1/*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include "brw_vec4.h"
25#include "brw_fs.h"
26#include "brw_cfg.h"
27#include "brw_nir.h"
28#include "brw_vec4_builder.h"
29#include "brw_vec4_vs.h"
30#include "brw_dead_control_flow.h"
31#include "dev/intel_debug.h"
32#include "program/prog_parameter.h"
33#include "util/u_math.h"
34
35#define MAX_INSTRUCTION (1 << 30)
36
37using namespace brw;
38
39namespace brw {
40
41void
42src_reg::init()
43{
44   memset((void*)this, 0, sizeof(*this));
45   this->file = BAD_FILE;
46   this->type = BRW_REGISTER_TYPE_UD;
47}
48
49src_reg::src_reg(enum brw_reg_file file, int nr, const glsl_type *type)
50{
51   init();
52
53   this->file = file;
54   this->nr = nr;
55   if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
56      this->swizzle = brw_swizzle_for_size(type->vector_elements);
57   else
58      this->swizzle = BRW_SWIZZLE_XYZW;
59   if (type)
60      this->type = brw_type_for_base_type(type);
61}
62
63/** Generic unset register constructor. */
64src_reg::src_reg()
65{
66   init();
67}
68
69src_reg::src_reg(struct ::brw_reg reg) :
70   backend_reg(reg)
71{
72   this->offset = 0;
73   this->reladdr = NULL;
74}
75
76src_reg::src_reg(const dst_reg &reg) :
77   backend_reg(reg)
78{
79   this->reladdr = reg.reladdr;
80   this->swizzle = brw_swizzle_for_mask(reg.writemask);
81}
82
83void
84dst_reg::init()
85{
86   memset((void*)this, 0, sizeof(*this));
87   this->file = BAD_FILE;
88   this->type = BRW_REGISTER_TYPE_UD;
89   this->writemask = WRITEMASK_XYZW;
90}
91
92dst_reg::dst_reg()
93{
94   init();
95}
96
97dst_reg::dst_reg(enum brw_reg_file file, int nr)
98{
99   init();
100
101   this->file = file;
102   this->nr = nr;
103}
104
105dst_reg::dst_reg(enum brw_reg_file file, int nr, const glsl_type *type,
106                 unsigned writemask)
107{
108   init();
109
110   this->file = file;
111   this->nr = nr;
112   this->type = brw_type_for_base_type(type);
113   this->writemask = writemask;
114}
115
116dst_reg::dst_reg(enum brw_reg_file file, int nr, brw_reg_type type,
117                 unsigned writemask)
118{
119   init();
120
121   this->file = file;
122   this->nr = nr;
123   this->type = type;
124   this->writemask = writemask;
125}
126
127dst_reg::dst_reg(struct ::brw_reg reg) :
128   backend_reg(reg)
129{
130   this->offset = 0;
131   this->reladdr = NULL;
132}
133
134dst_reg::dst_reg(const src_reg &reg) :
135   backend_reg(reg)
136{
137   this->writemask = brw_mask_for_swizzle(reg.swizzle);
138   this->reladdr = reg.reladdr;
139}
140
141bool
142dst_reg::equals(const dst_reg &r) const
143{
144   return (this->backend_reg::equals(r) &&
145           (reladdr == r.reladdr ||
146            (reladdr && r.reladdr && reladdr->equals(*r.reladdr))));
147}
148
149bool
150vec4_instruction::is_send_from_grf() const
151{
152   switch (opcode) {
153   case VS_OPCODE_PULL_CONSTANT_LOAD_GFX7:
154   case VEC4_OPCODE_UNTYPED_ATOMIC:
155   case VEC4_OPCODE_UNTYPED_SURFACE_READ:
156   case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
157   case VEC4_OPCODE_URB_READ:
158   case VEC4_TCS_OPCODE_URB_WRITE:
159   case TCS_OPCODE_RELEASE_INPUT:
160   case SHADER_OPCODE_BARRIER:
161      return true;
162   default:
163      return false;
164   }
165}
166
167/**
168 * Returns true if this instruction's sources and destinations cannot
169 * safely be the same register.
170 *
171 * In most cases, a register can be written over safely by the same
172 * instruction that is its last use.  For a single instruction, the
173 * sources are dereferenced before writing of the destination starts
174 * (naturally).
175 *
176 * However, there are a few cases where this can be problematic:
177 *
178 * - Virtual opcodes that translate to multiple instructions in the
179 *   code generator: if src == dst and one instruction writes the
180 *   destination before a later instruction reads the source, then
181 *   src will have been clobbered.
182 *
183 * The register allocator uses this information to set up conflicts between
184 * GRF sources and the destination.
185 */
186bool
187vec4_instruction::has_source_and_destination_hazard() const
188{
189   switch (opcode) {
190   case VEC4_TCS_OPCODE_SET_INPUT_URB_OFFSETS:
191   case VEC4_TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
192   case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
193      return true;
194   default:
195      /* 8-wide compressed DF operations are executed as two 4-wide operations,
196       * so we have a src/dst hazard if the first half of the instruction
197       * overwrites the source of the second half. Prevent this by marking
198       * compressed instructions as having src/dst hazards, so the register
199       * allocator assigns safe register regions for dst and srcs.
200       */
201      return size_written > REG_SIZE;
202   }
203}
204
205unsigned
206vec4_instruction::size_read(unsigned arg) const
207{
208   switch (opcode) {
209   case VEC4_OPCODE_UNTYPED_ATOMIC:
210   case VEC4_OPCODE_UNTYPED_SURFACE_READ:
211   case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
212   case VEC4_TCS_OPCODE_URB_WRITE:
213      if (arg == 0)
214         return mlen * REG_SIZE;
215      break;
216   case VS_OPCODE_PULL_CONSTANT_LOAD_GFX7:
217      if (arg == 1)
218         return mlen * REG_SIZE;
219      break;
220   default:
221      break;
222   }
223
224   switch (src[arg].file) {
225   case BAD_FILE:
226      return 0;
227   case IMM:
228   case UNIFORM:
229      return 4 * type_sz(src[arg].type);
230   default:
231      /* XXX - Represent actual vertical stride. */
232      return exec_size * type_sz(src[arg].type);
233   }
234}
235
236bool
237vec4_instruction::can_do_source_mods(const struct intel_device_info *devinfo)
238{
239   if (devinfo->ver == 6 && is_math())
240      return false;
241
242   if (is_send_from_grf())
243      return false;
244
245   if (!backend_instruction::can_do_source_mods())
246      return false;
247
248   return true;
249}
250
251bool
252vec4_instruction::can_do_cmod()
253{
254   if (!backend_instruction::can_do_cmod())
255      return false;
256
257   /* The accumulator result appears to get used for the conditional modifier
258    * generation.  When negating a UD value, there is a 33rd bit generated for
259    * the sign in the accumulator value, so now you can't check, for example,
260    * equality with a 32-bit value.  See piglit fs-op-neg-uvec4.
261    */
262   for (unsigned i = 0; i < 3; i++) {
263      if (src[i].file != BAD_FILE &&
264          brw_reg_type_is_unsigned_integer(src[i].type) && src[i].negate)
265         return false;
266   }
267
268   return true;
269}
270
271bool
272vec4_instruction::can_do_writemask(const struct intel_device_info *devinfo)
273{
274   switch (opcode) {
275   case SHADER_OPCODE_GFX4_SCRATCH_READ:
276   case VEC4_OPCODE_DOUBLE_TO_F32:
277   case VEC4_OPCODE_DOUBLE_TO_D32:
278   case VEC4_OPCODE_DOUBLE_TO_U32:
279   case VEC4_OPCODE_TO_DOUBLE:
280   case VEC4_OPCODE_PICK_LOW_32BIT:
281   case VEC4_OPCODE_PICK_HIGH_32BIT:
282   case VEC4_OPCODE_SET_LOW_32BIT:
283   case VEC4_OPCODE_SET_HIGH_32BIT:
284   case VS_OPCODE_PULL_CONSTANT_LOAD:
285   case VS_OPCODE_PULL_CONSTANT_LOAD_GFX7:
286   case VEC4_TCS_OPCODE_SET_INPUT_URB_OFFSETS:
287   case VEC4_TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
288   case TES_OPCODE_CREATE_INPUT_READ_HEADER:
289   case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
290   case VEC4_OPCODE_URB_READ:
291   case SHADER_OPCODE_MOV_INDIRECT:
292      return false;
293   default:
294      /* The MATH instruction on Gfx6 only executes in align1 mode, which does
295       * not support writemasking.
296       */
297      if (devinfo->ver == 6 && is_math())
298         return false;
299
300      if (is_tex())
301         return false;
302
303      return true;
304   }
305}
306
307bool
308vec4_instruction::can_change_types() const
309{
310   return dst.type == src[0].type &&
311          !src[0].abs && !src[0].negate && !saturate &&
312          (opcode == BRW_OPCODE_MOV ||
313           (opcode == BRW_OPCODE_SEL &&
314            dst.type == src[1].type &&
315            predicate != BRW_PREDICATE_NONE &&
316            !src[1].abs && !src[1].negate));
317}
318
319/**
320 * Returns how many MRFs an opcode will write over.
321 *
322 * Note that this is not the 0 or 1 implied writes in an actual gen
323 * instruction -- the generate_* functions generate additional MOVs
324 * for setup.
