1/*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include "brw_nir.h"
25#include "brw_vec4.h"
26#include "brw_vec4_builder.h"
27#include "brw_vec4_surface_builder.h"
28#include "brw_eu.h"
29
30using namespace brw;
31using namespace brw::surface_access;
32
33namespace brw {
34
35void
36vec4_visitor::emit_nir_code()
37{
38   if (nir->num_uniforms > 0)
39      nir_setup_uniforms();
40
41   nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
42}
43
44void
45vec4_visitor::nir_setup_uniforms()
46{
47   uniforms = nir->num_uniforms / 16;
48}
49
50void
51vec4_visitor::nir_emit_impl(nir_function_impl *impl)
52{
53   nir_locals = ralloc_array(mem_ctx, dst_reg, impl->reg_alloc);
54   for (unsigned i = 0; i < impl->reg_alloc; i++) {
55      nir_locals[i] = dst_reg();
56   }
57
58   foreach_list_typed(nir_register, reg, node, &impl->registers) {
59      unsigned array_elems =
60         reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
61      const unsigned num_regs = array_elems * DIV_ROUND_UP(reg->bit_size, 32);
62      nir_locals[reg->index] = dst_reg(VGRF, alloc.allocate(num_regs));
63
64      if (reg->bit_size == 64)
65         nir_locals[reg->index].type = BRW_REGISTER_TYPE_DF;
66   }
67
68   nir_ssa_values = ralloc_array(mem_ctx, dst_reg, impl->ssa_alloc);
69
70   nir_emit_cf_list(&impl->body);
71}
72
73void
74vec4_visitor::nir_emit_cf_list(exec_list *list)
75{
76   exec_list_validate(list);
77   foreach_list_typed(nir_cf_node, node, node, list) {
78      switch (node->type) {
79      case nir_cf_node_if:
80         nir_emit_if(nir_cf_node_as_if(node));
81         break;
82
83      case nir_cf_node_loop:
84         nir_emit_loop(nir_cf_node_as_loop(node));
85         break;
86
87      case nir_cf_node_block:
88         nir_emit_block(nir_cf_node_as_block(node));
89         break;
90
91      default:
92         unreachable("Invalid CFG node block");
93      }
94   }
95}
96
97void
98vec4_visitor::nir_emit_if(nir_if *if_stmt)
99{
100   /* First, put the condition in f0 */
101   src_reg condition = get_nir_src(if_stmt->condition, BRW_REGISTER_TYPE_D, 1);
102   vec4_instruction *inst = emit(MOV(dst_null_d(), condition));
103   inst->conditional_mod = BRW_CONDITIONAL_NZ;
104
105   /* We can just predicate based on the X channel, as the condition only
106    * goes on its own line */
107   emit(IF(BRW_PREDICATE_ALIGN16_REPLICATE_X));
108
109   nir_emit_cf_list(&if_stmt->then_list);
110
111   /* note: if the else is empty, dead CF elimination will remove it */
112   emit(BRW_OPCODE_ELSE);
113
114   nir_emit_cf_list(&if_stmt->else_list);
115
116   emit(BRW_OPCODE_ENDIF);
117}
118
119void
120vec4_visitor::nir_emit_loop(nir_loop *loop)
121{
122   emit(BRW_OPCODE_DO);
123
124   nir_emit_cf_list(&loop->body);
125
126   emit(BRW_OPCODE_WHILE);
127}
128
129void
130vec4_visitor::nir_emit_block(nir_block *block)
131{
132   nir_foreach_instr(instr, block) {
133      nir_emit_instr(instr);
134   }
135}
136
137void
138vec4_visitor::nir_emit_instr(nir_instr *instr)
139{
140   base_ir = instr;
141
142   switch (instr->type) {
143   case nir_instr_type_load_const:
144      nir_emit_load_const(nir_instr_as_load_const(instr));
145      break;
146
147   case nir_instr_type_intrinsic:
148      nir_emit_intrinsic(nir_instr_as_intrinsic(instr));
149      break;
150
151   case nir_instr_type_alu:
152      nir_emit_alu(nir_instr_as_alu(instr));
153      break;
154
155   case nir_instr_type_jump:
156      nir_emit_jump(nir_instr_as_jump(instr));
157      break;
158
159   case nir_instr_type_tex:
160      nir_emit_texture(nir_instr_as_tex(instr));
161      break;
162
163   case nir_instr_type_ssa_undef:
164      nir_emit_undef(nir_instr_as_ssa_undef(instr));
165      break;
166
167   default:
168      unreachable("VS instruction not yet implemented by NIR->vec4");
169   }
170}
171
172static dst_reg
173dst_reg_for_nir_reg(vec4_visitor *v, nir_register *nir_reg,
174                    unsigned base_offset, nir_src *indirect)
175{
176   dst_reg reg;
177
178   reg = v->nir_locals[nir_reg->index];
179   if (nir_reg->bit_size == 64)
180      reg.type = BRW_REGISTER_TYPE_DF;
181   reg = offset(reg, 8, base_offset);
182   if (indirect) {
183      reg.reladdr =
184         new(v->mem_ctx) src_reg(v->get_nir_src(*indirect,
185                                                BRW_REGISTER_TYPE_D,
186                                                1));
187   }
188   return reg;
189}
190
191dst_reg
192vec4_visitor::get_nir_dest(const nir_dest &dest)
193{
194   if (dest.is_ssa) {
195      dst_reg dst =
196         dst_reg(VGRF, alloc.allocate(DIV_ROUND_UP(dest.ssa.bit_size, 32)));
197      if (dest.ssa.bit_size == 64)
198         dst.type = BRW_REGISTER_TYPE_DF;
199      nir_ssa_values[dest.ssa.index] = dst;
200      return dst;
201   } else {
202      return dst_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
203                                 dest.reg.indirect);
204   }
205}
206
207dst_reg
208vec4_visitor::get_nir_dest(const nir_dest &dest, enum brw_reg_type type)
209{
210   return retype(get_nir_dest(dest), type);
211}
212
213dst_reg
214vec4_visitor::get_nir_dest(const nir_dest &dest, nir_alu_type type)
215{
216   return get_nir_dest(dest, brw_type_for_nir_type(devinfo, type));
217}
218
219src_reg
220vec4_visitor::get_nir_src(const nir_src &src, enum brw_reg_type type,
221                          unsigned num_components)
222{
223   dst_reg reg;
224
225   if (src.is_ssa) {
226      assert(src.ssa != NULL);
227      reg = nir_ssa_values[src.ssa->index];
228   }
229   else {
230      reg = dst_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
231                                src.reg.indirect);
232   }
233
234   reg = retype(reg, type);
235
236   src_reg reg_as_src = src_reg(reg);
237   reg_as_src.swizzle = brw_swizzle_for_size(num_components);
238   return reg_as_src;
239}
240
241src_reg
242vec4_visitor::get_nir_src(const nir_src &src, nir_alu_type type,
243                          unsigned num_components)
244{
245   return get_nir_src(src, brw_type_for_nir_type(devinfo, type),
246                      num_components);
247}
248
249src_reg
250vec4_visitor::get_nir_src(const nir_src &src, unsigned num_components)
251{
252   /* if type is not specified, default to signed int */
253   return get_nir_src(src, nir_type_int32, num_components);
254}
255
256src_reg
257vec4_visitor::get_nir_src_imm(const nir_src &src)
258{
259   assert(nir_src_num_components(src) == 1);
260   assert(nir_src_bit_size(src) == 32);
261   return nir_src_is_const(src) ? src_reg(brw_imm_d(nir_src_as_int(src))) :
262                                  get_nir_src(src, 1);
263}
264
265src_reg
266vec4_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
267{
268   nir_src *offset_src = nir_get_io_offset_src(instr);
269
270   if (nir_src_is_const(*offset_src)) {
271      /* The only constant offset we should find is 0.  brw_nir.c's
272       * add_const_offset_to_base() will fold other constant offsets
273       * into instr->const_index[0].
274       */
275      assert(nir_src_as_uint(*offset_src) == 0);
276      return src_reg();
277   }
278
279   return get_nir_src(*offset_src, BRW_REGISTER_TYPE_UD, 1);
280}
281
282static src_reg
283setup_imm_df(const vec4_builder &bld, double v)
284{
285   const intel_device_info *devinfo = bld.shader->devinfo;
286   assert(devinfo->ver == 7);
287
288   /* gfx7.5 does not support DF immediates straightforward but the DIM
289    * instruction allows to set the 64-bit immediate value.
290    */
291   if (devinfo->verx10 == 75) {
292      const vec4_builder ubld = bld.exec_all();
293      const dst_reg dst = bld.vgrf(BRW_REGISTER_TYPE_DF);
294      ubld.DIM(dst, brw_imm_df(v));
295      return swizzle(src_reg(dst), BRW_SWIZZLE_XXXX);
296   }
297
298   /* gfx7 does not support DF immediates */
299   union {
300      double d;
301      struct {
302         uint32_t i1;
303         uint32_t i2;
304      };
305   } di;
306
307   di.d = v;
308
309   /* Write the low 32-bit of the constant to the X:UD channel and the
310    * high 32-bit to the Y:UD channel to build the constant in a VGRF.
311    * We have to do this twice (offset 0 and offset 1), since a DF VGRF takes
312    * two SIMD8 registers in SIMD4x2 execution. Finally, return a swizzle
313    * XXXX so any access to the VGRF only reads the constant data in these
314    * channels.
315    */
316   const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
317   for (unsigned n = 0; n < 2; n++) {
318      const vec4_builder ubld = bld.exec_all().group(4, n);
319      ubld.MOV(writemask(offset(tmp, 8, n), WRITEMASK_X), brw_imm_ud(di.i1));
320      ubld.MOV(writemask(offset(tmp, 8, n), WRITEMASK_Y), brw_imm_ud(di.i2));
321   }
322
323   return swizzle(src_reg(retype(tmp, BRW_REGISTER_TYPE_DF)), BRW_SWIZZLE_XXXX);
324}
325
326void
327vec4_visitor::nir_emit_load_const(nir_load_const_instr *instr)
328{
329   dst_reg reg;
330
331   if (instr->def.bit_size == 64) {
332      reg = dst_reg(VGRF, alloc.allocate(2));
333      reg.type = BRW_REGISTER_TYPE_DF;
334   } else {
335      reg = dst_reg(VGRF, alloc.allocate(1));
336      reg.type = BRW_REGISTER_TYPE_D;
337   }
338
339   const vec4_builder ibld = vec4_builder(this).at_end();
340   unsigned remaining = brw_writemask_for_size(instr->def.num_components);
341
342   /* @FIXME: consider emitting vector operations to save some MOVs in
343    * cases where the components are representable in 8 bits.
344    * For now, we emit a MOV for each distinct value.
