1/*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include <stdlib.h>
25#include <unistd.h>
26#include <limits.h>
27#include <assert.h>
28#include <sys/mman.h>
29
30#include "anv_private.h"
31
32#include "common/intel_aux_map.h"
33#include "util/anon_file.h"
34#include "util/futex.h"
35
36#ifdef HAVE_VALGRIND
37#define VG_NOACCESS_READ(__ptr) ({                       \
38   VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
39   __typeof(*(__ptr)) __val = *(__ptr);                  \
40   VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
41   __val;                                                \
42})
43#define VG_NOACCESS_WRITE(__ptr, __val) ({                  \
44   VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr)));  \
45   *(__ptr) = (__val);                                      \
46   VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));   \
47})
48#else
49#define VG_NOACCESS_READ(__ptr) (*(__ptr))
50#define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
51#endif
52
53#ifndef MAP_POPULATE
54#define MAP_POPULATE 0
55#endif
56
57/* Design goals:
58 *
59 *  - Lock free (except when resizing underlying bos)
60 *
61 *  - Constant time allocation with typically only one atomic
62 *
63 *  - Multiple allocation sizes without fragmentation
64 *
65 *  - Can grow while keeping addresses and offset of contents stable
66 *
67 *  - All allocations within one bo so we can point one of the
68 *    STATE_BASE_ADDRESS pointers at it.
69 *
70 * The overall design is a two-level allocator: top level is a fixed size, big
71 * block (8k) allocator, which operates out of a bo.  Allocation is done by
72 * either pulling a block from the free list or growing the used range of the
73 * bo.  Growing the range may run out of space in the bo which we then need to
74 * grow.  Growing the bo is tricky in a multi-threaded, lockless environment:
75 * we need to keep all pointers and contents in the old map valid.  GEM bos in
76 * general can't grow, but we use a trick: we create a memfd and use ftruncate
77 * to grow it as necessary.  We mmap the new size and then create a gem bo for
78 * it using the new gem userptr ioctl.  Without heavy-handed locking around
79 * our allocation fast-path, there isn't really a way to munmap the old mmap,
80 * so we just keep it around until garbage collection time.  While the block
81 * allocator is lockless for normal operations, we block other threads trying
82 * to allocate while we're growing the map.  It shouldn't happen often, and
83 * growing is fast anyway.
84 *
85 * At the next level we can use various sub-allocators.  The state pool is a
86 * pool of smaller, fixed size objects, which operates much like the block
87 * pool.  It uses a free list for freeing objects, but when it runs out of
88 * space it just allocates a new block from the block pool.  This allocator is
89 * intended for longer lived state objects such as SURFACE_STATE and most
90 * other persistent state objects in the API.  We may need to track more info
91 * with these object and a pointer back to the CPU object (eg VkImage).  In
92 * those cases we just allocate a slightly bigger object and put the extra
93 * state after the GPU state object.
94 *
95 * The state stream allocator works similar to how the i965 DRI driver streams
96 * all its state.  Even with Vulkan, we need to emit transient state (whether
97 * surface state base or dynamic state base), and for that we can just get a
98 * block and fill it up.  These cases are local to a command buffer and the
99 * sub-allocator need not be thread safe.  The streaming allocator gets a new
100 * block when it runs out of space and chains them together so they can be
101 * easily freed.
102 */
103
104/* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
105 * We use it to indicate the free list is empty. */
106#define EMPTY UINT32_MAX
107
108/* On FreeBSD PAGE_SIZE is already defined in
109 * /usr/include/machine/param.h that is indirectly
110 * included here.
111 */
112#ifndef PAGE_SIZE
113#define PAGE_SIZE 4096
114#endif
115
116struct anv_mmap_cleanup {
117   void *map;
118   size_t size;
119};
120
121static inline uint32_t
122ilog2_round_up(uint32_t value)
123{
124   assert(value != 0);
125   return 32 - __builtin_clz(value - 1);
126}
127
128static inline uint32_t
129round_to_power_of_two(uint32_t value)
130{
131   return 1 << ilog2_round_up(value);
132}
133
134struct anv_state_table_cleanup {
135   void *map;
136   size_t size;
137};
138
139#define ANV_STATE_TABLE_CLEANUP_INIT ((struct anv_state_table_cleanup){0})
140#define ANV_STATE_ENTRY_SIZE (sizeof(struct anv_free_entry))
141
142static VkResult
143anv_state_table_expand_range(struct anv_state_table *table, uint32_t size);
144
145VkResult
146anv_state_table_init(struct anv_state_table *table,
147                    struct anv_device *device,
148                    uint32_t initial_entries)
149{
150   VkResult result;
151
152   table->device = device;
153
154   /* Just make it 2GB up-front.  The Linux kernel won't actually back it
155    * with pages until we either map and fault on one of them or we use
156    * userptr and send a chunk of it off to the GPU.
157    */
158   table->fd = os_create_anonymous_file(BLOCK_POOL_MEMFD_SIZE, "state table");
159   if (table->fd == -1)
160      return vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
161
162   if (!u_vector_init(&table->cleanups, 8,
163                      sizeof(struct anv_state_table_cleanup))) {
164      result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
165      goto fail_fd;
166   }
167
168   table->state.next = 0;
169   table->state.end = 0;
170   table->size = 0;
171
172   uint32_t initial_size = initial_entries * ANV_STATE_ENTRY_SIZE;
173   result = anv_state_table_expand_range(table, initial_size);
174   if (result != VK_SUCCESS)
175      goto fail_cleanups;
176
177   return VK_SUCCESS;
178
179 fail_cleanups:
180   u_vector_finish(&table->cleanups);
181 fail_fd:
182   close(table->fd);
183
184   return result;
185}
186
187static VkResult
188anv_state_table_expand_range(struct anv_state_table *table, uint32_t size)
189{
190   void *map;
191   struct anv_state_table_cleanup *cleanup;
192
193   /* Assert that we only ever grow the pool */
194   assert(size >= table->state.end);
195
196   /* Make sure that we don't go outside the bounds of the memfd */
197   if (size > BLOCK_POOL_MEMFD_SIZE)
198      return vk_error(table->device, VK_ERROR_OUT_OF_HOST_MEMORY);
199
200   cleanup = u_vector_add(&table->cleanups);
201   if (!cleanup)
202      return vk_error(table->device, VK_ERROR_OUT_OF_HOST_MEMORY);
203
204   *cleanup = ANV_STATE_TABLE_CLEANUP_INIT;
205
206   /* Just leak the old map until we destroy the pool.  We can't munmap it
207    * without races or imposing locking on the block allocate fast path. On
208    * the whole the leaked maps adds up to less than the size of the
209    * current map.  MAP_POPULATE seems like the right thing to do, but we
210    * should try to get some numbers.
211    */
212   map = mmap(NULL, size, PROT_READ | PROT_WRITE,
213              MAP_SHARED | MAP_POPULATE, table->fd, 0);
214   if (map == MAP_FAILED) {
215      return vk_errorf(table->device, VK_ERROR_OUT_OF_HOST_MEMORY,
216                       "mmap failed: %m");
217   }
218
219   cleanup->map = map;
220   cleanup->size = size;
221
222   table->map = map;
223   table->size = size;
224
225   return VK_SUCCESS;
226}
227
228static VkResult
229anv_state_table_grow(struct anv_state_table *table)
230{
231   VkResult result = VK_SUCCESS;
232
233   uint32_t used = align_u32(table->state.next * ANV_STATE_ENTRY_SIZE,
234                             PAGE_SIZE);
235   uint32_t old_size = table->size;
236
237   /* The block pool is always initialized to a nonzero size and this function
238    * is always called after initialization.
239    */
240   assert(old_size > 0);
241
242   uint32_t required = MAX2(used, old_size);
243   if (used * 2 <= required) {
244      /* If we're in this case then this isn't the firsta allocation and we
245       * already have enough space on both sides to hold double what we
246       * have allocated.  There's nothing for us to do.
247       */
248      goto done;
249   }
250
251   uint32_t size = old_size * 2;
252   while (size < required)
253      size *= 2;
254
255   assert(size > table->size);
256
257   result = anv_state_table_expand_range(table, size);
258
259 done:
260   return result;
261}
262
263void
264anv_state_table_finish(struct anv_state_table *table)
265{
266   struct anv_state_table_cleanup *cleanup;
267
268   u_vector_foreach(cleanup, &table->cleanups) {
269      if (cleanup->map)
270         munmap(cleanup->map, cleanup->size);
271   }
272
273   u_vector_finish(&table->cleanups);
274
275   close(table->fd);
276}
277
278VkResult
279anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
280                    uint32_t count)
281{
282   struct anv_block_state state, old, new;
283   VkResult result;
284
285   assert(idx);
286
287   while(1) {
288      state.u64 = __sync_fetch_and_add(&table->state.u64, count);
289      if (state.next + count <= state.end) {
290         assert(table->map);
291         struct anv_free_entry *entry = &table->map[state.next];
292         for (int i = 0; i < count; i++) {
293            entry[i].state.idx = state.next + i;
294         }
295         *idx = state.next;
296         return VK_SUCCESS;
297      } else if (state.next <= state.end) {
298         /* We allocated the first block outside the pool so we have to grow
299          * the pool.  pool_state->next acts a mutex: threads who try to
300          * allocate now will get block indexes above the current limit and
301          * hit futex_wait below.