325 */
326unsigned
327vec4_instruction::implied_mrf_writes() const
328{
329   if (mlen == 0 || is_send_from_grf())
330      return 0;
331
332   switch (opcode) {
333   case SHADER_OPCODE_RCP:
334   case SHADER_OPCODE_RSQ:
335   case SHADER_OPCODE_SQRT:
336   case SHADER_OPCODE_EXP2:
337   case SHADER_OPCODE_LOG2:
338   case SHADER_OPCODE_SIN:
339   case SHADER_OPCODE_COS:
340      return 1;
341   case SHADER_OPCODE_INT_QUOTIENT:
342   case SHADER_OPCODE_INT_REMAINDER:
343   case SHADER_OPCODE_POW:
344   case TCS_OPCODE_THREAD_END:
345      return 2;
346   case VEC4_VS_OPCODE_URB_WRITE:
347      return 1;
348   case VS_OPCODE_PULL_CONSTANT_LOAD:
349      return 2;
350   case SHADER_OPCODE_GFX4_SCRATCH_READ:
351      return 2;
352   case SHADER_OPCODE_GFX4_SCRATCH_WRITE:
353      return 3;
354   case VEC4_GS_OPCODE_URB_WRITE:
355   case VEC4_GS_OPCODE_URB_WRITE_ALLOCATE:
356   case GS_OPCODE_THREAD_END:
357      return 0;
358   case GS_OPCODE_FF_SYNC:
359      return 1;
360   case VEC4_TCS_OPCODE_URB_WRITE:
361      return 0;
362   case SHADER_OPCODE_TEX:
363   case SHADER_OPCODE_TXL:
364   case SHADER_OPCODE_TXD:
365   case SHADER_OPCODE_TXF:
366   case SHADER_OPCODE_TXF_CMS:
367   case SHADER_OPCODE_TXF_CMS_W:
368   case SHADER_OPCODE_TXF_MCS:
369   case SHADER_OPCODE_TXS:
370   case SHADER_OPCODE_TG4:
371   case SHADER_OPCODE_TG4_OFFSET:
372   case SHADER_OPCODE_SAMPLEINFO:
373   case SHADER_OPCODE_GET_BUFFER_SIZE:
374      return header_size;
375   default:
376      unreachable("not reached");
377   }
378}
379
380bool
381src_reg::equals(const src_reg &r) const
382{
383   return (this->backend_reg::equals(r) &&
384	   !reladdr && !r.reladdr);
385}
386
387bool
388src_reg::negative_equals(const src_reg &r) const
389{
390   return this->backend_reg::negative_equals(r) &&
391          !reladdr && !r.reladdr;
392}
393
394bool
395vec4_visitor::opt_vector_float()
396{
397   bool progress = false;
398
399   foreach_block(block, cfg) {
400      unsigned last_reg = ~0u, last_offset = ~0u;
401      enum brw_reg_file last_reg_file = BAD_FILE;
402
403      uint8_t imm[4] = { 0 };
404      int inst_count = 0;
405      vec4_instruction *imm_inst[4];
406      unsigned writemask = 0;
407      enum brw_reg_type dest_type = BRW_REGISTER_TYPE_F;
408
409      foreach_inst_in_block_safe(vec4_instruction, inst, block) {
410         int vf = -1;
411         enum brw_reg_type need_type = BRW_REGISTER_TYPE_LAST;
412
413         /* Look for unconditional MOVs from an immediate with a partial
414          * writemask.  Skip type-conversion MOVs other than integer 0,
415          * where the type doesn't matter.  See if the immediate can be
416          * represented as a VF.
417          */
418         if (inst->opcode == BRW_OPCODE_MOV &&
419             inst->src[0].file == IMM &&
420             inst->predicate == BRW_PREDICATE_NONE &&
421             inst->dst.writemask != WRITEMASK_XYZW &&
422             type_sz(inst->src[0].type) < 8 &&
423             (inst->src[0].type == inst->dst.type || inst->src[0].d == 0)) {
424
425            vf = brw_float_to_vf(inst->src[0].d);
426            need_type = BRW_REGISTER_TYPE_D;
427
428            if (vf == -1) {
429               vf = brw_float_to_vf(inst->src[0].f);
430               need_type = BRW_REGISTER_TYPE_F;
431            }
432         } else {
433            last_reg = ~0u;
434         }
435
436         /* If this wasn't a MOV, or the destination register doesn't match,
437          * or we have to switch destination types, then this breaks our
438          * sequence.  Combine anything we've accumulated so far.
439          */
440         if (last_reg != inst->dst.nr ||
441             last_offset != inst->dst.offset ||
442             last_reg_file != inst->dst.file ||
443             (vf > 0 && dest_type != need_type)) {
444
445            if (inst_count > 1) {
446               unsigned vf;
447               memcpy(&vf, imm, sizeof(vf));
448               vec4_instruction *mov = MOV(imm_inst[0]->dst, brw_imm_vf(vf));
449               mov->dst.type = dest_type;
450               mov->dst.writemask = writemask;
451               inst->insert_before(block, mov);
452
453               for (int i = 0; i < inst_count; i++) {
454                  imm_inst[i]->remove(block);
455               }
456
457               progress = true;
458            }
459
460            inst_count = 0;
461            last_reg = ~0u;;
462            writemask = 0;
463            dest_type = BRW_REGISTER_TYPE_F;
464
465            for (int i = 0; i < 4; i++) {
466               imm[i] = 0;
467            }
468         }
469
470         /* Record this instruction's value (if it was representable). */
471         if (vf != -1) {
472            if ((inst->dst.writemask & WRITEMASK_X) != 0)
473               imm[0] = vf;
474            if ((inst->dst.writemask & WRITEMASK_Y) != 0)
475               imm[1] = vf;
476            if ((inst->dst.writemask & WRITEMASK_Z) != 0)
477               imm[2] = vf;
478            if ((inst->dst.writemask & WRITEMASK_W) != 0)
479               imm[3] = vf;
480
481            writemask |= inst->dst.writemask;
482            imm_inst[inst_count++] = inst;
483
484            last_reg = inst->dst.nr;
485            last_offset = inst->dst.offset;
486            last_reg_file = inst->dst.file;
487            if (vf > 0)
488               dest_type = need_type;
489         }
490      }
491   }
492
493   if (progress)
494      invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
495
496   return progress;
497}
498
499/* Replaces unused channels of a swizzle with channels that are used.
500 *
501 * For instance, this pass transforms
502 *
503 *    mov vgrf4.yz, vgrf5.wxzy
504 *
505 * into
506 *
507 *    mov vgrf4.yz, vgrf5.xxzx
508 *
509 * This eliminates false uses of some channels, letting dead code elimination
510 * remove the instructions that wrote them.
511 */
512bool
513vec4_visitor::opt_reduce_swizzle()
514{
515   bool progress = false;
516
517   foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
518      if (inst->dst.file == BAD_FILE ||
519          inst->dst.file == ARF ||
520          inst->dst.file == FIXED_GRF ||
521          inst->is_send_from_grf())
522         continue;
523
524      unsigned swizzle;
525
526      /* Determine which channels of the sources are read. */
527      switch (inst->opcode) {
528      case VEC4_OPCODE_PACK_BYTES:
529      case BRW_OPCODE_DP4:
530      case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0,
531                            *           but all four of src1.
532                            */
533         swizzle = brw_swizzle_for_size(4);
534         break;
535      case BRW_OPCODE_DP3:
536         swizzle = brw_swizzle_for_size(3);
537         break;
538      case BRW_OPCODE_DP2:
539         swizzle = brw_swizzle_for_size(2);
540         break;
541
542      case VEC4_OPCODE_TO_DOUBLE:
543      case VEC4_OPCODE_DOUBLE_TO_F32:
544      case VEC4_OPCODE_DOUBLE_TO_D32:
545      case VEC4_OPCODE_DOUBLE_TO_U32:
546      case VEC4_OPCODE_PICK_LOW_32BIT:
547      case VEC4_OPCODE_PICK_HIGH_32BIT:
548      case VEC4_OPCODE_SET_LOW_32BIT:
549      case VEC4_OPCODE_SET_HIGH_32BIT:
550         swizzle = brw_swizzle_for_size(4);
551         break;
552
553      default:
554         swizzle = brw_swizzle_for_mask(inst->dst.writemask);
555         break;
556      }
557
558      /* Update sources' swizzles. */
559      for (int i = 0; i < 3; i++) {
560         if (inst->src[i].file != VGRF &&
561             inst->src[i].file != ATTR &&
562             inst->src[i].file != UNIFORM)
563            continue;
564
565         const unsigned new_swizzle =
566            brw_compose_swizzle(swizzle, inst->src[i].swizzle);
567         if (inst->src[i].swizzle != new_swizzle) {
568            inst->src[i].swizzle = new_swizzle;
569            progress = true;
570         }
571      }
572   }
573
574   if (progress)
575      invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
576
577   return progress;
578}
579
580void
581vec4_visitor::split_uniform_registers()
582{
583   /* Prior to this, uniforms have been in an array sized according to
584    * the number of vector uniforms present, sparsely filled (so an
585    * aggregate results in reg indices being skipped over).  Now we're
586    * going to cut those aggregates up so each .nr index is one
587    * vector.  The goal is to make elimination of unused uniform
588    * components easier later.
589    */
590   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
591      for (int i = 0 ; i < 3; i++) {
592         if (inst->src[i].file != UNIFORM || inst->src[i].nr >= UBO_START)
593	    continue;
594
595	 assert(!inst->src[i].reladdr);
596
597         inst->src[i].nr += inst->src[i].offset / 16;
598	 inst->src[i].offset %= 16;
599      }
600   }
601}
602
603/**
604 * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
605 *
606 * While GLSL IR also performs this optimization, we end up with it in
607 * our instruction stream for a couple of reasons.  One is that we
608 * sometimes generate silly instructions, for example in array access
609 * where we'll generate "ADD offset, index, base" even if base is 0.
610 * The other is that GLSL IR's constant propagation doesn't track the
611 * components of aggregates, so some VS patterns (initialize matrix to
612 * 0, accumulate in vertex blending factors) end up breaking down to
613 * instructions involving 0.
614 */
615bool
616vec4_visitor::opt_algebraic()
617{
618   bool progress = false;
619
620   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
621      switch (inst->opcode) {
622      case BRW_OPCODE_MOV:
623         if (inst->src[0].file != IMM)
624            break;
625
626         if (inst->saturate) {
627            /* Full mixed-type saturates don't happen.  However, we can end up
628             * with things like:
629             *
630             *    mov.sat(8) g21<1>DF       -1F
631             *
632             * Other mixed-size-but-same-base-type cases may also be possible.
633             */
634            if (inst->dst.type != inst->src[0].type &&
635                inst->dst.type != BRW_REGISTER_TYPE_DF &&
636                inst->src[0].type != BRW_REGISTER_TYPE_F)
637               assert(!"unimplemented: saturate mixed types");
638
639            if (brw_saturate_immediate(inst->src[0].type,
640                                       &inst->src[0].as_brw_reg())) {
641               inst->saturate = false;
642               progress = true;
643            }
644         }
645         break;
646
647      case BRW_OPCODE_OR:
648         if (inst->src[1].is_zero()) {
649            inst->opcode = BRW_OPCODE_MOV;
650            inst->src[1] = src_reg();
651            progress = true;
652         }
653         break;
654
655      case VEC4_OPCODE_UNPACK_UNIFORM:
656         if (inst->src[0].file != UNIFORM) {
657            inst->opcode = BRW_OPCODE_MOV;
658            progress = true;
659         }
660         break;
661
662      case BRW_OPCODE_ADD:
663	 if (inst->src[1].is_zero()) {
664	    inst->opcode = BRW_OPCODE_MOV;
665	    inst->src[1] = src_reg();
666	    progress = true;
667	 }
668	 break;
669
670      case BRW_OPCODE_MUL:
671	 if (inst->src[1].is_zero()) {
672	    inst->opcode = BRW_OPCODE_MOV;
673	    switch (inst->src[0].type) {
674	    case BRW_REGISTER_TYPE_F:
675	       inst->src[0] = brw_imm_f(0.0f);
676	       break;
677	    case BRW_REGISTER_TYPE_D:
678	       inst->src[0] = brw_imm_d(0);
679	       break;
680	    case BRW_REGISTER_TYPE_UD:
681	       inst->src[0] = brw_imm_ud(0u);
682	       break;
683	    default:
684	       unreachable("not reached");
685	    }
686	    inst->src[1] = src_reg();
687	    progress = true;
688	 } else if (inst->src[1].is_one()) {
689	    inst->opcode = BRW_OPCODE_MOV;
690	    inst->src[1] = src_reg();
691	    progress = true;
692         } else if (inst->src[1].is_negative_one()) {
693            inst->opcode = BRW_OPCODE_MOV;
694            inst->src[0].negate = !inst->src[0].negate;
695            inst->src[1] = src_reg();
696            progress = true;
697	 }
698	 break;
699      case SHADER_OPCODE_BROADCAST:
700         if (is_uniform(inst->src[0]) ||
701             inst->src[1].is_zero()) {
702            inst->opcode = BRW_OPCODE_MOV;
703            inst->src[1] = src_reg();
704            inst->force_writemask_all = true;
705            progress = true;
706         }
707         break;
708
709      default:
710	 break;
711      }
712   }
713
714   if (progress)
715      invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW |
716                          DEPENDENCY_INSTRUCTION_DETAIL);
717
718   return progress;
719}
720
721/* Conditions for which we want to avoid setting the dependency control bits */
722bool
723vec4_visitor::is_dep_ctrl_unsafe(const vec4_instruction *inst)
724{
725#define IS_DWORD(reg) \
726   (reg.type == BRW_REGISTER_TYPE_UD || \
727    reg.type == BRW_REGISTER_TYPE_D)
728
729#define IS_64BIT(reg) (reg.file != BAD_FILE && type_sz(reg.type) == 8)
730
731   if (devinfo->ver >= 7) {
732      if (IS_64BIT(inst->dst) || IS_64BIT(inst->src[0]) ||
733          IS_64BIT(inst->src[1]) || IS_64BIT(inst->src[2]))
734      return true;
735   }
736
737#undef IS_64BIT
738#undef IS_DWORD
739
740   /*
741    * mlen:
742    * In the presence of send messages, totally interrupt dependency
743    * control. They're long enough that the chance of dependency
744    * control around them just doesn't matter.