345    */
346   for (unsigned i = 0; i < instr->def.num_components; i++) {
347      unsigned writemask = 1 << i;
348
349      if ((remaining & writemask) == 0)
350         continue;
351
352      for (unsigned j = i; j < instr->def.num_components; j++) {
353         if ((instr->def.bit_size == 32 &&
354              instr->value[i].u32 == instr->value[j].u32) ||
355             (instr->def.bit_size == 64 &&
356              instr->value[i].f64 == instr->value[j].f64)) {
357            writemask |= 1 << j;
358         }
359      }
360
361      reg.writemask = writemask;
362      if (instr->def.bit_size == 64) {
363         emit(MOV(reg, setup_imm_df(ibld, instr->value[i].f64)));
364      } else {
365         emit(MOV(reg, brw_imm_d(instr->value[i].i32)));
366      }
367
368      remaining &= ~writemask;
369   }
370
371   /* Set final writemask */
372   reg.writemask = brw_writemask_for_size(instr->def.num_components);
373
374   nir_ssa_values[instr->def.index] = reg;
375}
376
377src_reg
378vec4_visitor::get_nir_ssbo_intrinsic_index(nir_intrinsic_instr *instr)
379{
380   /* SSBO stores are weird in that their index is in src[1] */
381   const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
382
383   if (nir_src_is_const(instr->src[src])) {
384      return brw_imm_ud(nir_src_as_uint(instr->src[src]));
385   } else {
386      return emit_uniformize(get_nir_src(instr->src[src]));
387   }
388}
389
390void
391vec4_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
392{
393   dst_reg dest;
394   src_reg src;
395
396   switch (instr->intrinsic) {
397
398   case nir_intrinsic_load_input: {
399      assert(nir_dest_bit_size(instr->dest) == 32);
400      /* We set EmitNoIndirectInput for VS */
401      unsigned load_offset = nir_src_as_uint(instr->src[0]);
402
403      dest = get_nir_dest(instr->dest);
404      dest.writemask = brw_writemask_for_size(instr->num_components);
405
406      src = src_reg(ATTR, instr->const_index[0] + load_offset,
407                    glsl_type::uvec4_type);
408      src = retype(src, dest.type);
409
410      /* Swizzle source based on component layout qualifier */
411      src.swizzle = BRW_SWZ_COMP_INPUT(nir_intrinsic_component(instr));
412      emit(MOV(dest, src));
413      break;
414   }
415
416   case nir_intrinsic_store_output: {
417      assert(nir_src_bit_size(instr->src[0]) == 32);
418      unsigned store_offset = nir_src_as_uint(instr->src[1]);
419      int varying = instr->const_index[0] + store_offset;
420      src = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F,
421                        instr->num_components);
422
423      unsigned c = nir_intrinsic_component(instr);
424      output_reg[varying][c] = dst_reg(src);
425      output_num_components[varying][c] = instr->num_components;
426      break;
427   }
428
429   case nir_intrinsic_get_ssbo_size: {
430      assert(nir_src_num_components(instr->src[0]) == 1);
431      unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
432                            nir_src_as_uint(instr->src[0]) : 0;
433
434      dst_reg result_dst = get_nir_dest(instr->dest);
435      vec4_instruction *inst = new(mem_ctx)
436         vec4_instruction(SHADER_OPCODE_GET_BUFFER_SIZE, result_dst);
437
438      inst->base_mrf = 2;
439      inst->mlen = 1; /* always at least one */
440      inst->src[1] = brw_imm_ud(ssbo_index);
441
442      /* MRF for the first parameter */
443      src_reg lod = brw_imm_d(0);
444      int param_base = inst->base_mrf;
445      int writemask = WRITEMASK_X;
446      emit(MOV(dst_reg(MRF, param_base, glsl_type::int_type, writemask), lod));
447
448      emit(inst);
449      break;
450   }
451
452   case nir_intrinsic_store_ssbo: {
453      assert(devinfo->ver == 7);
454
455      /* brw_nir_lower_mem_access_bit_sizes takes care of this */
456      assert(nir_src_bit_size(instr->src[0]) == 32);
457      assert(nir_intrinsic_write_mask(instr) ==
458             (1u << instr->num_components) - 1);
459
460      src_reg surf_index = get_nir_ssbo_intrinsic_index(instr);
461      src_reg offset_reg = retype(get_nir_src_imm(instr->src[2]),
462                                  BRW_REGISTER_TYPE_UD);
463
464      /* Value */
465      src_reg val_reg = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F, 4);
466
467      /* IvyBridge does not have a native SIMD4x2 untyped write message so untyped
468       * writes will use SIMD8 mode. In order to hide this and keep symmetry across
469       * typed and untyped messages and across hardware platforms, the
470       * current implementation of the untyped messages will transparently convert
471       * the SIMD4x2 payload into an equivalent SIMD8 payload by transposing it
472       * and enabling only channel X on the SEND instruction.
473       *
474       * The above, works well for full vector writes, but not for partial writes
475       * where we want to write some channels and not others, like when we have
476       * code such as v.xyw = vec3(1,2,4). Because the untyped write messages are
477       * quite restrictive with regards to the channel enables we can configure in
478       * the message descriptor (not all combinations are allowed) we cannot simply
479       * implement these scenarios with a single message while keeping the
480       * aforementioned symmetry in the implementation. For now we de decided that
481       * it is better to keep the symmetry to reduce complexity, so in situations
482       * such as the one described we end up emitting two untyped write messages
483       * (one for xy and another for w).
484       *
485       * The code below packs consecutive channels into a single write message,
486       * detects gaps in the vector write and if needed, sends a second message
487       * with the remaining channels. If in the future we decide that we want to
488       * emit a single message at the expense of losing the symmetry in the
489       * implementation we can:
490       *
491       * 1) For IvyBridge: Only use the red channel of the untyped write SIMD8
492       *    message payload. In this mode we can write up to 8 offsets and dwords
493       *    to the red channel only (for the two vec4s in the SIMD4x2 execution)
494       *    and select which of the 8 channels carry data to write by setting the
495       *    appropriate writemask in the dst register of the SEND instruction.
496       *    It would require to write a new generator opcode specifically for
497       *    IvyBridge since we would need to prepare a SIMD8 payload that could
498       *    use any channel, not just X.
499       *
500       * 2) For Haswell+: Simply send a single write message but set the writemask
501       *    on the dst of the SEND instruction to select the channels we want to
502       *    write. It would require to modify the current messages to receive
503       *    and honor the writemask provided.
504       */
505      const vec4_builder bld = vec4_builder(this).at_end()
506                               .annotate(current_annotation, base_ir);
507
508      emit_untyped_write(bld, surf_index, offset_reg, val_reg,
509                         1 /* dims */, instr->num_components /* size */,
510                         BRW_PREDICATE_NONE);
511      break;
512   }
513
514   case nir_intrinsic_load_ssbo: {
515      assert(devinfo->ver == 7);
516
517      /* brw_nir_lower_mem_access_bit_sizes takes care of this */
518      assert(nir_dest_bit_size(instr->dest) == 32);
519
520      src_reg surf_index = get_nir_ssbo_intrinsic_index(instr);
521      src_reg offset_reg = retype(get_nir_src_imm(instr->src[1]),
522                                  BRW_REGISTER_TYPE_UD);
523
524      /* Read the vector */
525      const vec4_builder bld = vec4_builder(this).at_end()
526         .annotate(current_annotation, base_ir);
527
528      src_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
529                                              1 /* dims */, 4 /* size*/,
530                                              BRW_PREDICATE_NONE);
531      dst_reg dest = get_nir_dest(instr->dest);
532      read_result.type = dest.type;
533      read_result.swizzle = brw_swizzle_for_size(instr->num_components);
534      emit(MOV(dest, read_result));
535      break;
536   }
537
538   case nir_intrinsic_ssbo_atomic_add:
539   case nir_intrinsic_ssbo_atomic_imin:
540   case nir_intrinsic_ssbo_atomic_umin:
541   case nir_intrinsic_ssbo_atomic_imax:
542   case nir_intrinsic_ssbo_atomic_umax:
543   case nir_intrinsic_ssbo_atomic_and:
544   case nir_intrinsic_ssbo_atomic_or:
545   case nir_intrinsic_ssbo_atomic_xor:
546   case nir_intrinsic_ssbo_atomic_exchange:
547   case nir_intrinsic_ssbo_atomic_comp_swap:
548      nir_emit_ssbo_atomic(brw_aop_for_nir_intrinsic(instr), instr);
549      break;
550
551   case nir_intrinsic_load_vertex_id:
552      unreachable("should be lowered by lower_vertex_id()");
553
554   case nir_intrinsic_load_vertex_id_zero_base:
555   case nir_intrinsic_load_base_vertex:
556   case nir_intrinsic_load_instance_id:
557   case nir_intrinsic_load_base_instance:
558   case nir_intrinsic_load_draw_id:
559   case nir_intrinsic_load_invocation_id:
560      unreachable("should be lowered by brw_nir_lower_vs_inputs()");
561
562   case nir_intrinsic_load_uniform: {
563      /* Offsets are in bytes but they should always be multiples of 4 */
564      assert(nir_intrinsic_base(instr) % 4 == 0);
565
566      dest = get_nir_dest(instr->dest);
567
568      src = src_reg(dst_reg(UNIFORM, nir_intrinsic_base(instr) / 16));
569      src.type = dest.type;
570
571      /* Uniforms don't actually have to be vec4 aligned.  In the case that
572       * it isn't, we have to use a swizzle to shift things around.  They
573       * do still have the std140 alignment requirement that vec2's have to
574       * be vec2-aligned and vec3's and vec4's have to be vec4-aligned.
575       *
576       * The swizzle also works in the indirect case as the generator adds
577       * the swizzle to the offset for us.
578       */
579      const int type_size = type_sz(src.type);
580      unsigned shift = (nir_intrinsic_base(instr) % 16) / type_size;
581      assert(shift + instr->num_components <= 4);
582
583      if (nir_src_is_const(instr->src[0])) {
584         const unsigned load_offset = nir_src_as_uint(instr->src[0]);
585         /* Offsets are in bytes but they should always be multiples of 4 */
586         assert(load_offset % 4 == 0);
587
588         src.swizzle = brw_swizzle_for_size(instr->num_components);
589         dest.writemask = brw_writemask_for_size(instr->num_components);
590         unsigned offset = load_offset + shift * type_size;
591         src.offset = ROUND_DOWN_TO(offset, 16);
592         shift = (offset % 16) / type_size;
593         assert(shift + instr->num_components <= 4);
594         src.swizzle += BRW_SWIZZLE4(shift, shift, shift, shift);
595
596         emit(MOV(dest, src));
597      } else {
598         /* Uniform arrays are vec4 aligned, because of std140 alignment
599          * rules.
600          */
601         assert(shift == 0);
602
603         src_reg indirect = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_UD, 1);
604
605         /* MOV_INDIRECT is going to stomp the whole thing anyway */
606         dest.writemask = WRITEMASK_XYZW;
607
608         emit(SHADER_OPCODE_MOV_INDIRECT, dest, src,
609              indirect, brw_imm_ud(instr->const_index[1]));
610      }
611      break;
612   }
613
614   case nir_intrinsic_load_ubo: {
615      src_reg surf_index;
616
617      dest = get_nir_dest(instr->dest);
618
619      if (nir_src_is_const(instr->src[0])) {
620         /* The block index is a constant, so just emit the binding table entry
621          * as an immediate.
622          */
623         const unsigned index = nir_src_as_uint(instr->src[0]);
624         surf_index = brw_imm_ud(index);
625      } else {
626         /* The block index is not a constant. Evaluate the index expression
627          * per-channel and add the base UBO index; we have to select a value
628          * from any live channel.
