      unreachable("Invalid provoking vertex mode");
771   }
772
773#if GFX_VERx10 == 75
774   sf.LineStippleEnable = rs->line.stipple.enable;
775#endif
776
777#if GFX_VER >= 12
778   sf.DerefBlockSize = urb_deref_block_size;
779#endif
780
781   bool point_from_shader;
782   if (anv_pipeline_is_primitive(pipeline)) {
783      const struct brw_vue_prog_data *last_vue_prog_data =
784         anv_pipeline_get_last_vue_prog_data(pipeline);
785      point_from_shader = last_vue_prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ;
786   } else {
787      assert(anv_pipeline_is_mesh(pipeline));
788      const struct brw_mesh_prog_data *mesh_prog_data = get_mesh_prog_data(pipeline);
789      point_from_shader = mesh_prog_data->map.start_dw[VARYING_SLOT_PSIZ] >= 0;
790   }
791
792   if (point_from_shader) {
793      sf.PointWidthSource = Vertex;
794   } else {
795      sf.PointWidthSource = State;
796      sf.PointWidth = 1.0;
797   }
798
799#if GFX_VER >= 8
800   struct GENX(3DSTATE_RASTER) raster = {
801      GENX(3DSTATE_RASTER_header),
802   };
803#else
804#  define raster sf
805#endif
806
807   /* For details on 3DSTATE_RASTER multisample state, see the BSpec table
808    * "Multisample Modes State".
809    */
810#if GFX_VER >= 8
811   /* NOTE: 3DSTATE_RASTER::ForcedSampleCount affects the BDW and SKL PMA fix
812    * computations.  If we ever set this bit to a different value, they will
813    * need to be updated accordingly.
814    */
815   raster.ForcedSampleCount = FSC_NUMRASTSAMPLES_0;
816   raster.ForceMultisampling = false;
817#endif
818
819   raster.FrontFaceFillMode = genX(vk_to_intel_fillmode)[rs->polygon_mode];
820   raster.BackFaceFillMode = genX(vk_to_intel_fillmode)[rs->polygon_mode];
821   raster.ScissorRectangleEnable = true;
822
823#if GFX_VER >= 9
824   /* GFX9+ splits ViewportZClipTestEnable into near and far enable bits */
825   raster.ViewportZFarClipTestEnable = pipeline->depth_clip_enable;
826   raster.ViewportZNearClipTestEnable = pipeline->depth_clip_enable;
827#elif GFX_VER >= 8
828   raster.ViewportZClipTestEnable = pipeline->depth_clip_enable;
829#endif
830
831#if GFX_VER >= 9
832   raster.ConservativeRasterizationEnable =
833      rs->conservative_mode != VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT;
834#endif
835
836#if GFX_VER == 7
837   /* Gfx7 requires that we provide the depth format in 3DSTATE_SF so that it
838    * can get the depth offsets correct.
839    */
840   if (rp != NULL &&
841       rp->depth_attachment_format != VK_FORMAT_UNDEFINED) {
842      assert(vk_format_has_depth(rp->depth_attachment_format));
843      enum isl_format isl_format =
844         anv_get_isl_format(&pipeline->base.device->info,
845                            rp->depth_attachment_format,
846                            VK_IMAGE_ASPECT_DEPTH_BIT,
847                            VK_IMAGE_TILING_OPTIMAL);
848      sf.DepthBufferSurfaceFormat =
849         isl_format_get_depth_format(isl_format, false);
850   }
851#endif
852
853#if GFX_VER >= 8
854   GENX(3DSTATE_SF_pack)(NULL, pipeline->gfx8.sf, &sf);
855   GENX(3DSTATE_RASTER_pack)(NULL, pipeline->gfx8.raster, &raster);
856#else
857#  undef raster
858   GENX(3DSTATE_SF_pack)(NULL, &pipeline->gfx7.sf, &sf);
859#endif
860}
861
862static void
863emit_ms_state(struct anv_graphics_pipeline *pipeline,
864              const struct vk_multisample_state *ms)
865{
866#if GFX_VER >= 8
867   /* On Gfx8+ 3DSTATE_MULTISAMPLE only holds the number of samples. */
868   genX(emit_multisample)(&pipeline->base.batch,
869                          pipeline->rasterization_samples,
870                          NULL);
871#endif
872
873   /* From the Vulkan 1.0 spec:
874    *    If pSampleMask is NULL, it is treated as if the mask has all bits
875    *    enabled, i.e. no coverage is removed from fragments.
876    *
877    * 3DSTATE_SAMPLE_MASK.SampleMask is 16 bits.
878    */
879#if GFX_VER >= 8
880   uint32_t sample_mask = 0xffff;
881#else
882   uint32_t sample_mask = 0xff;
883#endif
884
885   if (ms != NULL)
886      sample_mask &= ms->sample_mask;
887
888   anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_SAMPLE_MASK), sm) {
889      sm.SampleMask = sample_mask;
890   }
891}
892
893const uint32_t genX(vk_to_intel_logic_op)[] = {
894   [VK_LOGIC_OP_COPY]                        = LOGICOP_COPY,
895   [VK_LOGIC_OP_CLEAR]                       = LOGICOP_CLEAR,
896   [VK_LOGIC_OP_AND]                         = LOGICOP_AND,
897   [VK_LOGIC_OP_AND_REVERSE]                 = LOGICOP_AND_REVERSE,
898   [VK_LOGIC_OP_AND_INVERTED]                = LOGICOP_AND_INVERTED,
899   [VK_LOGIC_OP_NO_OP]                       = LOGICOP_NOOP,
900   [VK_LOGIC_OP_XOR]                         = LOGICOP_XOR,
901   [VK_LOGIC_OP_OR]                          = LOGICOP_OR,
902   [VK_LOGIC_OP_NOR]                         = LOGICOP_NOR,
903   [VK_LOGIC_OP_EQUIVALENT]                  = LOGICOP_EQUIV,
904   [VK_LOGIC_OP_INVERT]                      = LOGICOP_INVERT,
905   [VK_LOGIC_OP_OR_REVERSE]                  = LOGICOP_OR_REVERSE,
906   [VK_LOGIC_OP_COPY_INVERTED]               = LOGICOP_COPY_INVERTED,
907   [VK_LOGIC_OP_OR_INVERTED]                 = LOGICOP_OR_INVERTED,
908   [VK_LOGIC_OP_NAND]                        = LOGICOP_NAND,
909   [VK_LOGIC_OP_SET]                         = LOGICOP_SET,
910};
911
912static const uint32_t vk_to_intel_blend[] = {
913   [VK_BLEND_FACTOR_ZERO]                    = BLENDFACTOR_ZERO,
914   [VK_BLEND_FACTOR_ONE]                     = BLENDFACTOR_ONE,
915   [VK_BLEND_FACTOR_SRC_COLOR]               = BLENDFACTOR_SRC_COLOR,
916   [VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR]     = BLENDFACTOR_INV_SRC_COLOR,
917   [VK_BLEND_FACTOR_DST_COLOR]               = BLENDFACTOR_DST_COLOR,
918   [VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR]     = BLENDFACTOR_INV_DST_COLOR,
919   [VK_BLEND_FACTOR_SRC_ALPHA]               = BLENDFACTOR_SRC_ALPHA,
920   [VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA]     = BLENDFACTOR_INV_SRC_ALPHA,
921   [VK_BLEND_FACTOR_DST_ALPHA]               = BLENDFACTOR_DST_ALPHA,
922   [VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA]     = BLENDFACTOR_INV_DST_ALPHA,
923   [VK_BLEND_FACTOR_CONSTANT_COLOR]          = BLENDFACTOR_CONST_COLOR,
924   [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR]= BLENDFACTOR_INV_CONST_COLOR,
925   [VK_BLEND_FACTOR_CONSTANT_ALPHA]          = BLENDFACTOR_CONST_ALPHA,
926   [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA]= BLENDFACTOR_INV_CONST_ALPHA,
927   [VK_BLEND_FACTOR_SRC_ALPHA_SATURATE]      = BLENDFACTOR_SRC_ALPHA_SATURATE,
928   [VK_BLEND_FACTOR_SRC1_COLOR]              = BLENDFACTOR_SRC1_COLOR,
929   [VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR]    = BLENDFACTOR_INV_SRC1_COLOR,
930   [VK_BLEND_FACTOR_SRC1_ALPHA]              = BLENDFACTOR_SRC1_ALPHA,
931   [VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA]    = BLENDFACTOR_INV_SRC1_ALPHA,
932};
933
934static const uint32_t vk_to_intel_blend_op[] = {
935   [VK_BLEND_OP_ADD]                         = BLENDFUNCTION_ADD,
936   [VK_BLEND_OP_SUBTRACT]                    = BLENDFUNCTION_SUBTRACT,
937   [VK_BLEND_OP_REVERSE_SUBTRACT]            = BLENDFUNCTION_REVERSE_SUBTRACT,
938   [VK_BLEND_OP_MIN]                         = BLENDFUNCTION_MIN,
939   [VK_BLEND_OP_MAX]                         = BLENDFUNCTION_MAX,
940};
941
942const uint32_t genX(vk_to_intel_compare_op)[] = {
943   [VK_COMPARE_OP_NEVER]                        = PREFILTEROP_NEVER,
944   [VK_COMPARE_OP_LESS]                         = PREFILTEROP_LESS,
945   [VK_COMPARE_OP_EQUAL]                        = PREFILTEROP_EQUAL,
946   [VK_COMPARE_OP_LESS_OR_EQUAL]                = PREFILTEROP_LEQUAL,
947   [VK_COMPARE_OP_GREATER]                      = PREFILTEROP_GREATER,
948   [VK_COMPARE_OP_NOT_EQUAL]                    = PREFILTEROP_NOTEQUAL,
949   [VK_COMPARE_OP_GREATER_OR_EQUAL]             = PREFILTEROP_GEQUAL,
950   [VK_COMPARE_OP_ALWAYS]                       = PREFILTEROP_ALWAYS,
951};
952
953const uint32_t genX(vk_to_intel_stencil_op)[] = {
954   [VK_STENCIL_OP_KEEP]                         = STENCILOP_KEEP,
955   [VK_STENCIL_OP_ZERO]                         = STENCILOP_ZERO,
956   [VK_STENCIL_OP_REPLACE]                      = STENCILOP_REPLACE,
957   [VK_STENCIL_OP_INCREMENT_AND_CLAMP]          = STENCILOP_INCRSAT,
958   [VK_STENCIL_OP_DECREMENT_AND_CLAMP]          = STENCILOP_DECRSAT,
959   [VK_STENCIL_OP_INVERT]                       = STENCILOP_INVERT,
960   [VK_STENCIL_OP_INCREMENT_AND_WRAP]           = STENCILOP_INCR,
961   [VK_STENCIL_OP_DECREMENT_AND_WRAP]           = STENCILOP_DECR,
962};
963
964const uint32_t genX(vk_to_intel_primitive_type)[] = {
965   [VK_PRIMITIVE_TOPOLOGY_POINT_LIST]                    = _3DPRIM_POINTLIST,
966   [VK_PRIMITIVE_TOPOLOGY_LINE_LIST]                     = _3DPRIM_LINELIST,
967   [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP]                    = _3DPRIM_LINESTRIP,
968   [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST]                 = _3DPRIM_TRILIST,
969   [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP]                = _3DPRIM_TRISTRIP,
970   [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN]                  = _3DPRIM_TRIFAN,
971   [VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY]      = _3DPRIM_LINELIST_ADJ,
972   [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY]     = _3DPRIM_LINESTRIP_ADJ,
973   [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY]  = _3DPRIM_TRILIST_ADJ,
974   [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
975};
976
977static bool
978is_dual_src_blend_factor(VkBlendFactor factor)
979{
980   return factor == VK_BLEND_FACTOR_SRC1_COLOR ||
981          factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR ||
982          factor == VK_BLEND_FACTOR_SRC1_ALPHA ||
983          factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA;
984}
985
986static inline uint32_t *
987write_disabled_blend(uint32_t *state)
988{
989   struct GENX(BLEND_STATE_ENTRY) entry = {
990      .WriteDisableAlpha = true,
991      .WriteDisableRed = true,
992      .WriteDisableGreen = true,
993      .WriteDisableBlue = true,
994   };
995   GENX(BLEND_STATE_ENTRY_pack)(NULL, state, &entry);
996   return state + GENX(BLEND_STATE_ENTRY_length);
997}
998
999static void
1000emit_cb_state(struct anv_graphics_pipeline *pipeline,
1001              const struct vk_color_blend_state *cb,
1002              const struct vk_multisample_state *ms)
1003{
1004   struct anv_device *device = pipeline->base.device;
1005   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1006
1007   struct GENX(BLEND_STATE) blend_state = {
1008#if GFX_VER >= 8
1009      .AlphaToCoverageEnable = ms && ms->alpha_to_coverage_enable,
1010      .AlphaToOneEnable = ms && ms->alpha_to_one_enable,
1011#endif
1012   };
1013
1014   uint32_t surface_count = 0;
1015   struct anv_pipeline_bind_map *map;
1016   if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1017      map = &pipeline->shaders[MESA_SHADER_FRAGMENT]->bind_map;
1018      surface_count = map->surface_count;
1019   }
1020
1021   const struct intel_device_info *devinfo = &pipeline->base.device->info;
1022   uint32_t *blend_state_start = devinfo->ver >= 8 ?