745    *
746    * predicate:
747    * From the Ivy Bridge PRM, volume 4 part 3.7, page 80:
748    * When a sequence of NoDDChk and NoDDClr are used, the last instruction that
749    * completes the scoreboard clear must have a non-zero execution mask. This
750    * means, if any kind of predication can change the execution mask or channel
751    * enable of the last instruction, the optimization must be avoided. This is
752    * to avoid instructions being shot down the pipeline when no writes are
753    * required.
754    *
755    * math:
756    * Dependency control does not work well over math instructions.
757    * NB: Discovered empirically
758    */
759   return (inst->mlen || inst->predicate || inst->is_math());
760}
761
762/**
763 * Sets the dependency control fields on instructions after register
764 * allocation and before the generator is run.
765 *
766 * When you have a sequence of instructions like:
767 *
768 * DP4 temp.x vertex uniform[0]
769 * DP4 temp.y vertex uniform[0]
770 * DP4 temp.z vertex uniform[0]
771 * DP4 temp.w vertex uniform[0]
772 *
773 * The hardware doesn't know that it can actually run the later instructions
774 * while the previous ones are in flight, producing stalls.  However, we have
775 * manual fields we can set in the instructions that let it do so.
776 */
777void
778vec4_visitor::opt_set_dependency_control()
779{
780   vec4_instruction *last_grf_write[BRW_MAX_GRF];
781   uint8_t grf_channels_written[BRW_MAX_GRF];
782   vec4_instruction *last_mrf_write[BRW_MAX_GRF];
783   uint8_t mrf_channels_written[BRW_MAX_GRF];
784
785   assert(prog_data->total_grf ||
786          !"Must be called after register allocation");
787
788   foreach_block (block, cfg) {
789      memset(last_grf_write, 0, sizeof(last_grf_write));
790      memset(last_mrf_write, 0, sizeof(last_mrf_write));
791
792      foreach_inst_in_block (vec4_instruction, inst, block) {
793         /* If we read from a register that we were doing dependency control
794          * on, don't do dependency control across the read.
795          */
796         for (int i = 0; i < 3; i++) {
797            int reg = inst->src[i].nr + inst->src[i].offset / REG_SIZE;
798            if (inst->src[i].file == VGRF) {
799               last_grf_write[reg] = NULL;
800            } else if (inst->src[i].file == FIXED_GRF) {
801               memset(last_grf_write, 0, sizeof(last_grf_write));
802               break;
803            }
804            assert(inst->src[i].file != MRF);
805         }
806
807         if (is_dep_ctrl_unsafe(inst)) {
808            memset(last_grf_write, 0, sizeof(last_grf_write));
809            memset(last_mrf_write, 0, sizeof(last_mrf_write));
810            continue;
811         }
812
813         /* Now, see if we can do dependency control for this instruction
814          * against a previous one writing to its destination.
815          */
816         int reg = inst->dst.nr + inst->dst.offset / REG_SIZE;
817         if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) {
818            if (last_grf_write[reg] &&
819                last_grf_write[reg]->dst.offset == inst->dst.offset &&
820                !(inst->dst.writemask & grf_channels_written[reg])) {
821               last_grf_write[reg]->no_dd_clear = true;
822               inst->no_dd_check = true;
823            } else {
824               grf_channels_written[reg] = 0;
825            }
826
827            last_grf_write[reg] = inst;
828            grf_channels_written[reg] |= inst->dst.writemask;
829         } else if (inst->dst.file == MRF) {
830            if (last_mrf_write[reg] &&
831                last_mrf_write[reg]->dst.offset == inst->dst.offset &&
832                !(inst->dst.writemask & mrf_channels_written[reg])) {
833               last_mrf_write[reg]->no_dd_clear = true;
834               inst->no_dd_check = true;
835            } else {
836               mrf_channels_written[reg] = 0;
837            }
838
839            last_mrf_write[reg] = inst;
840            mrf_channels_written[reg] |= inst->dst.writemask;
841         }
842      }
843   }
844}
845
846bool
847vec4_instruction::can_reswizzle(const struct intel_device_info *devinfo,
848                                int dst_writemask,
849                                int swizzle,
850                                int swizzle_mask)
851{
852   /* Gfx6 MATH instructions can not execute in align16 mode, so swizzles
853    * are not allowed.
854    */
855   if (devinfo->ver == 6 && is_math() && swizzle != BRW_SWIZZLE_XYZW)
856      return false;
857
858   /* If we write to the flag register changing the swizzle would change
859    * what channels are written to the flag register.
860    */
861   if (writes_flag(devinfo))
862      return false;
863
864   /* We can't swizzle implicit accumulator access.  We'd have to
865    * reswizzle the producer of the accumulator value in addition
866    * to the consumer (i.e. both MUL and MACH).  Just skip this.
867    */
868   if (reads_accumulator_implicitly())
869      return false;
870
871   if (!can_do_writemask(devinfo) && dst_writemask != WRITEMASK_XYZW)
872      return false;
873
874   /* If this instruction sets anything not referenced by swizzle, then we'd
875    * totally break it when we reswizzle.
876    */
877   if (dst.writemask & ~swizzle_mask)
878      return false;
879
880   if (mlen > 0)
881      return false;
882
883   for (int i = 0; i < 3; i++) {
884      if (src[i].is_accumulator())
885         return false;
886   }
887
888   return true;
889}
890
891/**
892 * For any channels in the swizzle's source that were populated by this
893 * instruction, rewrite the instruction to put the appropriate result directly
894 * in those channels.
895 *
896 * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
897 */
898void
899vec4_instruction::reswizzle(int dst_writemask, int swizzle)
900{
901   /* Destination write mask doesn't correspond to source swizzle for the dot
902    * product and pack_bytes instructions.
903    */
904   if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH &&
905       opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2 &&
906       opcode != VEC4_OPCODE_PACK_BYTES) {
907      for (int i = 0; i < 3; i++) {
908         if (src[i].file == BAD_FILE)
909            continue;
910
911         if (src[i].file == IMM) {
912            assert(src[i].type != BRW_REGISTER_TYPE_V &&
913                   src[i].type != BRW_REGISTER_TYPE_UV);
914
915            /* Vector immediate types need to be reswizzled. */
916            if (src[i].type == BRW_REGISTER_TYPE_VF) {
917               const unsigned imm[] = {
918                  (src[i].ud >>  0) & 0x0ff,
919                  (src[i].ud >>  8) & 0x0ff,
920                  (src[i].ud >> 16) & 0x0ff,
921                  (src[i].ud >> 24) & 0x0ff,
922               };
923
924               src[i] = brw_imm_vf4(imm[BRW_GET_SWZ(swizzle, 0)],
925                                    imm[BRW_GET_SWZ(swizzle, 1)],
926                                    imm[BRW_GET_SWZ(swizzle, 2)],
927                                    imm[BRW_GET_SWZ(swizzle, 3)]);
928            }
929
930            continue;
931         }
932
933         src[i].swizzle = brw_compose_swizzle(swizzle, src[i].swizzle);
934      }
935   }
936
937   /* Apply the specified swizzle and writemask to the original mask of
938    * written components.
939    */
940   dst.writemask = dst_writemask &
941                   brw_apply_swizzle_to_mask(swizzle, dst.writemask);
942}
943
944/*
945 * Tries to reduce extra MOV instructions by taking temporary GRFs that get
946 * just written and then MOVed into another reg and making the original write
947 * of the GRF write directly to the final destination instead.
948 */
949bool
950vec4_visitor::opt_register_coalesce()
951{
952   bool progress = false;
953   int next_ip = 0;
954   const vec4_live_variables &live = live_analysis.require();
955
956   foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
957      int ip = next_ip;
958      next_ip++;
959
960      if (inst->opcode != BRW_OPCODE_MOV ||
961          (inst->dst.file != VGRF && inst->dst.file != MRF) ||
962	  inst->predicate ||
963	  inst->src[0].file != VGRF ||
964	  inst->dst.type != inst->src[0].type ||
965	  inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
966	 continue;
967
968      /* Remove no-op MOVs */
969      if (inst->dst.file == inst->src[0].file &&
970          inst->dst.nr == inst->src[0].nr &&
971          inst->dst.offset == inst->src[0].offset) {
972         bool is_nop_mov = true;
973
974         for (unsigned c = 0; c < 4; c++) {
975            if ((inst->dst.writemask & (1 << c)) == 0)
976               continue;
977
978            if (BRW_GET_SWZ(inst->src[0].swizzle, c) != c) {
979               is_nop_mov = false;
980               break;
981            }
982         }
983
984         if (is_nop_mov) {
985            inst->remove(block);
986            progress = true;
987            continue;
988         }
989      }
990
991      bool to_mrf = (inst->dst.file == MRF);
992
993      /* Can't coalesce this GRF if someone else was going to
994       * read it later.
995       */
996      if (live.var_range_end(var_from_reg(alloc, dst_reg(inst->src[0])), 8) > ip)
997	 continue;
998
999      /* We need to check interference with the final destination between this
1000       * instruction and the earliest instruction involved in writing the GRF
1001       * we're eliminating.  To do that, keep track of which of our source
1002       * channels we've seen initialized.