302          */
303         new.next = state.next + count;
304         do {
305            result = anv_state_table_grow(table);
306            if (result != VK_SUCCESS)
307               return result;
308            new.end = table->size / ANV_STATE_ENTRY_SIZE;
309         } while (new.end < new.next);
310
311         old.u64 = __sync_lock_test_and_set(&table->state.u64, new.u64);
312         if (old.next != state.next)
313            futex_wake(&table->state.end, INT_MAX);
314      } else {
315         futex_wait(&table->state.end, state.end, NULL);
316         continue;
317      }
318   }
319}
320
321void
322anv_free_list_push(union anv_free_list *list,
323                   struct anv_state_table *table,
324                   uint32_t first, uint32_t count)
325{
326   union anv_free_list current, old, new;
327   uint32_t last = first;
328
329   for (uint32_t i = 1; i < count; i++, last++)
330      table->map[last].next = last + 1;
331
332   old.u64 = list->u64;
333   do {
334      current = old;
335      table->map[last].next = current.offset;
336      new.offset = first;
337      new.count = current.count + 1;
338      old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
339   } while (old.u64 != current.u64);
340}
341
342struct anv_state *
343anv_free_list_pop(union anv_free_list *list,
344                  struct anv_state_table *table)
345{
346   union anv_free_list current, new, old;
347
348   current.u64 = list->u64;
349   while (current.offset != EMPTY) {
350      __sync_synchronize();
351      new.offset = table->map[current.offset].next;
352      new.count = current.count + 1;
353      old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
354      if (old.u64 == current.u64) {
355         struct anv_free_entry *entry = &table->map[current.offset];
356         return &entry->state;
357      }
358      current = old;
359   }
360
361   return NULL;
362}
363
364static VkResult
365anv_block_pool_expand_range(struct anv_block_pool *pool,
366                            uint32_t center_bo_offset, uint32_t size);
367
368VkResult
369anv_block_pool_init(struct anv_block_pool *pool,
370                    struct anv_device *device,
371                    const char *name,
372                    uint64_t start_address,
373                    uint32_t initial_size)
374{
375   VkResult result;
376
377   if (device->info.verx10 >= 125) {
378      /* Make sure VMA addresses are 2MiB aligned for the block pool */
379      assert(anv_is_aligned(start_address, 2 * 1024 * 1024));
380      assert(anv_is_aligned(initial_size, 2 * 1024 * 1024));
381   }
382
383   pool->name = name;
384   pool->device = device;
385   pool->use_relocations = anv_use_relocations(device->physical);
386   pool->nbos = 0;
387   pool->size = 0;
388   pool->center_bo_offset = 0;
389   pool->start_address = intel_canonical_address(start_address);
390   pool->map = NULL;
391
392   if (!pool->use_relocations) {
393      pool->bo = NULL;
394      pool->fd = -1;
395   } else {
396      /* Just make it 2GB up-front.  The Linux kernel won't actually back it
397       * with pages until we either map and fault on one of them or we use
398       * userptr and send a chunk of it off to the GPU.
399       */
400      pool->fd = os_create_anonymous_file(BLOCK_POOL_MEMFD_SIZE, "block pool");
401      if (pool->fd == -1)
402         return vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
403
404      pool->wrapper_bo = (struct anv_bo) {
405         .refcount = 1,
406         .offset = -1,
407         .is_wrapper = true,
408      };
409      pool->bo = &pool->wrapper_bo;
410   }
411
412   if (!u_vector_init(&pool->mmap_cleanups, 8,
413                      sizeof(struct anv_mmap_cleanup))) {
414      result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
415      goto fail_fd;
416   }
417
418   pool->state.next = 0;
419   pool->state.end = 0;
420   pool->back_state.next = 0;
421   pool->back_state.end = 0;
422
423   result = anv_block_pool_expand_range(pool, 0, initial_size);
424   if (result != VK_SUCCESS)
425      goto fail_mmap_cleanups;
426
427   /* Make the entire pool available in the front of the pool.  If back
428    * allocation needs to use this space, the "ends" will be re-arranged.
429    */
430   pool->state.end = pool->size;
431
432   return VK_SUCCESS;
433
434 fail_mmap_cleanups:
435   u_vector_finish(&pool->mmap_cleanups);
436 fail_fd:
437   if (pool->fd >= 0)
438      close(pool->fd);
439
440   return result;
441}
442
443void
444anv_block_pool_finish(struct anv_block_pool *pool)
445{
446   anv_block_pool_foreach_bo(bo, pool) {
447      assert(bo->refcount == 1);
448      anv_device_release_bo(pool->device, bo);
449   }
450
451   struct anv_mmap_cleanup *cleanup;
452   u_vector_foreach(cleanup, &pool->mmap_cleanups)
453      munmap(cleanup->map, cleanup->size);
454   u_vector_finish(&pool->mmap_cleanups);
455
456   if (pool->fd >= 0)
457      close(pool->fd);
458}
459
460static VkResult
461anv_block_pool_expand_range(struct anv_block_pool *pool,
462                            uint32_t center_bo_offset, uint32_t size)
463{
464   /* Assert that we only ever grow the pool */
465   assert(center_bo_offset >= pool->back_state.end);
466   assert(size - center_bo_offset >= pool->state.end);
467
468   /* Assert that we don't go outside the bounds of the memfd */
469   assert(center_bo_offset <= BLOCK_POOL_MEMFD_CENTER);
470   assert(!pool->use_relocations ||
471          size - center_bo_offset <=
472          BLOCK_POOL_MEMFD_SIZE - BLOCK_POOL_MEMFD_CENTER);
473
474   /* For state pool BOs we have to be a bit careful about where we place them
475    * in the GTT.  There are two documented workarounds for state base address
476    * placement : Wa32bitGeneralStateOffset and Wa32bitInstructionBaseOffset
477    * which state that those two base addresses do not support 48-bit
478    * addresses and need to be placed in the bottom 32-bit range.
479    * Unfortunately, this is not quite accurate.
480    *
481    * The real problem is that we always set the size of our state pools in
482    * STATE_BASE_ADDRESS to 0xfffff (the maximum) even though the BO is most
483    * likely significantly smaller.  We do this because we do not no at the
484    * time we emit STATE_BASE_ADDRESS whether or not we will need to expand
485    * the pool during command buffer building so we don't actually have a
486    * valid final size.  If the address + size, as seen by STATE_BASE_ADDRESS
487    * overflows 48 bits, the GPU appears to treat all accesses to the buffer
488    * as being out of bounds and returns zero.  For dynamic state, this
489    * usually just leads to rendering corruptions, but shaders that are all
490    * zero hang the GPU immediately.
491    *
492    * The easiest solution to do is exactly what the bogus workarounds say to
493    * do: restrict these buffers to 32-bit addresses.  We could also pin the
494    * BO to some particular location of our choosing, but that's significantly
495    * more work than just not setting a flag.  So, we explicitly DO NOT set
496    * the EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and the kernel does all of the
497    * hard work for us.  When using softpin, we're in control and the fixed
498    * addresses we choose are fine for base addresses.
499    */
500   enum anv_bo_alloc_flags bo_alloc_flags = ANV_BO_ALLOC_CAPTURE;
501   if (pool->use_relocations)
502      bo_alloc_flags |= ANV_BO_ALLOC_32BIT_ADDRESS;
503
504   if (!pool->use_relocations) {
505      uint32_t new_bo_size = size - pool->size;
506      struct anv_bo *new_bo;
507      assert(center_bo_offset == 0);
508      VkResult result = anv_device_alloc_bo(pool->device,
509                                            pool->name,
510                                            new_bo_size,
511                                            bo_alloc_flags |
512                                            ANV_BO_ALLOC_LOCAL_MEM |
513                                            ANV_BO_ALLOC_FIXED_ADDRESS |
514                                            ANV_BO_ALLOC_MAPPED |
515                                            ANV_BO_ALLOC_SNOOPED,
516                                            pool->start_address + pool->size,
517                                            &new_bo);
518      if (result != VK_SUCCESS)
519         return result;
520
521      pool->bos[pool->nbos++] = new_bo;
522
523      /* This pointer will always point to the first BO in the list */
524      pool->bo = pool->bos[0];
525   } else {
526      /* Just leak the old map until we destroy the pool.  We can't munmap it
527       * without races or imposing locking on the block allocate fast path. On
528       * the whole the leaked maps adds up to less than the size of the
529       * current map.  MAP_POPULATE seems like the right thing to do, but we
530       * should try to get some numbers.
531       */
532      void *map = mmap(NULL, size, PROT_READ | PROT_WRITE,
533                       MAP_SHARED | MAP_POPULATE, pool->fd,
534                       BLOCK_POOL_MEMFD_CENTER - center_bo_offset);
535      if (map == MAP_FAILED)
536         return vk_errorf(pool->device, VK_ERROR_MEMORY_MAP_FAILED,
537                          "mmap failed: %m");
538
539      struct anv_bo *new_bo;
540      VkResult result = anv_device_import_bo_from_host_ptr(pool->device,
541                                                           map, size,
542                                                           bo_alloc_flags,
543                                                           0 /* client_address */,
544                                                           &new_bo);
545      if (result != VK_SUCCESS) {
546         munmap(map, size);
547         return result;
548      }
549
550      struct anv_mmap_cleanup *cleanup = u_vector_add(&pool->mmap_cleanups);
551      if (!cleanup) {
552         munmap(map, size);
553         anv_device_release_bo(pool->device, new_bo);
554         return vk_error(pool->device, VK_ERROR_OUT_OF_HOST_MEMORY);
555      }
556      cleanup->map = map;
557      cleanup->size = size;
558
559      /* Now that we mapped the new memory, we can write the new
560       * center_bo_offset back into pool and update pool->map. */
561      pool->center_bo_offset = center_bo_offset;
562      pool->map = map + center_bo_offset;
563
564      pool->bos[pool->nbos++] = new_bo;
565      pool->wrapper_bo.map = new_bo;
566   }
567
568   assert(pool->nbos < ANV_MAX_BLOCK_POOL_BOS);
569   pool->size = size;
570
571   return VK_SUCCESS;
572}
573
574/** Returns current memory map of the block pool.
575 *
576 * The returned pointer points to the map for the memory at the specified
577 * offset. The offset parameter is relative to the "center" of the block pool
578 * rather than the start of the block pool BO map.