1023      pipeline->gfx8.blend_state : pipeline->gfx7.blend_state;
1024   uint32_t *state_pos = blend_state_start;
1025
1026   state_pos += GENX(BLEND_STATE_length);
1027#if GFX_VER >= 8
1028   struct GENX(BLEND_STATE_ENTRY) bs0 = { 0 };
1029#endif
1030   for (unsigned i = 0; i < surface_count; i++) {
1031      struct anv_pipeline_binding *binding = &map->surface_to_descriptor[i];
1032
1033      /* All color attachments are at the beginning of the binding table */
1034      if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
1035         break;
1036
1037      /* We can have at most 8 attachments */
1038      assert(i < MAX_RTS);
1039
1040      if (cb == NULL || binding->index >= cb->attachment_count) {
1041         state_pos = write_disabled_blend(state_pos);
1042         continue;
1043      }
1044
1045      const struct vk_color_blend_attachment_state *a =
1046         &cb->attachments[binding->index];
1047
1048      struct GENX(BLEND_STATE_ENTRY) entry = {
1049#if GFX_VER < 8
1050         .AlphaToCoverageEnable = ms && ms->alpha_to_coverage_enable,
1051         .AlphaToOneEnable = ms && ms->alpha_to_one_enable,
1052#endif
1053         .LogicOpEnable = cb->logic_op_enable,
1054
1055         /* Vulkan specification 1.2.168, VkLogicOp:
1056          *
1057          *   "Logical operations are controlled by the logicOpEnable and
1058          *    logicOp members of VkPipelineColorBlendStateCreateInfo. If
1059          *    logicOpEnable is VK_TRUE, then a logical operation selected by
1060          *    logicOp is applied between each color attachment and the
1061          *    fragment’s corresponding output value, and blending of all
1062          *    attachments is treated as if it were disabled."
1063          *
1064          * From the Broadwell PRM Volume 2d: Command Reference: Structures:
1065          * BLEND_STATE_ENTRY:
1066          *
1067          *   "Enabling LogicOp and Color Buffer Blending at the same time is
1068          *    UNDEFINED"
1069          */
1070         .ColorBufferBlendEnable = !cb->logic_op_enable && a->blend_enable,
1071         .ColorClampRange = COLORCLAMP_RTFORMAT,
1072         .PreBlendColorClampEnable = true,
1073         .PostBlendColorClampEnable = true,
1074         .SourceBlendFactor = vk_to_intel_blend[a->src_color_blend_factor],
1075         .DestinationBlendFactor = vk_to_intel_blend[a->dst_color_blend_factor],
1076         .ColorBlendFunction = vk_to_intel_blend_op[a->color_blend_op],
1077         .SourceAlphaBlendFactor = vk_to_intel_blend[a->src_alpha_blend_factor],
1078         .DestinationAlphaBlendFactor = vk_to_intel_blend[a->dst_alpha_blend_factor],
1079         .AlphaBlendFunction = vk_to_intel_blend_op[a->alpha_blend_op],
1080      };
1081
1082      if (a->src_color_blend_factor != a->src_alpha_blend_factor ||
1083          a->dst_color_blend_factor != a->dst_alpha_blend_factor ||
1084          a->color_blend_op != a->alpha_blend_op) {
1085#if GFX_VER >= 8
1086         blend_state.IndependentAlphaBlendEnable = true;
1087#else
1088         entry.IndependentAlphaBlendEnable = true;
1089#endif
1090      }
1091
1092      /* The Dual Source Blending documentation says:
1093       *
1094       * "If SRC1 is included in a src/dst blend factor and
1095       * a DualSource RT Write message is not used, results
1096       * are UNDEFINED. (This reflects the same restriction in DX APIs,
1097       * where undefined results are produced if “o1” is not written
1098       * by a PS – there are no default values defined)."
1099       *
1100       * There is no way to gracefully fix this undefined situation
1101       * so we just disable the blending to prevent possible issues.
1102       */
1103      if (!wm_prog_data->dual_src_blend &&
1104          (is_dual_src_blend_factor(a->src_color_blend_factor) ||
1105           is_dual_src_blend_factor(a->dst_color_blend_factor) ||
1106           is_dual_src_blend_factor(a->src_alpha_blend_factor) ||
1107           is_dual_src_blend_factor(a->dst_alpha_blend_factor))) {
1108         vk_logw(VK_LOG_OBJS(&device->vk.base),
1109                 "Enabled dual-src blend factors without writing both targets "
1110                 "in the shader.  Disabling blending to avoid GPU hangs.");
1111         entry.ColorBufferBlendEnable = false;
1112      }
1113
1114      /* Our hardware applies the blend factor prior to the blend function
1115       * regardless of what function is used.  Technically, this means the
1116       * hardware can do MORE than GL or Vulkan specify.  However, it also
1117       * means that, for MIN and MAX, we have to stomp the blend factor to
1118       * ONE to make it a no-op.
1119       */
1120      if (a->color_blend_op == VK_BLEND_OP_MIN ||
1121          a->color_blend_op == VK_BLEND_OP_MAX) {
1122         entry.SourceBlendFactor = BLENDFACTOR_ONE;
1123         entry.DestinationBlendFactor = BLENDFACTOR_ONE;
1124      }
1125      if (a->alpha_blend_op == VK_BLEND_OP_MIN ||
1126          a->alpha_blend_op == VK_BLEND_OP_MAX) {
1127         entry.SourceAlphaBlendFactor = BLENDFACTOR_ONE;
1128         entry.DestinationAlphaBlendFactor = BLENDFACTOR_ONE;
1129      }
1130      GENX(BLEND_STATE_ENTRY_pack)(NULL, state_pos, &entry);
1131      state_pos += GENX(BLEND_STATE_ENTRY_length);
1132#if GFX_VER >= 8
1133      if (i == 0)
1134         bs0 = entry;
1135#endif
1136   }
1137
1138#if GFX_VER >= 8
1139   struct GENX(3DSTATE_PS_BLEND) blend = {
1140      GENX(3DSTATE_PS_BLEND_header),
1141   };
1142   blend.AlphaToCoverageEnable         = blend_state.AlphaToCoverageEnable;
1143   blend.ColorBufferBlendEnable        = bs0.ColorBufferBlendEnable;
1144   blend.SourceAlphaBlendFactor        = bs0.SourceAlphaBlendFactor;
1145   blend.DestinationAlphaBlendFactor   = bs0.DestinationAlphaBlendFactor;
1146   blend.SourceBlendFactor             = bs0.SourceBlendFactor;
1147   blend.DestinationBlendFactor        = bs0.DestinationBlendFactor;
1148   blend.AlphaTestEnable               = false;
1149   blend.IndependentAlphaBlendEnable   = blend_state.IndependentAlphaBlendEnable;
1150
1151   GENX(3DSTATE_PS_BLEND_pack)(NULL, pipeline->gfx8.ps_blend, &blend);
1152#endif
1153
1154   GENX(BLEND_STATE_pack)(NULL, blend_state_start, &blend_state);
1155}
1156
1157static void
1158emit_3dstate_clip(struct anv_graphics_pipeline *pipeline,
1159                  const struct vk_input_assembly_state *ia,
1160                  const struct vk_viewport_state *vp,
1161                  const struct vk_rasterization_state *rs)
1162{
1163   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1164   (void) wm_prog_data;
1165
1166   struct GENX(3DSTATE_CLIP) clip = {
1167      GENX(3DSTATE_CLIP_header),
1168   };
1169
1170   clip.ClipEnable               = true;
1171   clip.StatisticsEnable         = true;
1172   clip.EarlyCullEnable          = true;
1173   clip.APIMode                  = pipeline->negative_one_to_one ? APIMODE_OGL : APIMODE_D3D;
1174   clip.GuardbandClipTestEnable  = true;
1175
1176#if GFX_VER >= 8
1177   clip.VertexSubPixelPrecisionSelect = _8Bit;
1178#endif
1179   clip.ClipMode = CLIPMODE_NORMAL;
1180
1181   switch (rs->provoking_vertex) {
1182   case VK_PROVOKING_VERTEX_MODE_FIRST_VERTEX_EXT:
1183      clip.TriangleStripListProvokingVertexSelect = 0;
1184      clip.LineStripListProvokingVertexSelect = 0;
1185      clip.TriangleFanProvokingVertexSelect = 1;
1186      break;
1187
1188   case VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT:
1189      clip.TriangleStripListProvokingVertexSelect = 2;
1190      clip.LineStripListProvokingVertexSelect = 1;
1191      clip.TriangleFanProvokingVertexSelect = 2;
1192      break;
1193
1194   default:
1195      unreachable("Invalid provoking vertex mode");
1196   }
1197
1198   clip.MinimumPointWidth = 0.125;
1199   clip.MaximumPointWidth = 255.875;
1200
1201   /* TODO(mesh): Multiview. */
1202   if (anv_pipeline_is_primitive(pipeline)) {
1203      const struct brw_vue_prog_data *last =
1204         anv_pipeline_get_last_vue_prog_data(pipeline);
1205
1206      /* From the Vulkan 1.0.45 spec:
1207       *
1208       *    "If the last active vertex processing stage shader entry point's
1209       *    interface does not include a variable decorated with
1210       *    ViewportIndex, then the first viewport is used."
