1 /*
2  * Copyright © 2013 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25#ifndef INTEL_DEVICE_INFO_H
26#define INTEL_DEVICE_INFO_H
27
28#include <stdbool.h>
29#include <stdint.h>
30
31#include "util/macros.h"
32#include "compiler/shader_enums.h"
33
34#ifdef __cplusplus
35extern "C" {
36#endif
37
38struct drm_i915_query_topology_info;
39
40#define INTEL_DEVICE_MAX_NAME_SIZE        64
41#define INTEL_DEVICE_MAX_SLICES           8
42#define INTEL_DEVICE_MAX_SUBSLICES        (8)  /* Maximum on gfx11 */
43#define INTEL_DEVICE_MAX_EUS_PER_SUBSLICE (16) /* Maximum on gfx12 */
44#define INTEL_DEVICE_MAX_PIXEL_PIPES      (16) /* Maximum on DG2 */
45
46#define INTEL_PLATFORM_GROUP_START(group, new_enum) \
47   new_enum, INTEL_PLATFORM_ ## group ## _START = new_enum
48#define INTEL_PLATFORM_GROUP_END(group, new_enum) \
49   new_enum, INTEL_PLATFORM_ ## group ## _END = new_enum
50
51enum intel_platform {
52   INTEL_PLATFORM_GFX3 = 1,
53   INTEL_PLATFORM_I965,
54   INTEL_PLATFORM_ILK,
55   INTEL_PLATFORM_G4X,
56   INTEL_PLATFORM_SNB,
57   INTEL_PLATFORM_IVB,
58   INTEL_PLATFORM_BYT,
59   INTEL_PLATFORM_HSW,
60   INTEL_PLATFORM_BDW,
61   INTEL_PLATFORM_CHV,
62   INTEL_PLATFORM_SKL,
63   INTEL_PLATFORM_BXT,
64   INTEL_PLATFORM_KBL,
65   INTEL_PLATFORM_GLK,
66   INTEL_PLATFORM_CFL,
67   INTEL_PLATFORM_ICL,
68   INTEL_PLATFORM_EHL,
69   INTEL_PLATFORM_TGL,
70   INTEL_PLATFORM_RKL,
71   INTEL_PLATFORM_DG1,
72   INTEL_PLATFORM_ADL,
73   INTEL_PLATFORM_RPL,
74   INTEL_PLATFORM_GROUP_START(DG2, INTEL_PLATFORM_DG2_G10),
75   INTEL_PLATFORM_DG2_G11,
76   INTEL_PLATFORM_GROUP_END(DG2, INTEL_PLATFORM_DG2_G12),
77};
78
79#undef INTEL_PLATFORM_GROUP_START
80#undef INTEL_PLATFORM_GROUP_END
81
82#define intel_platform_in_range(platform, platform_range) \
83   (((platform) >= INTEL_PLATFORM_ ## platform_range ## _START) && \
84    ((platform) <= INTEL_PLATFORM_ ## platform_range ## _END))
85
86#define intel_device_info_is_dg2(devinfo) \
87   intel_platform_in_range((devinfo)->platform, DG2)
88
89/**
90 * Intel hardware information and quirks
91 */
92struct intel_device_info
93{
94   /* Driver internal numbers used to differentiate platforms. */
95   int ver;
96   int verx10;
97   int display_ver;
98
99   /**
100    * This revision is from ioctl (I915_PARAM_REVISION) unlike
101    * pci_revision_id from drm device. Its value is not always
102    * same as the pci_revision_id.
103    */
104   int revision;
105   int gt;
106
107   /* PCI info */
108   uint16_t pci_domain;
109   uint8_t pci_bus;
110   uint8_t pci_dev;
111   uint8_t pci_func;
112   uint16_t pci_device_id;
113   uint8_t pci_revision_id;
114
115   enum intel_platform platform;
116
117   bool has_hiz_and_separate_stencil;
118   bool must_use_separate_stencil;
119   bool has_sample_with_hiz;
120   bool has_bit6_swizzle;
121   bool has_llc;
122
123   bool has_pln;
124   bool has_64bit_float;
125   bool has_64bit_int;
126   bool has_integer_dword_mul;
127   bool has_compr4;
128   bool has_surface_tile_offset;
129   bool supports_simd16_3src;
130   bool disable_ccs_repack;
131
132   /**
133    * True if CCS uses a flat virtual address translation to a memory
134    * carve-out, rather than aux map translations, or additional surfaces.