579 */
580void*
581anv_block_pool_map(struct anv_block_pool *pool, int32_t offset, uint32_t size)
582{
583   if (!pool->use_relocations) {
584      struct anv_bo *bo = NULL;
585      int32_t bo_offset = 0;
586      anv_block_pool_foreach_bo(iter_bo, pool) {
587         if (offset < bo_offset + iter_bo->size) {
588            bo = iter_bo;
589            break;
590         }
591         bo_offset += iter_bo->size;
592      }
593      assert(bo != NULL);
594      assert(offset >= bo_offset);
595      assert((offset - bo_offset) + size <= bo->size);
596
597      return bo->map + (offset - bo_offset);
598   } else {
599      return pool->map + offset;
600   }
601}
602
603/** Grows and re-centers the block pool.
604 *
605 * We grow the block pool in one or both directions in such a way that the
606 * following conditions are met:
607 *
608 *  1) The size of the entire pool is always a power of two.
609 *
610 *  2) The pool only grows on both ends.  Neither end can get
611 *     shortened.
612 *
613 *  3) At the end of the allocation, we have about twice as much space
614 *     allocated for each end as we have used.  This way the pool doesn't
615 *     grow too far in one direction or the other.
616 *
617 *  4) If the _alloc_back() has never been called, then the back portion of
618 *     the pool retains a size of zero.  (This makes it easier for users of
619 *     the block pool that only want a one-sided pool.)
620 *
621 *  5) We have enough space allocated for at least one more block in
622 *     whichever side `state` points to.
623 *
624 *  6) The center of the pool is always aligned to both the block_size of
625 *     the pool and a 4K CPU page.
626 */
627static uint32_t
628anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state,
629                    uint32_t contiguous_size)
630{
631   VkResult result = VK_SUCCESS;
632
633   pthread_mutex_lock(&pool->device->mutex);
634
635   assert(state == &pool->state || state == &pool->back_state);
636
637   /* Gather a little usage information on the pool.  Since we may have
638    * threadsd waiting in queue to get some storage while we resize, it's
639    * actually possible that total_used will be larger than old_size.  In
640    * particular, block_pool_alloc() increments state->next prior to
641    * calling block_pool_grow, so this ensures that we get enough space for
642    * which ever side tries to grow the pool.
643    *
644    * We align to a page size because it makes it easier to do our
645    * calculations later in such a way that we state page-aigned.
646    */
647   uint32_t back_used = align_u32(pool->back_state.next, PAGE_SIZE);
648   uint32_t front_used = align_u32(pool->state.next, PAGE_SIZE);
649   uint32_t total_used = front_used + back_used;
650
651   assert(state == &pool->state || back_used > 0);
652
653   uint32_t old_size = pool->size;
654
655   /* The block pool is always initialized to a nonzero size and this function
656    * is always called after initialization.
657    */
658   assert(old_size > 0);
659
660   const uint32_t old_back = pool->center_bo_offset;
661   const uint32_t old_front = old_size - pool->center_bo_offset;
662
663   /* The back_used and front_used may actually be smaller than the actual
664    * requirement because they are based on the next pointers which are
665    * updated prior to calling this function.
666    */
667   uint32_t back_required = MAX2(back_used, old_back);
668   uint32_t front_required = MAX2(front_used, old_front);
669
670   if (!pool->use_relocations) {
671      /* With softpin, the pool is made up of a bunch of buffers with separate
672       * maps.  Make sure we have enough contiguous space that we can get a
673       * properly contiguous map for the next chunk.
674       */
675      assert(old_back == 0);
676      front_required = MAX2(front_required, old_front + contiguous_size);
677   }
678
679   if (back_used * 2 <= back_required && front_used * 2 <= front_required) {
680      /* If we're in this case then this isn't the firsta allocation and we
681       * already have enough space on both sides to hold double what we
682       * have allocated.  There's nothing for us to do.
683       */
684      goto done;
685   }
686
687   uint32_t size = old_size * 2;
688   while (size < back_required + front_required)
689      size *= 2;
690
691   assert(size > pool->size);
692
693   /* We compute a new center_bo_offset such that, when we double the size
694    * of the pool, we maintain the ratio of how much is used by each side.
695    * This way things should remain more-or-less balanced.
696    */
697   uint32_t center_bo_offset;
698   if (back_used == 0) {
699      /* If we're in this case then we have never called alloc_back().  In
700       * this case, we want keep the offset at 0 to make things as simple
701       * as possible for users that don't care about back allocations.
702       */
703      center_bo_offset = 0;
704   } else {
705      /* Try to "center" the allocation based on how much is currently in
706       * use on each side of the center line.
707       */
708      center_bo_offset = ((uint64_t)size * back_used) / total_used;
709
710      /* Align down to a multiple of the page size */
711      center_bo_offset &= ~(PAGE_SIZE - 1);
712
713      assert(center_bo_offset >= back_used);
714
715      /* Make sure we don't shrink the back end of the pool */
716      if (center_bo_offset < back_required)
717         center_bo_offset = back_required;
718
719      /* Make sure that we don't shrink the front end of the pool */
720      if (size - center_bo_offset < front_required)
721         center_bo_offset = size - front_required;
722   }
723
724   assert(center_bo_offset % PAGE_SIZE == 0);
725
726   result = anv_block_pool_expand_range(pool, center_bo_offset, size);
727
728done:
729   pthread_mutex_unlock(&pool->device->mutex);
730
731   if (result == VK_SUCCESS) {
732      /* Return the appropriate new size.  This function never actually
733       * updates state->next.  Instead, we let the caller do that because it
734       * needs to do so in order to maintain its concurrency model.
735       */
736      if (state == &pool->state) {
737         return pool->size - pool->center_bo_offset;
738      } else {
739         assert(pool->center_bo_offset > 0);
740         return pool->center_bo_offset;
741      }
742   } else {
743      return 0;
744   }
745}
746
747static uint32_t
748anv_block_pool_alloc_new(struct anv_block_pool *pool,
749                         struct anv_block_state *pool_state,
750                         uint32_t block_size, uint32_t *padding)
751{
752   struct anv_block_state state, old, new;
753
754   /* Most allocations won't generate any padding */
755   if (padding)
756      *padding = 0;
757
758   while (1) {
759      state.u64 = __sync_fetch_and_add(&pool_state->u64, block_size);
760      if (state.next + block_size <= state.end) {
761         return state.next;
762      } else if (state.next <= state.end) {
763         if (!pool->use_relocations && state.next < state.end) {
764            /* We need to grow the block pool, but still have some leftover
765             * space that can't be used by that particular allocation. So we
766             * add that as a "padding", and return it.
767             */
768            uint32_t leftover = state.end - state.next;
769
770            /* If there is some leftover space in the pool, the caller must
771             * deal with it.
772             */
773            assert(leftover == 0 || padding);
774            if (padding)
775               *padding = leftover;
776            state.next += leftover;
777         }
778
779         /* We allocated the first block outside the pool so we have to grow
780          * the pool.  pool_state->next acts a mutex: threads who try to
781          * allocate now will get block indexes above the current limit and
782          * hit futex_wait below.
783          */
784         new.next = state.next + block_size;
785         do {
786            new.end = anv_block_pool_grow(pool, pool_state, block_size);
787         } while (new.end < new.next);
788
789         old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64);
790         if (old.next != state.next)
791            futex_wake(&pool_state->end, INT_MAX);
792         return state.next;
793      } else {
794         futex_wait(&pool_state->end, state.end, NULL);
795         continue;
796      }
797   }
798}
799
800int32_t
801anv_block_pool_alloc(struct anv_block_pool *pool,
802                     uint32_t block_size, uint32_t *padding)
803{
804   uint32_t offset;
805
806   offset = anv_block_pool_alloc_new(pool, &pool->state, block_size, padding);
807
808   return offset;
809}
810
811/* Allocates a block out of the back of the block pool.
812 *
813 * This will allocated a block earlier than the "start" of the block pool.
814 * The offsets returned from this function will be negative but will still
815 * be correct relative to the block pool's map pointer.
816 *
817 * If you ever use anv_block_pool_alloc_back, then you will have to do
818 * gymnastics with the block pool's BO when doing relocations.
819 */
820int32_t
821anv_block_pool_alloc_back(struct anv_block_pool *pool,
822                          uint32_t block_size)
823{
824   int32_t offset = anv_block_pool_alloc_new(pool, &pool->back_state,
825                                             block_size, NULL);
826
827   /* The offset we get out of anv_block_pool_alloc_new() is actually the
828    * number of bytes downwards from the middle to the end of the block.
829    * We need to turn it into a (negative) offset from the middle to the
830    * start of the block.
831    */
832   assert(offset >= 0);
833   return -(offset + block_size);
834}
835
836VkResult
837anv_state_pool_init(struct anv_state_pool *pool,
838                    struct anv_device *device,
839                    const char *name,
840                    uint64_t base_address,
841                    int32_t start_offset,
842                    uint32_t block_size)
843{
844   /* We don't want to ever see signed overflow */
845   assert(start_offset < INT32_MAX - (int32_t)BLOCK_POOL_MEMFD_SIZE);
846
847   uint32_t initial_size = block_size * 16;
848   if (device->info.verx10 >= 125)
849      initial_size = MAX2(initial_size, 2 * 1024 * 1024);
850
851   VkResult result = anv_block_pool_init(&pool->block_pool, device, name,
852                                         base_address + start_offset,
853                                         initial_size);
854   if (result != VK_SUCCESS)
855      return result;
856
857   pool->start_offset = start_offset;
858
859   result = anv_state_table_init(&pool->table, device, 64);
860   if (result != VK_SUCCESS) {
861      anv_block_pool_finish(&pool->block_pool);
862      return result;
863   }
864
865   assert(util_is_power_of_two_or_zero(block_size));
866   pool->block_size = block_size;
867   pool->back_alloc_free_list = ANV_FREE_LIST_EMPTY;
868   for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
869      pool->buckets[i].free_list = ANV_FREE_LIST_EMPTY;
870      pool->buckets[i].block.next = 0;
871      pool->buckets[i].block.end = 0;
872   }
873   VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
874
875   return VK_SUCCESS;
876}
877
878void
879anv_state_pool_finish(struct anv_state_pool *pool)
880{
881   VG(VALGRIND_DESTROY_MEMPOOL(pool));
882   anv_state_table_finish(&pool->table);
883   anv_block_pool_finish(&pool->block_pool);
884}
885
886static uint32_t
887anv_fixed_size_state_pool_alloc_new(struct anv_fixed_size_state_pool *pool,
888                                    struct anv_block_pool *block_pool,
889                                    uint32_t state_size,
890                                    uint32_t block_size,
891                                    uint32_t *padding)
892{
893   struct anv_block_state block, old, new;
894   uint32_t offset;
895
896   /* We don't always use anv_block_pool_alloc(), which would set *padding to
897    * zero for us. So if we have a pointer to padding, we must zero it out
898    * ourselves here, to make sure we always return some sensible value.