1211       */
1212      if (vp && (last->vue_map.slots_valid & VARYING_BIT_VIEWPORT)) {
1213         clip.MaximumVPIndex = vp->viewport_count > 0 ?
1214                               vp->viewport_count - 1 : 0;
1215      } else {
1216         clip.MaximumVPIndex = 0;
1217      }
1218
1219      /* From the Vulkan 1.0.45 spec:
1220       *
1221       *    "If the last active vertex processing stage shader entry point's
1222       *    interface does not include a variable decorated with Layer, then
1223       *    the first layer is used."
1224       */
1225      clip.ForceZeroRTAIndexEnable =
1226         !(last->vue_map.slots_valid & VARYING_BIT_LAYER);
1227
1228#if GFX_VER == 7
1229      clip.UserClipDistanceClipTestEnableBitmask = last->clip_distance_mask;
1230      clip.UserClipDistanceCullTestEnableBitmask = last->cull_distance_mask;
1231#endif
1232   } else if (anv_pipeline_is_mesh(pipeline)) {
1233      const struct brw_mesh_prog_data *mesh_prog_data = get_mesh_prog_data(pipeline);
1234      if (vp && vp->viewport_count > 0 &&
1235          mesh_prog_data->map.start_dw[VARYING_SLOT_VIEWPORT] >= 0) {
1236         clip.MaximumVPIndex = vp->viewport_count - 1;
1237      }
1238   }
1239
1240#if GFX_VER == 7
1241   clip.FrontWinding            = genX(vk_to_intel_front_face)[rs->front_face];
1242   clip.CullMode                = genX(vk_to_intel_cullmode)[rs->cull_mode];
1243   clip.ViewportZClipTestEnable = pipeline->depth_clip_enable;
1244#else
1245   clip.NonPerspectiveBarycentricEnable = wm_prog_data ?
1246      wm_prog_data->uses_nonperspective_interp_modes : 0;
1247#endif
1248
1249   GENX(3DSTATE_CLIP_pack)(NULL, pipeline->gfx7.clip, &clip);
1250
1251#if GFX_VERx10 >= 125
1252   if (anv_pipeline_is_mesh(pipeline)) {
1253      const struct brw_mesh_prog_data *mesh_prog_data = get_mesh_prog_data(pipeline);
1254      anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_CLIP_MESH), clip_mesh) {
1255         clip_mesh.PrimitiveHeaderEnable = mesh_prog_data->map.per_primitive_header_size_dw > 0;
1256         clip_mesh.UserClipDistanceClipTestEnableBitmask = mesh_prog_data->clip_distance_mask;
1257         clip_mesh.UserClipDistanceCullTestEnableBitmask = mesh_prog_data->cull_distance_mask;
1258      }
1259   }
1260#endif
1261}
1262
1263static void
1264emit_3dstate_streamout(struct anv_graphics_pipeline *pipeline,
1265                       const struct vk_rasterization_state *rs)
1266{
1267   const struct brw_vue_prog_data *prog_data =
1268      anv_pipeline_get_last_vue_prog_data(pipeline);
1269   const struct brw_vue_map *vue_map = &prog_data->vue_map;
1270
1271   nir_xfb_info *xfb_info;
1272   if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
1273      xfb_info = pipeline->shaders[MESA_SHADER_GEOMETRY]->xfb_info;
1274   else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
1275      xfb_info = pipeline->shaders[MESA_SHADER_TESS_EVAL]->xfb_info;
1276   else
1277      xfb_info = pipeline->shaders[MESA_SHADER_VERTEX]->xfb_info;
1278
1279   if (xfb_info) {
1280      struct GENX(SO_DECL) so_decl[MAX_XFB_STREAMS][128];
1281      int next_offset[MAX_XFB_BUFFERS] = {0, 0, 0, 0};
1282      int decls[MAX_XFB_STREAMS] = {0, 0, 0, 0};
1283
1284      memset(so_decl, 0, sizeof(so_decl));
1285
1286      for (unsigned i = 0; i < xfb_info->output_count; i++) {
1287         const nir_xfb_output_info *output = &xfb_info->outputs[i];
1288         unsigned buffer = output->buffer;
1289         unsigned stream = xfb_info->buffer_to_stream[buffer];
1290
1291         /* Our hardware is unusual in that it requires us to program SO_DECLs
1292          * for fake "hole" components, rather than simply taking the offset
1293          * for each real varying.  Each hole can have size 1, 2, 3, or 4; we
1294          * program as many size = 4 holes as we can, then a final hole to
1295          * accommodate the final 1, 2, or 3 remaining.
1296          */
1297         int hole_dwords = (output->offset - next_offset[buffer]) / 4;
1298         while (hole_dwords > 0) {
1299            so_decl[stream][decls[stream]++] = (struct GENX(SO_DECL)) {
1300               .HoleFlag = 1,
1301               .OutputBufferSlot = buffer,
1302               .ComponentMask = (1 << MIN2(hole_dwords, 4)) - 1,
1303            };
1304            hole_dwords -= 4;
1305         }
1306
1307         int varying = output->location;
1308         uint8_t component_mask = output->component_mask;
1309         /* VARYING_SLOT_PSIZ contains four scalar fields packed together:
1310          * - VARYING_SLOT_PRIMITIVE_SHADING_RATE in VARYING_SLOT_PSIZ.x
1311          * - VARYING_SLOT_LAYER                  in VARYING_SLOT_PSIZ.y
1312          * - VARYING_SLOT_VIEWPORT               in VARYING_SLOT_PSIZ.z
1313          * - VARYING_SLOT_PSIZ                   in VARYING_SLOT_PSIZ.w
1314          */
1315         if (varying == VARYING_SLOT_PRIMITIVE_SHADING_RATE) {
1316            varying = VARYING_SLOT_PSIZ;
1317            component_mask = 1 << 0; // SO_DECL_COMPMASK_X
1318         } else if (varying == VARYING_SLOT_LAYER) {
1319            varying = VARYING_SLOT_PSIZ;
1320            component_mask = 1 << 1; // SO_DECL_COMPMASK_Y
1321         } else if (varying == VARYING_SLOT_VIEWPORT) {
1322            varying = VARYING_SLOT_PSIZ;
1323            component_mask = 1 << 2; // SO_DECL_COMPMASK_Z
1324         } else if (varying == VARYING_SLOT_PSIZ) {
1325            component_mask = 1 << 3; // SO_DECL_COMPMASK_W
1326         }
1327
1328         next_offset[buffer] = output->offset +
1329                               __builtin_popcount(component_mask) * 4;
1330
1331         const int slot = vue_map->varying_to_slot[varying];
1332         if (slot < 0) {
1333            /* This can happen if the shader never writes to the varying.
1334             * Insert a hole instead of actual varying data.