629          */
630         surf_index = src_reg(this, glsl_type::uint_type);
631         emit(MOV(dst_reg(surf_index), get_nir_src(instr->src[0], nir_type_int32,
632                                                   instr->num_components)));
633         surf_index = emit_uniformize(surf_index);
634      }
635
636      src_reg push_reg;
637      src_reg offset_reg;
638      if (nir_src_is_const(instr->src[1])) {
639         unsigned load_offset = nir_src_as_uint(instr->src[1]);
640         unsigned aligned_offset = load_offset & ~15;
641         offset_reg = brw_imm_ud(aligned_offset);
642
643         /* See if we've selected this as a push constant candidate */
644         if (nir_src_is_const(instr->src[0])) {
645            const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
646            const unsigned offset_256b = aligned_offset / 32;
647
648            for (int i = 0; i < 4; i++) {
649               const struct brw_ubo_range *range = &prog_data->base.ubo_ranges[i];
650               if (range->block == ubo_block &&
651                   offset_256b >= range->start &&
652                   offset_256b < range->start + range->length) {
653
654                  push_reg = src_reg(dst_reg(UNIFORM, UBO_START + i));
655                  push_reg.type = dest.type;
656                  push_reg.offset = aligned_offset - 32 * range->start;
657                  break;
658               }
659            }
660         }
661      } else {
662         offset_reg = src_reg(this, glsl_type::uint_type);
663         emit(MOV(dst_reg(offset_reg),
664                  get_nir_src(instr->src[1], nir_type_uint32, 1)));
665      }
666
667      src_reg packed_consts;
668      if (push_reg.file != BAD_FILE) {
669         packed_consts = push_reg;
670      } else if (nir_dest_bit_size(instr->dest) == 32) {
671         packed_consts = src_reg(this, glsl_type::vec4_type);
672         emit_pull_constant_load_reg(dst_reg(packed_consts),
673                                     surf_index,
674                                     offset_reg,
675                                     NULL, NULL /* before_block/inst */);
676         prog_data->base.has_ubo_pull = true;
677      } else {
678         src_reg temp = src_reg(this, glsl_type::dvec4_type);
679         src_reg temp_float = retype(temp, BRW_REGISTER_TYPE_F);
680
681         emit_pull_constant_load_reg(dst_reg(temp_float),
682                                     surf_index, offset_reg, NULL, NULL);
683         if (offset_reg.file == IMM)
684            offset_reg.ud += 16;
685         else
686            emit(ADD(dst_reg(offset_reg), offset_reg, brw_imm_ud(16u)));
687         emit_pull_constant_load_reg(dst_reg(byte_offset(temp_float, REG_SIZE)),
688                                     surf_index, offset_reg, NULL, NULL);
689         prog_data->base.has_ubo_pull = true;
690
691         packed_consts = src_reg(this, glsl_type::dvec4_type);
692         shuffle_64bit_data(dst_reg(packed_consts), temp, false);
693      }
694
695      packed_consts.swizzle = brw_swizzle_for_size(instr->num_components);
696      if (nir_src_is_const(instr->src[1])) {
697         unsigned load_offset = nir_src_as_uint(instr->src[1]);
698         unsigned type_size = type_sz(dest.type);
699         packed_consts.swizzle +=
700            BRW_SWIZZLE4(load_offset % 16 / type_size,
701                         load_offset % 16 / type_size,
702                         load_offset % 16 / type_size,
703                         load_offset % 16 / type_size);
704      }
705
706      emit(MOV(dest, retype(packed_consts, dest.type)));
707
708      break;
709   }
710
711   case nir_intrinsic_scoped_barrier:
712      assert(nir_intrinsic_execution_scope(instr) == NIR_SCOPE_NONE);
713      FALLTHROUGH;
714   case nir_intrinsic_memory_barrier: {
715      const vec4_builder bld =
716         vec4_builder(this).at_end().annotate(current_annotation, base_ir);
717      const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
718      vec4_instruction *fence =
719         bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp, brw_vec8_grf(0, 0));
720      fence->sfid = GFX7_SFID_DATAPORT_DATA_CACHE;
721      break;
722   }
723
724   case nir_intrinsic_shader_clock: {
725      /* We cannot do anything if there is an event, so ignore it for now */
726      const src_reg shader_clock = get_timestamp();
727      const enum brw_reg_type type = brw_type_for_base_type(glsl_type::uvec2_type);
728
729      dest = get_nir_dest(instr->dest, type);
730      emit(MOV(dest, shader_clock));
731      break;
732   }
733
734   default:
735      unreachable("Unknown intrinsic");
736   }
737}
738
739void
740vec4_visitor::nir_emit_ssbo_atomic(int op, nir_intrinsic_instr *instr)
741{
742   dst_reg dest;
743   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
744      dest = get_nir_dest(instr->dest);
745
746   src_reg surface = get_nir_ssbo_intrinsic_index(instr);
747   src_reg offset = get_nir_src(instr->src[1], 1);
748   src_reg data1;
749   if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
750      data1 = get_nir_src(instr->src[2], 1);
751   src_reg data2;
752   if (op == BRW_AOP_CMPWR)
753      data2 = get_nir_src(instr->src[3], 1);
754
755   /* Emit the actual atomic operation operation */
756   const vec4_builder bld =
757      vec4_builder(this).at_end().annotate(current_annotation, base_ir);
758
759   src_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
760                                               data1, data2,
761                                               1 /* dims */, 1 /* rsize */,
762                                               op,
763                                               BRW_PREDICATE_NONE);
764   dest.type = atomic_result.type;
765   bld.MOV(dest, atomic_result);
766}
767
768static unsigned
769brw_swizzle_for_nir_swizzle(uint8_t swizzle[4])
770{
771   return BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
772}
773
774bool
775vec4_visitor::optimize_predicate(nir_alu_instr *instr,
776                                 enum brw_predicate *predicate)
777{
778   if (!instr->src[0].src.is_ssa ||
779       instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
780      return false;
781
782   nir_alu_instr *cmp_instr =
783      nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
784
785   switch (cmp_instr->op) {
786   case nir_op_b32any_fnequal2:
787   case nir_op_b32any_inequal2:
788   case nir_op_b32any_fnequal3:
789   case nir_op_b32any_inequal3:
790   case nir_op_b32any_fnequal4:
791   case nir_op_b32any_inequal4:
792      *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
793      break;
794   case nir_op_b32all_fequal2:
795   case nir_op_b32all_iequal2:
796   case nir_op_b32all_fequal3:
797   case nir_op_b32all_iequal3:
798   case nir_op_b32all_fequal4:
799   case nir_op_b32all_iequal4:
800      *predicate = BRW_PREDICATE_ALIGN16_ALL4H;
801      break;
802   default:
803      return false;
804   }
805
806   unsigned size_swizzle =
807      brw_swizzle_for_size(nir_op_infos[cmp_instr->op].input_sizes[0]);
808
809   src_reg op[2];
810   assert(nir_op_infos[cmp_instr->op].num_inputs == 2);
811   for (unsigned i = 0; i < 2; i++) {
812      nir_alu_type type = nir_op_infos[cmp_instr->op].input_types[i];
813      unsigned bit_size = nir_src_bit_size(cmp_instr->src[i].src);
814      type = (nir_alu_type) (((unsigned) type) | bit_size);
815      op[i] = get_nir_src(cmp_instr->src[i].src, type, 4);
816      unsigned base_swizzle =
817         brw_swizzle_for_nir_swizzle(cmp_instr->src[i].swizzle);
818      op[i].swizzle = brw_compose_swizzle(size_swizzle, base_swizzle);
819   }
820
821   emit(CMP(dst_null_d(), op[0], op[1],
822            brw_cmod_for_nir_comparison(cmp_instr->op)));
823
824   return true;
825}
826
827static void
828emit_find_msb_using_lzd(const vec4_builder &bld,
829                        const dst_reg &dst,
830                        const src_reg &src,
831                        bool is_signed)
832{
833   vec4_instruction *inst;
834   src_reg temp = src;
835
836   if (is_signed) {
837      /* LZD of an absolute value source almost always does the right
838       * thing.  There are two problem values:
839       *
840       * * 0x80000000.  Since abs(0x80000000) == 0x80000000, LZD returns
841       *   0.  However, findMSB(int(0x80000000)) == 30.
842       *
843       * * 0xffffffff.  Since abs(0xffffffff) == 1, LZD returns
844       *   31.  Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
845       *
846       *    For a value of zero or negative one, -1 will be returned.
847       *
848       * * Negative powers of two.  LZD(abs(-(1<<x))) returns x, but
849       *   findMSB(-(1<<x)) should return x-1.
850       *
851       * For all negative number cases, including 0x80000000 and
852       * 0xffffffff, the correct value is obtained from LZD if instead of
853       * negating the (already negative) value the logical-not is used.  A
854       * conditional logical-not can be achieved in two instructions.
855       */
856      temp = src_reg(bld.vgrf(BRW_REGISTER_TYPE_D));
857
858      bld.ASR(dst_reg(temp), src, brw_imm_d(31));
859      bld.XOR(dst_reg(temp), temp, src);
860   }
861
862   bld.LZD(retype(dst, BRW_REGISTER_TYPE_UD),
863           retype(temp, BRW_REGISTER_TYPE_UD));
864
865   /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
866    * from the LSB side. Subtract the result from 31 to convert the MSB count
867    * into an LSB count.  If no bits are set, LZD will return 32.  31-32 = -1,
868    * which is exactly what findMSB() is supposed to return.
869    */
870   inst = bld.ADD(dst, retype(src_reg(dst), BRW_REGISTER_TYPE_D),
871                  brw_imm_d(31));
872   inst->src[0].negate = true;
873}
874
875void
876vec4_visitor::emit_conversion_from_double(dst_reg dst, src_reg src)
877{
878   enum opcode op;
879   switch (dst.type) {
880   case BRW_REGISTER_TYPE_D:
881      op = VEC4_OPCODE_DOUBLE_TO_D32;
882      break;
883   case BRW_REGISTER_TYPE_UD:
884      op = VEC4_OPCODE_DOUBLE_TO_U32;
885      break;
886   case BRW_REGISTER_TYPE_F:
887      op = VEC4_OPCODE_DOUBLE_TO_F32;
888      break;
889   default:
890      unreachable("Unknown conversion");
891   }
892
893   dst_reg temp = dst_reg(this, glsl_type::dvec4_type);
894   emit(MOV(temp, src));
895   dst_reg temp2 = dst_reg(this, glsl_type::dvec4_type);
896   emit(op, temp2, src_reg(temp));
897
898   emit(VEC4_OPCODE_PICK_LOW_32BIT, retype(temp2, dst.type), src_reg(temp2));
899   emit(MOV(dst, src_reg(retype(temp2, dst.type))));
900}
901
902void
903vec4_visitor::emit_conversion_to_double(dst_reg dst, src_reg src)
904{
905   dst_reg tmp_dst = dst_reg(src_reg(this, glsl_type::dvec4_type));
906   src_reg tmp_src = retype(src_reg(this, glsl_type::vec4_type), src.type);
907   emit(MOV(dst_reg(tmp_src), src));
908   emit(VEC4_OPCODE_TO_DOUBLE, tmp_dst, tmp_src);
909   emit(MOV(dst, src_reg(tmp_dst)));
910}
911
912/**
913 * Try to use an immediate value for a source
914 *
915 * In cases of flow control, constant propagation is sometimes unable to
916 * determine that a register contains a constant value.  To work around this,
917 * try to emit a literal as one of the sources.  If \c try_src0_also is set,
918 * \c op[0] will also be tried for an immediate value.
919 *
920 * If \c op[0] is modified, the operands will be exchanged so that \c op[1]
921 * will always be the immediate value.