135    */
136   bool has_flat_ccs;
137   bool has_aux_map;
138   bool has_tiling_uapi;
139   bool has_ray_tracing;
140   bool has_ray_query;
141   bool has_local_mem;
142   bool has_lsc;
143   bool has_mesh_shading;
144
145   /**
146    * \name Intel hardware quirks
147    *  @{
148    */
149   bool has_negative_rhw_bug;
150
151   /**
152    * Whether this platform supports fragment shading rate controlled by a
153    * primitive in geometry shaders and by a control buffer.
154    */
155   bool has_coarse_pixel_primitive_and_cb;
156
157   /**
158    * Some versions of Gen hardware don't do centroid interpolation correctly
159    * on unlit pixels, causing incorrect values for derivatives near triangle
160    * edges.  Enabling this flag causes the fragment shader to use
161    * non-centroid interpolation for unlit pixels, at the expense of two extra
162    * fragment shader instructions.
163    */
164   bool needs_unlit_centroid_workaround;
165   /** @} */
166
167   /**
168    * \name GPU hardware limits
169    *
170    * In general, you can find shader thread maximums by looking at the "Maximum
171    * Number of Threads" field in the Intel PRM description of the 3DSTATE_VS,
172    * 3DSTATE_GS, 3DSTATE_HS, 3DSTATE_DS, and 3DSTATE_PS commands. URB entry
173    * limits come from the "Number of URB Entries" field in the
174    * 3DSTATE_URB_VS command and friends.
175    *
176    * These fields are used to calculate the scratch space to allocate.  The
177    * amount of scratch space can be larger without being harmful on modern
178    * GPUs, however, prior to Haswell, programming the maximum number of threads
179    * to greater than the hardware maximum would cause GPU performance to tank.
180    *
181    *  @{
182    */
183   /**
184    * Total number of slices present on the device whether or not they've been
185    * fused off.
186    *
187    * XXX: CS thread counts are limited by the inability to do cross subslice
188    * communication. It is the effectively the number of logical threads which
189    * can be executed in a subslice. Fuse configurations may cause this number
190    * to change, so we program @max_cs_threads as the lower maximum.
191    */
192   unsigned num_slices;
193
194   /**
195    * Maximum number of slices present on this device (can be more than
196    * num_slices if some slices are fused).
197    */
198   unsigned max_slices;
199
200   /**
201    * Number of subslices for each slice (used to be uniform until CNL).
202    */
203   unsigned num_subslices[INTEL_DEVICE_MAX_SLICES];
204
205   /**
206    * Maximum number of subslices per slice present on this device (can be
207    * more than the maximum value in the num_subslices[] array if some
208    * subslices are fused).
209    */
210   unsigned max_subslices_per_slice;
211
212   /**
213    * Maximum number of subslices per slice present on this device (can be
214    * more than the maximum value in the num_subslices[] array if some
215    * subslices are fused).
216    */
217   unsigned max_subslices_per_slice;
218
219   /**
220    * Number of subslices on each pixel pipe (ICL).
221    */
222   unsigned ppipe_subslices[INTEL_DEVICE_MAX_PIXEL_PIPES];
223
224   /**
225    * Maximum number of EUs per subslice (some EUs can be fused off).
226    */
227   unsigned max_eus_per_subslice;
228
229   /**
230    * Maximum number of EUs per subslice (can be more than num_eu_per_subslice
231    * if some EUs are fused off).
232    */
233   unsigned max_eu_per_subslice;
234
235   /**
236    * Number of threads per eu, varies between 4 and 8 between generations.
237    */
238   unsigned num_thread_per_eu;
239
240   /**
241    * A bit mask of the slices available.
242    */
243   uint8_t slice_masks;
244
245   /**
246    * An array of bit mask of the subslices available, use subslice_slice_stride
247    * to access this array.
248    */
249   uint8_t subslice_masks[INTEL_DEVICE_MAX_SLICES *
250                          DIV_ROUND_UP(INTEL_DEVICE_MAX_SUBSLICES, 8)];
251
252   /**
253    * The number of enabled subslices (considering fusing). For exactly which
254    * subslices are enabled, see subslice_masks[].
255    */
256   unsigned subslice_total;
257
258   /**
259    * An array of bit mask of EUs available, use eu_slice_stride &
260    * eu_subslice_stride to access this array.
261    */
262   uint8_t eu_masks[INTEL_DEVICE_MAX_SLICES *
263                    INTEL_DEVICE_MAX_SUBSLICES *
264                    DIV_ROUND_UP(INTEL_DEVICE_MAX_EUS_PER_SUBSLICE, 8)];
265
266   /**
267    * Stride to access subslice_masks[].
268    */
269   uint16_t subslice_slice_stride;
270
271   /**
272    * Strides to access eu_masks[].