1335             */
1336            so_decl[stream][decls[stream]++] = (struct GENX(SO_DECL)) {
1337               .HoleFlag = true,
1338               .OutputBufferSlot = buffer,
1339               .ComponentMask = component_mask,
1340            };
1341         } else {
1342            so_decl[stream][decls[stream]++] = (struct GENX(SO_DECL)) {
1343               .OutputBufferSlot = buffer,
1344               .RegisterIndex = slot,
1345               .ComponentMask = component_mask,
1346            };
1347         }
1348      }
1349
1350      int max_decls = 0;
1351      for (unsigned s = 0; s < MAX_XFB_STREAMS; s++)
1352         max_decls = MAX2(max_decls, decls[s]);
1353
1354      uint8_t sbs[MAX_XFB_STREAMS] = { };
1355      for (unsigned b = 0; b < MAX_XFB_BUFFERS; b++) {
1356         if (xfb_info->buffers_written & (1 << b))
1357            sbs[xfb_info->buffer_to_stream[b]] |= 1 << b;
1358      }
1359
1360      /* Wa_16011773973:
1361       * If SOL is enabled and SO_DECL state has to be programmed,
1362       *    1. Send 3D State SOL state with SOL disabled
1363       *    2. Send SO_DECL NP state
1364       *    3. Send 3D State SOL with SOL Enabled
1365       */
1366      if (intel_device_info_is_dg2(&pipeline->base.device->info))
1367         anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_STREAMOUT), so);
1368
1369      uint32_t *dw = anv_batch_emitn(&pipeline->base.batch, 3 + 2 * max_decls,
1370                                     GENX(3DSTATE_SO_DECL_LIST),
1371                                     .StreamtoBufferSelects0 = sbs[0],
1372                                     .StreamtoBufferSelects1 = sbs[1],
1373                                     .StreamtoBufferSelects2 = sbs[2],
1374                                     .StreamtoBufferSelects3 = sbs[3],
1375                                     .NumEntries0 = decls[0],
1376                                     .NumEntries1 = decls[1],
1377                                     .NumEntries2 = decls[2],
1378                                     .NumEntries3 = decls[3]);
1379
1380      for (int i = 0; i < max_decls; i++) {
1381         GENX(SO_DECL_ENTRY_pack)(NULL, dw + 3 + i * 2,
1382            &(struct GENX(SO_DECL_ENTRY)) {
1383               .Stream0Decl = so_decl[0][i],
1384               .Stream1Decl = so_decl[1][i],
1385               .Stream2Decl = so_decl[2][i],
1386               .Stream3Decl = so_decl[3][i],
1387            });
1388      }
1389   }
1390
1391#if GFX_VER == 7
1392#  define streamout_state_dw pipeline->gfx7.streamout_state
1393#else
1394#  define streamout_state_dw pipeline->gfx8.streamout_state
1395#endif
1396
1397   struct GENX(3DSTATE_STREAMOUT) so = {
1398      GENX(3DSTATE_STREAMOUT_header),
1399   };
1400
1401   if (xfb_info) {
1402      so.SOFunctionEnable = true;
1403      so.SOStatisticsEnable = true;
1404
1405      switch (rs->provoking_vertex) {
1406      case VK_PROVOKING_VERTEX_MODE_FIRST_VERTEX_EXT:
1407         so.ReorderMode = LEADING;
1408         break;
1409
1410      case VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT:
1411         so.ReorderMode = TRAILING;
1412         break;
1413
1414      default:
1415         unreachable("Invalid provoking vertex mode");
1416      }
1417
1418      so.RenderStreamSelect = rs->rasterization_stream;
1419
1420#if GFX_VER >= 8
1421      so.Buffer0SurfacePitch = xfb_info->buffers[0].stride;
1422      so.Buffer1SurfacePitch = xfb_info->buffers[1].stride;
1423      so.Buffer2SurfacePitch = xfb_info->buffers[2].stride;
1424      so.Buffer3SurfacePitch = xfb_info->buffers[3].stride;
1425#else
1426      pipeline->gfx7.xfb_bo_pitch[0] = xfb_info->buffers[0].stride;
1427      pipeline->gfx7.xfb_bo_pitch[1] = xfb_info->buffers[1].stride;
1428      pipeline->gfx7.xfb_bo_pitch[2] = xfb_info->buffers[2].stride;
1429      pipeline->gfx7.xfb_bo_pitch[3] = xfb_info->buffers[3].stride;
1430
1431      /* On Gfx7, the SO buffer enables live in 3DSTATE_STREAMOUT which
1432       * is a bit inconvenient because we don't know what buffers will
1433       * actually be enabled until draw time.  We do our best here by
1434       * setting them based on buffers_written and we disable them
1435       * as-needed at draw time by setting EndAddress = BaseAddress.
1436       */
1437      so.SOBufferEnable0 = xfb_info->buffers_written & (1 << 0);
1438      so.SOBufferEnable1 = xfb_info->buffers_written & (1 << 1);
1439      so.SOBufferEnable2 = xfb_info->buffers_written & (1 << 2);
1440      so.SOBufferEnable3 = xfb_info->buffers_written & (1 << 3);
1441#endif
1442
1443      int urb_entry_read_offset = 0;
1444      int urb_entry_read_length =
1445         (prog_data->vue_map.num_slots + 1) / 2 - urb_entry_read_offset;
1446
1447      /* We always read the whole vertex.  This could be reduced at some
1448       * point by reading less and offsetting the register index in the
1449       * SO_DECLs.
1450       */
1451      so.Stream0VertexReadOffset = urb_entry_read_offset;
1452      so.Stream0VertexReadLength = urb_entry_read_length - 1;
1453      so.Stream1VertexReadOffset = urb_entry_read_offset;
1454      so.Stream1VertexReadLength = urb_entry_read_length - 1;
1455      so.Stream2VertexReadOffset = urb_entry_read_offset;
1456      so.Stream2VertexReadLength = urb_entry_read_length - 1;
1457      so.Stream3VertexReadOffset = urb_entry_read_offset;
1458      so.Stream3VertexReadLength = urb_entry_read_length - 1;
1459   }
1460
1461   GENX(3DSTATE_STREAMOUT_pack)(NULL, streamout_state_dw, &so);
1462}
1463
1464static uint32_t
1465get_sampler_count(const struct anv_shader_bin *bin)
1466{
1467   uint32_t count_by_4 = DIV_ROUND_UP(bin->bind_map.sampler_count, 4);
1468
1469   /* We can potentially have way more than 32 samplers and that's ok.
1470    * However, the 3DSTATE_XS packets only have 3 bits to specify how
1471    * many to pre-fetch and all values above 4 are marked reserved.
1472    */
1473   return MIN2(count_by_4, 4);
1474}
1475
1476static UNUSED struct anv_address
1477get_scratch_address(struct anv_pipeline *pipeline,
1478                    gl_shader_stage stage,
1479                    const struct anv_shader_bin *bin)
1480{
1481   return (struct anv_address) {
1482      .bo = anv_scratch_pool_alloc(pipeline->device,
1483                                   &pipeline->device->scratch_pool,
1484                                   stage, bin->prog_data->total_scratch),
1485      .offset = 0,
1486   };
1487}
1488
1489static UNUSED uint32_t
1490get_scratch_space(const struct anv_shader_bin *bin)
1491{
1492   return ffs(bin->prog_data->total_scratch / 2048);
1493}
1494
1495static UNUSED uint32_t
1496get_scratch_surf(struct anv_pipeline *pipeline,
1497                 gl_shader_stage stage,
1498                 const struct anv_shader_bin *bin)
1499{
1500   if (bin->prog_data->total_scratch == 0)
1501      return 0;
1502
1503   struct anv_bo *bo =
1504      anv_scratch_pool_alloc(pipeline->device,
1505                             &pipeline->device->scratch_pool,
1506                             stage, bin->prog_data->total_scratch);
1507   anv_reloc_list_add_bo(pipeline->batch.relocs,
1508                         pipeline->batch.alloc, bo);
1509   return anv_scratch_pool_get_surf(pipeline->device,
1510                                    &pipeline->device->scratch_pool,
1511                                    bin->prog_data->total_scratch) >> 4;
1512}
1513
1514static void
1515emit_3dstate_vs(struct anv_graphics_pipeline *pipeline)
1516{
1517   const struct intel_device_info *devinfo = &pipeline->base.device->info;
1518   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
1519   const struct anv_shader_bin *vs_bin =
1520      pipeline->shaders[MESA_SHADER_VERTEX];
1521
1522   assert(anv_pipeline_has_stage(pipeline, MESA_SHADER_VERTEX));
1523
1524   anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_VS), vs) {
1525      vs.Enable               = true;
1526      vs.StatisticsEnable     = true;
1527      vs.KernelStartPointer   = vs_bin->kernel.offset;
1528#if GFX_VER >= 8
1529      vs.SIMD8DispatchEnable  =
1530         vs_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8;
1531#endif
1532
1533      assert(!vs_prog_data->base.base.use_alt_mode);
1534#if GFX_VER < 11
1535      vs.SingleVertexDispatch       = false;
1536#endif
1537      vs.VectorMaskEnable           = false;
1538      /* Wa_1606682166:
1539       * Incorrect TDL's SSP address shift in SARB for 16:6 & 18:8 modes.
1540       * Disable the Sampler state prefetch functionality in the SARB by
1541       * programming 0xB000[30] to '1'.
1542       */
1543      vs.SamplerCount               = GFX_VER == 11 ? 0 : get_sampler_count(vs_bin);
1544      vs.BindingTableEntryCount     = vs_bin->bind_map.surface_count;
1545      vs.FloatingPointMode          = IEEE754;
1546      vs.IllegalOpcodeExceptionEnable = false;
1547      vs.SoftwareExceptionEnable    = false;
1548      vs.MaximumNumberofThreads     = devinfo->max_vs_threads - 1;
1549
1550      if (GFX_VER == 9 && devinfo->gt == 4 &&
1551          anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
1552         /* On Sky Lake GT4, we have experienced some hangs related to the VS
1553          * cache and tessellation.  It is unknown exactly what is happening
1554          * but the Haswell docs for the "VS Reference Count Full Force Miss
1555          * Enable" field of the "Thread Mode" register refer to a HSW bug in
1556          * which the VUE handle reference count would overflow resulting in
1557          * internal reference counting bugs.  My (Jason's) best guess is that
1558          * this bug cropped back up on SKL GT4 when we suddenly had more
1559          * threads in play than any previous gfx9 hardware.
1560          *
1561          * What we do know for sure is that setting this bit when
1562          * tessellation shaders are in use fixes a GPU hang in Batman: Arkham
1563          * City when playing with DXVK (https://bugs.freedesktop.org/107280).
1564          * Disabling the vertex cache with tessellation shaders should only
1565          * have a minor performance impact as the tessellation shaders are
1566          * likely generating and processing far more geometry than the vertex
1567          * stage.
1568          */
1569         vs.VertexCacheDisable = true;
1570      }
1571
1572      vs.VertexURBEntryReadLength      = vs_prog_data->base.urb_read_length;
1573      vs.VertexURBEntryReadOffset      = 0;
1574      vs.DispatchGRFStartRegisterForURBData =
1575         vs_prog_data->base.base.dispatch_grf_start_reg;
1576
1577#if GFX_VER >= 8
1578      vs.UserClipDistanceClipTestEnableBitmask =
1579         vs_prog_data->base.clip_distance_mask;
1580      vs.UserClipDistanceCullTestEnableBitmask =
1581         vs_prog_data->base.cull_distance_mask;
1582#endif
1583
1584#if GFX_VERx10 >= 125
1585      vs.ScratchSpaceBuffer =
1586         get_scratch_surf(&pipeline->base, MESA_SHADER_VERTEX, vs_bin);
1587#else
1588      vs.PerThreadScratchSpace   = get_scratch_space(vs_bin);
1589      vs.ScratchSpaceBasePointer =
1590         get_scratch_address(&pipeline->base, MESA_SHADER_VERTEX, vs_bin);
1591#endif
1592   }
1593}
1594
1595static void
1596emit_3dstate_hs_te_ds(struct anv_graphics_pipeline *pipeline,
1597                      const struct vk_tessellation_state *ts)
1598{
1599   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
1600      anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_HS), hs);
1601      anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_TE), te);
1602      anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_DS), ds);
1603      return;
1604   }
1605
1606   const struct intel_device_info *devinfo = &pipeline->base.device->info;
1607   const struct anv_shader_bin *tcs_bin =
1608      pipeline->shaders[MESA_SHADER_TESS_CTRL];
1609   const struct anv_shader_bin *tes_bin =
1610      pipeline->shaders[MESA_SHADER_TESS_EVAL];
1611
1612   const struct brw_tcs_prog_data *tcs_prog_data = get_tcs_prog_data(pipeline);
1613   const struct brw_tes_prog_data *tes_prog_data = get_tes_prog_data(pipeline);
1614
1615   anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_HS), hs) {
1616      hs.Enable = true;
1617      hs.StatisticsEnable = true;
1618      hs.KernelStartPointer = tcs_bin->kernel.offset;
1619      /* Wa_1606682166 */
1620      hs.SamplerCount = GFX_VER == 11 ? 0 : get_sampler_count(tcs_bin);
1621      hs.BindingTableEntryCount = tcs_bin->bind_map.surface_count;
1622
1623#if GFX_VER >= 12
1624      /* Wa_1604578095:
1625       *
1626       *    Hang occurs when the number of max threads is less than 2 times
1627       *    the number of instance count. The number of max threads must be
1628       *    more than 2 times the number of instance count.