922 *
923 * \return The index of the source that was modified, 0 or 1, if successful.
924 * Otherwise, -1.
925 *
926 * \param op - Operands to the instruction
927 * \param try_src0_also - True if \c op[0] should also be a candidate for
928 *                        getting an immediate value.  This should only be set
929 *                        for commutative operations.
930 */
931static int
932try_immediate_source(const nir_alu_instr *instr, src_reg *op,
933                     bool try_src0_also)
934{
935   unsigned idx;
936
937   /* MOV should be the only single-source instruction passed to this
938    * function.  Any other unary instruction with a constant source should
939    * have been constant-folded away!
940    */
941   assert(nir_op_infos[instr->op].num_inputs > 1 ||
942          instr->op == nir_op_mov);
943
944   if (instr->op != nir_op_mov &&
945       nir_src_bit_size(instr->src[1].src) == 32 &&
946       nir_src_is_const(instr->src[1].src)) {
947      idx = 1;
948   } else if (try_src0_also &&
949         nir_src_bit_size(instr->src[0].src) == 32 &&
950         nir_src_is_const(instr->src[0].src)) {
951      idx = 0;
952   } else {
953      return -1;
954   }
955
956   const enum brw_reg_type old_type = op[idx].type;
957
958   switch (old_type) {
959   case BRW_REGISTER_TYPE_D:
960   case BRW_REGISTER_TYPE_UD: {
961      int first_comp = -1;
962      int d = 0;
963
964      for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
965         if (nir_alu_instr_channel_used(instr, idx, i)) {
966            if (first_comp < 0) {
967               first_comp = i;
968               d = nir_src_comp_as_int(instr->src[idx].src,
969                                       instr->src[idx].swizzle[i]);
970            } else if (d != nir_src_comp_as_int(instr->src[idx].src,
971                                                instr->src[idx].swizzle[i])) {
972               return -1;
973            }
974         }
975      }
976
977      assert(first_comp >= 0);
978
979      if (op[idx].abs)
980         d = MAX2(-d, d);
981
982      if (op[idx].negate)
983         d = -d;
984
985      op[idx] = retype(src_reg(brw_imm_d(d)), old_type);
986      break;
987   }
988
989   case BRW_REGISTER_TYPE_F: {
990      int first_comp = -1;
991      float f[NIR_MAX_VEC_COMPONENTS] = { 0.0f };
992      bool is_scalar = true;
993
994      for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
995         if (nir_alu_instr_channel_used(instr, idx, i)) {
996            f[i] = nir_src_comp_as_float(instr->src[idx].src,
997                                         instr->src[idx].swizzle[i]);
998            if (first_comp < 0) {
999               first_comp = i;
1000            } else if (f[first_comp] != f[i]) {
1001               is_scalar = false;
1002            }
1003         }
1004      }
1005
1006      if (is_scalar) {
1007         if (op[idx].abs)
1008            f[first_comp] = fabs(f[first_comp]);
1009
1010         if (op[idx].negate)
1011            f[first_comp] = -f[first_comp];
1012
1013         op[idx] = src_reg(brw_imm_f(f[first_comp]));
1014         assert(op[idx].type == old_type);
1015      } else {
1016         uint8_t vf_values[4] = { 0, 0, 0, 0 };
1017
1018         for (unsigned i = 0; i < ARRAY_SIZE(vf_values); i++) {
1019
1020            if (op[idx].abs)
1021               f[i] = fabs(f[i]);
1022
1023            if (op[idx].negate)
1024               f[i] = -f[i];
1025
1026            const int vf = brw_float_to_vf(f[i]);
1027            if (vf == -1)
1028               return -1;
1029
1030            vf_values[i] = vf;
1031         }
1032
1033         op[idx] = src_reg(brw_imm_vf4(vf_values[0], vf_values[1],
1034                                       vf_values[2], vf_values[3]));
1035      }
1036      break;
1037   }
1038
1039   default:
1040      unreachable("Non-32bit type.");
1041   }
1042
1043   /* If the instruction has more than one source, the instruction format only
1044    * allows source 1 to be an immediate value.  If the immediate value was
1045    * source 0, then the sources must be exchanged.
1046    */
1047   if (idx == 0 && instr->op != nir_op_mov) {
1048      src_reg tmp = op[0];
1049      op[0] = op[1];
1050      op[1] = tmp;
1051   }
1052
1053   return idx;
1054}
1055
1056void
1057vec4_visitor::fix_float_operands(src_reg op[3], nir_alu_instr *instr)
1058{
1059   bool fixed[3] = { false, false, false };
1060
1061   for (unsigned i = 0; i < 2; i++) {
1062      if (!nir_src_is_const(instr->src[i].src))
1063         continue;
1064
1065      for (unsigned j = i + 1; j < 3; j++) {
1066         if (fixed[j])
1067            continue;
1068
1069         if (!nir_src_is_const(instr->src[j].src))
1070            continue;
1071
1072         if (nir_alu_srcs_equal(instr, instr, i, j)) {
1073            if (!fixed[i])
1074               op[i] = fix_3src_operand(op[i]);
1075
1076            op[j] = op[i];
1077
1078            fixed[i] = true;
1079            fixed[j] = true;
1080         } else if (nir_alu_srcs_negative_equal(instr, instr, i, j)) {
1081            if (!fixed[i])
1082               op[i] = fix_3src_operand(op[i]);
1083
1084            op[j] = op[i];
1085            op[j].negate = !op[j].negate;
1086
1087            fixed[i] = true;
1088            fixed[j] = true;
1089         }
1090      }
1091   }
1092
1093   for (unsigned i = 0; i < 3; i++) {
1094      if (!fixed[i])
1095         op[i] = fix_3src_operand(op[i]);
1096   }
1097}
1098
1099static bool
1100const_src_fits_in_16_bits(const nir_src &src, brw_reg_type type)
1101{
1102   assert(nir_src_is_const(src));
1103   if (brw_reg_type_is_unsigned_integer(type)) {
1104      return nir_src_comp_as_uint(src, 0) <= UINT16_MAX;
1105   } else {
1106      const int64_t c = nir_src_comp_as_int(src, 0);
1107      return c <= INT16_MAX && c >= INT16_MIN;
1108   }
1109}
1110
1111void
1112vec4_visitor::nir_emit_alu(nir_alu_instr *instr)
1113{
1114   vec4_instruction *inst;
1115
1116   nir_alu_type dst_type = (nir_alu_type) (nir_op_infos[instr->op].output_type |
1117                                           nir_dest_bit_size(instr->dest.dest));
1118   dst_reg dst = get_nir_dest(instr->dest.dest, dst_type);
1119   dst.writemask = instr->dest.write_mask;
1120
1121   assert(!instr->dest.saturate);
1122
1123   src_reg op[4];
1124   for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1125      /* We don't lower to source modifiers, so they shouldn't exist. */
1126      assert(!instr->src[i].abs);
1127      assert(!instr->src[i].negate);
1128
1129      nir_alu_type src_type = (nir_alu_type)
1130         (nir_op_infos[instr->op].input_types[i] |
1131          nir_src_bit_size(instr->src[i].src));
1132      op[i] = get_nir_src(instr->src[i].src, src_type, 4);
1133      op[i].swizzle = brw_swizzle_for_nir_swizzle(instr->src[i].swizzle);
1134   }
1135
1136#ifndef NDEBUG
1137   /* On Gen7 and earlier, no functionality is exposed that should allow 8-bit
1138    * integer types to ever exist.
1139    */
1140   for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
1141      assert(type_sz(op[i].type) > 1);
1142#endif
1143
1144   switch (instr->op) {
1145   case nir_op_mov:
1146      try_immediate_source(instr, &op[0], true);
1147      inst = emit(MOV(dst, op[0]));
1148      break;
1149
1150   case nir_op_vec2:
1151   case nir_op_vec3:
1152   case nir_op_vec4:
1153      unreachable("not reached: should be handled by lower_vec_to_movs()");
1154
1155   case nir_op_i2f32:
1156   case nir_op_u2f32:
1157      inst = emit(MOV(dst, op[0]));
1158      break;
1159
1160   case nir_op_f2f32:
1161   case nir_op_f2i32:
1162   case nir_op_f2u32:
1163      if (nir_src_bit_size(instr->src[0].src) == 64)
1164         emit_conversion_from_double(dst, op[0]);
1165      else
1166         inst = emit(MOV(dst, op[0]));
1167      break;
1168
1169   case nir_op_f2f64:
1170   case nir_op_i2f64:
1171   case nir_op_u2f64:
1172      emit_conversion_to_double(dst, op[0]);
1173      break;
1174
1175   case nir_op_fsat:
1176      inst = emit(MOV(dst, op[0]));
1177      inst->saturate = true;
1178      break;
1179
1180   case nir_op_fneg:
1181   case nir_op_ineg:
1182      op[0].negate = true;
1183      inst = emit(MOV(dst, op[0]));
1184      break;
1185
1186   case nir_op_fabs:
1187   case nir_op_iabs:
1188      op[0].negate = false;
1189      op[0].abs = true;
1190      inst = emit(MOV(dst, op[0]));
1191      break;
1192
1193   case nir_op_iadd:
1194      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1195      FALLTHROUGH;
1196   case nir_op_fadd:
1197      try_immediate_source(instr, op, true);
1198      inst = emit(ADD(dst, op[0], op[1]));
1199      break;
1200
1201   case nir_op_uadd_sat:
1202      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1203      inst = emit(ADD(dst, op[0], op[1]));
1204      inst->saturate = true;
1205      break;
1206
1207   case nir_op_fmul:
1208      try_immediate_source(instr, op, true);
1209      inst = emit(MUL(dst, op[0], op[1]));
1210      break;
1211
1212   case nir_op_imul: {
1213      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1214
1215      /* For integer multiplication, the MUL uses the low 16 bits of one of
1216       * the operands (src0 through SNB, src1 on IVB and later). The MACH
1217       * accumulates in the contribution of the upper 16 bits of that
1218       * operand. If we can determine that one of the args is in the low
1219       * 16 bits, though, we can just emit a single MUL.
1220       */
1221      if (nir_src_is_const(instr->src[0].src) &&
1222          nir_alu_instr_src_read_mask(instr, 0) == 1 &&
1223          const_src_fits_in_16_bits(instr->src[0].src, op[0].type)) {
1224         if (devinfo->ver < 7)
1225            emit(MUL(dst, op[0], op[1]));
1226         else
1227            emit(MUL(dst, op[1], op[0]));
1228      } else if (nir_src_is_const(instr->src[1].src) &&
1229                 nir_alu_instr_src_read_mask(instr, 1) == 1 &&
1230                 const_src_fits_in_16_bits(instr->src[1].src, op[1].type)) {
1231         if (devinfo->ver < 7)
1232            emit(MUL(dst, op[1], op[0]));
1233         else
1234            emit(MUL(dst, op[0], op[1]));
1235      } else {
1236         struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
1237
1238         emit(MUL(acc, op[0], op[1]));
1239         emit(MACH(dst_null_d(), op[0], op[1]));
1240         emit(MOV(dst, src_reg(acc)));
1241      }
1242      break;
1243   }
1244
1245   case nir_op_imul_high:
1246   case nir_op_umul_high: {
1247      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1248      struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
1249
1250      emit(MUL(acc, op[0], op[1]));
1251      emit(MACH(dst, op[0], op[1]));
1252      break;
1253   }
1254
1255   case nir_op_frcp:
1256      inst = emit_math(SHADER_OPCODE_RCP, dst, op[0]);
1257      break;
1258
1259   case nir_op_fexp2:
1260      inst = emit_math(SHADER_OPCODE_EXP2, dst, op[0]);
1261      break;
1262
1263   case nir_op_flog2:
1264      inst = emit_math(SHADER_OPCODE_LOG2, dst, op[0]);
1265      break;
1266
1267   case nir_op_fsin:
1268      inst = emit_math(SHADER_OPCODE_SIN, dst, op[0]);
1269      break;
1270
1271   case nir_op_fcos:
1272      inst = emit_math(SHADER_OPCODE_COS, dst, op[0]);
1273      break;
1274
1275   case nir_op_idiv:
1276   case nir_op_udiv:
1277      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1278      emit_math(SHADER_OPCODE_INT_QUOTIENT, dst, op[0], op[1]);
1279      break;
1280
1281   case nir_op_umod:
1282   case nir_op_irem:
1283      /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1284       * appears that our hardware just does the right thing for signed
1285       * remainder.