273    */
274   uint16_t eu_slice_stride;
275   uint16_t eu_subslice_stride;
276
277   unsigned l3_banks;
278   unsigned max_vs_threads;   /**< Maximum Vertex Shader threads */
279   unsigned max_tcs_threads;  /**< Maximum Hull Shader threads */
280   unsigned max_tes_threads;  /**< Maximum Domain Shader threads */
281   unsigned max_gs_threads;   /**< Maximum Geometry Shader threads. */
282   /**
283    * Theoretical maximum number of Pixel Shader threads.
284    *
285    * PSD means Pixel Shader Dispatcher. On modern Intel GPUs, hardware will
286    * automatically scale pixel shader thread count, based on a single value
287    * programmed into 3DSTATE_PS.
288    *
289    * To calculate the maximum number of threads for Gfx8 beyond (which have
290    * multiple Pixel Shader Dispatchers):
291    *
292    * - Look up 3DSTATE_PS and find "Maximum Number of Threads Per PSD"
293    * - Usually there's only one PSD per subslice, so use the number of
294    *   subslices for number of PSDs.
295    * - For max_wm_threads, the total should be PSD threads * #PSDs.
296    */
297   unsigned max_wm_threads;
298
299   unsigned max_threads_per_psd;
300
301   /**
302    * Maximum Compute Shader threads.
303    *
304    * Thread count * number of EUs per subslice
305    */
306   unsigned max_cs_threads;
307
308   /**
309    * Maximum number of threads per workgroup supported by the GPGPU_WALKER or
310    * COMPUTE_WALKER command.
311    *
312    * This may be smaller than max_cs_threads as it takes into account added
313    * restrictions on the GPGPU/COMPUTE_WALKER commands.  While max_cs_threads
314    * expresses the total parallelism of the GPU, this expresses the maximum
315    * number of threads we can dispatch in a single workgroup.
316    */
317   unsigned max_cs_workgroup_threads;
318
319   /**
320    * The maximum number of potential scratch ids. Due to hardware
321    * implementation details, the range of scratch ids may be larger than the
322    * number of subslices.
323    */
324   unsigned max_scratch_ids[MESA_SHADER_STAGES];
325
326   struct {
327      /**
328       * Fixed size of the URB.
329       *
330       * On Gfx6 and DG1, this is measured in KB.  Gfx4-5 instead measure
331       * this in 512b blocks, as that's more convenient there.
332       *
333       * On most Gfx7+ platforms, the URB is a section of the L3 cache,
334       * and can be resized based on the L3 programming.  For those platforms,
335       * simply leave this field blank (zero) - it isn't used.
336       */
337      unsigned size;
338
339      /**
340       * The minimum number of URB entries.  See the 3DSTATE_URB_<XS> docs.
341       */
342      unsigned min_entries[4];
343
344      /**
345       * The maximum number of URB entries.  See the 3DSTATE_URB_<XS> docs.
346       */
347      unsigned max_entries[4];
348   } urb;
349
350   /* Maximum size in Kb that can be allocated to constants in the URB, this
351    * is usually divided among the stages for implementing push constants.
352    * See 3DSTATE_PUSH_CONSTANT_ALLOC_*.
353    */
354   unsigned max_constant_urb_size_kb;
355
356   /**
357    * Size of the command streamer prefetch. This is important to know for
358    * self modifying batches.
359    */
360   unsigned cs_prefetch_size;
361
362   /**
363    * For the longest time the timestamp frequency for Gen's timestamp counter
364    * could be assumed to be 12.5MHz, where the least significant bit neatly
365    * corresponded to 80 nanoseconds.
366    *
367    * Since Gfx9 the numbers aren't so round, with a a frequency of 12MHz for
368    * SKL (or scale factor of 83.33333333) and a frequency of 19200000Hz for
369    * BXT.
370    *
371    * For simplicity to fit with the current code scaling by a single constant
372    * to map from raw timestamps to nanoseconds we now do the conversion in
373    * floating point instead of integer arithmetic.
374    *
375    * In general it's probably worth noting that the documented constants we
376    * have for the per-platform timestamp frequencies aren't perfect and
377    * shouldn't be trusted for scaling and comparing timestamps with a large
378    * delta.
379    *
380    * E.g. with crude testing on my system using the 'correct' scale factor I'm
381    * seeing a drift of ~2 milliseconds per second.
382    */
383   uint64_t timestamp_frequency;
384
385   uint64_t aperture_bytes;
386   uint64_t gtt_size;
387
388   /**
389    * ID to put into the .aub files.