899    */
900   if (padding)
901      *padding = 0;
902
903   /* If our state is large, we don't need any sub-allocation from a block.
904    * Instead, we just grab whole (potentially large) blocks.
905    */
906   if (state_size >= block_size)
907      return anv_block_pool_alloc(block_pool, state_size, padding);
908
909 restart:
910   block.u64 = __sync_fetch_and_add(&pool->block.u64, state_size);
911
912   if (block.next < block.end) {
913      return block.next;
914   } else if (block.next == block.end) {
915      offset = anv_block_pool_alloc(block_pool, block_size, padding);
916      new.next = offset + state_size;
917      new.end = offset + block_size;
918      old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
919      if (old.next != block.next)
920         futex_wake(&pool->block.end, INT_MAX);
921      return offset;
922   } else {
923      futex_wait(&pool->block.end, block.end, NULL);
924      goto restart;
925   }
926}
927
928static uint32_t
929anv_state_pool_get_bucket(uint32_t size)
930{
931   unsigned size_log2 = ilog2_round_up(size);
932   assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
933   if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
934      size_log2 = ANV_MIN_STATE_SIZE_LOG2;
935   return size_log2 - ANV_MIN_STATE_SIZE_LOG2;
936}
937
938static uint32_t
939anv_state_pool_get_bucket_size(uint32_t bucket)
940{
941   uint32_t size_log2 = bucket + ANV_MIN_STATE_SIZE_LOG2;
942   return 1 << size_log2;
943}
944
945/** Helper to push a chunk into the state table.
946 *
947 * It creates 'count' entries into the state table and update their sizes,
948 * offsets and maps, also pushing them as "free" states.
949 */
950static void
951anv_state_pool_return_blocks(struct anv_state_pool *pool,
952                             uint32_t chunk_offset, uint32_t count,
953                             uint32_t block_size)
954{
955   /* Disallow returning 0 chunks */
956   assert(count != 0);
957
958   /* Make sure we always return chunks aligned to the block_size */
959   assert(chunk_offset % block_size == 0);
960
961   uint32_t st_idx;
962   UNUSED VkResult result = anv_state_table_add(&pool->table, &st_idx, count);
963   assert(result == VK_SUCCESS);
964   for (int i = 0; i < count; i++) {
965      /* update states that were added back to the state table */
966      struct anv_state *state_i = anv_state_table_get(&pool->table,
967                                                      st_idx + i);
968      state_i->alloc_size = block_size;
969      state_i->offset = pool->start_offset + chunk_offset + block_size * i;
970      state_i->map = anv_block_pool_map(&pool->block_pool,
971                                        state_i->offset,
972                                        state_i->alloc_size);
973   }
974
975   uint32_t block_bucket = anv_state_pool_get_bucket(block_size);
976   anv_free_list_push(&pool->buckets[block_bucket].free_list,
977                      &pool->table, st_idx, count);
978}
979
980/** Returns a chunk of memory back to the state pool.
981 *
982 * Do a two-level split. If chunk_size is bigger than divisor
983 * (pool->block_size), we return as many divisor sized blocks as we can, from
984 * the end of the chunk.
985 *
986 * The remaining is then split into smaller blocks (starting at small_size if
987 * it is non-zero), with larger blocks always being taken from the end of the
988 * chunk.
989 */
990static void
991anv_state_pool_return_chunk(struct anv_state_pool *pool,
992                            uint32_t chunk_offset, uint32_t chunk_size,
993                            uint32_t small_size)
994{
995   uint32_t divisor = pool->block_size;
996   uint32_t nblocks = chunk_size / divisor;
997   uint32_t rest = chunk_size - nblocks * divisor;
998
999   if (nblocks > 0) {
1000      /* First return divisor aligned and sized chunks. We start returning
1001       * larger blocks from the end of the chunk, since they should already be
1002       * aligned to divisor. Also anv_state_pool_return_blocks() only accepts
1003       * aligned chunks.
1004       */
1005      uint32_t offset = chunk_offset + rest;
1006      anv_state_pool_return_blocks(pool, offset, nblocks, divisor);
1007   }
1008
1009   chunk_size = rest;
1010   divisor /= 2;
1011
1012   if (small_size > 0 && small_size < divisor)
1013      divisor = small_size;
1014
1015   uint32_t min_size = 1 << ANV_MIN_STATE_SIZE_LOG2;
1016
1017   /* Just as before, return larger divisor aligned blocks from the end of the
1018    * chunk first.
1019    */
1020   while (chunk_size > 0 && divisor >= min_size) {
1021      nblocks = chunk_size / divisor;
1022      rest = chunk_size - nblocks * divisor;
1023      if (nblocks > 0) {
1024         anv_state_pool_return_blocks(pool, chunk_offset + rest,
1025                                      nblocks, divisor);
1026         chunk_size = rest;
1027      }
1028      divisor /= 2;
1029   }
1030}
1031
1032static struct anv_state
1033anv_state_pool_alloc_no_vg(struct anv_state_pool *pool,
1034                           uint32_t size, uint32_t align)
1035{
1036   uint32_t bucket = anv_state_pool_get_bucket(MAX2(size, align));
1037
1038   struct anv_state *state;
1039   uint32_t alloc_size = anv_state_pool_get_bucket_size(bucket);
1040   int32_t offset;
1041
1042   /* Try free list first. */
1043   state = anv_free_list_pop(&pool->buckets[bucket].free_list,
1044                             &pool->table);
1045   if (state) {
1046      assert(state->offset >= pool->start_offset);
1047      goto done;
1048   }
1049
1050   /* Try to grab a chunk from some larger bucket and split it up */
1051   for (unsigned b = bucket + 1; b < ANV_STATE_BUCKETS; b++) {
1052      state = anv_free_list_pop(&pool->buckets[b].free_list, &pool->table);
1053      if (state) {
1054         unsigned chunk_size = anv_state_pool_get_bucket_size(b);
1055         int32_t chunk_offset = state->offset;
1056
1057         /* First lets update the state we got to its new size. offset and map
1058          * remain the same.
1059          */
1060         state->alloc_size = alloc_size;
1061
1062         /* Now return the unused part of the chunk back to the pool as free
1063          * blocks
1064          *
1065          * There are a couple of options as to what we do with it:
1066          *
1067          *    1) We could fully split the chunk into state.alloc_size sized
1068          *       pieces.  However, this would mean that allocating a 16B
1069          *       state could potentially split a 2MB chunk into 512K smaller
1070          *       chunks.  This would lead to unnecessary fragmentation.
1071          *
1072          *    2) The classic "buddy allocator" method would have us split the
1073          *       chunk in half and return one half.  Then we would split the
1074          *       remaining half in half and return one half, and repeat as
1075          *       needed until we get down to the size we want.  However, if
1076          *       you are allocating a bunch of the same size state (which is
1077          *       the common case), this means that every other allocation has
1078          *       to go up a level and every fourth goes up two levels, etc.
1079          *       This is not nearly as efficient as it could be if we did a
1080          *       little more work up-front.
1081          *
1082          *    3) Split the difference between (1) and (2) by doing a
1083          *       two-level split.  If it's bigger than some fixed block_size,
1084          *       we split it into block_size sized chunks and return all but
1085          *       one of them.  Then we split what remains into
1086          *       state.alloc_size sized chunks and return them.
1087          *
1088          * We choose something close to option (3), which is implemented with
1089          * anv_state_pool_return_chunk(). That is done by returning the
1090          * remaining of the chunk, with alloc_size as a hint of the size that
1091          * we want the smaller chunk split into.
