1/* 2 * Copyright © 2011 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24/** 25 * @file brw_vue_map.c 26 * 27 * This file computes the "VUE map" for a (non-fragment) shader stage, which 28 * describes the layout of its output varyings. The VUE map is used to match 29 * outputs from one stage with the inputs of the next. 30 * 31 * Largely, varyings can be placed however we like - producers/consumers simply 32 * have to agree on the layout. However, there is also a "VUE Header" that 33 * prescribes a fixed-layout for items that interact with fixed function 34 * hardware, such as the clipper and rasterizer. 35 * 36 * Authors: 37 * Paul Berry <stereotype441@gmail.com> 38 * Chris Forbes <chrisf@ijw.co.nz> 39 * Eric Anholt <eric@anholt.net> 40 */ 41 42 43#include "brw_compiler.h" 44#include "dev/intel_debug.h" 45 46static inline void 47assign_vue_slot(struct brw_vue_map *vue_map, int varying, int slot) 48{ 49 /* Make sure this varying hasn't been assigned a slot already */ 50 assert (vue_map->varying_to_slot[varying] == -1); 51 52 vue_map->varying_to_slot[varying] = slot; 53 vue_map->slot_to_varying[slot] = varying; 54} 55 56/** 57 * Compute the VUE map for a shader stage. 58 */ 59void 60brw_compute_vue_map(const struct intel_device_info *devinfo, 61 struct brw_vue_map *vue_map, 62 uint64_t slots_valid, 63 bool separate, 64 uint32_t pos_slots) 65{ 66 /* Keep using the packed/contiguous layout on old hardware - we only need 67 * the SSO layout when using geometry/tessellation shaders or 32 FS input 68 * varyings, which only exist on Gen >= 6. It's also a bit more efficient. 69 */ 70 if (devinfo->ver < 6) 71 separate = false; 72 73 if (separate) { 74 /* In SSO mode, we don't know whether the adjacent stage will 75 * read/write gl_ClipDistance, which has a fixed slot location. 76 * We have to assume the worst and reserve a slot for it, or else 77 * the rest of our varyings will be off by a slot. 78 * 79 * Note that we don't have to worry about COL/BFC, as those built-in 80 * variables only exist in legacy GL, which only supports VS and FS. 81 */ 82 slots_valid |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0); 83 slots_valid |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1); 84 } 85 86 vue_map->slots_valid = slots_valid; 87 vue_map->separate = separate; 88 89 /* gl_Layer, gl_ViewportIndex & gl_PrimitiveShadingRateEXT don't get their 90 * own varying slots -- they are stored in the first VUE slot 91 * (VARYING_SLOT_PSIZ). 92 */ 93 slots_valid &= ~(VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PRIMITIVE_SHADING_RATE); 94 95 /* Make sure that the values we store in vue_map->varying_to_slot and 96 * vue_map->slot_to_varying won't overflow the signed chars that are used 97 * to store them. Note that since vue_map->slot_to_varying sometimes holds 98 * values equal to BRW_VARYING_SLOT_COUNT, we need to ensure that 99 * BRW_VARYING_SLOT_COUNT is <= 127, not 128. 100 */ 101 STATIC_ASSERT(BRW_VARYING_SLOT_COUNT <= 127); 102 103 for (int i = 0; i < BRW_VARYING_SLOT_COUNT; ++i) { 104 vue_map->varying_to_slot[i] = -1; 105 vue_map->slot_to_varying[i] = BRW_VARYING_SLOT_PAD; 106 } 107 108 int slot = 0; 109 110 /* VUE header: format depends on chip generation and whether clipping is 111 * enabled. 112 * 113 * See the Sandybridge PRM, Volume 2 Part 1, section 1.5.1 (page 30), 114 * "Vertex URB Entry (VUE) Formats" which describes the VUE header layout. 115 */ 116 if (devinfo->ver < 6) { 117 /* There are 8 dwords in VUE header pre-Ironlake: 118 * dword 0-3 is indices, point width, clip flags. 119 * dword 4-7 is ndc position 120 * dword 8-11 is the first vertex data. 121 * 122 * On Ironlake the VUE header is nominally 20 dwords, but the hardware 123 * will accept the same header layout as Gfx4 [and should be a bit faster] 124 */ 125 assign_vue_slot(vue_map, VARYING_SLOT_PSIZ, slot++); 126 assign_vue_slot(vue_map, BRW_VARYING_SLOT_NDC, slot++); 127 assign_vue_slot(vue_map, VARYING_SLOT_POS, slot++); 128 } else { 129 /* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge: 130 * dword 0-3 of the header is shading rate, indices, point width, clip flags. 