1286       */
1287      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1288      emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
1289      break;
1290
1291   case nir_op_imod: {
1292      /* Get a regular C-style remainder.  If a % b == 0, set the predicate. */
1293      inst = emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
1294
1295      /* Math instructions don't support conditional mod */
1296      inst = emit(MOV(dst_null_d(), src_reg(dst)));
1297      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1298
1299      /* Now, we need to determine if signs of the sources are different.
1300       * When we XOR the sources, the top bit is 0 if they are the same and 1
1301       * if they are different.  We can then use a conditional modifier to
1302       * turn that into a predicate.  This leads us to an XOR.l instruction.
1303       *
1304       * Technically, according to the PRM, you're not allowed to use .l on a
1305       * XOR instruction.  However, empirical experiments and Curro's reading
1306       * of the simulator source both indicate that it's safe.
1307       */
1308      src_reg tmp = src_reg(this, glsl_type::ivec4_type);
1309      inst = emit(XOR(dst_reg(tmp), op[0], op[1]));
1310      inst->predicate = BRW_PREDICATE_NORMAL;
1311      inst->conditional_mod = BRW_CONDITIONAL_L;
1312
1313      /* If the result of the initial remainder operation is non-zero and the
1314       * two sources have different signs, add in a copy of op[1] to get the
1315       * final integer modulus value.
1316       */
1317      inst = emit(ADD(dst, src_reg(dst), op[1]));
1318      inst->predicate = BRW_PREDICATE_NORMAL;
1319      break;
1320   }
1321
1322   case nir_op_ldexp:
1323      unreachable("not reached: should be handled by ldexp_to_arith()");
1324
1325   case nir_op_fsqrt:
1326      inst = emit_math(SHADER_OPCODE_SQRT, dst, op[0]);
1327      break;
1328
1329   case nir_op_frsq:
1330      inst = emit_math(SHADER_OPCODE_RSQ, dst, op[0]);
1331      break;
1332
1333   case nir_op_fpow:
1334      inst = emit_math(SHADER_OPCODE_POW, dst, op[0], op[1]);
1335      break;
1336
1337   case nir_op_uadd_carry: {
1338      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1339      struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1340
1341      emit(ADDC(dst_null_ud(), op[0], op[1]));
1342      emit(MOV(dst, src_reg(acc)));
1343      break;
1344   }
1345
1346   case nir_op_usub_borrow: {
1347      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1348      struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1349
1350      emit(SUBB(dst_null_ud(), op[0], op[1]));
1351      emit(MOV(dst, src_reg(acc)));
1352      break;
1353   }
1354
1355   case nir_op_ftrunc:
1356      inst = emit(RNDZ(dst, op[0]));
1357      if (devinfo->ver < 6) {
1358         inst->conditional_mod = BRW_CONDITIONAL_R;
1359         inst = emit(ADD(dst, src_reg(dst), brw_imm_f(1.0f)));
1360         inst->predicate = BRW_PREDICATE_NORMAL;
1361         inst = emit(MOV(dst, src_reg(dst))); /* for potential saturation */
1362      }
1363      break;
1364
1365   case nir_op_fceil: {
1366      src_reg tmp = src_reg(this, glsl_type::float_type);
1367      tmp.swizzle =
1368         brw_swizzle_for_size(instr->src[0].src.is_ssa ?
1369                              instr->src[0].src.ssa->num_components :
1370                              instr->src[0].src.reg.reg->num_components);
1371
1372      op[0].negate = !op[0].negate;
1373      emit(RNDD(dst_reg(tmp), op[0]));
1374      tmp.negate = true;
1375      inst = emit(MOV(dst, tmp));
1376      break;
1377   }
1378
1379   case nir_op_ffloor:
1380      inst = emit(RNDD(dst, op[0]));
1381      break;
1382
1383   case nir_op_ffract:
1384      inst = emit(FRC(dst, op[0]));
1385      break;
1386
1387   case nir_op_fround_even:
1388      inst = emit(RNDE(dst, op[0]));
1389      if (devinfo->ver < 6) {
1390         inst->conditional_mod = BRW_CONDITIONAL_R;
1391         inst = emit(ADD(dst, src_reg(dst), brw_imm_f(1.0f)));
1392         inst->predicate = BRW_PREDICATE_NORMAL;
1393         inst = emit(MOV(dst, src_reg(dst))); /* for potential saturation */
1394      }
1395      break;
1396
1397   case nir_op_fquantize2f16: {
1398      /* See also vec4_visitor::emit_pack_half_2x16() */
1399      src_reg tmp16 = src_reg(this, glsl_type::uvec4_type);
1400      src_reg tmp32 = src_reg(this, glsl_type::vec4_type);
1401      src_reg zero = src_reg(this, glsl_type::vec4_type);
1402
1403      /* Check for denormal */
1404      src_reg abs_src0 = op[0];
1405      abs_src0.abs = true;
1406      emit(CMP(dst_null_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1407               BRW_CONDITIONAL_L));
1408      /* Get the appropriately signed zero */
1409      emit(AND(retype(dst_reg(zero), BRW_REGISTER_TYPE_UD),
1410               retype(op[0], BRW_REGISTER_TYPE_UD),
1411               brw_imm_ud(0x80000000)));
1412      /* Do the actual F32 -> F16 -> F32 conversion */
1413      emit(F32TO16(dst_reg(tmp16), op[0]));
1414      emit(F16TO32(dst_reg(tmp32), tmp16));
1415      /* Select that or zero based on normal status */
1416      inst = emit(BRW_OPCODE_SEL, dst, zero, tmp32);
1417      inst->predicate = BRW_PREDICATE_NORMAL;
1418      break;
1419   }
1420
1421   case nir_op_imin:
1422   case nir_op_umin:
1423      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1424      FALLTHROUGH;
1425   case nir_op_fmin:
1426      try_immediate_source(instr, op, true);
1427      inst = emit_minmax(BRW_CONDITIONAL_L, dst, op[0], op[1]);
1428      break;
1429
1430   case nir_op_imax:
1431   case nir_op_umax:
1432      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1433      FALLTHROUGH;
1434   case nir_op_fmax:
1435      try_immediate_source(instr, op, true);
1436      inst = emit_minmax(BRW_CONDITIONAL_GE, dst, op[0], op[1]);
1437      break;
1438
1439   case nir_op_fddx:
1440   case nir_op_fddx_coarse:
1441   case nir_op_fddx_fine:
1442   case nir_op_fddy:
1443   case nir_op_fddy_coarse:
1444   case nir_op_fddy_fine:
1445      unreachable("derivatives are not valid in vertex shaders");
1446
1447   case nir_op_ilt32:
1448   case nir_op_ult32:
1449   case nir_op_ige32:
1450   case nir_op_uge32:
1451   case nir_op_ieq32:
1452   case nir_op_ine32:
1453      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1454      FALLTHROUGH;
1455   case nir_op_flt32:
1456   case nir_op_fge32:
1457   case nir_op_feq32:
1458   case nir_op_fneu32: {
1459      enum brw_conditional_mod conditional_mod =
1460         brw_cmod_for_nir_comparison(instr->op);
1461
1462      if (nir_src_bit_size(instr->src[0].src) < 64) {
1463         /* If the order of the sources is changed due to an immediate value,
1464          * then the condition must also be changed.
1465          */
1466         if (try_immediate_source(instr, op, true) == 0)
1467            conditional_mod = brw_swap_cmod(conditional_mod);
1468
1469         emit(CMP(dst, op[0], op[1], conditional_mod));
1470      } else {
1471         /* Produce a 32-bit boolean result from the DF comparison by selecting
1472          * only the low 32-bit in each DF produced. Do this in a temporary
1473          * so we can then move from there to the result using align16 again
1474          * to honor the original writemask.
1475          */
1476         dst_reg temp = dst_reg(this, glsl_type::dvec4_type);
1477         emit(CMP(temp, op[0], op[1], conditional_mod));
1478         dst_reg result = dst_reg(this, glsl_type::bvec4_type);
1479         emit(VEC4_OPCODE_PICK_LOW_32BIT, result, src_reg(temp));
1480         emit(MOV(dst, src_reg(result)));
1481      }
1482      break;
1483   }
1484
1485   case nir_op_b32all_iequal2:
1486   case nir_op_b32all_iequal3:
1487   case nir_op_b32all_iequal4:
1488      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1489      FALLTHROUGH;
1490   case nir_op_b32all_fequal2:
1491   case nir_op_b32all_fequal3:
1492   case nir_op_b32all_fequal4: {
1493      unsigned swiz =
1494         brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1495
1496      emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1497               brw_cmod_for_nir_comparison(instr->op)));
1498      emit(MOV(dst, brw_imm_d(0)));
1499      inst = emit(MOV(dst, brw_imm_d(~0)));
1500      inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1501      break;
1502   }
1503
1504   case nir_op_b32any_inequal2:
1505   case nir_op_b32any_inequal3:
1506   case nir_op_b32any_inequal4:
1507      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1508      FALLTHROUGH;
1509   case nir_op_b32any_fnequal2:
1510   case nir_op_b32any_fnequal3:
1511   case nir_op_b32any_fnequal4: {
1512      unsigned swiz =
1513         brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1514
1515      emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1516               brw_cmod_for_nir_comparison(instr->op)));
1517
1518      emit(MOV(dst, brw_imm_d(0)));
1519      inst = emit(MOV(dst, brw_imm_d(~0)));
1520      inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1521      break;
1522   }
1523
1524   case nir_op_inot:
1525      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1526      emit(NOT(dst, op[0]));
1527      break;
1528
1529   case nir_op_ixor:
1530      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1531      try_immediate_source(instr, op, true);
1532      emit(XOR(dst, op[0], op[1]));
1533      break;
1534
1535   case nir_op_ior:
1536      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1537      try_immediate_source(instr, op, true);
1538      emit(OR(dst, op[0], op[1]));
1539      break;
1540
1541   case nir_op_iand:
1542      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1543      try_immediate_source(instr, op, true);
1544      emit(AND(dst, op[0], op[1]));
1545      break;
1546
1547   case nir_op_b2i32:
1548   case nir_op_b2f32:
1549   case nir_op_b2f64:
1550      if (nir_dest_bit_size(instr->dest.dest) > 32) {
1551         assert(dst.type == BRW_REGISTER_TYPE_DF);
1552         emit_conversion_to_double(dst, negate(op[0]));
1553      } else {
1554         emit(MOV(dst, negate(op[0])));
1555      }
1556      break;
1557
1558   case nir_op_f2b32:
1559      if (nir_src_bit_size(instr->src[0].src) == 64) {
1560         /* We use a MOV with conditional_mod to check if the provided value is
1561          * 0.0. We want this to flush denormalized numbers to zero, so we set a
1562          * source modifier on the source operand to trigger this, as source
1563          * modifiers don't affect the result of the testing against 0.0.