1629       */
1630      assert((devinfo->max_tcs_threads / 2) > tcs_prog_data->instances);
1631#endif
1632
1633      hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
1634      hs.IncludeVertexHandles = true;
1635      hs.InstanceCount = tcs_prog_data->instances - 1;
1636
1637      hs.VertexURBEntryReadLength = 0;
1638      hs.VertexURBEntryReadOffset = 0;
1639      hs.DispatchGRFStartRegisterForURBData =
1640         tcs_prog_data->base.base.dispatch_grf_start_reg & 0x1f;
1641#if GFX_VER >= 12
1642      hs.DispatchGRFStartRegisterForURBData5 =
1643         tcs_prog_data->base.base.dispatch_grf_start_reg >> 5;
1644#endif
1645
1646#if GFX_VERx10 >= 125
1647      hs.ScratchSpaceBuffer =
1648         get_scratch_surf(&pipeline->base, MESA_SHADER_TESS_CTRL, tcs_bin);
1649#else
1650      hs.PerThreadScratchSpace = get_scratch_space(tcs_bin);
1651      hs.ScratchSpaceBasePointer =
1652         get_scratch_address(&pipeline->base, MESA_SHADER_TESS_CTRL, tcs_bin);
1653#endif
1654
1655#if GFX_VER == 12
1656      /*  Patch Count threshold specifies the maximum number of patches that
1657       *  will be accumulated before a thread dispatch is forced.
1658       */
1659      hs.PatchCountThreshold = tcs_prog_data->patch_count_threshold;
1660#endif
1661
1662#if GFX_VER >= 9
1663      hs.DispatchMode = tcs_prog_data->base.dispatch_mode;
1664      hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
1665#endif
1666   }
1667
1668   anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_TE), te) {
1669      te.Partitioning = tes_prog_data->partitioning;
1670
1671      if (ts->domain_origin == VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT) {
1672         te.OutputTopology = tes_prog_data->output_topology;
1673      } else {
1674         /* When the origin is upper-left, we have to flip the winding order */
1675         if (tes_prog_data->output_topology == OUTPUT_TRI_CCW) {
1676            te.OutputTopology = OUTPUT_TRI_CW;
1677         } else if (tes_prog_data->output_topology == OUTPUT_TRI_CW) {
1678            te.OutputTopology = OUTPUT_TRI_CCW;
1679         } else {
1680            te.OutputTopology = tes_prog_data->output_topology;
1681         }
1682      }
1683
1684      te.TEDomain = tes_prog_data->domain;
1685      te.TEEnable = true;
1686      te.MaximumTessellationFactorOdd = 63.0;
1687      te.MaximumTessellationFactorNotOdd = 64.0;
1688#if GFX_VERx10 >= 125
1689      te.TessellationDistributionMode = TEDMODE_RR_FREE;
1690      te.TessellationDistributionLevel = TEDLEVEL_PATCH;
1691      /* 64_TRIANGLES */
1692      te.SmallPatchThreshold = 3;
1693      /* 1K_TRIANGLES */
1694      te.TargetBlockSize = 8;
1695      /* 1K_TRIANGLES */
1696      te.LocalBOPAccumulatorThreshold = 1;
1697#endif
1698   }
1699
1700   anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_DS), ds) {
1701      ds.Enable = true;
1702      ds.StatisticsEnable = true;
1703      ds.KernelStartPointer = tes_bin->kernel.offset;
1704      /* Wa_1606682166 */
1705      ds.SamplerCount = GFX_VER == 11 ? 0 : get_sampler_count(tes_bin);
1706      ds.BindingTableEntryCount = tes_bin->bind_map.surface_count;
1707      ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
1708
1709      ds.ComputeWCoordinateEnable =
1710         tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
1711
1712      ds.PatchURBEntryReadLength = tes_prog_data->base.urb_read_length;
1713      ds.PatchURBEntryReadOffset = 0;
1714      ds.DispatchGRFStartRegisterForURBData =
1715         tes_prog_data->base.base.dispatch_grf_start_reg;
1716
1717#if GFX_VER >= 8
1718#if GFX_VER < 11
1719      ds.DispatchMode =
1720         tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8 ?
1721            DISPATCH_MODE_SIMD8_SINGLE_PATCH :
1722            DISPATCH_MODE_SIMD4X2;
1723#else
1724      assert(tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8);
1725      ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
1726#endif
1727
1728      ds.UserClipDistanceClipTestEnableBitmask =
1729         tes_prog_data->base.clip_distance_mask;
1730      ds.UserClipDistanceCullTestEnableBitmask =
1731         tes_prog_data->base.cull_distance_mask;
1732#endif
1733
1734#if GFX_VER >= 12
1735      ds.PrimitiveIDNotRequired = !tes_prog_data->include_primitive_id;
1736#endif
1737#if GFX_VERx10 >= 125
1738      ds.ScratchSpaceBuffer =
1739         get_scratch_surf(&pipeline->base, MESA_SHADER_TESS_EVAL, tes_bin);
1740#else
1741      ds.PerThreadScratchSpace = get_scratch_space(tes_bin);
1742      ds.ScratchSpaceBasePointer =
1743         get_scratch_address(&pipeline->base, MESA_SHADER_TESS_EVAL, tes_bin);
1744#endif
1745   }
1746}
1747
1748static void
1749emit_3dstate_gs(struct anv_graphics_pipeline *pipeline)
1750{
1751   const struct intel_device_info *devinfo = &pipeline->base.device->info;
1752   const struct anv_shader_bin *gs_bin =
1753      pipeline->shaders[MESA_SHADER_GEOMETRY];
1754
1755   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
1756      anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_GS), gs);
1757      return;
1758   }
1759
1760   const struct brw_gs_prog_data *gs_prog_data = get_gs_prog_data(pipeline);
1761
1762   anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_GS), gs) {
1763      gs.Enable                  = true;
1764      gs.StatisticsEnable        = true;
1765      gs.KernelStartPointer      = gs_bin->kernel.offset;
1766      gs.DispatchMode            = gs_prog_data->base.dispatch_mode;
1767
1768      gs.SingleProgramFlow       = false;
1769      gs.VectorMaskEnable        = false;
1770      /* Wa_1606682166 */
1771      gs.SamplerCount            = GFX_VER == 11 ? 0 : get_sampler_count(gs_bin);
1772      gs.BindingTableEntryCount  = gs_bin->bind_map.surface_count;
1773      gs.IncludeVertexHandles    = gs_prog_data->base.include_vue_handles;
1774      gs.IncludePrimitiveID      = gs_prog_data->include_primitive_id;
1775
1776      if (GFX_VER == 8) {
1777         /* Broadwell is weird.  It needs us to divide by 2. */
1778         gs.MaximumNumberofThreads = devinfo->max_gs_threads / 2 - 1;
1779      } else {
1780         gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
1781      }
1782
1783      gs.OutputVertexSize        = gs_prog_data->output_vertex_size_hwords * 2 - 1;
1784      gs.OutputTopology          = gs_prog_data->output_topology;
1785      gs.ControlDataFormat       = gs_prog_data->control_data_format;
1786      gs.ControlDataHeaderSize   = gs_prog_data->control_data_header_size_hwords;
1787      gs.InstanceControl         = MAX2(gs_prog_data->invocations, 1) - 1;
1788      gs.ReorderMode             = TRAILING;
1789
1790#if GFX_VER >= 8
1791      gs.ExpectedVertexCount     = gs_prog_data->vertices_in;
1792      gs.StaticOutput            = gs_prog_data->static_vertex_count >= 0;
1793      gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count >= 0 ?
1794                                   gs_prog_data->static_vertex_count : 0;
1795#endif
1796
1797      gs.VertexURBEntryReadOffset = 0;
1798      gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
1799      gs.DispatchGRFStartRegisterForURBData =
1800         gs_prog_data->base.base.dispatch_grf_start_reg;
1801
1802#if GFX_VER >= 8
1803      gs.UserClipDistanceClipTestEnableBitmask =
1804         gs_prog_data->base.clip_distance_mask;
1805      gs.UserClipDistanceCullTestEnableBitmask =
1806         gs_prog_data->base.cull_distance_mask;
1807#endif
1808
1809#if GFX_VERx10 >= 125
1810      gs.ScratchSpaceBuffer =
1811         get_scratch_surf(&pipeline->base, MESA_SHADER_GEOMETRY, gs_bin);
1812#else
1813      gs.PerThreadScratchSpace   = get_scratch_space(gs_bin);
1814      gs.ScratchSpaceBasePointer =
1815         get_scratch_address(&pipeline->base, MESA_SHADER_GEOMETRY, gs_bin);
1816#endif
1817   }
1818}
1819
1820static void
1821emit_3dstate_wm(struct anv_graphics_pipeline *pipeline,
1822                const struct vk_input_assembly_state *ia,
1823                const struct vk_rasterization_state *rs,
1824                const struct vk_multisample_state *ms,
1825                const struct vk_color_blend_state *cb,
1826                const struct vk_render_pass_state *rp)
1827{
1828   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1829
1830   struct GENX(3DSTATE_WM) wm = {
1831      GENX(3DSTATE_WM_header),
1832   };
1833   wm.StatisticsEnable                    = true;
1834   wm.LineEndCapAntialiasingRegionWidth   = _05pixels;
1835   wm.LineAntialiasingRegionWidth         = _10pixels;
1836   wm.PointRasterizationRule              = RASTRULE_UPPER_RIGHT;
1837
1838   if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1839      if (wm_prog_data->early_fragment_tests) {
1840            wm.EarlyDepthStencilControl         = EDSC_PREPS;
1841      } else if (wm_prog_data->has_side_effects) {
1842         wm.EarlyDepthStencilControl         = EDSC_PSEXEC;
1843      } else {
1844         wm.EarlyDepthStencilControl         = EDSC_NORMAL;
1845      }
1846
1847#if GFX_VER >= 8
1848      /* Gen8 hardware tries to compute ThreadDispatchEnable for us but
1849       * doesn't take into account KillPixels when no depth or stencil
1850       * writes are enabled.  In order for occlusion queries to work
1851       * correctly with no attachments, we need to force-enable PS thread
1852       * dispatch.