1092          */
1093         anv_state_pool_return_chunk(pool, chunk_offset + alloc_size,
1094                                     chunk_size - alloc_size, alloc_size);
1095         goto done;
1096      }
1097   }
1098
1099   uint32_t padding;
1100   offset = anv_fixed_size_state_pool_alloc_new(&pool->buckets[bucket],
1101                                                &pool->block_pool,
1102                                                alloc_size,
1103                                                pool->block_size,
1104                                                &padding);
1105   /* Every time we allocate a new state, add it to the state pool */
1106   uint32_t idx;
1107   UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1);
1108   assert(result == VK_SUCCESS);
1109
1110   state = anv_state_table_get(&pool->table, idx);
1111   state->offset = pool->start_offset + offset;
1112   state->alloc_size = alloc_size;
1113   state->map = anv_block_pool_map(&pool->block_pool, offset, alloc_size);
1114
1115   if (padding > 0) {
1116      uint32_t return_offset = offset - padding;
1117      anv_state_pool_return_chunk(pool, return_offset, padding, 0);
1118   }
1119
1120done:
1121   return *state;
1122}
1123
1124struct anv_state
1125anv_state_pool_alloc(struct anv_state_pool *pool, uint32_t size, uint32_t align)
1126{
1127   if (size == 0)
1128      return ANV_STATE_NULL;
1129
1130   struct anv_state state = anv_state_pool_alloc_no_vg(pool, size, align);
1131   VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
1132   return state;
1133}
1134
1135struct anv_state
1136anv_state_pool_alloc_back(struct anv_state_pool *pool)
1137{
1138   struct anv_state *state;
1139   uint32_t alloc_size = pool->block_size;
1140
1141   /* This function is only used with pools where start_offset == 0 */
1142   assert(pool->start_offset == 0);
1143
1144   state = anv_free_list_pop(&pool->back_alloc_free_list, &pool->table);
1145   if (state) {
1146      assert(state->offset < pool->start_offset);
1147      goto done;
1148   }
1149
1150   int32_t offset;
1151   offset = anv_block_pool_alloc_back(&pool->block_pool,
1152                                      pool->block_size);
1153   uint32_t idx;
1154   UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1);
1155   assert(result == VK_SUCCESS);
1156
1157   state = anv_state_table_get(&pool->table, idx);
1158   state->offset = pool->start_offset + offset;
1159   state->alloc_size = alloc_size;
1160   state->map = anv_block_pool_map(&pool->block_pool, offset, alloc_size);
1161
1162done:
1163   VG(VALGRIND_MEMPOOL_ALLOC(pool, state->map, state->alloc_size));
1164   return *state;
1165}
1166
1167static void
1168anv_state_pool_free_no_vg(struct anv_state_pool *pool, struct anv_state state)
1169{
1170   assert(util_is_power_of_two_or_zero(state.alloc_size));
1171   unsigned bucket = anv_state_pool_get_bucket(state.alloc_size);
1172
1173   if (state.offset < pool->start_offset) {
1174      assert(state.alloc_size == pool->block_size);
1175      anv_free_list_push(&pool->back_alloc_free_list,
1176                         &pool->table, state.idx, 1);
1177   } else {
1178      anv_free_list_push(&pool->buckets[bucket].free_list,
1179                         &pool->table, state.idx, 1);
1180   }
1181}
1182
1183void
1184anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
1185{
1186   if (state.alloc_size == 0)
1187      return;
1188
1189   VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
1190   anv_state_pool_free_no_vg(pool, state);
1191}
1192
1193struct anv_state_stream_block {
1194   struct anv_state block;
1195
1196   /* The next block */
1197   struct anv_state_stream_block *next;
1198
1199#ifdef HAVE_VALGRIND
1200   /* A pointer to the first user-allocated thing in this block.  This is
1201    * what valgrind sees as the start of the block.
1202    */
1203   void *_vg_ptr;
1204#endif
1205};
1206
1207/* The state stream allocator is a one-shot, single threaded allocator for
1208 * variable sized blocks.  We use it for allocating dynamic state.
1209 */
1210void
1211anv_state_stream_init(struct anv_state_stream *stream,
1212                      struct anv_state_pool *state_pool,
1213                      uint32_t block_size)
1214{
1215   stream->state_pool = state_pool;
1216   stream->block_size = block_size;
1217
1218   stream->block = ANV_STATE_NULL;
1219
1220   /* Ensure that next + whatever > block_size.  This way the first call to
1221    * state_stream_alloc fetches a new block.
1222    */
1223   stream->next = block_size;
1224
1225   util_dynarray_init(&stream->all_blocks, NULL);
1226
1227   VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
1228}
1229
1230void
1231anv_state_stream_finish(struct anv_state_stream *stream)
1232{
1233   util_dynarray_foreach(&stream->all_blocks, struct anv_state, block) {
1234      VG(VALGRIND_MEMPOOL_FREE(stream, block->map));
1235      VG(VALGRIND_MAKE_MEM_NOACCESS(block->map, block->alloc_size));
1236      anv_state_pool_free_no_vg(stream->state_pool, *block);
1237   }
1238   util_dynarray_fini(&stream->all_blocks);
1239
1240   VG(VALGRIND_DESTROY_MEMPOOL(stream));
1241}
1242
1243struct anv_state
1244anv_state_stream_alloc(struct anv_state_stream *stream,
1245                       uint32_t size, uint32_t alignment)
1246{
1247   if (size == 0)
1248      return ANV_STATE_NULL;
1249
1250   assert(alignment <= PAGE_SIZE);
1251
1252   uint32_t offset = align_u32(stream->next, alignment);
1253   if (offset + size > stream->block.alloc_size) {
1254      uint32_t block_size = stream->block_size;
1255      if (block_size < size)
1256         block_size = round_to_power_of_two(size);
1257
1258      stream->block = anv_state_pool_alloc_no_vg(stream->state_pool,
1259                                                 block_size, PAGE_SIZE);
1260      util_dynarray_append(&stream->all_blocks,
1261                           struct anv_state, stream->block);
1262      VG(VALGRIND_MAKE_MEM_NOACCESS(stream->block.map, block_size));
1263
1264      /* Reset back to the start */
1265      stream->next = offset = 0;
1266      assert(offset + size <= stream->block.alloc_size);
1267   }
1268   const bool new_block = stream->next == 0;
1269
1270   struct anv_state state = stream->block;
1271   state.offset += offset;
1272   state.alloc_size = size;
1273   state.map += offset;
1274
1275   stream->next = offset + size;
1276
1277   if (new_block) {
1278      assert(state.map == stream->block.map);
1279      VG(VALGRIND_MEMPOOL_ALLOC(stream, state.map, size));
1280   } else {
1281      /* This only updates the mempool.  The newly allocated chunk is still
1282       * marked as NOACCESS. */
1283      VG(VALGRIND_MEMPOOL_CHANGE(stream, stream->block.map, stream->block.map,
1284                                 stream->next));
1285      /* Mark the newly allocated chunk as undefined */
1286      VG(VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size));
1287   }
1288
1289   return state;
1290}
1291
1292void
1293anv_state_reserved_pool_init(struct anv_state_reserved_pool *pool,
1294                             struct anv_state_pool *parent,
1295                             uint32_t count, uint32_t size, uint32_t alignment)
1296{
1297   pool->pool = parent;
1298   pool->reserved_blocks = ANV_FREE_LIST_EMPTY;
1299   pool->count = count;
1300
1301   for (unsigned i = 0; i < count; i++) {
1302      struct anv_state state = anv_state_pool_alloc(pool->pool, size, alignment);
1303      anv_free_list_push(&pool->reserved_blocks, &pool->pool->table, state.idx, 1);
1304   }
1305}
1306
1307void
1308anv_state_reserved_pool_finish(struct anv_state_reserved_pool *pool)
1309{
1310   struct anv_state *state;
1311
1312   while ((state = anv_free_list_pop(&pool->reserved_blocks, &pool->pool->table))) {
1313      anv_state_pool_free(pool->pool, *state);
1314      pool->count--;
1315   }
1316   assert(pool->count == 0);
1317}
1318
1319struct anv_state
1320anv_state_reserved_pool_alloc(struct anv_state_reserved_pool *pool)
1321{
1322   return *anv_free_list_pop(&pool->reserved_blocks, &pool->pool->table);
1323}
1324
1325void
1326anv_state_reserved_pool_free(struct anv_state_reserved_pool *pool,
1327                             struct anv_state state)
1328{
1329   anv_free_list_push(&pool->reserved_blocks, &pool->pool->table, state.idx, 1);
1330}
1331
1332void
1333anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
1334                 const char *name)
1335{
1336   pool->name = name;
1337   pool->device = device;
1338   for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
1339      util_sparse_array_free_list_init(&pool->free_list[i],
1340                                       &device->bo_cache.bo_map, 0,
1341                                       offsetof(struct anv_bo, free_index));
1342   }
1343
1344   VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
1345}
1346
1347void
1348anv_bo_pool_finish(struct anv_bo_pool *pool)
1349{
1350   for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
1351      while (1) {
1352         struct anv_bo *bo =
1353            util_sparse_array_free_list_pop_elem(&pool->free_list[i]);
1354         if (bo == NULL)
1355            break;
1356
1357         /* anv_device_release_bo is going to "free" it */
1358         VG(VALGRIND_MALLOCLIKE_BLOCK(bo->map, bo->size, 0, 1));
1359         anv_device_release_bo(pool->device, bo);
1360      }
1361   }
1362
1363   VG(VALGRIND_DESTROY_MEMPOOL(pool));
1364}
1365
1366VkResult
1367anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
1368                  struct anv_bo **bo_out)
1369{
1370   const unsigned size_log2 = size < 4096 ? 12 : ilog2_round_up(size);
1371   const unsigned pow2_size = 1 << size_log2;
1372   const unsigned bucket = size_log2 - 12;
1373   assert(bucket < ARRAY_SIZE(pool->free_list));
1374
1375   struct anv_bo *bo =
1376      util_sparse_array_free_list_pop_elem(&pool->free_list[bucket]);
1377   if (bo != NULL) {
1378      VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1379      *bo_out = bo;
1380      return VK_SUCCESS;
1381   }
1382
1383   VkResult result = anv_device_alloc_bo(pool->device,
1384                                         pool->name,
1385                                         pow2_size,
1386                                         ANV_BO_ALLOC_LOCAL_MEM |
1387                                         ANV_BO_ALLOC_MAPPED |
1388                                         ANV_BO_ALLOC_SNOOPED |
1389                                         ANV_BO_ALLOC_CAPTURE,
1390                                         0 /* explicit_address */,
1391                                         &bo);
1392   if (result != VK_SUCCESS)
1393      return result;
1394
1395   /* We want it to look like it came from this pool */
1396   VG(VALGRIND_FREELIKE_BLOCK(bo->map, 0));
1397   VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1398
1399   *bo_out = bo;
1400
1401   return VK_SUCCESS;
1402}
1403
1404void
1405anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo)
1406{
1407   VG(VALGRIND_MEMPOOL_FREE(pool, bo->map));
1408
1409   assert(util_is_power_of_two_or_zero(bo->size));
1410   const unsigned size_log2 = ilog2_round_up(bo->size);
1411   const unsigned bucket = size_log2 - 12;
1412   assert(bucket < ARRAY_SIZE(pool->free_list));
1413
1414   assert(util_sparse_array_get(&pool->device->bo_cache.bo_map,
1415                                bo->gem_handle) == bo);
1416   util_sparse_array_free_list_push(&pool->free_list[bucket],
1417                                    &bo->gem_handle, 1);
1418}
1419
1420// Scratch pool
1421
1422void
1423anv_scratch_pool_init(struct anv_device *device, struct anv_scratch_pool *pool)
1424{
1425   memset(pool, 0, sizeof(*pool));
1426}
1427
1428void
1429anv_scratch_pool_finish(struct anv_device *device, struct anv_scratch_pool *pool)
1430{
1431   for (unsigned s = 0; s < ARRAY_SIZE(pool->bos[0]); s++) {
1432      for (unsigned i = 0; i < 16; i++) {
1433         if (pool->bos[i][s] != NULL)
1434            anv_device_release_bo(device, pool->bos[i][s]);
1435      }
1436   }
1437
1438   for (unsigned i = 0; i < 16; i++) {
1439      if (pool->surf_states[i].map != NULL) {
1440         anv_state_pool_free(&device->surface_state_pool,
1441                             pool->surf_states[i]);
1442      }
1443   }
1444}
1445
1446struct anv_bo *
1447anv_scratch_pool_alloc(struct anv_device *device, struct anv_scratch_pool *pool,
1448                       gl_shader_stage stage, unsigned per_thread_scratch)
1449{
1450   if (per_thread_scratch == 0)
1451      return NULL;
1452
1453   unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048);
1454   assert(scratch_size_log2 < 16);
1455
1456   assert(stage < ARRAY_SIZE(pool->bos));
1457
1458   const struct intel_device_info *devinfo = &device->info;
1459
1460   /* On GFX version 12.5, scratch access changed to a surface-based model.