390    */
391   int simulator_id;
392
393   /**
394    * holds the name of the device
395    */
396   char name[INTEL_DEVICE_MAX_NAME_SIZE];
397
398   /**
399    * no_hw is true when the pci_device_id has been overridden
400    */
401   bool no_hw;
402
403   /**
404    * apply_hwconfig is true when the platform should apply hwconfig values
405    */
406   bool apply_hwconfig;
407
408   struct {
409      bool use_class_instance;
410      struct {
411         uint16_t mem_class;
412         uint16_t mem_instance;
413         struct {
414            uint64_t size;
415            uint64_t free;
416         } mappable, unmappable;
417      } sram, vram;
418   } mem;
419   /** @} */
420};
421
422#ifdef GFX_VER
423
424#define intel_device_info_is_9lp(devinfo) \
425   (GFX_VER == 9 && ((devinfo)->platform == INTEL_PLATFORM_BXT || \
426                     (devinfo)->platform == INTEL_PLATFORM_GLK))
427
428#else
429
430#define intel_device_info_is_9lp(devinfo) \
431   ((devinfo)->platform == INTEL_PLATFORM_BXT || \
432    (devinfo)->platform == INTEL_PLATFORM_GLK)
433
434#endif
435
436static inline bool
437intel_device_info_slice_available(const struct intel_device_info *devinfo,
438                                  int slice)
439{
440   assert(slice < INTEL_DEVICE_MAX_SLICES);
441   return (devinfo->slice_masks & (1U << slice)) != 0;
442}
443
444static inline bool
445intel_device_info_subslice_available(const struct intel_device_info *devinfo,
446                                     int slice, int subslice)
447{
448   return (devinfo->subslice_masks[slice * devinfo->subslice_slice_stride +
449                                   subslice / 8] & (1U << (subslice % 8))) != 0;
450}
451
452static inline bool
453intel_device_info_eu_available(const struct intel_device_info *devinfo,
454                               int slice, int subslice, int eu)
455{
456   unsigned subslice_offset = slice * devinfo->eu_slice_stride +
457      subslice * devinfo->eu_subslice_stride;
458
459   return (devinfo->eu_masks[subslice_offset + eu / 8] & (1U << eu % 8)) != 0;
460}
461
462static inline uint32_t
463intel_device_info_subslice_total(const struct intel_device_info *devinfo)
464{
465   uint32_t total = 0;
466
467   for (size_t i = 0; i < ARRAY_SIZE(devinfo->subslice_masks); i++) {
468      total += __builtin_popcount(devinfo->subslice_masks[i]);
469   }
470
471   return total;
472}
473
474static inline uint32_t
475intel_device_info_eu_total(const struct intel_device_info *devinfo)
476{
477   uint32_t total = 0;
478
479   for (size_t i = 0; i < ARRAY_SIZE(devinfo->eu_masks); i++)
480      total += __builtin_popcount(devinfo->eu_masks[i]);
481
482   return total;
483}
484
485static inline unsigned
486intel_device_info_num_dual_subslices(UNUSED
487                                     const struct intel_device_info *devinfo)
488{
489   unreachable("TODO");
490}
491
492int intel_device_name_to_pci_device_id(const char *name);
493
494static inline uint64_t
495intel_device_info_timebase_scale(const struct intel_device_info *devinfo,
496                                 uint64_t gpu_timestamp)
497{
498   /* Try to avoid going over the 64bits when doing the scaling */
499   uint64_t upper_ts = gpu_timestamp >> 32;
500   uint64_t lower_ts = gpu_timestamp & 0xffffffff;
501   uint64_t upper_scaled_ts = upper_ts * 1000000000ull / devinfo->timestamp_frequency;
502   uint64_t lower_scaled_ts = lower_ts * 1000000000ull / devinfo->timestamp_frequency;
503   return (upper_scaled_ts << 32) + lower_scaled_ts;
504}
505
506static inline bool
507intel_vram_all_mappable(const struct intel_device_info *devinfo)
508{
509   return devinfo->mem.vram.unmappable.size == 0;
510}
511
512bool intel_get_device_info_from_fd(int fh, struct intel_device_info *devinfo);
513bool intel_get_device_info_from_pci_id(int pci_id,
514                                       struct intel_device_info *devinfo);
515
516/* Only updates intel_device_info::regions::...::free fields. The
517 * class/instance/size should remain the same over time.
518 */
519bool intel_device_info_update_memory_info(struct intel_device_info *devinfo,
520                                          int fd);
521
522#ifdef __cplusplus
523}
524#endif
525
526#endif /* INTEL_DEVICE_INFO_H */
527