1564          */
1565         src_reg value = op[0];
1566         value.abs = true;
1567         vec4_instruction *inst = emit(MOV(dst_null_df(), value));
1568         inst->conditional_mod = BRW_CONDITIONAL_NZ;
1569
1570         src_reg one = src_reg(this, glsl_type::ivec4_type);
1571         emit(MOV(dst_reg(one), brw_imm_d(~0)));
1572         inst = emit(BRW_OPCODE_SEL, dst, one, brw_imm_d(0));
1573         inst->predicate = BRW_PREDICATE_NORMAL;
1574      } else {
1575         emit(CMP(dst, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1576      }
1577      break;
1578
1579   case nir_op_i2b32:
1580      emit(CMP(dst, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
1581      break;
1582
1583   case nir_op_unpack_half_2x16_split_x:
1584   case nir_op_unpack_half_2x16_split_y:
1585   case nir_op_pack_half_2x16_split:
1586      unreachable("not reached: should not occur in vertex shader");
1587
1588   case nir_op_unpack_snorm_2x16:
1589   case nir_op_unpack_unorm_2x16:
1590   case nir_op_pack_snorm_2x16:
1591   case nir_op_pack_unorm_2x16:
1592      unreachable("not reached: should be handled by lower_packing_builtins");
1593
1594   case nir_op_pack_uvec4_to_uint:
1595      unreachable("not reached");
1596
1597   case nir_op_pack_uvec2_to_uint: {
1598      dst_reg tmp1 = dst_reg(this, glsl_type::uint_type);
1599      tmp1.writemask = WRITEMASK_X;
1600      op[0].swizzle = BRW_SWIZZLE_YYYY;
1601      emit(SHL(tmp1, op[0], src_reg(brw_imm_ud(16u))));
1602
1603      dst_reg tmp2 = dst_reg(this, glsl_type::uint_type);
1604      tmp2.writemask = WRITEMASK_X;
1605      op[0].swizzle = BRW_SWIZZLE_XXXX;
1606      emit(AND(tmp2, op[0], src_reg(brw_imm_ud(0xffffu))));
1607
1608      emit(OR(dst, src_reg(tmp1), src_reg(tmp2)));
1609      break;
1610   }
1611
1612   case nir_op_pack_64_2x32_split: {
1613      dst_reg result = dst_reg(this, glsl_type::dvec4_type);
1614      dst_reg tmp = dst_reg(this, glsl_type::uvec4_type);
1615      emit(MOV(tmp, retype(op[0], BRW_REGISTER_TYPE_UD)));
1616      emit(VEC4_OPCODE_SET_LOW_32BIT, result, src_reg(tmp));
1617      emit(MOV(tmp, retype(op[1], BRW_REGISTER_TYPE_UD)));
1618      emit(VEC4_OPCODE_SET_HIGH_32BIT, result, src_reg(tmp));
1619      emit(MOV(dst, src_reg(result)));
1620      break;
1621   }
1622
1623   case nir_op_unpack_64_2x32_split_x:
1624   case nir_op_unpack_64_2x32_split_y: {
1625      enum opcode oper = (instr->op == nir_op_unpack_64_2x32_split_x) ?
1626         VEC4_OPCODE_PICK_LOW_32BIT : VEC4_OPCODE_PICK_HIGH_32BIT;
1627      dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
1628      emit(MOV(tmp, op[0]));
1629      dst_reg tmp2 = dst_reg(this, glsl_type::uvec4_type);
1630      emit(oper, tmp2, src_reg(tmp));
1631      emit(MOV(dst, src_reg(tmp2)));
1632      break;
1633   }
1634
1635   case nir_op_unpack_half_2x16:
1636      /* As NIR does not guarantee that we have a correct swizzle outside the
1637       * boundaries of a vector, and the implementation of emit_unpack_half_2x16
1638       * uses the source operand in an operation with WRITEMASK_Y while our
1639       * source operand has only size 1, it accessed incorrect data producing
1640       * regressions in Piglit. We repeat the swizzle of the first component on the
1641       * rest of components to avoid regressions. In the vec4_visitor IR code path
1642       * this is not needed because the operand has already the correct swizzle.
1643       */
1644      op[0].swizzle = brw_compose_swizzle(BRW_SWIZZLE_XXXX, op[0].swizzle);
1645      emit_unpack_half_2x16(dst, op[0]);
1646      break;
1647
1648   case nir_op_pack_half_2x16:
1649      emit_pack_half_2x16(dst, op[0]);
1650      break;
1651
1652   case nir_op_unpack_unorm_4x8:
1653      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1654      emit_unpack_unorm_4x8(dst, op[0]);
1655      break;
1656
1657   case nir_op_pack_unorm_4x8:
1658      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1659      emit_pack_unorm_4x8(dst, op[0]);
1660      break;
1661
1662   case nir_op_unpack_snorm_4x8:
1663      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1664      emit_unpack_snorm_4x8(dst, op[0]);
1665      break;
1666
1667   case nir_op_pack_snorm_4x8:
1668      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1669      emit_pack_snorm_4x8(dst, op[0]);
1670      break;
1671
1672   case nir_op_bitfield_reverse:
1673      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1674      emit(BFREV(dst, op[0]));
1675      break;
1676
1677   case nir_op_bit_count:
1678      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1679      emit(CBIT(dst, op[0]));
1680      break;
1681
1682   case nir_op_ufind_msb:
1683      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1684      emit_find_msb_using_lzd(vec4_builder(this).at_end(), dst, op[0], false);
1685      break;
1686
1687   case nir_op_ifind_msb: {
1688      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1689      vec4_builder bld = vec4_builder(this).at_end();
1690      src_reg src(dst);
1691
1692      if (devinfo->ver < 7) {
1693         emit_find_msb_using_lzd(bld, dst, op[0], true);
1694      } else {
1695         emit(FBH(retype(dst, BRW_REGISTER_TYPE_UD), op[0]));
1696
1697         /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1698          * count from the LSB side. If FBH didn't return an error
1699          * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1700          * count into an LSB count.
1701          */
1702         bld.CMP(dst_null_d(), src, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1703
1704         inst = bld.ADD(dst, src, brw_imm_d(31));
1705         inst->predicate = BRW_PREDICATE_NORMAL;
1706         inst->src[0].negate = true;
1707      }
1708      break;
1709   }
1710
1711   case nir_op_find_lsb: {
1712      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1713      vec4_builder bld = vec4_builder(this).at_end();
1714
1715      if (devinfo->ver < 7) {
1716         dst_reg temp = bld.vgrf(BRW_REGISTER_TYPE_D);
1717
1718         /* (x & -x) generates a value that consists of only the LSB of x.
1719          * For all powers of 2, findMSB(y) == findLSB(y).
1720          */
1721         src_reg src = src_reg(retype(op[0], BRW_REGISTER_TYPE_D));
1722         src_reg negated_src = src;
1723
1724         /* One must be negated, and the other must be non-negated.  It
1725          * doesn't matter which is which.
1726          */
1727         negated_src.negate = true;
1728         src.negate = false;
1729
1730         bld.AND(temp, src, negated_src);
1731         emit_find_msb_using_lzd(bld, dst, src_reg(temp), false);
1732      } else {
1733         bld.FBL(dst, op[0]);
1734      }
1735      break;
1736   }
1737
1738   case nir_op_ubitfield_extract:
1739   case nir_op_ibitfield_extract:
1740      unreachable("should have been lowered");
1741   case nir_op_ubfe:
1742   case nir_op_ibfe:
1743      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1744      op[0] = fix_3src_operand(op[0]);
1745      op[1] = fix_3src_operand(op[1]);
1746      op[2] = fix_3src_operand(op[2]);
1747
1748      emit(BFE(dst, op[2], op[1], op[0]));
1749      break;
1750
1751   case nir_op_bfm:
1752      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1753      emit(BFI1(dst, op[0], op[1]));
1754      break;
1755
1756   case nir_op_bfi:
1757      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1758      op[0] = fix_3src_operand(op[0]);
1759      op[1] = fix_3src_operand(op[1]);
1760      op[2] = fix_3src_operand(op[2]);
1761
1762      emit(BFI2(dst, op[0], op[1], op[2]));
1763      break;
1764
1765   case nir_op_bitfield_insert:
1766      unreachable("not reached: should have been lowered");
1767
1768   case nir_op_fsign:
1769       if (type_sz(op[0].type) < 8) {
1770         /* AND(val, 0x80000000) gives the sign bit.
1771          *
1772          * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
1773          * zero.
1774          */
1775         emit(CMP(dst_null_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1776
1777         op[0].type = BRW_REGISTER_TYPE_UD;
1778         dst.type = BRW_REGISTER_TYPE_UD;
1779         emit(AND(dst, op[0], brw_imm_ud(0x80000000u)));
1780
1781         inst = emit(OR(dst, src_reg(dst), brw_imm_ud(0x3f800000u)));
1782         inst->predicate = BRW_PREDICATE_NORMAL;
1783         dst.type = BRW_REGISTER_TYPE_F;
1784      } else {
1785         /* For doubles we do the same but we need to consider:
1786          *
1787          * - We use a MOV with conditional_mod instead of a CMP so that we can
1788          *   skip loading a 0.0 immediate. We use a source modifier on the
1789          *   source of the MOV so that we flush denormalized values to 0.
1790          *   Since we want to compare against 0, this won't alter the result.
1791          * - We need to extract the high 32-bit of each DF where the sign
1792          *   is stored.
1793          * - We need to produce a DF result.