1003       */
1004      const unsigned chans_needed =
1005         brw_apply_inv_swizzle_to_mask(inst->src[0].swizzle,
1006                                       inst->dst.writemask);
1007      unsigned chans_remaining = chans_needed;
1008
1009      /* Now walk up the instruction stream trying to see if we can rewrite
1010       * everything writing to the temporary to write into the destination
1011       * instead.
1012       */
1013      vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev;
1014      foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst,
1015                                                  inst) {
1016         _scan_inst = scan_inst;
1017
1018         if (regions_overlap(inst->src[0], inst->size_read(0),
1019                             scan_inst->dst, scan_inst->size_written)) {
1020            /* Found something writing to the reg we want to coalesce away. */
1021            if (to_mrf) {
1022               /* SEND instructions can't have MRF as a destination. */
1023               if (scan_inst->mlen)
1024                  break;
1025
1026               if (devinfo->ver == 6) {
1027                  /* gfx6 math instructions must have the destination be
1028                   * VGRF, so no compute-to-MRF for them.
1029                   */
1030                  if (scan_inst->is_math()) {
1031                     break;
1032                  }
1033               }
1034            }
1035
1036            /* VS_OPCODE_UNPACK_FLAGS_SIMD4X2 generates a bunch of mov(1)
1037             * instructions, and this optimization pass is not capable of
1038             * handling that.  Bail on these instructions and hope that some
1039             * later optimization pass can do the right thing after they are
1040             * expanded.
1041             */
1042            if (scan_inst->opcode == VS_OPCODE_UNPACK_FLAGS_SIMD4X2)
1043               break;
1044
1045            /* This doesn't handle saturation on the instruction we
1046             * want to coalesce away if the register types do not match.
1047             * But if scan_inst is a non type-converting 'mov', we can fix
1048             * the types later.
1049             */
1050            if (inst->saturate &&
1051                inst->dst.type != scan_inst->dst.type &&
1052                !(scan_inst->opcode == BRW_OPCODE_MOV &&
1053                  scan_inst->dst.type == scan_inst->src[0].type))
1054               break;
1055
1056            /* Only allow coalescing between registers of the same type size.
1057             * Otherwise we would need to make the pass aware of the fact that
1058             * channel sizes are different for single and double precision.
1059             */
1060            if (type_sz(inst->src[0].type) != type_sz(scan_inst->src[0].type))
1061               break;
1062
1063            /* Check that scan_inst writes the same amount of data as the
1064             * instruction, otherwise coalescing would lead to writing a
1065             * different (larger or smaller) region of the destination
1066             */
1067            if (scan_inst->size_written != inst->size_written)
1068               break;
1069
1070            /* If we can't handle the swizzle, bail. */
1071            if (!scan_inst->can_reswizzle(devinfo, inst->dst.writemask,
1072                                          inst->src[0].swizzle,
1073                                          chans_needed)) {
1074               break;
1075            }
1076
1077            /* This only handles coalescing writes of 8 channels (1 register
1078             * for single-precision and 2 registers for double-precision)
1079             * starting at the source offset of the copy instruction.
1080             */
1081            if (DIV_ROUND_UP(scan_inst->size_written,
1082                             type_sz(scan_inst->dst.type)) > 8 ||
1083                scan_inst->dst.offset != inst->src[0].offset)
1084               break;
1085
1086	    /* Mark which channels we found unconditional writes for. */
1087	    if (!scan_inst->predicate)
1088               chans_remaining &= ~scan_inst->dst.writemask;
1089
1090	    if (chans_remaining == 0)
1091	       break;
1092	 }
1093
1094         /* You can't read from an MRF, so if someone else reads our MRF's
1095          * source GRF that we wanted to rewrite, that stops us.  If it's a
1096          * GRF we're trying to coalesce to, we don't actually handle
1097          * rewriting sources so bail in that case as well.
1098          */
1099	 bool interfered = false;
1100	 for (int i = 0; i < 3; i++) {
1101            if (regions_overlap(inst->src[0], inst->size_read(0),
1102                                scan_inst->src[i], scan_inst->size_read(i)))
1103	       interfered = true;
1104	 }
1105	 if (interfered)
1106	    break;
1107
1108         /* If somebody else writes the same channels of our destination here,
1109          * we can't coalesce before that.
1110          */
1111         if (regions_overlap(inst->dst, inst->size_written,
1112                             scan_inst->dst, scan_inst->size_written) &&
1113             (inst->dst.writemask & scan_inst->dst.writemask) != 0) {
1114            break;
1115         }
1116
1117         /* Check for reads of the register we're trying to coalesce into.  We
1118          * can't go rewriting instructions above that to put some other value
1119          * in the register instead.
1120          */
1121         if (to_mrf && scan_inst->mlen > 0) {
1122            unsigned start = scan_inst->base_mrf;
1123            unsigned end = scan_inst->base_mrf + scan_inst->mlen;
1124
1125            if (inst->dst.nr >= start && inst->dst.nr < end) {
1126               break;
1127            }
1128         } else {
1129            for (int i = 0; i < 3; i++) {
1130               if (regions_overlap(inst->dst, inst->size_written,
1131                                   scan_inst->src[i], scan_inst->size_read(i)))
1132                  interfered = true;
1133            }
1134            if (interfered)
1135               break;
1136         }
1137      }
1138
1139      if (chans_remaining == 0) {
1140	 /* If we've made it here, we have an MOV we want to coalesce out, and
1141	  * a scan_inst pointing to the earliest instruction involved in
1142	  * computing the value.  Now go rewrite the instruction stream
1143	  * between the two.
1144	  */
1145         vec4_instruction *scan_inst = _scan_inst;
1146	 while (scan_inst != inst) {
1147	    if (scan_inst->dst.file == VGRF &&
1148                scan_inst->dst.nr == inst->src[0].nr &&
1149		scan_inst->dst.offset == inst->src[0].offset) {
1150               scan_inst->reswizzle(inst->dst.writemask,
1151                                    inst->src[0].swizzle);
1152	       scan_inst->dst.file = inst->dst.file;
1153               scan_inst->dst.nr = inst->dst.nr;
1154	       scan_inst->dst.offset = inst->dst.offset;
1155               if (inst->saturate &&
1156                   inst->dst.type != scan_inst->dst.type) {
1157                  /* If we have reached this point, scan_inst is a non
1158                   * type-converting 'mov' and we can modify its register types
1159                   * to match the ones in inst. Otherwise, we could have an
1160                   * incorrect saturation result.
1161                   */
1162                  scan_inst->dst.type = inst->dst.type;
1163                  scan_inst->src[0].type = inst->src[0].type;
1164               }
1165	       scan_inst->saturate |= inst->saturate;
1166	    }
1167	    scan_inst = (vec4_instruction *)scan_inst->next;
1168	 }
1169	 inst->remove(block);
1170	 progress = true;
1171      }
1172   }
1173
1174   if (progress)
1175      invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
1176
1177   return progress;
1178}
1179
1180/**
1181 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
1182 * flow.  We could probably do better here with some form of divergence
1183 * analysis.
1184 */
1185bool
1186vec4_visitor::eliminate_find_live_channel()
1187{
1188   bool progress = false;
1189   unsigned depth = 0;
1190
1191   if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
1192      /* The optimization below assumes that channel zero is live on thread
1193       * dispatch, which may not be the case if the fixed function dispatches
1194       * threads sparsely.
1195       */
1196      return false;
1197   }
1198
1199   foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1200      switch (inst->opcode) {
1201      case BRW_OPCODE_IF:
1202      case BRW_OPCODE_DO:
1203         depth++;
1204         break;
1205
1206      case BRW_OPCODE_ENDIF:
1207      case BRW_OPCODE_WHILE:
1208         depth--;
1209         break;
1210
1211      case SHADER_OPCODE_FIND_LIVE_CHANNEL:
1212         if (depth == 0) {
1213            inst->opcode = BRW_OPCODE_MOV;
1214            inst->src[0] = brw_imm_d(0);
1215            inst->force_writemask_all = true;
1216            progress = true;
1217         }
1218         break;
1219
1220      default:
1221         break;
1222      }
1223   }
1224
1225   if (progress)
1226      invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
1227
1228   return progress;
1229}
1230
1231/**
1232 * Splits virtual GRFs requesting more than one contiguous physical register.
1233 *
1234 * We initially create large virtual GRFs for temporary structures, arrays,
1235 * and matrices, so that the visitor functions can add offsets to work their
1236 * way down to the actual member being accessed.  But when it comes to
1237 * optimization, we'd like to treat each register as individual storage if
1238 * possible.
1239 *
1240 * So far, the only thing that might prevent splitting is a send message from
1241 * a GRF on IVB.
1242 */
1243void
1244vec4_visitor::split_virtual_grfs()
1245{
1246   int num_vars = this->alloc.count;
1247   int new_virtual_grf[num_vars];
1248   bool split_grf[num_vars];
1249
1250   memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
1251
1252   /* Try to split anything > 0 sized. */
1253   for (int i = 0; i < num_vars; i++) {
1254      split_grf[i] = this->alloc.sizes[i] != 1;
1255   }
1256
1257   /* Check that the instructions are compatible with the registers we're trying
1258    * to split.
1259    */
1260   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1261      if (inst->dst.file == VGRF && regs_written(inst) > 1)
1262         split_grf[inst->dst.nr] = false;
1263
1264      for (int i = 0; i < 3; i++) {
1265         if (inst->src[i].file == VGRF && regs_read(inst, i) > 1)
1266            split_grf[inst->src[i].nr] = false;
1267      }
1268   }
1269
1270   /* Allocate new space for split regs.  Note that the virtual
1271    * numbers will be contiguous.