1853       *
1854       * The BDW docs are pretty clear that that this bit isn't validated
1855       * and probably shouldn't be used in production:
1856       *
1857       *    "This must always be set to Normal. This field should not be
1858       *    tested for functional validation."
1859       *
1860       * Unfortunately, however, the other mechanism we have for doing this
1861       * is 3DSTATE_PS_EXTRA::PixelShaderHasUAV which causes hangs on BDW.
1862       * Given two bad options, we choose the one which works.
1863       */
1864      pipeline->force_fragment_thread_dispatch =
1865         wm_prog_data->has_side_effects ||
1866         wm_prog_data->uses_kill;
1867#endif
1868
1869      wm.BarycentricInterpolationMode =
1870         wm_prog_data->barycentric_interp_modes;
1871
1872#if GFX_VER < 8
1873      wm.PixelShaderComputedDepthMode  = wm_prog_data->computed_depth_mode;
1874      wm.PixelShaderUsesSourceDepth    = wm_prog_data->uses_src_depth;
1875      wm.PixelShaderUsesSourceW        = wm_prog_data->uses_src_w;
1876      wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1877
1878      /* If the subpass has a depth or stencil self-dependency, then we
1879       * need to force the hardware to do the depth/stencil write *after*
1880       * fragment shader execution.  Otherwise, the writes may hit memory
1881       * before we get around to fetching from the input attachment and we
1882       * may get the depth or stencil value from the current draw rather
1883       * than the previous one.
1884       */
1885      wm.PixelShaderKillsPixel         = rp->depth_self_dependency ||
1886                                         rp->stencil_self_dependency ||
1887                                         wm_prog_data->uses_kill;
1888
1889      pipeline->force_fragment_thread_dispatch =
1890         wm.PixelShaderComputedDepthMode != PSCDEPTH_OFF ||
1891         wm_prog_data->has_side_effects ||
1892         wm.PixelShaderKillsPixel;
1893
1894      if (ms != NULL && ms->rasterization_samples > 1) {
1895         if (wm_prog_data->persample_dispatch) {
1896            wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1897         } else {
1898            wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
1899         }
1900      } else {
1901         wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1902      }
1903#endif
1904
1905      wm.LineStippleEnable = rs->line.stipple.enable;
1906   }
1907
1908   const struct intel_device_info *devinfo = &pipeline->base.device->info;
1909   uint32_t *dws = devinfo->ver >= 8 ? pipeline->gfx8.wm : pipeline->gfx7.wm;
1910   GENX(3DSTATE_WM_pack)(NULL, dws, &wm);
1911}
1912
1913static void
1914emit_3dstate_ps(struct anv_graphics_pipeline *pipeline,
1915                const struct vk_multisample_state *ms,
1916                const struct vk_color_blend_state *cb)
1917{
1918   UNUSED const struct intel_device_info *devinfo =
1919      &pipeline->base.device->info;
1920   const struct anv_shader_bin *fs_bin =
1921      pipeline->shaders[MESA_SHADER_FRAGMENT];
1922
1923   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1924      anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_PS), ps) {
1925#if GFX_VER == 7
1926         /* Even if no fragments are ever dispatched, gfx7 hardware hangs if
1927          * we don't at least set the maximum number of threads.
1928          */
1929         ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1930#endif
1931      }
1932      return;
1933   }
1934
1935   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1936
1937#if GFX_VER < 8
1938   /* The hardware wedges if you have this bit set but don't turn on any dual
1939    * source blend factors.
1940    */
1941   bool dual_src_blend = false;
1942   if (wm_prog_data->dual_src_blend && cb) {
1943      for (uint32_t i = 0; i < cb->attachment_count; i++) {
1944         const struct vk_color_blend_attachment_state *a =
1945            &cb->attachments[i];
1946
1947         if (a->blend_enable &&
1948             (is_dual_src_blend_factor(a->src_color_blend_factor) ||
1949              is_dual_src_blend_factor(a->dst_color_blend_factor) ||
1950              is_dual_src_blend_factor(a->src_alpha_blend_factor) ||
1951              is_dual_src_blend_factor(a->dst_alpha_blend_factor))) {
1952            dual_src_blend = true;
1953            break;
1954         }
1955      }
1956   }
1957#endif
1958
1959   anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_PS), ps) {
1960      ps._8PixelDispatchEnable      = wm_prog_data->dispatch_8;
1961      ps._16PixelDispatchEnable     = wm_prog_data->dispatch_16;
1962      ps._32PixelDispatchEnable     = wm_prog_data->dispatch_32;
1963
1964      /* From the Sky Lake PRM 3DSTATE_PS::32 Pixel Dispatch Enable:
1965       *
1966       *    "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16, SIMD32
1967       *    Dispatch must not be enabled for PER_PIXEL dispatch mode."
1968       *
1969       * Since 16x MSAA is first introduced on SKL, we don't need to apply
1970       * the workaround on any older hardware.
1971       */
1972      if (GFX_VER >= 9 && !wm_prog_data->persample_dispatch &&
1973          ms != NULL && ms->rasterization_samples == 16) {
1974         assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
1975         ps._32PixelDispatchEnable = false;
1976      }
1977
1978      ps.KernelStartPointer0 = fs_bin->kernel.offset +
1979                               brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
1980      ps.KernelStartPointer1 = fs_bin->kernel.offset +
1981                               brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
1982      ps.KernelStartPointer2 = fs_bin->kernel.offset +
1983                               brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
1984
1985      ps.SingleProgramFlow          = false;
1986      ps.VectorMaskEnable           = GFX_VER >= 8 &&
1987                                      wm_prog_data->uses_vmask;
1988      /* Wa_1606682166 */
1989      ps.SamplerCount               = GFX_VER == 11 ? 0 : get_sampler_count(fs_bin);
1990      ps.BindingTableEntryCount     = fs_bin->bind_map.surface_count;
1991      ps.PushConstantEnable         = wm_prog_data->base.nr_params > 0 ||
1992                                      wm_prog_data->base.ubo_ranges[0].length;
1993      ps.PositionXYOffsetSelect     = wm_prog_data->uses_pos_offset ?
1994                                      POSOFFSET_SAMPLE: POSOFFSET_NONE;
1995#if GFX_VER < 8
1996      ps.AttributeEnable            = wm_prog_data->num_varying_inputs > 0;
1997      ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1998      ps.DualSourceBlendEnable      = dual_src_blend;
1999#endif
2000
2001#if GFX_VERx10 == 75
2002      /* Haswell requires the sample mask to be set in this packet as well
2003       * as in 3DSTATE_SAMPLE_MASK; the values should match.
2004       */
2005      ps.SampleMask                 = 0xff;
2006#endif
2007
2008#if GFX_VER >= 8
2009      ps.MaximumNumberofThreadsPerPSD =
2010         devinfo->max_threads_per_psd - (GFX_VER == 8 ? 2 : 1);
2011#else
2012      ps.MaximumNumberofThreads        = devinfo->max_wm_threads - 1;
2013#endif
2014
2015      ps.DispatchGRFStartRegisterForConstantSetupData0 =
2016         brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
2017      ps.DispatchGRFStartRegisterForConstantSetupData1 =
2018         brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
2019      ps.DispatchGRFStartRegisterForConstantSetupData2 =
2020         brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
2021
2022#if GFX_VERx10 >= 125
2023      ps.ScratchSpaceBuffer =
2024         get_scratch_surf(&pipeline->base, MESA_SHADER_FRAGMENT, fs_bin);
2025#else
2026      ps.PerThreadScratchSpace   = get_scratch_space(fs_bin);
2027      ps.ScratchSpaceBasePointer =
2028         get_scratch_address(&pipeline->base, MESA_SHADER_FRAGMENT, fs_bin);
2029#endif
2030   }
2031}
2032
2033#if GFX_VER >= 8
2034static void
2035emit_3dstate_ps_extra(struct anv_graphics_pipeline *pipeline,
2036                      const struct vk_rasterization_state *rs,
2037                      const struct vk_render_pass_state *rp)
2038{
2039   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
2040
2041   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
2042      anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_PS_EXTRA), ps);
2043      return;
2044   }
2045
2046   anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_PS_EXTRA), ps) {
2047      ps.PixelShaderValid              = true;
2048      ps.AttributeEnable               = wm_prog_data->num_varying_inputs > 0;
2049      ps.oMaskPresenttoRenderTarget    = wm_prog_data->uses_omask;
2050      ps.PixelShaderIsPerSample        = wm_prog_data->persample_dispatch;
2051      ps.PixelShaderComputedDepthMode  = wm_prog_data->computed_depth_mode;
2052      ps.PixelShaderUsesSourceDepth    = wm_prog_data->uses_src_depth;
2053      ps.PixelShaderUsesSourceW        = wm_prog_data->uses_src_w;
2054
2055      /* If the subpass has a depth or stencil self-dependency, then we need
2056       * to force the hardware to do the depth/stencil write *after* fragment
2057       * shader execution.  Otherwise, the writes may hit memory before we get
2058       * around to fetching from the input attachment and we may get the depth
2059       * or stencil value from the current draw rather than the previous one.
2060       */
2061      ps.PixelShaderKillsPixel         = rp->depth_self_dependency ||
2062                                         rp->stencil_self_dependency ||
2063                                         wm_prog_data->uses_kill;
2064
2065#if GFX_VER >= 9
2066      ps.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
2067      ps.PixelShaderPullsBary    = wm_prog_data->pulls_bary;
2068
2069      ps.InputCoverageMaskState = ICMS_NONE;
2070      assert(!wm_prog_data->inner_coverage); /* Not available in SPIR-V */
2071      if (!wm_prog_data->uses_sample_mask)
2072         ps.InputCoverageMaskState = ICMS_NONE;
2073      else if (wm_prog_data->per_coarse_pixel_dispatch)
2074         ps.InputCoverageMaskState  = ICMS_NORMAL;
2075      else if (wm_prog_data->post_depth_coverage)
2076         ps.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
2077      else
2078         ps.InputCoverageMaskState = ICMS_NORMAL;
2079#else
2080      ps.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
2081#endif
2082
2083#if GFX_VER >= 11
2084      ps.PixelShaderRequiresSourceDepthandorWPlaneCoefficients =
2085         wm_prog_data->uses_depth_w_coefficients;
2086      ps.PixelShaderIsPerCoarsePixel = wm_prog_data->per_coarse_pixel_dispatch;
2087#endif
2088#if GFX_VERx10 >= 125
2089      /* TODO: We should only require this when the last geometry shader uses
2090       *       a fragment shading rate that is not constant.