1794          */
1795
1796         /* Check for zero */
1797         src_reg value = op[0];
1798         value.abs = true;
1799         inst = emit(MOV(dst_null_df(), value));
1800         inst->conditional_mod = BRW_CONDITIONAL_NZ;
1801
1802         /* AND each high 32-bit channel with 0x80000000u */
1803         dst_reg tmp = dst_reg(this, glsl_type::uvec4_type);
1804         emit(VEC4_OPCODE_PICK_HIGH_32BIT, tmp, op[0]);
1805         emit(AND(tmp, src_reg(tmp), brw_imm_ud(0x80000000u)));
1806
1807         /* Add 1.0 to each channel, predicated to skip the cases where the
1808          * channel's value was 0
1809          */
1810         inst = emit(OR(tmp, src_reg(tmp), brw_imm_ud(0x3f800000u)));
1811         inst->predicate = BRW_PREDICATE_NORMAL;
1812
1813         /* Now convert the result from float to double */
1814         emit_conversion_to_double(dst, retype(src_reg(tmp),
1815                                               BRW_REGISTER_TYPE_F));
1816      }
1817      break;
1818
1819   case nir_op_ishl:
1820      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1821      try_immediate_source(instr, op, false);
1822      emit(SHL(dst, op[0], op[1]));
1823      break;
1824
1825   case nir_op_ishr:
1826      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1827      try_immediate_source(instr, op, false);
1828      emit(ASR(dst, op[0], op[1]));
1829      break;
1830
1831   case nir_op_ushr:
1832      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1833      try_immediate_source(instr, op, false);
1834      emit(SHR(dst, op[0], op[1]));
1835      break;
1836
1837   case nir_op_ffma:
1838      if (type_sz(dst.type) == 8) {
1839         dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type);
1840         emit(MUL(mul_dst, op[1], op[0]));
1841         inst = emit(ADD(dst, src_reg(mul_dst), op[2]));
1842      } else {
1843         fix_float_operands(op, instr);
1844         inst = emit(MAD(dst, op[2], op[1], op[0]));
1845      }
1846      break;
1847
1848   case nir_op_flrp:
1849      fix_float_operands(op, instr);
1850      inst = emit(LRP(dst, op[2], op[1], op[0]));
1851      break;
1852
1853   case nir_op_b32csel:
1854      enum brw_predicate predicate;
1855      if (!optimize_predicate(instr, &predicate)) {
1856         emit(CMP(dst_null_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
1857         switch (dst.writemask) {
1858         case WRITEMASK_X:
1859            predicate = BRW_PREDICATE_ALIGN16_REPLICATE_X;
1860            break;
1861         case WRITEMASK_Y:
1862            predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Y;
1863            break;
1864         case WRITEMASK_Z:
1865            predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Z;
1866            break;
1867         case WRITEMASK_W:
1868            predicate = BRW_PREDICATE_ALIGN16_REPLICATE_W;
1869            break;
1870         default:
1871            predicate = BRW_PREDICATE_NORMAL;
1872            break;
1873         }
1874      }
1875      inst = emit(BRW_OPCODE_SEL, dst, op[1], op[2]);
1876      inst->predicate = predicate;
1877      break;
1878
1879   case nir_op_fdot2_replicated:
1880      try_immediate_source(instr, op, true);
1881      inst = emit(BRW_OPCODE_DP2, dst, op[0], op[1]);
1882      break;
1883
1884   case nir_op_fdot3_replicated:
1885      try_immediate_source(instr, op, true);
1886      inst = emit(BRW_OPCODE_DP3, dst, op[0], op[1]);
1887      break;
1888
1889   case nir_op_fdot4_replicated:
1890      try_immediate_source(instr, op, true);
1891      inst = emit(BRW_OPCODE_DP4, dst, op[0], op[1]);
1892      break;
1893
1894   case nir_op_fdph_replicated:
1895      try_immediate_source(instr, op, false);
1896      inst = emit(BRW_OPCODE_DPH, dst, op[0], op[1]);
1897      break;
1898
1899   case nir_op_fdiv:
1900      unreachable("not reached: should be lowered by lower_fdiv in the compiler");
1901
1902   case nir_op_fmod:
1903      unreachable("not reached: should be lowered by lower_fmod in the compiler");
1904
1905   case nir_op_fsub:
1906   case nir_op_isub:
1907      unreachable("not reached: should be handled by ir_sub_to_add_neg");
1908
1909   default:
1910      unreachable("Unimplemented ALU operation");
1911   }
1912
1913   /* If we need to do a boolean resolve, replace the result with -(x & 1)
1914    * to sign extend the low bit to 0/~0
1915    */
1916   if (devinfo->ver <= 5 &&
1917       (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) ==
1918       BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1919      dst_reg masked = dst_reg(this, glsl_type::int_type);
1920      masked.writemask = dst.writemask;
1921      emit(AND(masked, src_reg(dst), brw_imm_d(1)));
1922      src_reg masked_neg = src_reg(masked);
1923      masked_neg.negate = true;
1924      emit(MOV(retype(dst, BRW_REGISTER_TYPE_D), masked_neg));
1925   }
1926}
1927
1928void
1929vec4_visitor::nir_emit_jump(nir_jump_instr *instr)
1930{
1931   switch (instr->type) {
1932   case nir_jump_break:
1933      emit(BRW_OPCODE_BREAK);
1934      break;
1935
1936   case nir_jump_continue:
1937      emit(BRW_OPCODE_CONTINUE);
1938      break;
1939
1940   case nir_jump_return:
1941      FALLTHROUGH;
1942   default:
1943      unreachable("unknown jump");
1944   }
1945}
1946
1947static bool
1948is_high_sampler(const struct intel_device_info *devinfo, src_reg sampler)
1949{
1950   if (devinfo->verx10 != 75)
1951      return false;
1952
1953   return sampler.file != IMM || sampler.ud >= 16;
1954}
1955
1956void
1957vec4_visitor::nir_emit_texture(nir_tex_instr *instr)
1958{
1959   unsigned texture = instr->texture_index;
1960   unsigned sampler = instr->sampler_index;
1961   src_reg texture_reg = brw_imm_ud(texture);
1962   src_reg sampler_reg = brw_imm_ud(sampler);
1963   src_reg coordinate;
1964   const glsl_type *coord_type = NULL;
1965   src_reg shadow_comparator;
1966   src_reg offset_value;
1967   src_reg lod, lod2;
1968   src_reg sample_index;
1969   src_reg mcs;
1970
1971   dst_reg dest = get_nir_dest(instr->dest, instr->dest_type);
1972
1973   /* The hardware requires a LOD for buffer textures */
1974   if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
1975      lod = brw_imm_d(0);
1976
1977   /* Load the texture operation sources */
1978   uint32_t constant_offset = 0;
1979   for (unsigned i = 0; i < instr->num_srcs; i++) {
1980      switch (instr->src[i].src_type) {
1981      case nir_tex_src_comparator:
1982         shadow_comparator = get_nir_src(instr->src[i].src,
1983                                         BRW_REGISTER_TYPE_F, 1);
1984         break;
1985
1986      case nir_tex_src_coord: {
1987         unsigned src_size = nir_tex_instr_src_size(instr, i);
1988
1989         switch (instr->op) {
1990         case nir_texop_txf:
1991         case nir_texop_txf_ms:
1992         case nir_texop_samples_identical:
1993            coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D,
1994                                     src_size);
1995            coord_type = glsl_type::ivec(src_size);
1996            break;
1997
1998         default:
1999            coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2000                                     src_size);
2001            coord_type = glsl_type::vec(src_size);
2002            break;
2003         }
2004         break;
2005      }
2006
2007      case nir_tex_src_ddx:
2008         lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2009                           nir_tex_instr_src_size(instr, i));
2010         break;
2011
2012      case nir_tex_src_ddy:
2013         lod2 = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2014                           nir_tex_instr_src_size(instr, i));
2015         break;
2016
2017      case nir_tex_src_lod:
2018         switch (instr->op) {
2019         case nir_texop_txs:
2020         case nir_texop_txf:
2021            lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
2022            break;
2023
2024         default:
2025            lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F, 1);
2026            break;
2027         }
2028         break;
2029
2030      case nir_tex_src_ms_index: {
2031         sample_index = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
2032         break;
2033      }
2034
2035      case nir_tex_src_offset:
2036         if (!brw_texture_offset(instr, i, &constant_offset)) {
2037            offset_value =
2038               get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 2);
2039         }
2040         break;
2041
2042      case nir_tex_src_texture_offset: {
2043         /* Emit code to evaluate the actual indexing expression */
2044         src_reg src = get_nir_src(instr->src[i].src, 1);
2045         src_reg temp(this, glsl_type::uint_type);
2046         emit(ADD(dst_reg(temp), src, brw_imm_ud(texture)));
2047         texture_reg = emit_uniformize(temp);
2048         break;
2049      }
2050
2051      case nir_tex_src_sampler_offset: {
2052         /* Emit code to evaluate the actual indexing expression */
2053         src_reg src = get_nir_src(instr->src[i].src, 1);
2054         src_reg temp(this, glsl_type::uint_type);
2055         emit(ADD(dst_reg(temp), src, brw_imm_ud(sampler)));
2056         sampler_reg = emit_uniformize(temp);
2057         break;
2058      }
2059
2060      case nir_tex_src_projector:
2061         unreachable("Should be lowered by nir_lower_tex");
2062
2063      case nir_tex_src_bias:
2064         unreachable("LOD bias is not valid for vertex shaders.\n");
2065
2066      default:
2067         unreachable("unknown texture source");
2068      }
2069   }
2070
2071   if (instr->op == nir_texop_txf_ms ||
2072       instr->op == nir_texop_samples_identical) {
2073      assert(coord_type != NULL);
2074      if (devinfo->ver >= 7 &&
2075          key_tex->compressed_multisample_layout_mask & (1 << texture)) {
2076         mcs = emit_mcs_fetch(coord_type, coordinate, texture_reg);
2077      } else {
2078         mcs = brw_imm_ud(0u);
2079      }
2080   }
2081
2082   /* Stuff the channel select bits in the top of the texture offset */
2083   if (instr->op == nir_texop_tg4) {
2084      if (instr->component == 1 &&
2085          (key_tex->gather_channel_quirk_mask & (1 << texture))) {
2086         /* gather4 sampler is broken for green channel on RG32F --
2087          * we must ask for blue instead.
2088          */
2089         constant_offset |= 2 << 16;
2090      } else {
2091         constant_offset |= instr->component << 16;
2092      }
2093   }
2094
2095   enum opcode opcode;
2096   switch (instr->op) {
2097   case nir_texop_tex:             opcode = SHADER_OPCODE_TXL;        break;
2098   case nir_texop_txl:             opcode = SHADER_OPCODE_TXL;        break;
2099   case nir_texop_txd:             opcode = SHADER_OPCODE_TXD;        break;
2100   case nir_texop_txf:             opcode = SHADER_OPCODE_TXF;        break;
2101   case nir_texop_txf_ms:          opcode = SHADER_OPCODE_TXF_CMS;    break;
2102   case nir_texop_txs:             opcode = SHADER_OPCODE_TXS;        break;
2103   case nir_texop_query_levels:    opcode = SHADER_OPCODE_TXS;        break;
2104   case nir_texop_texture_samples: opcode = SHADER_OPCODE_SAMPLEINFO; break;
2105   case nir_texop_tg4:
2106      opcode = offset_value.file != BAD_FILE ? SHADER_OPCODE_TG4_OFFSET
2107                                             : SHADER_OPCODE_TG4;
2108      break;
2109   case nir_texop_samples_identical: {
2110      /* There are some challenges implementing this for vec4, and it seems
2111       * unlikely to be used anyway.  For now, just return false ways.
2112       */
2113      emit(MOV(dest, brw_imm_ud(0u)));
2114      return;
2115   }
2116   case nir_texop_txb:
2117   case nir_texop_lod:
2118      unreachable("Implicit LOD is only valid inside fragment shaders.");
2119   default:
2120      unreachable("Unrecognized tex op");
2121   }
2122
2123   vec4_instruction *inst = new(mem_ctx) vec4_instruction(opcode, dest);
2124
2125   inst->offset = constant_offset;
2126
2127   /* The message header is necessary for:
2128    * - Gfx4 (always)
2129    * - Texel offsets
2130    * - Gather channel selection
2131    * - Sampler indices too large to fit in a 4-bit value.