131 * dword 4-7 is the 4D space position 132 * dword 8-15 of the vertex header is the user clip distance if 133 * enabled. 134 * dword 8-11 or 16-19 is the first vertex element data we fill. 135 */ 136 assign_vue_slot(vue_map, VARYING_SLOT_PSIZ, slot++); 137 assign_vue_slot(vue_map, VARYING_SLOT_POS, slot++); 138 139 /* When using Primitive Replication, multiple slots are used for storing 140 * positions for each view. 141 */ 142 assert(pos_slots >= 1); 143 if (pos_slots > 1) { 144 for (int i = 1; i < pos_slots; i++) { 145 vue_map->slot_to_varying[slot++] = VARYING_SLOT_POS; 146 } 147 } 148 149 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0)) 150 assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST0, slot++); 151 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1)) 152 assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST1, slot++); 153 154 /* Vertex URB Formats table says: "Vertex Header shall be padded at the 155 * end so that the header ends on a 32-byte boundary". 156 */ 157 slot += slot % 2; 158 159 /* front and back colors need to be consecutive so that we can use 160 * ATTRIBUTE_SWIZZLE_INPUTATTR_FACING to swizzle them when doing 161 * two-sided color. 162 */ 163 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_COL0)) 164 assign_vue_slot(vue_map, VARYING_SLOT_COL0, slot++); 165 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_BFC0)) 166 assign_vue_slot(vue_map, VARYING_SLOT_BFC0, slot++); 167 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_COL1)) 168 assign_vue_slot(vue_map, VARYING_SLOT_COL1, slot++); 169 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_BFC1)) 170 assign_vue_slot(vue_map, VARYING_SLOT_BFC1, slot++); 171 } 172 173 /* The hardware doesn't care about the rest of the vertex outputs, so we 174 * can assign them however we like. For normal programs, we simply assign 175 * them contiguously. 176 * 177 * For separate shader pipelines, we first assign built-in varyings 178 * contiguous slots. This works because ARB_separate_shader_objects 179 * requires that all shaders have matching built-in varying interface 180 * blocks. Next, we assign generic varyings based on their location 181 * (either explicit or linker assigned). This guarantees a fixed layout. 182 * 183 * We generally don't need to assign a slot for VARYING_SLOT_CLIP_VERTEX, 184 * since it's encoded as the clip distances by emit_clip_distances(). 185 * However, it may be output by transform feedback, and we'd rather not 186 * recompute state when TF changes, so we just always include it. 187 */ 188 uint64_t builtins = slots_valid & BITFIELD64_MASK(VARYING_SLOT_VAR0); 189 while (builtins != 0) { 190 const int varying = ffsll(builtins) - 1; 191 if (vue_map->varying_to_slot[varying] == -1) { 192 assign_vue_slot(vue_map, varying, slot++); 193 } 194 builtins &= ~BITFIELD64_BIT(varying); 195 } 196 197 const int first_generic_slot = slot; 198 uint64_t generics = slots_valid & ~BITFIELD64_MASK(VARYING_SLOT_VAR0); 199 while (generics != 0) { 200 const int varying = ffsll(generics) - 1; 201 if (separate) { 202 slot = first_generic_slot + varying - VARYING_SLOT_VAR0; 203 } 204 assign_vue_slot(vue_map, varying, slot++); 205 generics &= ~BITFIELD64_BIT(varying); 206 } 207 208 vue_map->num_slots = slot; 209 vue_map->num_per_vertex_slots = 0; 210 vue_map->num_per_patch_slots = 0; 211} 212 213/** 214 * Compute the VUE map for tessellation control shader outputs and 215 * tessellation evaluation shader inputs. 