1272    */
1273   for (int i = 0; i < num_vars; i++) {
1274      if (!split_grf[i])
1275         continue;
1276
1277      new_virtual_grf[i] = alloc.allocate(1);
1278      for (unsigned j = 2; j < this->alloc.sizes[i]; j++) {
1279         unsigned reg = alloc.allocate(1);
1280         assert(reg == new_virtual_grf[i] + j - 1);
1281         (void) reg;
1282      }
1283      this->alloc.sizes[i] = 1;
1284   }
1285
1286   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1287      if (inst->dst.file == VGRF && split_grf[inst->dst.nr] &&
1288          inst->dst.offset / REG_SIZE != 0) {
1289         inst->dst.nr = (new_virtual_grf[inst->dst.nr] +
1290                         inst->dst.offset / REG_SIZE - 1);
1291         inst->dst.offset %= REG_SIZE;
1292      }
1293      for (int i = 0; i < 3; i++) {
1294         if (inst->src[i].file == VGRF && split_grf[inst->src[i].nr] &&
1295             inst->src[i].offset / REG_SIZE != 0) {
1296            inst->src[i].nr = (new_virtual_grf[inst->src[i].nr] +
1297                                inst->src[i].offset / REG_SIZE - 1);
1298            inst->src[i].offset %= REG_SIZE;
1299         }
1300      }
1301   }
1302   invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES);
1303}
1304
1305void
1306vec4_visitor::dump_instruction(const backend_instruction *be_inst) const
1307{
1308   dump_instruction(be_inst, stderr);
1309}
1310
1311void
1312vec4_visitor::dump_instruction(const backend_instruction *be_inst, FILE *file) const
1313{
1314   const vec4_instruction *inst = (const vec4_instruction *)be_inst;
1315
1316   if (inst->predicate) {
1317      fprintf(file, "(%cf%d.%d%s) ",
1318              inst->predicate_inverse ? '-' : '+',
1319              inst->flag_subreg / 2,
1320              inst->flag_subreg % 2,
1321              pred_ctrl_align16[inst->predicate]);
1322   }
1323
1324   fprintf(file, "%s(%d)", brw_instruction_name(&compiler->isa, inst->opcode),
1325           inst->exec_size);
1326   if (inst->saturate)
1327      fprintf(file, ".sat");
1328   if (inst->conditional_mod) {
1329      fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
1330      if (!inst->predicate &&
1331          (devinfo->ver < 5 || (inst->opcode != BRW_OPCODE_SEL &&
1332                                inst->opcode != BRW_OPCODE_CSEL &&
1333                                inst->opcode != BRW_OPCODE_IF &&
1334                                inst->opcode != BRW_OPCODE_WHILE))) {
1335         fprintf(file, ".f%d.%d", inst->flag_subreg / 2, inst->flag_subreg % 2);
1336      }
1337   }
1338   fprintf(file, " ");
1339
1340   switch (inst->dst.file) {
1341   case VGRF:
1342      fprintf(file, "vgrf%d", inst->dst.nr);
1343      break;
1344   case FIXED_GRF:
1345      fprintf(file, "g%d", inst->dst.nr);
1346      break;
1347   case MRF:
1348      fprintf(file, "m%d", inst->dst.nr);
1349      break;
1350   case ARF:
1351      switch (inst->dst.nr) {
1352      case BRW_ARF_NULL:
1353         fprintf(file, "null");
1354         break;
1355      case BRW_ARF_ADDRESS:
1356         fprintf(file, "a0.%d", inst->dst.subnr);
1357         break;
1358      case BRW_ARF_ACCUMULATOR:
1359         fprintf(file, "acc%d", inst->dst.subnr);
1360         break;
1361      case BRW_ARF_FLAG:
1362         fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
1363         break;
1364      default:
1365         fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
1366         break;
1367      }
1368      break;
1369   case BAD_FILE:
1370      fprintf(file, "(null)");
1371      break;
1372   case IMM:
1373   case ATTR:
1374   case UNIFORM:
1375      unreachable("not reached");
1376   }
1377   if (inst->dst.offset ||
1378       (inst->dst.file == VGRF &&
1379        alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
1380      const unsigned reg_size = (inst->dst.file == UNIFORM ? 16 : REG_SIZE);
1381      fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
1382              inst->dst.offset % reg_size);
1383   }
1384   if (inst->dst.writemask != WRITEMASK_XYZW) {
1385      fprintf(file, ".");
1386      if (inst->dst.writemask & 1)
1387         fprintf(file, "x");
1388      if (inst->dst.writemask & 2)
1389         fprintf(file, "y");
1390      if (inst->dst.writemask & 4)
1391         fprintf(file, "z");
1392      if (inst->dst.writemask & 8)
1393         fprintf(file, "w");
1394   }
1395   fprintf(file, ":%s", brw_reg_type_to_letters(inst->dst.type));
1396
1397   if (inst->src[0].file != BAD_FILE)
1398      fprintf(file, ", ");
1399
1400   for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) {
1401      if (inst->src[i].negate)
1402         fprintf(file, "-");
1403      if (inst->src[i].abs)
1404         fprintf(file, "|");
1405      switch (inst->src[i].file) {
1406      case VGRF:
1407         fprintf(file, "vgrf%d", inst->src[i].nr);
1408         break;
1409      case FIXED_GRF:
1410         fprintf(file, "g%d.%d", inst->src[i].nr, inst->src[i].subnr);
1411         break;
1412      case ATTR:
1413         fprintf(file, "attr%d", inst->src[i].nr);
1414         break;
1415      case UNIFORM:
1416         fprintf(file, "u%d", inst->src[i].nr);
1417         break;
1418      case IMM:
1419         switch (inst->src[i].type) {
1420         case BRW_REGISTER_TYPE_F:
1421            fprintf(file, "%fF", inst->src[i].f);
1422            break;
1423         case BRW_REGISTER_TYPE_DF:
1424            fprintf(file, "%fDF", inst->src[i].df);
1425            break;
1426         case BRW_REGISTER_TYPE_D:
1427            fprintf(file, "%dD", inst->src[i].d);
1428            break;
1429         case BRW_REGISTER_TYPE_UD:
1430            fprintf(file, "%uU", inst->src[i].ud);
1431            break;
1432         case BRW_REGISTER_TYPE_VF:
1433            fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
1434                    brw_vf_to_float((inst->src[i].ud >>  0) & 0xff),
1435                    brw_vf_to_float((inst->src[i].ud >>  8) & 0xff),
1436                    brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
1437                    brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
1438            break;
1439         default:
1440            fprintf(file, "???");
1441            break;
1442         }
1443         break;
1444      case ARF:
1445         switch (inst->src[i].nr) {
1446         case BRW_ARF_NULL:
1447            fprintf(file, "null");
1448            break;
1449         case BRW_ARF_ADDRESS:
1450            fprintf(file, "a0.%d", inst->src[i].subnr);
1451            break;
1452         case BRW_ARF_ACCUMULATOR:
1453            fprintf(file, "acc%d", inst->src[i].subnr);
1454            break;
1455         case BRW_ARF_FLAG:
1456            fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
1457            break;
1458         default:
1459            fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
1460            break;
1461         }
1462         break;
1463      case BAD_FILE:
1464         fprintf(file, "(null)");
1465         break;
1466      case MRF:
1467         unreachable("not reached");
1468      }
1469
1470      if (inst->src[i].offset ||
1471          (inst->src[i].file == VGRF &&
1472           alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
1473         const unsigned reg_size = (inst->src[i].file == UNIFORM ? 16 : REG_SIZE);
1474         fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
1475                 inst->src[i].offset % reg_size);
1476      }
1477
1478      if (inst->src[i].file != IMM) {
1479         static const char *chans[4] = {"x", "y", "z", "w"};
1480         fprintf(file, ".");
1481         for (int c = 0; c < 4; c++) {
1482            fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
1483         }
1484      }
1485
1486      if (inst->src[i].abs)
1487         fprintf(file, "|");
1488
1489      if (inst->src[i].file != IMM) {
1490         fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
1491      }
1492
1493      if (i < 2 && inst->src[i + 1].file != BAD_FILE)
1494         fprintf(file, ", ");
1495   }
1496
1497   if (inst->force_writemask_all)
1498      fprintf(file, " NoMask");
1499
1500   if (inst->exec_size != 8)
1501      fprintf(file, " group%d", inst->group);
1502
1503   fprintf(file, "\n");
1504}
1505
1506
1507int
1508vec4_vs_visitor::setup_attributes(int payload_reg)
1509{
1510   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1511      for (int i = 0; i < 3; i++) {
1512         if (inst->src[i].file == ATTR) {
1513            assert(inst->src[i].offset % REG_SIZE == 0);
1514            int grf = payload_reg + inst->src[i].nr +
1515                      inst->src[i].offset / REG_SIZE;
1516
1517            struct brw_reg reg = brw_vec8_grf(grf, 0);
1518            reg.swizzle = inst->src[i].swizzle;
1519            reg.type = inst->src[i].type;
1520            reg.abs = inst->src[i].abs;
1521            reg.negate = inst->src[i].negate;
1522            inst->src[i] = reg;
1523         }
1524      }
1525   }
1526
1527   return payload_reg + vs_prog_data->nr_attribute_slots;
1528}
1529
1530void
1531vec4_visitor::setup_push_ranges()
1532{
1533   /* Only allow 32 registers (256 uniform components) as push constants,
1534    * which is the limit on gfx6.
1535    *
1536    * If changing this value, note the limitation about total_regs in
1537    * brw_curbe.c.
1538    */
1539   const unsigned max_push_length = 32;
1540
1541   push_length = DIV_ROUND_UP(prog_data->base.nr_params, 8);
1542   push_length = MIN2(push_length, max_push_length);
1543
1544   /* Shrink UBO push ranges so it all fits in max_push_length */
1545   for (unsigned i = 0; i < 4; i++) {
1546      struct brw_ubo_range *range = &prog_data->base.ubo_ranges[i];
1547
1548      if (push_length + range->length > max_push_length)
1549         range->length = max_push_length - push_length;
1550
1551      push_length += range->length;
1552   }
1553   assert(push_length <= max_push_length);
1554}
1555
1556int
1557vec4_visitor::setup_uniforms(int reg)
1558{
1559   /* It's possible that uniform compaction will shrink further than expected
1560    * so we re-compute the layout and set up our UBO push starts.
1561    */
1562   ASSERTED const unsigned old_push_length = push_length;
1563   push_length = DIV_ROUND_UP(prog_data->base.nr_params, 8);
1564   for (unsigned i = 0; i < 4; i++) {
1565      ubo_push_start[i] = push_length;
1566      push_length += stage_prog_data->ubo_ranges[i].length;
1567   }
1568   assert(push_length == old_push_length);
1569
1570   /* The pre-gfx6 VS requires that some push constants get loaded no
1571    * matter what, or the GPU would hang.
1572    */
1573   if (devinfo->ver < 6 && push_length == 0) {
1574      brw_stage_prog_data_add_params(stage_prog_data, 4);
1575      for (unsigned int i = 0; i < 4; i++) {
1576	 unsigned int slot = this->uniforms * 4 + i;
1577	 stage_prog_data->param[slot] = BRW_PARAM_BUILTIN_ZERO;
1578      }
1579      push_length = 1;
1580   }
1581
1582   prog_data->base.dispatch_grf_start_reg = reg;
1583   prog_data->base.curb_read_length = push_length;
1584
1585   return reg + push_length;
1586}
1587
1588void
1589vec4_vs_visitor::setup_payload(void)
1590{
1591   int reg = 0;
1592
1593   /* The payload always contains important data in g0, which contains
1594    * the URB handles that are passed on to the URB write at the end
1595    * of the thread.  So, we always start push constants at g1.