2091       */
2092      ps.EnablePSDependencyOnCPsizeChange = wm_prog_data->per_coarse_pixel_dispatch;
2093#endif
2094   }
2095}
2096#endif
2097
2098static void
2099emit_3dstate_vf_statistics(struct anv_graphics_pipeline *pipeline)
2100{
2101   anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_VF_STATISTICS), vfs) {
2102      vfs.StatisticsEnable = true;
2103   }
2104}
2105
2106static void
2107compute_kill_pixel(struct anv_graphics_pipeline *pipeline,
2108                   const struct vk_multisample_state *ms,
2109                   const struct vk_render_pass_state *rp)
2110{
2111   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
2112      pipeline->kill_pixel = false;
2113      return;
2114   }
2115
2116   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
2117
2118   /* This computes the KillPixel portion of the computation for whether or
2119    * not we want to enable the PMA fix on gfx8 or gfx9.  It's given by this
2120    * chunk of the giant formula:
2121    *
2122    *    (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
2123    *     3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
2124    *     3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
2125    *     3DSTATE_PS_BLEND::AlphaTestEnable ||
2126    *     3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
2127    *
2128    * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable is always false and so is
2129    * 3DSTATE_PS_BLEND::AlphaTestEnable since Vulkan doesn't have a concept
2130    * of an alpha test.
2131    */
2132   pipeline->kill_pixel =
2133      rp->depth_self_dependency ||
2134      rp->stencil_self_dependency ||
2135      wm_prog_data->uses_kill ||
2136      wm_prog_data->uses_omask ||
2137      (ms && ms->alpha_to_coverage_enable);
2138}
2139
2140#if GFX_VER == 12
2141static void
2142emit_3dstate_primitive_replication(struct anv_graphics_pipeline *pipeline,
2143                                   const struct vk_render_pass_state *rp)
2144{
2145   if (!pipeline->use_primitive_replication) {
2146      anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_PRIMITIVE_REPLICATION), pr);
2147      return;
2148   }
2149
2150   int view_count = util_bitcount(rp->view_mask);
2151   assert(view_count > 1 && view_count <= MAX_VIEWS_FOR_PRIMITIVE_REPLICATION);
2152
2153   anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_PRIMITIVE_REPLICATION), pr) {
2154      pr.ReplicaMask = (1 << view_count) - 1;
2155      pr.ReplicationCount = view_count - 1;
2156
2157      int i = 0;
2158      u_foreach_bit(view_index, rp->view_mask) {
2159         pr.RTAIOffset[i] = view_index;
2160         i++;
2161      }
2162   }
2163}
2164#endif
2165
2166#if GFX_VERx10 >= 125
2167static void
2168emit_task_state(struct anv_graphics_pipeline *pipeline)
2169{
2170   assert(anv_pipeline_is_mesh(pipeline));
2171
2172   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_TASK)) {
2173      anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_TASK_CONTROL), zero);
2174      return;
2175   }
2176
2177   const struct anv_shader_bin *task_bin = pipeline->shaders[MESA_SHADER_TASK];
2178
2179   anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_TASK_CONTROL), tc) {
2180      tc.TaskShaderEnable = true;
2181      tc.ScratchSpaceBuffer =
2182         get_scratch_surf(&pipeline->base, MESA_SHADER_TASK, task_bin);
2183      tc.MaximumNumberofThreadGroups = 511;
2184   }
2185
2186   const struct intel_device_info *devinfo = &pipeline->base.device->info;
2187   const struct brw_task_prog_data *task_prog_data = get_task_prog_data(pipeline);
2188   const struct brw_cs_dispatch_info task_dispatch =
2189      brw_cs_get_dispatch_info(devinfo, &task_prog_data->base, NULL);
2190
2191   anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_TASK_SHADER), task) {
2192      task.KernelStartPointer                = task_bin->kernel.offset;
2193      task.SIMDSize                          = task_dispatch.simd_size / 16;
2194      task.MessageSIMD                       = task.SIMDSize;
2195      task.NumberofThreadsinGPGPUThreadGroup = task_dispatch.threads;
2196      task.ExecutionMask                     = task_dispatch.right_mask;
2197      task.LocalXMaximum                     = task_dispatch.group_size - 1;
2198      task.EmitLocalIDX                      = true;
2199
2200      task.NumberofBarriers                  = task_prog_data->base.uses_barrier;
2201      task.SharedLocalMemorySize             =
2202         encode_slm_size(GFX_VER, task_prog_data->base.base.total_shared);
2203
2204      /*
2205       * 3DSTATE_TASK_SHADER_DATA.InlineData[0:1] will be used for an address
2206       * of a buffer with push constants and descriptor set table and
2207       * InlineData[2:7] will be used for first few push constants.
2208       */
2209      task.EmitInlineParameter = true;
2210
2211      task.XP0Required = task_prog_data->uses_drawid;
2212   }
2213
2214   /* Recommended values from "Task and Mesh Distribution Programming". */
2215   anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_TASK_REDISTRIB), redistrib) {
2216      redistrib.LocalBOTAccumulatorThreshold = MULTIPLIER_1;
2217      redistrib.SmallTaskThreshold = 1; /* 2^N */
2218      redistrib.TargetMeshBatchSize = devinfo->num_slices > 2 ? 3 : 5; /* 2^N */
2219      redistrib.TaskRedistributionLevel = TASKREDISTRIB_BOM;
2220
2221      /* TODO: We have an unknown issue with Task Payload when task redistribution
2222       * is enabled. Disable it for now.
2223       * See https://gitlab.freedesktop.org/mesa/mesa/-/issues/7141
2224       */
2225      redistrib.TaskRedistributionMode = TASKREDISTRIB_OFF;
2226   }
2227}
2228
2229static void
2230emit_mesh_state(struct anv_graphics_pipeline *pipeline)
2231{
2232   assert(anv_pipeline_is_mesh(pipeline));
2233
2234   const struct anv_shader_bin *mesh_bin = pipeline->shaders[MESA_SHADER_MESH];
2235
2236   anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_MESH_CONTROL), mc) {
2237      mc.MeshShaderEnable = true;
2238      mc.ScratchSpaceBuffer =
2239         get_scratch_surf(&pipeline->base, MESA_SHADER_MESH, mesh_bin);
2240      mc.MaximumNumberofThreadGroups = 511;
2241   }
2242
2243   const struct intel_device_info *devinfo = &pipeline->base.device->info;
2244   const struct brw_mesh_prog_data *mesh_prog_data = get_mesh_prog_data(pipeline);
2245   const struct brw_cs_dispatch_info mesh_dispatch =
2246      brw_cs_get_dispatch_info(devinfo, &mesh_prog_data->base, NULL);
2247
2248   const unsigned output_topology =
2249      mesh_prog_data->primitive_type == SHADER_PRIM_POINTS ? OUTPUT_POINT :
2250      mesh_prog_data->primitive_type == SHADER_PRIM_LINES  ? OUTPUT_LINE :
2251                                                             OUTPUT_TRI;
2252
2253   uint32_t index_format;
2254   switch (mesh_prog_data->index_format) {
2255   case BRW_INDEX_FORMAT_U32:
2256      index_format = INDEX_U32;
2257      break;
2258   default:
2259      unreachable("invalid index format");
2260   }
2261
2262   anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_MESH_SHADER), mesh) {
2263      mesh.KernelStartPointer                = mesh_bin->kernel.offset;
2264      mesh.SIMDSize                          = mesh_dispatch.simd_size / 16;
2265      mesh.MessageSIMD                       = mesh.SIMDSize;
2266      mesh.NumberofThreadsinGPGPUThreadGroup = mesh_dispatch.threads;
2267      mesh.ExecutionMask                     = mesh_dispatch.right_mask;
2268      mesh.LocalXMaximum                     = mesh_dispatch.group_size - 1;
2269      mesh.EmitLocalIDX                      = true;
2270
2271      mesh.MaximumPrimitiveCount             = mesh_prog_data->map.max_primitives - 1;
2272      mesh.OutputTopology                    = output_topology;
2273      mesh.PerVertexDataPitch                = mesh_prog_data->map.per_vertex_pitch_dw / 8;
2274      mesh.PerPrimitiveDataPresent           = mesh_prog_data->map.per_primitive_pitch_dw > 0;
2275      mesh.PerPrimitiveDataPitch             = mesh_prog_data->map.per_primitive_pitch_dw / 8;
2276      mesh.IndexFormat                       = index_format;
2277
2278      mesh.NumberofBarriers                  = mesh_prog_data->base.uses_barrier;
2279      mesh.SharedLocalMemorySize             =
2280         encode_slm_size(GFX_VER, mesh_prog_data->base.base.total_shared);
2281
2282      /*
2283       * 3DSTATE_MESH_SHADER_DATA.InlineData[0:1] will be used for an address
2284       * of a buffer with push constants and descriptor set table and
2285       * InlineData[2:7] will be used for first few push constants.
2286       */
2287      mesh.EmitInlineParameter = true;
2288
2289      mesh.XP0Required = mesh_prog_data->uses_drawid;
2290   }
2291
2292   /* Recommended values from "Task and Mesh Distribution Programming". */
2293   anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_MESH_DISTRIB), distrib) {
2294      distrib.DistributionMode = MESH_RR_FREE;
2295      distrib.TaskDistributionBatchSize = devinfo->num_slices > 2 ? 4 : 9; /* 2^N thread groups */
2296      distrib.MeshDistributionBatchSize = devinfo->num_slices > 2 ? 3 : 3; /* 2^N thread groups */
2297   }
2298}
2299#endif
2300
2301void
2302genX(graphics_pipeline_emit)(struct anv_graphics_pipeline *pipeline,
2303                             const struct vk_graphics_pipeline_state *state)
2304{
2305   enum intel_urb_deref_block_size urb_deref_block_size;
2306   emit_urb_setup(pipeline, &urb_deref_block_size);
2307
2308   assert(state->rs != NULL);
2309   emit_rs_state(pipeline, state->ia, state->rs, state->ms, state->rp,
2310                           urb_deref_block_size);
2311   emit_ms_state(pipeline, state->ms);
2312   emit_cb_state(pipeline, state->cb, state->ms);
2313   compute_kill_pixel(pipeline, state->ms, state->rp);
2314
2315   emit_3dstate_clip(pipeline, state->ia, state->vp, state->rs);
2316
2317#if GFX_VER == 12
2318   emit_3dstate_primitive_replication(pipeline, state->rp);
2319#endif
2320
2321#if 0
2322   /* From gfx7_vs_state.c */
2323
2324   /**
2325    * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
2326    * Geometry > Geometry Shader > State:
2327    *
2328    *     "Note: Because of corruption in IVB:GT2, software needs to flush the
2329    *     whole fixed function pipeline when the GS enable changes value in
2330    *     the 3DSTATE_GS."