216 */ 217void 218brw_compute_tess_vue_map(struct brw_vue_map *vue_map, 219 uint64_t vertex_slots, 220 uint32_t patch_slots) 221{ 222 /* I don't think anything actually uses this... */ 223 vue_map->slots_valid = vertex_slots; 224 225 /* separate isn't really meaningful, but make sure it's initialized */ 226 vue_map->separate = false; 227 228 vertex_slots &= ~(VARYING_BIT_TESS_LEVEL_OUTER | 229 VARYING_BIT_TESS_LEVEL_INNER); 230 231 /* Make sure that the values we store in vue_map->varying_to_slot and 232 * vue_map->slot_to_varying won't overflow the signed chars that are used 233 * to store them. Note that since vue_map->slot_to_varying sometimes holds 234 * values equal to VARYING_SLOT_TESS_MAX , we need to ensure that 235 * VARYING_SLOT_TESS_MAX is <= 127, not 128. 236 */ 237 STATIC_ASSERT(VARYING_SLOT_TESS_MAX <= 127); 238 239 for (int i = 0; i < VARYING_SLOT_TESS_MAX ; ++i) { 240 vue_map->varying_to_slot[i] = -1; 241 vue_map->slot_to_varying[i] = BRW_VARYING_SLOT_PAD; 242 } 243 244 int slot = 0; 245 246 /* The first 8 DWords are reserved for the "Patch Header". 247 * 248 * VARYING_SLOT_TESS_LEVEL_OUTER / INNER live here, but the exact layout 249 * depends on the domain type. They might not be in slots 0 and 1 as 250 * described here, but pretending they're separate allows us to uniquely 251 * identify them by distinct slot locations. 252 */ 253 assign_vue_slot(vue_map, VARYING_SLOT_TESS_LEVEL_INNER, slot++); 254 assign_vue_slot(vue_map, VARYING_SLOT_TESS_LEVEL_OUTER, slot++); 255 256 /* first assign per-patch varyings */ 257 while (patch_slots != 0) { 258 const int varying = ffsll(patch_slots) - 1; 259 if (vue_map->varying_to_slot[varying + VARYING_SLOT_PATCH0] == -1) { 260 assign_vue_slot(vue_map, varying + VARYING_SLOT_PATCH0, slot++); 261 } 262 patch_slots &= ~BITFIELD64_BIT(varying); 263 } 264 265 /* apparently, including the patch header... */ 266 vue_map->num_per_patch_slots = slot; 267 268 /* then assign per-vertex varyings for each vertex in our patch */ 269 while (vertex_slots != 0) { 270 const int varying = ffsll(vertex_slots) - 1; 271 if (vue_map->varying_to_slot[varying] == -1) { 272 assign_vue_slot(vue_map, varying, slot++); 273 } 274 vertex_slots &= ~BITFIELD64_BIT(varying); 275 } 276 277 vue_map->num_per_vertex_slots = slot - vue_map->num_per_patch_slots; 278 vue_map->num_slots = slot; 279} 280 281static const char * 282varying_name(brw_varying_slot slot, gl_shader_stage stage) 283{ 284 assume(slot < BRW_VARYING_SLOT_COUNT); 285 286 if (slot < VARYING_SLOT_MAX) 287 return gl_varying_slot_name_for_stage((gl_varying_slot)slot, stage); 288 289 static const char *brw_names[] = { 290 [BRW_VARYING_SLOT_NDC - VARYING_SLOT_MAX] = "BRW_VARYING_SLOT_NDC", 291 [BRW_VARYING_SLOT_PAD - VARYING_SLOT_MAX] = "BRW_VARYING_SLOT_PAD", 292 [BRW_VARYING_SLOT_PNTC - VARYING_SLOT_MAX] = "BRW_VARYING_SLOT_PNTC", 293 }; 294 295 return brw_names[slot - VARYING_SLOT_MAX]; 296} 297 298void 299brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map, 300 gl_shader_stage stage) 301{ 302 if (vue_map->num_per_vertex_slots > 0 || vue_map->num_per_patch_slots > 0) { 303 fprintf(fp, "PUE map (%d slots, %d/patch, %d/vertex, %s)\n", 304 vue_map->num_slots, 305 vue_map->num_per_patch_slots, 306 vue_map->num_per_vertex_slots, 307 vue_map->separate ? "SSO" : "non-SSO"); 308 for (int i = 0; i < vue_map->num_slots; i++) { 309 if (vue_map->slot_to_varying[i] >= VARYING_SLOT_PATCH0) { 310 fprintf(fp, " [%d] VARYING_SLOT_PATCH%d\n", i, 311 vue_map->slot_to_varying[i] - VARYING_SLOT_PATCH0); 312 } else { 313 fprintf(fp, " [%d] %s\n", i, 314 varying_name(vue_map->slot_to_varying[i], stage)); 315 } 316 } 317 } else { 318 fprintf(fp, "VUE map (%d slots, %s)\n", 319 vue_map->num_slots, vue_map->separate ? "SSO" : "non-SSO"); 320 for (int i = 0; i < vue_map->num_slots; i++) { 321 fprintf(fp, " [%d] %s\n", i, 322 varying_name(vue_map->slot_to_varying[i], stage)); 323 } 324 } 325 fprintf(fp, "\n"); 326} 327