1461    * Instead of each shader type having its own layout based on IDs passed
1462    * from the relevant fixed-function unit, all scratch access is based on
1463    * thread IDs like it always has been for compute.
1464    */
1465   if (devinfo->verx10 >= 125)
1466      stage = MESA_SHADER_COMPUTE;
1467
1468   struct anv_bo *bo = p_atomic_read(&pool->bos[scratch_size_log2][stage]);
1469
1470   if (bo != NULL)
1471      return bo;
1472
1473   assert(stage < ARRAY_SIZE(devinfo->max_scratch_ids));
1474   uint32_t size = per_thread_scratch * devinfo->max_scratch_ids[stage];
1475
1476   /* Even though the Scratch base pointers in 3DSTATE_*S are 64 bits, they
1477    * are still relative to the general state base address.  When we emit
1478    * STATE_BASE_ADDRESS, we set general state base address to 0 and the size
1479    * to the maximum (1 page under 4GB).  This allows us to just place the
1480    * scratch buffers anywhere we wish in the bottom 32 bits of address space
1481    * and just set the scratch base pointer in 3DSTATE_*S using a relocation.
1482    * However, in order to do so, we need to ensure that the kernel does not
1483    * place the scratch BO above the 32-bit boundary.
1484    *
1485    * NOTE: Technically, it can't go "anywhere" because the top page is off
1486    * limits.  However, when EXEC_OBJECT_SUPPORTS_48B_ADDRESS is set, the
1487    * kernel allocates space using
1488    *
1489    *    end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
1490    *
1491    * so nothing will ever touch the top page.
1492    */
1493   VkResult result = anv_device_alloc_bo(device, "scratch", size,
1494                                         ANV_BO_ALLOC_32BIT_ADDRESS |
1495                                         ANV_BO_ALLOC_LOCAL_MEM,
1496                                         0 /* explicit_address */,
1497                                         &bo);
1498   if (result != VK_SUCCESS)
1499      return NULL; /* TODO */
1500
1501   struct anv_bo *current_bo =
1502      p_atomic_cmpxchg(&pool->bos[scratch_size_log2][stage], NULL, bo);
1503   if (current_bo) {
1504      anv_device_release_bo(device, bo);
1505      return current_bo;
1506   } else {
1507      return bo;
1508   }
1509}
1510
1511uint32_t
1512anv_scratch_pool_get_surf(struct anv_device *device,
1513                          struct anv_scratch_pool *pool,
1514                          unsigned per_thread_scratch)
1515{
1516   if (per_thread_scratch == 0)
1517      return 0;
1518
1519   unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048);
1520   assert(scratch_size_log2 < 16);
1521
1522   uint32_t surf = p_atomic_read(&pool->surfs[scratch_size_log2]);
1523   if (surf > 0)
1524      return surf;
1525
1526   struct anv_bo *bo =
1527      anv_scratch_pool_alloc(device, pool, MESA_SHADER_COMPUTE,
1528                             per_thread_scratch);
1529   struct anv_address addr = { .bo = bo };
1530
1531   struct anv_state state =
1532      anv_state_pool_alloc(&device->surface_state_pool,
1533                           device->isl_dev.ss.size, 64);
1534
1535   isl_buffer_fill_state(&device->isl_dev, state.map,
1536                         .address = anv_address_physical(addr),
1537                         .size_B = bo->size,
1538                         .mocs = anv_mocs(device, bo, 0),
1539                         .format = ISL_FORMAT_RAW,
1540                         .swizzle = ISL_SWIZZLE_IDENTITY,
1541                         .stride_B = per_thread_scratch,
1542                         .is_scratch = true);
1543
1544   uint32_t current = p_atomic_cmpxchg(&pool->surfs[scratch_size_log2],
1545                                       0, state.offset);
1546   if (current) {
1547      anv_state_pool_free(&device->surface_state_pool, state);
1548      return current;
1549   } else {
1550      pool->surf_states[scratch_size_log2] = state;
1551      return state.offset;
1552   }
1553}
1554
1555VkResult
1556anv_bo_cache_init(struct anv_bo_cache *cache, struct anv_device *device)
1557{
1558   util_sparse_array_init(&cache->bo_map, sizeof(struct anv_bo), 1024);
1559
1560   if (pthread_mutex_init(&cache->mutex, NULL)) {
1561      util_sparse_array_finish(&cache->bo_map);
1562      return vk_errorf(device, VK_ERROR_OUT_OF_HOST_MEMORY,
1563                       "pthread_mutex_init failed: %m");
1564   }
1565
1566   return VK_SUCCESS;
1567}
1568
1569void
1570anv_bo_cache_finish(struct anv_bo_cache *cache)
1571{
1572   util_sparse_array_finish(&cache->bo_map);
1573   pthread_mutex_destroy(&cache->mutex);
1574}
1575
1576#define ANV_BO_CACHE_SUPPORTED_FLAGS \
1577   (EXEC_OBJECT_WRITE | \
1578    EXEC_OBJECT_ASYNC | \
1579    EXEC_OBJECT_SUPPORTS_48B_ADDRESS | \
1580    EXEC_OBJECT_PINNED | \
1581    EXEC_OBJECT_CAPTURE)
1582
1583static uint32_t
1584anv_bo_alloc_flags_to_bo_flags(struct anv_device *device,
1585                               enum anv_bo_alloc_flags alloc_flags)
1586{
1587   struct anv_physical_device *pdevice = device->physical;
1588
1589   uint64_t bo_flags = 0;
1590   if (!(alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS) &&
1591       pdevice->supports_48bit_addresses)
1592      bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1593
1594   if ((alloc_flags & ANV_BO_ALLOC_CAPTURE) && pdevice->has_exec_capture)
1595      bo_flags |= EXEC_OBJECT_CAPTURE;
1596
1597   if (alloc_flags & ANV_BO_ALLOC_IMPLICIT_WRITE) {
1598      assert(alloc_flags & ANV_BO_ALLOC_IMPLICIT_SYNC);
1599      bo_flags |= EXEC_OBJECT_WRITE;
1600   }
1601
1602   if (!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_SYNC) && pdevice->has_exec_async)
1603      bo_flags |= EXEC_OBJECT_ASYNC;
1604
1605   if (pdevice->use_softpin)
1606      bo_flags |= EXEC_OBJECT_PINNED;
1607
1608   return bo_flags;
1609}
1610
1611static void
1612anv_bo_finish(struct anv_device *device, struct anv_bo *bo)
1613{
1614   if (bo->offset != 0 && anv_bo_is_pinned(bo) && !bo->has_fixed_address)
1615      anv_vma_free(device, bo->offset, bo->size + bo->_ccs_size);
1616
1617   if (bo->map && !bo->from_host_ptr)
1618      anv_device_unmap_bo(device, bo, bo->map, bo->size);
1619
1620   assert(bo->gem_handle != 0);
1621   anv_gem_close(device, bo->gem_handle);
1622}
1623
1624static VkResult
1625anv_bo_vma_alloc_or_close(struct anv_device *device,
1626                          struct anv_bo *bo,
1627                          enum anv_bo_alloc_flags alloc_flags,
1628                          uint64_t explicit_address)
1629{
1630   assert(anv_bo_is_pinned(bo));
1631   assert(explicit_address == intel_48b_address(explicit_address));
1632
1633   uint32_t align = 4096;
1634
1635   /* Gen12 CCS surface addresses need to be 64K aligned. */
1636   if (device->info.ver >= 12 && (alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS))
1637      align = 64 * 1024;
1638
1639   /* For XeHP, lmem and smem cannot share a single PDE, which means they
1640    * can't live in the same 2MiB aligned region.