1596    */
1597   reg++;
1598
1599   reg = setup_uniforms(reg);
1600
1601   reg = setup_attributes(reg);
1602
1603   this->first_non_payload_grf = reg;
1604}
1605
1606bool
1607vec4_visitor::lower_minmax()
1608{
1609   assert(devinfo->ver < 6);
1610
1611   bool progress = false;
1612
1613   foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1614      const vec4_builder ibld(this, block, inst);
1615
1616      if (inst->opcode == BRW_OPCODE_SEL &&
1617          inst->predicate == BRW_PREDICATE_NONE) {
1618         /* If src1 is an immediate value that is not NaN, then it can't be
1619          * NaN.  In that case, emit CMP because it is much better for cmod
1620          * propagation.  Likewise if src1 is not float.  Gfx4 and Gfx5 don't
1621          * support HF or DF, so it is not necessary to check for those.
1622          */
1623         if (inst->src[1].type != BRW_REGISTER_TYPE_F ||
1624             (inst->src[1].file == IMM && !isnan(inst->src[1].f))) {
1625            ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
1626                     inst->conditional_mod);
1627         } else {
1628            ibld.CMPN(ibld.null_reg_d(), inst->src[0], inst->src[1],
1629                      inst->conditional_mod);
1630         }
1631         inst->predicate = BRW_PREDICATE_NORMAL;
1632         inst->conditional_mod = BRW_CONDITIONAL_NONE;
1633
1634         progress = true;
1635      }
1636   }
1637
1638   if (progress)
1639      invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
1640
1641   return progress;
1642}
1643
1644src_reg
1645vec4_visitor::get_timestamp()
1646{
1647   assert(devinfo->ver == 7);
1648
1649   src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
1650                                BRW_ARF_TIMESTAMP,
1651                                0,
1652                                0,
1653                                0,
1654                                BRW_REGISTER_TYPE_UD,
1655                                BRW_VERTICAL_STRIDE_0,
1656                                BRW_WIDTH_4,
1657                                BRW_HORIZONTAL_STRIDE_4,
1658                                BRW_SWIZZLE_XYZW,
1659                                WRITEMASK_XYZW));
1660
1661   dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
1662
1663   vec4_instruction *mov = emit(MOV(dst, ts));
1664   /* We want to read the 3 fields we care about (mostly field 0, but also 2)
1665    * even if it's not enabled in the dispatch.
1666    */
1667   mov->force_writemask_all = true;
1668
1669   return src_reg(dst);
1670}
1671
1672static bool
1673is_align1_df(vec4_instruction *inst)
1674{
1675   switch (inst->opcode) {
1676   case VEC4_OPCODE_DOUBLE_TO_F32:
1677   case VEC4_OPCODE_DOUBLE_TO_D32:
1678   case VEC4_OPCODE_DOUBLE_TO_U32:
1679   case VEC4_OPCODE_TO_DOUBLE:
1680   case VEC4_OPCODE_PICK_LOW_32BIT:
1681   case VEC4_OPCODE_PICK_HIGH_32BIT:
1682   case VEC4_OPCODE_SET_LOW_32BIT:
1683   case VEC4_OPCODE_SET_HIGH_32BIT:
1684      return true;
1685   default:
1686      return false;
1687   }
1688}
1689
1690/**
1691 * Three source instruction must have a GRF/MRF destination register.
1692 * ARF NULL is not allowed.  Fix that up by allocating a temporary GRF.
1693 */
1694void
1695vec4_visitor::fixup_3src_null_dest()
1696{
1697   bool progress = false;
1698
1699   foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
1700      if (inst->is_3src(compiler) && inst->dst.is_null()) {
1701         const unsigned size_written = type_sz(inst->dst.type);
1702         const unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE);
1703
1704         inst->dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)),
1705                            inst->dst.type);
1706         progress = true;
1707      }
1708   }
1709
1710   if (progress)
1711      invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL |
1712                          DEPENDENCY_VARIABLES);
1713}
1714
1715void
1716vec4_visitor::convert_to_hw_regs()
1717{
1718   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1719      for (int i = 0; i < 3; i++) {
1720         class src_reg &src = inst->src[i];
1721         struct brw_reg reg;
1722         switch (src.file) {
1723         case VGRF: {
1724            reg = byte_offset(brw_vecn_grf(4, src.nr, 0), src.offset);
1725            reg.type = src.type;
1726            reg.abs = src.abs;
1727            reg.negate = src.negate;
1728            break;
1729         }
1730
1731         case UNIFORM: {
1732            if (src.nr >= UBO_START) {
1733               reg = byte_offset(brw_vec4_grf(
1734                                    prog_data->base.dispatch_grf_start_reg +
1735                                    ubo_push_start[src.nr - UBO_START] +
1736                                    src.offset / 32, 0),
1737                                 src.offset % 32);
1738            } else {
1739               reg = byte_offset(brw_vec4_grf(
1740                                    prog_data->base.dispatch_grf_start_reg +
1741                                    src.nr / 2, src.nr % 2 * 4),
1742                                 src.offset);
1743            }
1744            reg = stride(reg, 0, 4, 1);
1745            reg.type = src.type;
1746            reg.abs = src.abs;
1747            reg.negate = src.negate;
1748
1749            /* This should have been moved to pull constants. */
1750            assert(!src.reladdr);
1751            break;
1752         }
1753
1754         case FIXED_GRF:
1755            if (type_sz(src.type) == 8) {
1756               reg = src.as_brw_reg();
1757               break;
1758            }
1759            FALLTHROUGH;
1760         case ARF:
1761         case IMM:
1762            continue;
1763
1764         case BAD_FILE:
1765            /* Probably unused. */
1766            reg = brw_null_reg();
1767            reg = retype(reg, src.type);
1768            break;
1769
1770         case MRF:
1771         case ATTR:
1772            unreachable("not reached");
1773         }
1774
1775         apply_logical_swizzle(&reg, inst, i);
1776         src = reg;
1777
1778         /* From IVB PRM, vol4, part3, "General Restrictions on Regioning
1779          * Parameters":
1780          *
1781          *   "If ExecSize = Width and HorzStride ≠ 0, VertStride must be set
1782          *    to Width * HorzStride."
1783          *
1784          * We can break this rule with DF sources on DF align1
1785          * instructions, because the exec_size would be 4 and width is 4.
1786          * As we know we are not accessing to next GRF, it is safe to
1787          * set vstride to the formula given by the rule itself.
1788          */
1789         if (is_align1_df(inst) && (cvt(inst->exec_size) - 1) == src.width)
1790            src.vstride = src.width + src.hstride;
1791      }
1792
1793      if (inst->is_3src(compiler)) {
1794         /* 3-src instructions with scalar sources support arbitrary subnr,
1795          * but don't actually use swizzles.  Convert swizzle into subnr.
1796          * Skip this for double-precision instructions: RepCtrl=1 is not
1797          * allowed for them and needs special handling.
1798          */
1799         for (int i = 0; i < 3; i++) {
1800            if (inst->src[i].vstride == BRW_VERTICAL_STRIDE_0 &&
1801                type_sz(inst->src[i].type) < 8) {
1802               assert(brw_is_single_value_swizzle(inst->src[i].swizzle));
1803               inst->src[i].subnr += 4 * BRW_GET_SWZ(inst->src[i].swizzle, 0);
1804            }
1805         }
1806      }
1807
1808      dst_reg &dst = inst->dst;
1809      struct brw_reg reg;
1810
1811      switch (inst->dst.file) {
1812      case VGRF:
1813         reg = byte_offset(brw_vec8_grf(dst.nr, 0), dst.offset);
1814         reg.type = dst.type;
1815         reg.writemask = dst.writemask;
1816         break;
1817
1818      case MRF:
1819         reg = byte_offset(brw_message_reg(dst.nr), dst.offset);
1820         assert((reg.nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->ver));
1821         reg.type = dst.type;
1822         reg.writemask = dst.writemask;
1823         break;
1824
1825      case ARF:
1826      case FIXED_GRF:
1827         reg = dst.as_brw_reg();
1828         break;
1829
1830      case BAD_FILE:
1831         reg = brw_null_reg();
1832         reg = retype(reg, dst.type);
1833         break;
1834
1835      case IMM:
1836      case ATTR:
1837      case UNIFORM:
1838         unreachable("not reached");
1839      }
1840
1841      dst = reg;
1842   }
1843}
1844
1845static bool
1846stage_uses_interleaved_attributes(unsigned stage,
1847                                  enum shader_dispatch_mode dispatch_mode)
1848{
1849   switch (stage) {
1850   case MESA_SHADER_TESS_EVAL:
1851      return true;
1852   case MESA_SHADER_GEOMETRY:
1853      return dispatch_mode != DISPATCH_MODE_4X2_DUAL_OBJECT;
1854   default:
1855      return false;
1856   }
1857}
1858
1859/**
1860 * Get the closest native SIMD width supported by the hardware for instruction
1861 * \p inst.  The instruction will be left untouched by
1862 * vec4_visitor::lower_simd_width() if the returned value matches the
1863 * instruction's original execution size.
1864 */
1865static unsigned
1866get_lowered_simd_width(const struct intel_device_info *devinfo,
1867                       enum shader_dispatch_mode dispatch_mode,
1868                       unsigned stage, const vec4_instruction *inst)
1869{
1870   /* Do not split some instructions that require special handling */
1871   switch (inst->opcode) {
1872   case SHADER_OPCODE_GFX4_SCRATCH_READ:
1873   case SHADER_OPCODE_GFX4_SCRATCH_WRITE:
1874      return inst->exec_size;
1875   default:
1876      break;
1877   }
1878
1879   unsigned lowered_width = MIN2(16, inst->exec_size);
1880
1881   /* We need to split some cases of double-precision instructions that write
1882    * 2 registers. We only need to care about this in gfx7 because that is the
1883    * only hardware that implements fp64 in Align16.
1884    */
1885   if (devinfo->ver == 7 && inst->size_written > REG_SIZE) {
1886      /* Align16 8-wide double-precision SEL does not work well. Verified
1887       * empirically.
1888       */
1889      if (inst->opcode == BRW_OPCODE_SEL && type_sz(inst->dst.type) == 8)
1890         lowered_width = MIN2(lowered_width, 4);
1891
1892      /* HSW PRM, 3D Media GPGPU Engine, Region Alignment Rules for Direct
1893       * Register Addressing:
1894       *
1895       *    "When destination spans two registers, the source MUST span two
1896       *     registers."
1897       */
1898      for (unsigned i = 0; i < 3; i++) {
1899         if (inst->src[i].file == BAD_FILE)
1900            continue;
1901         if (inst->size_read(i) <= REG_SIZE)
1902            lowered_width = MIN2(lowered_width, 4);
1903
1904         /* Interleaved attribute setups use a vertical stride of 0, which
1905          * makes them hit the associated instruction decompression bug in gfx7.
1906          * Split them to prevent this.
1907          */
1908         if (inst->src[i].file == ATTR &&
1909             stage_uses_interleaved_attributes(stage, dispatch_mode))
1910            lowered_width = MIN2(lowered_width, 4);
1911      }
1912   }
1913
1914   /* IvyBridge can manage a maximum of 4 DFs per SIMD4x2 instruction, since
1915    * it doesn't support compression in Align16 mode, no matter if it has
1916    * force_writemask_all enabled or disabled (the latter is affected by the
1917    * compressed instruction bug in gfx7, which is another reason to enforce
1918    * this limit).