2132    * - Sampleinfo message - takes no parameters, but mlen = 0 is illegal
2133    */
2134   inst->header_size =
2135      (devinfo->ver < 5 ||
2136       inst->offset != 0 ||
2137       opcode == SHADER_OPCODE_TG4 ||
2138       opcode == SHADER_OPCODE_TG4_OFFSET ||
2139       opcode == SHADER_OPCODE_SAMPLEINFO ||
2140       is_high_sampler(devinfo, sampler_reg)) ? 1 : 0;
2141   inst->base_mrf = 2;
2142   inst->mlen = inst->header_size;
2143   inst->dst.writemask = WRITEMASK_XYZW;
2144   inst->shadow_compare = shadow_comparator.file != BAD_FILE;
2145
2146   inst->src[1] = texture_reg;
2147   inst->src[2] = sampler_reg;
2148
2149   /* MRF for the first parameter */
2150   int param_base = inst->base_mrf + inst->header_size;
2151
2152   if (opcode == SHADER_OPCODE_TXS) {
2153      int writemask = devinfo->ver == 4 ? WRITEMASK_W : WRITEMASK_X;
2154      emit(MOV(dst_reg(MRF, param_base, lod.type, writemask), lod));
2155      inst->mlen++;
2156   } else if (opcode == SHADER_OPCODE_SAMPLEINFO) {
2157      inst->dst.writemask = WRITEMASK_X;
2158   } else {
2159      /* Load the coordinate */
2160      /* FINISHME: gl_clamp_mask and saturate */
2161      int coord_mask = (1 << instr->coord_components) - 1;
2162      int zero_mask = 0xf & ~coord_mask;
2163
2164      emit(MOV(dst_reg(MRF, param_base, coordinate.type, coord_mask),
2165               coordinate));
2166      inst->mlen++;
2167
2168      if (zero_mask != 0) {
2169         emit(MOV(dst_reg(MRF, param_base, coordinate.type, zero_mask),
2170                  brw_imm_d(0)));
2171      }
2172      /* Load the shadow comparator */
2173      if (shadow_comparator.file != BAD_FILE &&
2174          opcode != SHADER_OPCODE_TXD &&
2175          opcode != SHADER_OPCODE_TG4_OFFSET) {
2176	 emit(MOV(dst_reg(MRF, param_base + 1, shadow_comparator.type,
2177			  WRITEMASK_X),
2178		  shadow_comparator));
2179	 inst->mlen++;
2180      }
2181
2182      /* Load the LOD info */
2183      switch (opcode) {
2184      case SHADER_OPCODE_TXL: {
2185	 int mrf, writemask;
2186	 if (devinfo->ver >= 5) {
2187	    mrf = param_base + 1;
2188	    if (shadow_comparator.file != BAD_FILE) {
2189	       writemask = WRITEMASK_Y;
2190	       /* mlen already incremented */
2191	    } else {
2192	       writemask = WRITEMASK_X;
2193	       inst->mlen++;
2194	    }
2195	 } else /* devinfo->ver == 4 */ {
2196	    mrf = param_base;
2197	    writemask = WRITEMASK_W;
2198	 }
2199	 emit(MOV(dst_reg(MRF, mrf, lod.type, writemask), lod));
2200         break;
2201      }
2202
2203      case SHADER_OPCODE_TXF:
2204         emit(MOV(dst_reg(MRF, param_base, lod.type, WRITEMASK_W), lod));
2205         break;
2206
2207      case SHADER_OPCODE_TXF_CMS:
2208         emit(MOV(dst_reg(MRF, param_base + 1, sample_index.type, WRITEMASK_X),
2209                  sample_index));
2210         if (devinfo->ver >= 7) {
2211            /* MCS data is in the first channel of `mcs`, but we need to get it into
2212             * the .y channel of the second vec4 of params, so replicate .x across
2213             * the whole vec4 and then mask off everything except .y
2214             */
2215            mcs.swizzle = BRW_SWIZZLE_XXXX;
2216            emit(MOV(dst_reg(MRF, param_base + 1, glsl_type::uint_type, WRITEMASK_Y),
2217                     mcs));
2218         }
2219         inst->mlen++;
2220         break;
2221
2222      case SHADER_OPCODE_TXD: {
2223         const brw_reg_type type = lod.type;
2224
2225	 if (devinfo->ver >= 5) {
2226	    lod.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
2227	    lod2.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
2228	    emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XZ), lod));
2229	    emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_YW), lod2));
2230	    inst->mlen++;
2231
2232	    if (nir_tex_instr_dest_size(instr) == 3 ||
2233                shadow_comparator.file != BAD_FILE) {
2234	       lod.swizzle = BRW_SWIZZLE_ZZZZ;
2235	       lod2.swizzle = BRW_SWIZZLE_ZZZZ;
2236	       emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_X), lod));
2237	       emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_Y), lod2));
2238	       inst->mlen++;
2239
2240               if (shadow_comparator.file != BAD_FILE) {
2241                  emit(MOV(dst_reg(MRF, param_base + 2,
2242                                   shadow_comparator.type, WRITEMASK_Z),
2243                           shadow_comparator));
2244               }
2245	    }
2246	 } else /* devinfo->ver == 4 */ {
2247	    emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XYZ), lod));
2248	    emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_XYZ), lod2));
2249	    inst->mlen += 2;
2250	 }
2251         break;
2252      }
2253
2254      case SHADER_OPCODE_TG4_OFFSET:
2255         if (shadow_comparator.file != BAD_FILE) {
2256            emit(MOV(dst_reg(MRF, param_base, shadow_comparator.type, WRITEMASK_W),
2257                     shadow_comparator));
2258         }
2259
2260         emit(MOV(dst_reg(MRF, param_base + 1, glsl_type::ivec2_type, WRITEMASK_XY),
2261                  offset_value));
2262         inst->mlen++;
2263         break;
2264
2265      default:
2266         break;
2267      }
2268   }
2269
2270   emit(inst);
2271
2272   /* fixup num layers (z) for cube arrays: hardware returns faces * layers;
2273    * spec requires layers.
2274    */
2275   if (instr->op == nir_texop_txs && devinfo->ver < 7) {
2276      /* Gfx4-6 return 0 instead of 1 for single layer surfaces. */
2277      emit_minmax(BRW_CONDITIONAL_GE, writemask(inst->dst, WRITEMASK_Z),
2278                  src_reg(inst->dst), brw_imm_d(1));
2279   }
2280
2281   if (instr->op == nir_texop_query_levels) {
2282      /* # levels is in .w */
2283      src_reg swizzled(dest);
2284      swizzled.swizzle = BRW_SWIZZLE4(SWIZZLE_W, SWIZZLE_W,
2285                                      SWIZZLE_W, SWIZZLE_W);
2286      emit(MOV(dest, swizzled));
2287   }
2288}
2289
2290src_reg
2291vec4_visitor::emit_mcs_fetch(const glsl_type *coordinate_type,
2292                             src_reg coordinate, src_reg surface)
2293{
2294   vec4_instruction *inst =
2295      new(mem_ctx) vec4_instruction(SHADER_OPCODE_TXF_MCS,
2296                                    dst_reg(this, glsl_type::uvec4_type));
2297   inst->base_mrf = 2;
2298   inst->src[1] = surface;
2299   inst->src[2] = brw_imm_ud(0); /* sampler */
2300   inst->mlen = 1;
2301
2302   const int param_base = inst->base_mrf;
2303
2304   /* parameters are: u, v, r, lod; lod will always be zero due to api restrictions */
2305   int coord_mask = (1 << coordinate_type->vector_elements) - 1;
2306   int zero_mask = 0xf & ~coord_mask;
2307
2308   emit(MOV(dst_reg(MRF, param_base, coordinate_type, coord_mask),
2309            coordinate));
2310
2311   emit(MOV(dst_reg(MRF, param_base, coordinate_type, zero_mask),
2312            brw_imm_d(0)));
2313
2314   emit(inst);
2315   return src_reg(inst->dst);
2316}
2317
2318void
2319vec4_visitor::nir_emit_undef(nir_ssa_undef_instr *instr)
2320{
2321   nir_ssa_values[instr->def.index] =
2322      dst_reg(VGRF, alloc.allocate(DIV_ROUND_UP(instr->def.bit_size, 32)));
2323}
2324
2325/* SIMD4x2 64bit data is stored in register space like this:
2326 *
2327 * r0.0:DF  x0 y0 z0 w0
2328 * r1.0:DF  x1 y1 z1 w1
2329 *
2330 * When we need to write data such as this to memory using 32-bit write
2331 * messages we need to shuffle it in this fashion:
2332 *
2333 * r0.0:DF  x0 y0 x1 y1 (to be written at base offset)
2334 * r0.0:DF  z0 w0 z1 w1 (to be written at base offset + 16)
2335 *
2336 * We need to do the inverse operation when we read using 32-bit messages,
2337 * which we can do by applying the same exact shuffling on the 64-bit data
2338 * read, only that because the data for each vertex is positioned differently
2339 * we need to apply different channel enables.
2340 *
2341 * This function takes 64bit data and shuffles it as explained above.
2342 *
2343 * The @for_write parameter is used to specify if the shuffling is being done
2344 * for proper SIMD4x2 64-bit data that needs to be shuffled prior to a 32-bit
2345 * write message (for_write = true), or instead we are doing the inverse
2346 * operation and we have just read 64-bit data using a 32-bit messages that we
2347 * need to shuffle to create valid SIMD4x2 64-bit data (for_write = false).
2348 *
2349 * If @block and @ref are non-NULL, then the shuffling is done after @ref,
2350 * otherwise the instructions are emitted normally at the end. The function
2351 * returns the last instruction inserted.
2352 *
2353 * Notice that @src and @dst cannot be the same register.
2354 */
2355vec4_instruction *
2356vec4_visitor::shuffle_64bit_data(dst_reg dst, src_reg src, bool for_write,
2357                                 bool for_scratch,
2358                                 bblock_t *block, vec4_instruction *ref)
2359{
2360   assert(type_sz(src.type) == 8);
2361   assert(type_sz(dst.type) == 8);
2362   assert(!regions_overlap(dst, 2 * REG_SIZE, src, 2 * REG_SIZE));
2363   assert(!ref == !block);
2364
2365   opcode mov_op = for_scratch ? VEC4_OPCODE_MOV_FOR_SCRATCH : BRW_OPCODE_MOV;
2366
2367   const vec4_builder bld = !ref ? vec4_builder(this).at_end() :
2368                                   vec4_builder(this).at(block, ref->next);
2369
2370   /* Resolve swizzle in src */
2371   if (src.swizzle != BRW_SWIZZLE_XYZW) {
2372      dst_reg data = dst_reg(this, glsl_type::dvec4_type);
2373      bld.emit(mov_op, data, src);
2374      src = src_reg(data);
2375   }
2376
2377   /* dst+0.XY = src+0.XY */
2378   bld.group(4, 0).emit(mov_op, writemask(dst, WRITEMASK_XY), src);
2379
2380   /* dst+0.ZW = src+1.XY */
2381   bld.group(4, for_write ? 1 : 0)
2382            .emit(mov_op, writemask(dst, WRITEMASK_ZW),
2383                  swizzle(byte_offset(src, REG_SIZE), BRW_SWIZZLE_XYXY));
2384
2385   /* dst+1.XY = src+0.ZW */
2386   bld.group(4, for_write ? 0 : 1)
2387            .emit(mov_op, writemask(byte_offset(dst, REG_SIZE), WRITEMASK_XY),
2388                  swizzle(src, BRW_SWIZZLE_ZWZW));
2389
2390   /* dst+1.ZW = src+1.ZW */
2391   return bld.group(4, 1)
2392            .emit(mov_op, writemask(byte_offset(dst, REG_SIZE), WRITEMASK_ZW),
2393                  byte_offset(src, REG_SIZE));
2394}
2395
2396}
2397