1641    */
1642   if (device->info.verx10 >= 125)
1643       align = 2 * 1024 * 1024;
1644
1645   if (alloc_flags & ANV_BO_ALLOC_FIXED_ADDRESS) {
1646      bo->has_fixed_address = true;
1647      bo->offset = explicit_address;
1648   } else {
1649      bo->offset = anv_vma_alloc(device, bo->size + bo->_ccs_size,
1650                                 align, alloc_flags, explicit_address);
1651      if (bo->offset == 0) {
1652         anv_bo_finish(device, bo);
1653         return vk_errorf(device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
1654                          "failed to allocate virtual address for BO");
1655      }
1656   }
1657
1658   return VK_SUCCESS;
1659}
1660
1661VkResult
1662anv_device_alloc_bo(struct anv_device *device,
1663                    const char *name,
1664                    uint64_t size,
1665                    enum anv_bo_alloc_flags alloc_flags,
1666                    uint64_t explicit_address,
1667                    struct anv_bo **bo_out)
1668{
1669   if (!(alloc_flags & ANV_BO_ALLOC_LOCAL_MEM))
1670      anv_perf_warn(VK_LOG_NO_OBJS(&device->physical->instance->vk.base),
1671                                   "system memory used");
1672
1673   if (!device->physical->has_implicit_ccs)
1674      assert(!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS));
1675
1676   const uint32_t bo_flags =
1677      anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
1678   assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1679
1680   /* The kernel is going to give us whole pages anyway */
1681   size = align_u64(size, 4096);
1682
1683   uint64_t ccs_size = 0;
1684   if (device->info.has_aux_map && (alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS)) {
1685      /* Align the size up to the next multiple of 64K so we don't have any
1686       * AUX-TT entries pointing from a 64K page to itself.
1687       */
1688      size = align_u64(size, 64 * 1024);
1689
1690      /* See anv_bo::_ccs_size */
1691      ccs_size = align_u64(DIV_ROUND_UP(size, INTEL_AUX_MAP_GFX12_CCS_SCALE), 4096);
1692   }
1693
1694   uint32_t gem_handle;
1695
1696   /* If we have vram size, we have multiple memory regions and should choose
1697    * one of them.
1698    */
1699   if (anv_physical_device_has_vram(device->physical)) {
1700      struct drm_i915_gem_memory_class_instance regions[2];
1701      uint32_t nregions = 0;
1702
1703      if (alloc_flags & ANV_BO_ALLOC_LOCAL_MEM) {
1704         /* vram_non_mappable & vram_mappable actually are the same region. */
1705         regions[nregions++] = device->physical->vram_non_mappable.region;
1706      } else {
1707         regions[nregions++] = device->physical->sys.region;
1708      }
1709
1710      uint32_t flags = 0;
1711      if (alloc_flags & ANV_BO_ALLOC_LOCAL_MEM_CPU_VISIBLE) {
1712         assert(alloc_flags & ANV_BO_ALLOC_LOCAL_MEM);
1713         /* We're required to add smem as a region when using mappable vram. */
1714         regions[nregions++] = device->physical->sys.region;
1715         flags |= I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS;
1716      }
1717
1718      gem_handle = anv_gem_create_regions(device, size + ccs_size,
1719                                          flags, nregions, regions);
1720   } else {
1721      gem_handle = anv_gem_create(device, size + ccs_size);
1722   }
1723
1724   if (gem_handle == 0)
1725      return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
1726
1727   struct anv_bo new_bo = {
1728      .name = name,
1729      .gem_handle = gem_handle,
1730      .refcount = 1,
1731      .offset = -1,
1732      .size = size,
1733      ._ccs_size = ccs_size,
1734      .flags = bo_flags,
1735      .is_external = (alloc_flags & ANV_BO_ALLOC_EXTERNAL),
1736      .has_client_visible_address =
1737         (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0,
1738      .has_implicit_ccs = ccs_size > 0 || (device->info.verx10 >= 125 &&
1739         (alloc_flags & ANV_BO_ALLOC_LOCAL_MEM)),
1740   };
1741
1742   if (alloc_flags & ANV_BO_ALLOC_MAPPED) {
1743      VkResult result = anv_device_map_bo(device, &new_bo, 0, size,
1744                                          0 /* gem_flags */, &new_bo.map);
1745      if (unlikely(result != VK_SUCCESS)) {
1746         anv_gem_close(device, new_bo.gem_handle);
1747         return result;
1748      }
1749   }
1750
1751   if (alloc_flags & ANV_BO_ALLOC_SNOOPED) {
1752      assert(alloc_flags & ANV_BO_ALLOC_MAPPED);
1753      /* We don't want to change these defaults if it's going to be shared
1754       * with another process.
1755       */
1756      assert(!(alloc_flags & ANV_BO_ALLOC_EXTERNAL));
1757
1758      /* Regular objects are created I915_CACHING_CACHED on LLC platforms and
1759       * I915_CACHING_NONE on non-LLC platforms.  For many internal state
1760       * objects, we'd rather take the snooping overhead than risk forgetting
1761       * a CLFLUSH somewhere.  Userptr objects are always created as
1762       * I915_CACHING_CACHED, which on non-LLC means snooped so there's no
1763       * need to do this there.
1764       */
1765      if (!device->info.has_llc) {
1766         anv_gem_set_caching(device, new_bo.gem_handle,
1767                             I915_CACHING_CACHED);
1768      }
1769   }
1770
1771   if (anv_bo_is_pinned(&new_bo)) {
1772      VkResult result = anv_bo_vma_alloc_or_close(device, &new_bo,
1773                                                  alloc_flags,
1774                                                  explicit_address);
1775      if (result != VK_SUCCESS)
1776         return result;
1777   } else {
1778      assert(!new_bo.has_client_visible_address);
1779   }
1780
1781   if (new_bo._ccs_size > 0) {
1782      assert(device->info.has_aux_map);
1783      intel_aux_map_add_mapping(device->aux_map_ctx,
1784                                intel_canonical_address(new_bo.offset),
1785                                intel_canonical_address(new_bo.offset + new_bo.size),
1786                                new_bo.size, 0 /* format_bits */);
1787   }
1788
1789   assert(new_bo.gem_handle);
1790
1791   /* If we just got this gem_handle from anv_bo_init_new then we know no one
1792    * else is touching this BO at the moment so we don't need to lock here.
1793    */
1794   struct anv_bo *bo = anv_device_lookup_bo(device, new_bo.gem_handle);
1795   *bo = new_bo;
1796
1797   *bo_out = bo;
1798
1799   return VK_SUCCESS;
1800}
1801
1802VkResult
1803anv_device_map_bo(struct anv_device *device,
1804                  struct anv_bo *bo,
1805                  uint64_t offset,
1806                  size_t size,
1807                  uint32_t gem_flags,
1808                  void **map_out)
1809{
1810   assert(!bo->is_wrapper && !bo->from_host_ptr);
1811   assert(size > 0);
1812
1813   void *map = anv_gem_mmap(device, bo->gem_handle, offset, size, gem_flags);
1814   if (unlikely(map == MAP_FAILED))
1815      return vk_errorf(device, VK_ERROR_MEMORY_MAP_FAILED, "mmap failed: %m");
1816
1817   assert(map != NULL);
1818
1819   if (map_out)
1820      *map_out = map;
1821
1822   return VK_SUCCESS;
1823}
1824
1825void
1826anv_device_unmap_bo(struct anv_device *device,
1827                    struct anv_bo *bo,
1828                    void *map, size_t map_size)
1829{
1830   assert(!bo->is_wrapper && !bo->from_host_ptr);
1831
1832   anv_gem_munmap(device, map, map_size);
1833}
1834
1835VkResult
1836anv_device_import_bo_from_host_ptr(struct anv_device *device,
1837                                   void *host_ptr, uint32_t size,
1838                                   enum anv_bo_alloc_flags alloc_flags,
1839                                   uint64_t client_address,
1840                                   struct anv_bo **bo_out)
1841{
1842   assert(!(alloc_flags & (ANV_BO_ALLOC_MAPPED |
1843                           ANV_BO_ALLOC_SNOOPED |
1844                           ANV_BO_ALLOC_FIXED_ADDRESS)));
1845
1846   assert(!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS) ||
1847          (device->physical->has_implicit_ccs && device->info.has_aux_map));
1848
1849   struct anv_bo_cache *cache = &device->bo_cache;
1850   const uint32_t bo_flags =
1851      anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
1852   assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1853
1854   uint32_t gem_handle = anv_gem_userptr(device, host_ptr, size);
1855   if (!gem_handle)
1856      return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
1857
1858   pthread_mutex_lock(&cache->mutex);
1859
1860   struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle);
1861   if (bo->refcount > 0) {
1862      /* VK_EXT_external_memory_host doesn't require handling importing the
1863       * same pointer twice at the same time, but we don't get in the way.  If
1864       * kernel gives us the same gem_handle, only succeed if the flags match.