2331    *
2332    * The hardware architects have clarified that in this context "flush the
2333    * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
2334    * Stall" bit set.
2335    */
2336   if (device->info.platform == INTEL_PLATFORM_IVB)
2337      gfx7_emit_vs_workaround_flush(brw);
2338#endif
2339
2340   if (anv_pipeline_is_primitive(pipeline)) {
2341      emit_vertex_input(pipeline, state->vi);
2342
2343      emit_3dstate_vs(pipeline);
2344      emit_3dstate_hs_te_ds(pipeline, state->ts);
2345      emit_3dstate_gs(pipeline);
2346
2347      emit_3dstate_vf_statistics(pipeline);
2348
2349      emit_3dstate_streamout(pipeline, state->rs);
2350
2351#if GFX_VERx10 >= 125
2352      const struct anv_device *device = pipeline->base.device;
2353      /* Disable Mesh. */
2354      if (device->physical->vk.supported_extensions.NV_mesh_shader) {
2355         anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_MESH_CONTROL), zero);
2356         anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_TASK_CONTROL), zero);
2357      }
2358#endif
2359   } else {
2360      assert(anv_pipeline_is_mesh(pipeline));
2361
2362      /* BSpec 46303 forbids both 3DSTATE_MESH_CONTROL.MeshShaderEnable
2363       * and 3DSTATE_STREAMOUT.SOFunctionEnable to be 1.
2364       */
2365      anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_STREAMOUT), so) {}
2366
2367#if GFX_VERx10 >= 125
2368      emit_task_state(pipeline);
2369      emit_mesh_state(pipeline);
2370#endif
2371   }
2372
2373   emit_3dstate_sbe(pipeline);
2374   emit_3dstate_wm(pipeline, state->ia, state->rs,
2375                   state->ms, state->cb, state->rp);
2376   emit_3dstate_ps(pipeline, state->ms, state->cb);
2377#if GFX_VER >= 8
2378   emit_3dstate_ps_extra(pipeline, state->rs, state->rp);
2379#endif
2380}
2381
2382#if GFX_VERx10 >= 125
2383
2384void
2385genX(compute_pipeline_emit)(struct anv_compute_pipeline *pipeline)
2386{
2387   struct anv_device *device = pipeline->base.device;
2388   const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
2389   anv_pipeline_setup_l3_config(&pipeline->base, cs_prog_data->base.total_shared > 0);
2390
2391   const UNUSED struct anv_shader_bin *cs_bin = pipeline->cs;
2392   const struct intel_device_info *devinfo = &device->info;
2393
2394   anv_batch_emit(&pipeline->base.batch, GENX(CFE_STATE), cfe) {
2395      cfe.MaximumNumberofThreads =
2396         devinfo->max_cs_threads * devinfo->subslice_total;
2397      cfe.ScratchSpaceBuffer =
2398         get_scratch_surf(&pipeline->base, MESA_SHADER_COMPUTE, cs_bin);
2399   }
2400}
2401
2402#else /* #if GFX_VERx10 >= 125 */
2403
2404void
2405genX(compute_pipeline_emit)(struct anv_compute_pipeline *pipeline)
2406{
2407   struct anv_device *device = pipeline->base.device;
2408   const struct intel_device_info *devinfo = &device->info;
2409   const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
2410
2411   anv_pipeline_setup_l3_config(&pipeline->base, cs_prog_data->base.total_shared > 0);
2412
2413   const struct brw_cs_dispatch_info dispatch =
2414      brw_cs_get_dispatch_info(devinfo, cs_prog_data, NULL);
2415   const uint32_t vfe_curbe_allocation =
2416      ALIGN(cs_prog_data->push.per_thread.regs * dispatch.threads +
2417            cs_prog_data->push.cross_thread.regs, 2);
2418
2419   const struct anv_shader_bin *cs_bin = pipeline->cs;
2420
2421   anv_batch_emit(&pipeline->base.batch, GENX(MEDIA_VFE_STATE), vfe) {
2422#if GFX_VER > 7
2423      vfe.StackSize              = 0;
2424#else
2425      vfe.GPGPUMode              = true;
2426#endif
2427      vfe.MaximumNumberofThreads =
2428         devinfo->max_cs_threads * devinfo->subslice_total - 1;
2429      vfe.NumberofURBEntries     = GFX_VER <= 7 ? 0 : 2;
2430#if GFX_VER < 11
2431      vfe.ResetGatewayTimer      = true;
2432#endif
2433#if GFX_VER <= 8
2434      vfe.BypassGatewayControl   = true;
2435#endif
2436      vfe.URBEntryAllocationSize = GFX_VER <= 7 ? 0 : 2;
2437      vfe.CURBEAllocationSize    = vfe_curbe_allocation;
2438
2439      if (cs_bin->prog_data->total_scratch) {
2440         if (GFX_VER >= 8) {
2441            /* Broadwell's Per Thread Scratch Space is in the range [0, 11]
2442             * where 0 = 1k, 1 = 2k, 2 = 4k, ..., 11 = 2M.
2443             */
2444            vfe.PerThreadScratchSpace =
2445               ffs(cs_bin->prog_data->total_scratch) - 11;
2446         } else if (GFX_VERx10 == 75) {
2447            /* Haswell's Per Thread Scratch Space is in the range [0, 10]
2448             * where 0 = 2k, 1 = 4k, 2 = 8k, ..., 10 = 2M.
2449             */
2450            vfe.PerThreadScratchSpace =
2451               ffs(cs_bin->prog_data->total_scratch) - 12;
2452         } else {
2453            /* IVB and BYT use the range [0, 11] to mean [1kB, 12kB]
2454             * where 0 = 1kB, 1 = 2kB, 2 = 3kB, ..., 11 = 12kB.
2455             */
2456            vfe.PerThreadScratchSpace =
2457               cs_bin->prog_data->total_scratch / 1024 - 1;
2458         }
2459         vfe.ScratchSpaceBasePointer =
2460            get_scratch_address(&pipeline->base, MESA_SHADER_COMPUTE, cs_bin);
2461      }
2462   }
2463
2464   struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
2465      .KernelStartPointer     =
2466         cs_bin->kernel.offset +
2467         brw_cs_prog_data_prog_offset(cs_prog_data, dispatch.simd_size),
2468
2469      /* Wa_1606682166 */
2470      .SamplerCount           = GFX_VER == 11 ? 0 : get_sampler_count(cs_bin),
2471      /* We add 1 because the CS indirect parameters buffer isn't accounted
2472       * for in bind_map.surface_count.
2473       */
2474      .BindingTableEntryCount = 1 + MIN2(cs_bin->bind_map.surface_count, 30),
2475      .BarrierEnable          = cs_prog_data->uses_barrier,
2476      .SharedLocalMemorySize  =
2477         encode_slm_size(GFX_VER, cs_prog_data->base.total_shared),
2478
2479#if GFX_VERx10 != 75
2480      .ConstantURBEntryReadOffset = 0,
2481#endif
2482      .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
2483#if GFX_VERx10 >= 75
2484      .CrossThreadConstantDataReadLength =
2485         cs_prog_data->push.cross_thread.regs,
2486#endif
2487#if GFX_VER >= 12
2488      /* TODO: Check if we are missing workarounds and enable mid-thread
2489       * preemption.
2490       *
2491       * We still have issues with mid-thread preemption (it was already
2492       * disabled by the kernel on gfx11, due to missing workarounds). It's
2493       * possible that we are just missing some workarounds, and could enable
2494       * it later, but for now let's disable it to fix a GPU in compute in Car
2495       * Chase (and possibly more).
2496       */
2497      .ThreadPreemptionDisable = true,
2498#endif
2499
2500      .NumberofThreadsinGPGPUThreadGroup = dispatch.threads,
2501   };
2502   GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL,
2503                                        pipeline->interface_descriptor_data,
2504                                        &desc);
2505}
2506
2507#endif /* #if GFX_VERx10 >= 125 */
2508
2509#if GFX_VERx10 >= 125
2510
2511void
2512genX(ray_tracing_pipeline_emit)(struct anv_ray_tracing_pipeline *pipeline)
2513{
2514   for (uint32_t i = 0; i < pipeline->group_count; i++) {
2515      struct anv_rt_shader_group *group = &pipeline->groups[i];
2516
2517      switch (group->type) {
2518      case VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR: {
2519         struct GFX_RT_GENERAL_SBT_HANDLE sh = {};
2520         sh.General = anv_shader_bin_get_bsr(group->general, 32);
2521         GFX_RT_GENERAL_SBT_HANDLE_pack(NULL, group->handle, &sh);
2522         break;
2523      }
2524
2525      case VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR: {
2526         struct GFX_RT_TRIANGLES_SBT_HANDLE sh = {};
2527         if (group->closest_hit)
2528            sh.ClosestHit = anv_shader_bin_get_bsr(group->closest_hit, 32);
2529         if (group->any_hit)
2530            sh.AnyHit = anv_shader_bin_get_bsr(group->any_hit, 24);
2531         GFX_RT_TRIANGLES_SBT_HANDLE_pack(NULL, group->handle, &sh);
2532         break;
2533      }
2534
2535      case VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR: {
2536         struct GFX_RT_PROCEDURAL_SBT_HANDLE sh = {};
2537         if (group->closest_hit)
2538            sh.ClosestHit = anv_shader_bin_get_bsr(group->closest_hit, 32);
2539         sh.Intersection = anv_shader_bin_get_bsr(group->intersection, 24);
2540         GFX_RT_PROCEDURAL_SBT_HANDLE_pack(NULL, group->handle, &sh);
2541         break;
2542      }
2543
2544      default:
2545         unreachable("Invalid shader group type");
2546      }
2547   }
2548}
2549
2550#else
2551
2552void
2553genX(ray_tracing_pipeline_emit)(struct anv_ray_tracing_pipeline *pipeline)
2554{
2555   unreachable("Ray tracing not supported");
2556}
2557
2558#endif /* GFX_VERx10 >= 125 */
2559