1919    */
1920   if (devinfo->verx10 == 70 &&
1921       (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8))
1922      lowered_width = MIN2(lowered_width, 4);
1923
1924   return lowered_width;
1925}
1926
1927static bool
1928dst_src_regions_overlap(vec4_instruction *inst)
1929{
1930   if (inst->size_written == 0)
1931      return false;
1932
1933   unsigned dst_start = inst->dst.offset;
1934   unsigned dst_end = dst_start + inst->size_written - 1;
1935   for (int i = 0; i < 3; i++) {
1936      if (inst->src[i].file == BAD_FILE)
1937         continue;
1938
1939      if (inst->dst.file != inst->src[i].file ||
1940          inst->dst.nr != inst->src[i].nr)
1941         continue;
1942
1943      unsigned src_start = inst->src[i].offset;
1944      unsigned src_end = src_start + inst->size_read(i) - 1;
1945
1946      if ((dst_start >= src_start && dst_start <= src_end) ||
1947          (dst_end >= src_start && dst_end <= src_end) ||
1948          (dst_start <= src_start && dst_end >= src_end)) {
1949         return true;
1950      }
1951   }
1952
1953   return false;
1954}
1955
1956bool
1957vec4_visitor::lower_simd_width()
1958{
1959   bool progress = false;
1960
1961   foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1962      const unsigned lowered_width =
1963         get_lowered_simd_width(devinfo, prog_data->dispatch_mode, stage, inst);
1964      assert(lowered_width <= inst->exec_size);
1965      if (lowered_width == inst->exec_size)
1966         continue;
1967
1968      /* We need to deal with source / destination overlaps when splitting.
1969       * The hardware supports reading from and writing to the same register
1970       * in the same instruction, but we need to be careful that each split
1971       * instruction we produce does not corrupt the source of the next.
1972       *
1973       * The easiest way to handle this is to make the split instructions write
1974       * to temporaries if there is an src/dst overlap and then move from the
1975       * temporaries to the original destination. We also need to consider
1976       * instructions that do partial writes via align1 opcodes, in which case
1977       * we need to make sure that the we initialize the temporary with the
1978       * value of the instruction's dst.
1979       */
1980      bool needs_temp = dst_src_regions_overlap(inst);
1981      for (unsigned n = 0; n < inst->exec_size / lowered_width; n++)  {
1982         unsigned channel_offset = lowered_width * n;
1983
1984         unsigned size_written = lowered_width * type_sz(inst->dst.type);
1985
1986         /* Create the split instruction from the original so that we copy all
1987          * relevant instruction fields, then set the width and calculate the
1988          * new dst/src regions.
1989          */
1990         vec4_instruction *linst = new(mem_ctx) vec4_instruction(*inst);
1991         linst->exec_size = lowered_width;
1992         linst->group = channel_offset;
1993         linst->size_written = size_written;
1994
1995         /* Compute split dst region */
1996         dst_reg dst;
1997         if (needs_temp) {
1998            unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE);
1999            dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)),
2000                         inst->dst.type);
2001            if (inst->is_align1_partial_write()) {
2002               vec4_instruction *copy = MOV(dst, src_reg(inst->dst));
2003               copy->exec_size = lowered_width;
2004               copy->group = channel_offset;
2005               copy->size_written = size_written;
2006               inst->insert_before(block, copy);
2007            }
2008         } else {
2009            dst = horiz_offset(inst->dst, channel_offset);
2010         }
2011         linst->dst = dst;
2012
2013         /* Compute split source regions */
2014         for (int i = 0; i < 3; i++) {
2015            if (linst->src[i].file == BAD_FILE)
2016               continue;
2017
2018            bool is_interleaved_attr =
2019               linst->src[i].file == ATTR &&
2020               stage_uses_interleaved_attributes(stage,
2021                                                 prog_data->dispatch_mode);
2022
2023            if (!is_uniform(linst->src[i]) && !is_interleaved_attr)
2024               linst->src[i] = horiz_offset(linst->src[i], channel_offset);
2025         }
2026
2027         inst->insert_before(block, linst);
2028
2029         /* If we used a temporary to store the result of the split
2030          * instruction, copy the result to the original destination
2031          */
2032         if (needs_temp) {
2033            vec4_instruction *mov =
2034               MOV(offset(inst->dst, lowered_width, n), src_reg(dst));
2035            mov->exec_size = lowered_width;
2036            mov->group = channel_offset;
2037            mov->size_written = size_written;
2038            mov->predicate = inst->predicate;
2039            inst->insert_before(block, mov);
2040         }
2041      }
2042
2043      inst->remove(block);
2044      progress = true;
2045   }
2046
2047   if (progress)
2048      invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
2049
2050   return progress;
2051}
2052
2053static brw_predicate
2054scalarize_predicate(brw_predicate predicate, unsigned writemask)
2055{
2056   if (predicate != BRW_PREDICATE_NORMAL)
2057      return predicate;
2058
2059   switch (writemask) {
2060   case WRITEMASK_X:
2061      return BRW_PREDICATE_ALIGN16_REPLICATE_X;
2062   case WRITEMASK_Y:
2063      return BRW_PREDICATE_ALIGN16_REPLICATE_Y;
2064   case WRITEMASK_Z:
2065      return BRW_PREDICATE_ALIGN16_REPLICATE_Z;
2066   case WRITEMASK_W:
2067      return BRW_PREDICATE_ALIGN16_REPLICATE_W;
2068   default:
2069      unreachable("invalid writemask");
2070   }
2071}
2072
2073/* Gfx7 has a hardware decompression bug that we can exploit to represent
2074 * handful of additional swizzles natively.
2075 */
2076static bool
2077is_gfx7_supported_64bit_swizzle(vec4_instruction *inst, unsigned arg)
2078{
2079   switch (inst->src[arg].swizzle) {
2080   case BRW_SWIZZLE_XXXX:
2081   case BRW_SWIZZLE_YYYY:
2082   case BRW_SWIZZLE_ZZZZ:
2083   case BRW_SWIZZLE_WWWW:
2084   case BRW_SWIZZLE_XYXY:
2085   case BRW_SWIZZLE_YXYX:
2086   case BRW_SWIZZLE_ZWZW:
2087   case BRW_SWIZZLE_WZWZ:
2088      return true;
2089   default:
2090      return false;
2091   }
2092}
2093
2094/* 64-bit sources use regions with a width of 2. These 2 elements in each row
2095 * can be addressed using 32-bit swizzles (which is what the hardware supports)
2096 * but it also means that the swizzle we apply on the first two components of a
2097 * dvec4 is coupled with the swizzle we use for the last 2. In other words,
2098 * only some specific swizzle combinations can be natively supported.
2099 *
2100 * FIXME: we can go an step further and implement even more swizzle
2101 *        variations using only partial scalarization.
2102 *
2103 * For more details see:
2104 * https://bugs.freedesktop.org/show_bug.cgi?id=92760#c82
2105 */
2106bool
2107vec4_visitor::is_supported_64bit_region(vec4_instruction *inst, unsigned arg)
2108{
2109   const src_reg &src = inst->src[arg];
2110   assert(type_sz(src.type) == 8);
2111
2112   /* Uniform regions have a vstride=0. Because we use 2-wide rows with
2113    * 64-bit regions it means that we cannot access components Z/W, so
2114    * return false for any such case. Interleaved attributes will also be
2115    * mapped to GRF registers with a vstride of 0, so apply the same
2116    * treatment.
2117    */
2118   if ((is_uniform(src) ||
2119        (stage_uses_interleaved_attributes(stage, prog_data->dispatch_mode) &&
2120         src.file == ATTR)) &&
2121       (brw_mask_for_swizzle(src.swizzle) & 12))
2122      return false;
2123
2124   switch (src.swizzle) {
2125   case BRW_SWIZZLE_XYZW:
2126   case BRW_SWIZZLE_XXZZ:
2127   case BRW_SWIZZLE_YYWW:
2128   case BRW_SWIZZLE_YXWZ:
2129      return true;
2130   default:
2131      return devinfo->ver == 7 && is_gfx7_supported_64bit_swizzle(inst, arg);
2132   }
2133}
2134
2135bool
2136vec4_visitor::scalarize_df()
2137{
2138   bool progress = false;
2139
2140   foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
2141      /* Skip DF instructions that operate in Align1 mode */
2142      if (is_align1_df(inst))
2143         continue;
2144
2145      /* Check if this is a double-precision instruction */
2146      bool is_double = type_sz(inst->dst.type) == 8;
2147      for (int arg = 0; !is_double && arg < 3; arg++) {
2148         is_double = inst->src[arg].file != BAD_FILE &&
2149                     type_sz(inst->src[arg].type) == 8;
2150      }
2151
2152      if (!is_double)
2153         continue;
2154
2155      /* Skip the lowering for specific regioning scenarios that we can
2156       * support natively.
2157       */
2158      bool skip_lowering = true;
2159
2160      /* XY and ZW writemasks operate in 32-bit, which means that they don't
2161       * have a native 64-bit representation and they should always be split.
2162       */
2163      if (inst->dst.writemask == WRITEMASK_XY ||
2164          inst->dst.writemask == WRITEMASK_ZW) {
2165         skip_lowering = false;
2166      } else {
2167         for (unsigned i = 0; i < 3; i++) {
2168            if (inst->src[i].file == BAD_FILE || type_sz(inst->src[i].type) < 8)
2169               continue;
2170            skip_lowering = skip_lowering && is_supported_64bit_region(inst, i);
2171         }
2172      }
2173
2174      if (skip_lowering)
2175         continue;
2176
2177      /* Generate scalar instructions for each enabled channel */
2178      for (unsigned chan = 0; chan < 4; chan++) {
2179         unsigned chan_mask = 1 << chan;
2180         if (!(inst->dst.writemask & chan_mask))
2181            continue;
2182
2183         vec4_instruction *scalar_inst = new(mem_ctx) vec4_instruction(*inst);
2184
2185         for (unsigned i = 0; i < 3; i++) {
2186            unsigned swz = BRW_GET_SWZ(inst->src[i].swizzle, chan);
2187            scalar_inst->src[i].swizzle = BRW_SWIZZLE4(swz, swz, swz, swz);
2188         }
2189
2190         scalar_inst->dst.writemask = chan_mask;
2191
2192         if (inst->predicate != BRW_PREDICATE_NONE) {
2193            scalar_inst->predicate =
2194               scalarize_predicate(inst->predicate, chan_mask);
2195         }
2196
2197         inst->insert_before(block, scalar_inst);
2198      }
2199
2200      inst->remove(block);
2201      progress = true;
2202   }
2203
2204   if (progress)
2205      invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
2206
2207   return progress;
2208}
2209
2210bool
2211vec4_visitor::lower_64bit_mad_to_mul_add()
2212{
2213   bool progress = false;
2214
2215   foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
2216      if (inst->opcode != BRW_OPCODE_MAD)
2217         continue;
2218
2219      if (type_sz(inst->dst.type) != 8)
2220         continue;
2221
2222      dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type);
2223
2224      /* Use the copy constructor so we copy all relevant instruction fields
2225       * from the original mad into the add and mul instructions
2226       */
2227      vec4_instruction *mul = new(mem_ctx) vec4_instruction(*inst);
2228      mul->opcode = BRW_OPCODE_MUL;
2229      mul->dst = mul_dst;
2230      mul->src[0] = inst->src[1];
2231      mul->src[1] = inst->src[2];
2232      mul->src[2].file = BAD_FILE;
2233
2234      vec4_instruction *add = new(mem_ctx) vec4_instruction(*inst);
2235      add->opcode = BRW_OPCODE_ADD;
2236      add->src[0] = src_reg(mul_dst);
2237      add->src[1] = inst->src[0];
2238      add->src[2].file = BAD_FILE;
2239
2240      inst->insert_before(block, mul);
2241      inst->insert_before(block, add);
2242      inst->remove(block);
2243
2244      progress = true;
2245   }
2246
2247   if (progress)
2248      invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
2249
2250   return progress;
2251}
2252
2253/* The align16 hardware can only do 32-bit swizzle channels, so we need to
2254 * translate the logical 64-bit swizzle channels that we use in the Vec4 IR
2255 * to 32-bit swizzle channels in hardware registers.