1865       */
1866      assert(bo->gem_handle == gem_handle);
1867      if (bo_flags != bo->flags) {
1868         pthread_mutex_unlock(&cache->mutex);
1869         return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1870                          "same host pointer imported two different ways");
1871      }
1872
1873      if (bo->has_client_visible_address !=
1874          ((alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0)) {
1875         pthread_mutex_unlock(&cache->mutex);
1876         return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1877                          "The same BO was imported with and without buffer "
1878                          "device address");
1879      }
1880
1881      if (client_address && client_address != intel_48b_address(bo->offset)) {
1882         pthread_mutex_unlock(&cache->mutex);
1883         return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1884                          "The same BO was imported at two different "
1885                          "addresses");
1886      }
1887
1888      __sync_fetch_and_add(&bo->refcount, 1);
1889   } else {
1890      struct anv_bo new_bo = {
1891         .name = "host-ptr",
1892         .gem_handle = gem_handle,
1893         .refcount = 1,
1894         .offset = -1,
1895         .size = size,
1896         .map = host_ptr,
1897         .flags = bo_flags,
1898         .is_external = true,
1899         .from_host_ptr = true,
1900         .has_client_visible_address =
1901            (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0,
1902      };
1903
1904      if (anv_bo_is_pinned(&new_bo)) {
1905         VkResult result = anv_bo_vma_alloc_or_close(device, &new_bo,
1906                                                     alloc_flags,
1907                                                     client_address);
1908         if (result != VK_SUCCESS) {
1909            pthread_mutex_unlock(&cache->mutex);
1910            return result;
1911         }
1912      } else {
1913         assert(!new_bo.has_client_visible_address);
1914      }
1915
1916      *bo = new_bo;
1917   }
1918
1919   pthread_mutex_unlock(&cache->mutex);
1920   *bo_out = bo;
1921
1922   return VK_SUCCESS;
1923}
1924
1925VkResult
1926anv_device_import_bo(struct anv_device *device,
1927                     int fd,
1928                     enum anv_bo_alloc_flags alloc_flags,
1929                     uint64_t client_address,
1930                     struct anv_bo **bo_out)
1931{
1932   assert(!(alloc_flags & (ANV_BO_ALLOC_MAPPED |
1933                           ANV_BO_ALLOC_SNOOPED |
1934                           ANV_BO_ALLOC_FIXED_ADDRESS)));
1935
1936   assert(!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS) ||
1937          (device->physical->has_implicit_ccs && device->info.has_aux_map));
1938
1939   struct anv_bo_cache *cache = &device->bo_cache;
1940   const uint32_t bo_flags =
1941      anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
1942   assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1943
1944   pthread_mutex_lock(&cache->mutex);
1945
1946   uint32_t gem_handle = anv_gem_fd_to_handle(device, fd);
1947   if (!gem_handle) {
1948      pthread_mutex_unlock(&cache->mutex);
1949      return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
1950   }
1951
1952   struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle);
1953   if (bo->refcount > 0) {
1954      /* We have to be careful how we combine flags so that it makes sense.
1955       * Really, though, if we get to this case and it actually matters, the
1956       * client has imported a BO twice in different ways and they get what
1957       * they have coming.
1958       */
1959      uint64_t new_flags = 0;
1960      new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_WRITE;
1961      new_flags |= (bo->flags & bo_flags) & EXEC_OBJECT_ASYNC;
1962      new_flags |= (bo->flags & bo_flags) & EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1963      new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_PINNED;
1964      new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_CAPTURE;
1965
1966      /* It's theoretically possible for a BO to get imported such that it's
1967       * both pinned and not pinned.  The only way this can happen is if it
1968       * gets imported as both a semaphore and a memory object and that would
1969       * be an application error.  Just fail out in that case.
1970       */
1971      if ((bo->flags & EXEC_OBJECT_PINNED) !=
1972          (bo_flags & EXEC_OBJECT_PINNED)) {
1973         pthread_mutex_unlock(&cache->mutex);
1974         return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1975                          "The same BO was imported two different ways");
1976      }
1977
1978      /* It's also theoretically possible that someone could export a BO from
1979       * one heap and import it into another or to import the same BO into two
1980       * different heaps.  If this happens, we could potentially end up both
1981       * allowing and disallowing 48-bit addresses.  There's not much we can
1982       * do about it if we're pinning so we just throw an error and hope no
1983       * app is actually that stupid.
1984       */
1985      if ((new_flags & EXEC_OBJECT_PINNED) &&
1986          (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) !=
1987          (bo_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) {
1988         pthread_mutex_unlock(&cache->mutex);
1989         return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1990                          "The same BO was imported on two different heaps");
1991      }
1992
1993      if (bo->has_client_visible_address !=
1994          ((alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0)) {
1995         pthread_mutex_unlock(&cache->mutex);
1996         return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1997                          "The same BO was imported with and without buffer "
1998                          "device address");
1999      }
2000
2001      if (client_address && client_address != intel_48b_address(bo->offset)) {
2002         pthread_mutex_unlock(&cache->mutex);
2003         return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
2004                          "The same BO was imported at two different "
2005                          "addresses");
2006      }
2007
2008      bo->flags = new_flags;
2009
2010      __sync_fetch_and_add(&bo->refcount, 1);
2011   } else {
2012      off_t size = lseek(fd, 0, SEEK_END);
2013      if (size == (off_t)-1) {
2014         anv_gem_close(device, gem_handle);
2015         pthread_mutex_unlock(&cache->mutex);
2016         return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
2017      }
2018
2019      struct anv_bo new_bo = {
2020         .name = "imported",
2021         .gem_handle = gem_handle,
2022         .refcount = 1,
2023         .offset = -1,
2024         .size = size,
2025         .flags = bo_flags,
2026         .is_external = true,
2027         .has_client_visible_address =
2028            (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0,
2029      };
2030
2031      if (anv_bo_is_pinned(&new_bo)) {
2032         assert(new_bo._ccs_size == 0);
2033         VkResult result = anv_bo_vma_alloc_or_close(device, &new_bo,
2034                                                     alloc_flags,
2035                                                     client_address);
2036         if (result != VK_SUCCESS) {
2037            pthread_mutex_unlock(&cache->mutex);
2038            return result;
2039         }
2040      } else {
2041         assert(!new_bo.has_client_visible_address);
2042      }
2043
2044      *bo = new_bo;
2045   }
2046
2047   pthread_mutex_unlock(&cache->mutex);
2048   *bo_out = bo;
2049
2050   return VK_SUCCESS;
2051}
2052
2053VkResult
2054anv_device_export_bo(struct anv_device *device,
2055                     struct anv_bo *bo, int *fd_out)
2056{
2057   assert(anv_device_lookup_bo(device, bo->gem_handle) == bo);
2058
2059   /* This BO must have been flagged external in order for us to be able
2060    * to export it.  This is done based on external options passed into
2061    * anv_AllocateMemory.
2062    */
2063   assert(bo->is_external);
2064
2065   int fd = anv_gem_handle_to_fd(device, bo->gem_handle);
2066   if (fd < 0)
2067      return vk_error(device, VK_ERROR_TOO_MANY_OBJECTS);
2068
2069   *fd_out = fd;
2070
2071   return VK_SUCCESS;
2072}
2073
2074VkResult
2075anv_device_get_bo_tiling(struct anv_device *device,
2076                         struct anv_bo *bo,
2077                         enum isl_tiling *tiling_out)
2078{
2079   int i915_tiling = anv_gem_get_tiling(device, bo->gem_handle);
2080   if (i915_tiling < 0) {
2081      return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
2082                       "failed to get BO tiling: %m");
2083   }
2084
2085   *tiling_out = isl_tiling_from_i915_tiling(i915_tiling);
2086
2087   return VK_SUCCESS;
2088}
2089
2090VkResult
2091anv_device_set_bo_tiling(struct anv_device *device,
2092                         struct anv_bo *bo,
2093                         uint32_t row_pitch_B,
2094                         enum isl_tiling tiling)
2095{
2096   int ret = anv_gem_set_tiling(device, bo->gem_handle, row_pitch_B,
2097                                isl_tiling_to_i915_tiling(tiling));
2098   if (ret) {
2099      return vk_errorf(device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
2100                       "failed to set BO tiling: %m");
2101   }
2102
2103   return VK_SUCCESS;
2104}
2105
2106static bool
2107atomic_dec_not_one(uint32_t *counter)
2108{
2109   uint32_t old, val;
2110
2111   val = *counter;
2112   while (1) {
2113      if (val == 1)
2114         return false;
2115
2116      old = __sync_val_compare_and_swap(counter, val, val - 1);
2117      if (old == val)
2118         return true;
2119
2120      val = old;
2121   }
2122}
2123
2124void
2125anv_device_release_bo(struct anv_device *device,
2126                      struct anv_bo *bo)
2127{
2128   struct anv_bo_cache *cache = &device->bo_cache;
2129   assert(anv_device_lookup_bo(device, bo->gem_handle) == bo);
2130
2131   /* Try to decrement the counter but don't go below one.  If this succeeds
2132    * then the refcount has been decremented and we are not the last
2133    * reference.
2134    */
2135   if (atomic_dec_not_one(&bo->refcount))
2136      return;
2137
2138   pthread_mutex_lock(&cache->mutex);
2139
2140   /* We are probably the last reference since our attempt to decrement above
2141    * failed.  However, we can't actually know until we are inside the mutex.
2142    * Otherwise, someone could import the BO between the decrement and our
2143    * taking the mutex.
2144    */
2145   if (unlikely(__sync_sub_and_fetch(&bo->refcount, 1) > 0)) {
2146      /* Turns out we're not the last reference.  Unlock and bail. */
2147      pthread_mutex_unlock(&cache->mutex);
2148      return;
2149   }
2150   assert(bo->refcount == 0);
2151
2152   if (bo->_ccs_size > 0) {
2153      assert(device->physical->has_implicit_ccs);
2154      assert(device->info.has_aux_map);
2155      assert(bo->has_implicit_ccs);
2156      intel_aux_map_unmap_range(device->aux_map_ctx,
2157                                intel_canonical_address(bo->offset),
2158                                bo->size);
2159   }
2160
2161   /* Memset the BO just in case.  The refcount being zero should be enough to
2162    * prevent someone from assuming the data is valid but it's safer to just
2163    * stomp to zero just in case.  We explicitly do this *before* we actually
2164    * close the GEM handle to ensure that if anyone allocates something and
2165    * gets the same GEM handle, the memset has already happen and won't stomp
2166    * all over any data they may write in this BO.
2167    */
2168   struct anv_bo old_bo = *bo;
2169
2170   memset(bo, 0, sizeof(*bo));
2171
2172   anv_bo_finish(device, &old_bo);
2173
2174   /* Don't unlock until we've actually closed the BO.  The whole point of
2175    * the BO cache is to ensure that we correctly handle races with creating
2176    * and releasing GEM handles and we don't want to let someone import the BO
2177    * again between mutex unlock and closing the GEM handle.
2178    */
2179   pthread_mutex_unlock(&cache->mutex);
2180}
2181