2256 *
2257 * @inst and @arg identify the original vec4 IR source operand we need to
2258 * translate the swizzle for and @hw_reg is the hardware register where we
2259 * will write the hardware swizzle to use.
2260 *
2261 * This pass assumes that Align16/DF instructions have been fully scalarized
2262 * previously so there is just one 64-bit swizzle channel to deal with for any
2263 * given Vec4 IR source.
2264 */
2265void
2266vec4_visitor::apply_logical_swizzle(struct brw_reg *hw_reg,
2267                                    vec4_instruction *inst, int arg)
2268{
2269   src_reg reg = inst->src[arg];
2270
2271   if (reg.file == BAD_FILE || reg.file == BRW_IMMEDIATE_VALUE)
2272      return;
2273
2274   /* If this is not a 64-bit operand or this is a scalar instruction we don't
2275    * need to do anything about the swizzles.
2276    */
2277   if(type_sz(reg.type) < 8 || is_align1_df(inst)) {
2278      hw_reg->swizzle = reg.swizzle;
2279      return;
2280   }
2281
2282   /* Take the 64-bit logical swizzle channel and translate it to 32-bit */
2283   assert(brw_is_single_value_swizzle(reg.swizzle) ||
2284          is_supported_64bit_region(inst, arg));
2285
2286   /* Apply the region <2, 2, 1> for GRF or <0, 2, 1> for uniforms, as align16
2287    * HW can only do 32-bit swizzle channels.
2288    */
2289   hw_reg->width = BRW_WIDTH_2;
2290
2291   if (is_supported_64bit_region(inst, arg) &&
2292       !is_gfx7_supported_64bit_swizzle(inst, arg)) {
2293      /* Supported 64-bit swizzles are those such that their first two
2294       * components, when expanded to 32-bit swizzles, match the semantics
2295       * of the original 64-bit swizzle with 2-wide row regioning.
2296       */
2297      unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0);
2298      unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1);
2299      hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1,
2300                                     swizzle1 * 2, swizzle1 * 2 + 1);
2301   } else {
2302      /* If we got here then we have one of the following:
2303       *
2304       * 1. An unsupported swizzle, which should be single-value thanks to the
2305       *    scalarization pass.
2306       *
2307       * 2. A gfx7 supported swizzle. These can be single-value or double-value
2308       *    swizzles. If the latter, they are never cross-dvec2 channels. For
2309       *    these we always need to activate the gfx7 vstride=0 exploit.
2310       */
2311      unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0);
2312      unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1);
2313      assert((swizzle0 < 2) == (swizzle1 < 2));
2314
2315      /* To gain access to Z/W components we need to select the second half
2316       * of the register and then use a X/Y swizzle to select Z/W respectively.
2317       */
2318      if (swizzle0 >= 2) {
2319         *hw_reg = suboffset(*hw_reg, 2);
2320         swizzle0 -= 2;
2321         swizzle1 -= 2;
2322      }
2323
2324      /* All gfx7-specific supported swizzles require the vstride=0 exploit */
2325      if (devinfo->ver == 7 && is_gfx7_supported_64bit_swizzle(inst, arg))
2326         hw_reg->vstride = BRW_VERTICAL_STRIDE_0;
2327
2328      /* Any 64-bit source with an offset at 16B is intended to address the
2329       * second half of a register and needs a vertical stride of 0 so we:
2330       *
2331       * 1. Don't violate register region restrictions.
2332       * 2. Activate the gfx7 instruction decompression bug exploit when
2333       *    execsize > 4
2334       */
2335      if (hw_reg->subnr % REG_SIZE == 16) {
2336         assert(devinfo->ver == 7);
2337         hw_reg->vstride = BRW_VERTICAL_STRIDE_0;
2338      }
2339
2340      hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1,
2341                                     swizzle1 * 2, swizzle1 * 2 + 1);
2342   }
2343}
2344
2345void
2346vec4_visitor::invalidate_analysis(brw::analysis_dependency_class c)
2347{
2348   backend_shader::invalidate_analysis(c);
2349   live_analysis.invalidate(c);
2350}
2351
2352bool
2353vec4_visitor::run()
2354{
2355   setup_push_ranges();
2356
2357   if (prog_data->base.zero_push_reg) {
2358      /* push_reg_mask_param is in uint32 params and UNIFORM is in vec4s */
2359      const unsigned mask_param = stage_prog_data->push_reg_mask_param;
2360      src_reg mask = src_reg(dst_reg(UNIFORM, mask_param / 4));
2361      assert(mask_param % 2 == 0); /* Should be 64-bit-aligned */
2362      mask.swizzle = BRW_SWIZZLE4((mask_param + 0) % 4,
2363                                  (mask_param + 1) % 4,
2364                                  (mask_param + 0) % 4,
2365                                  (mask_param + 1) % 4);
2366
2367      emit(VEC4_OPCODE_ZERO_OOB_PUSH_REGS,
2368           dst_reg(VGRF, alloc.allocate(3)), mask);
2369   }
2370
2371   emit_prolog();
2372
2373   emit_nir_code();
2374   if (failed)
2375      return false;
2376   base_ir = NULL;
2377
2378   emit_thread_end();
2379
2380   calculate_cfg();
2381
2382   /* Before any optimization, push array accesses out to scratch
2383    * space where we need them to be.  This pass may allocate new
2384    * virtual GRFs, so we want to do it early.  It also makes sure
2385    * that we have reladdr computations available for CSE, since we'll
2386    * often do repeated subexpressions for those.
2387    */
2388   move_grf_array_access_to_scratch();
2389   split_uniform_registers();
2390
2391   split_virtual_grfs();
2392
2393#define OPT(pass, args...) ({                                          \
2394      pass_num++;                                                      \
2395      bool this_progress = pass(args);                                 \
2396                                                                       \
2397      if (INTEL_DEBUG(DEBUG_OPTIMIZER) && this_progress) {             \
2398         char filename[64];                                            \
2399         snprintf(filename, 64, "%s-%s-%02d-%02d-" #pass,              \
2400                  stage_abbrev, nir->info.name, iteration, pass_num); \
2401                                                                       \
2402         backend_shader::dump_instructions(filename);                  \
2403      }                                                                \
2404                                                                       \
2405      progress = progress || this_progress;                            \
2406      this_progress;                                                   \
2407   })
2408
2409
2410   if (INTEL_DEBUG(DEBUG_OPTIMIZER)) {
2411      char filename[64];
2412      snprintf(filename, 64, "%s-%s-00-00-start",
2413               stage_abbrev, nir->info.name);
2414
2415      backend_shader::dump_instructions(filename);
2416   }
2417
2418   bool progress;
2419   int iteration = 0;
2420   int pass_num = 0;
2421   do {
2422      progress = false;
2423      pass_num = 0;
2424      iteration++;
2425
2426      OPT(opt_predicated_break, this);
2427      OPT(opt_reduce_swizzle);
2428      OPT(dead_code_eliminate);
2429      OPT(dead_control_flow_eliminate, this);
2430      OPT(opt_copy_propagation);
2431      OPT(opt_cmod_propagation);
2432      OPT(opt_cse);
2433      OPT(opt_algebraic);
2434      OPT(opt_register_coalesce);
2435      OPT(eliminate_find_live_channel);
2436   } while (progress);
2437
2438   pass_num = 0;
2439
2440   if (OPT(opt_vector_float)) {
2441      OPT(opt_cse);
2442      OPT(opt_copy_propagation, false);
2443      OPT(opt_copy_propagation, true);
2444      OPT(dead_code_eliminate);
2445   }
2446
2447   if (devinfo->ver <= 5 && OPT(lower_minmax)) {
2448      OPT(opt_cmod_propagation);
2449      OPT(opt_cse);
2450      OPT(opt_copy_propagation);
2451      OPT(dead_code_eliminate);
2452   }
2453
2454   if (OPT(lower_simd_width)) {
2455      OPT(opt_copy_propagation);
2456      OPT(dead_code_eliminate);
2457   }
2458
2459   if (failed)
2460      return false;
2461
2462   OPT(lower_64bit_mad_to_mul_add);
2463
2464   /* Run this before payload setup because tessellation shaders
2465    * rely on it to prevent cross dvec2 regioning on DF attributes
2466    * that are setup so that XY are on the second half of register and
2467    * ZW are in the first half of the next.
2468    */
2469   OPT(scalarize_df);
2470
2471   setup_payload();
2472
2473   if (INTEL_DEBUG(DEBUG_SPILL_VEC4)) {
2474      /* Debug of register spilling: Go spill everything. */
2475      const int grf_count = alloc.count;
2476      float spill_costs[alloc.count];
2477      bool no_spill[alloc.count];
2478      evaluate_spill_costs(spill_costs, no_spill);
2479      for (int i = 0; i < grf_count; i++) {
2480         if (no_spill[i])
2481            continue;
2482         spill_reg(i);
2483      }
2484
2485      /* We want to run this after spilling because 64-bit (un)spills need to
2486       * emit code to shuffle 64-bit data for the 32-bit scratch read/write
2487       * messages that can produce unsupported 64-bit swizzle regions.
2488       */
2489      OPT(scalarize_df);
2490   }
2491
2492   fixup_3src_null_dest();
2493
2494   bool allocated_without_spills = reg_allocate();
2495
2496   if (!allocated_without_spills) {
2497      brw_shader_perf_log(compiler, log_data,
2498                          "%s shader triggered register spilling.  "
2499                          "Try reducing the number of live vec4 values "
2500                          "to improve performance.\n",
2501                          stage_name);
2502
2503      while (!reg_allocate()) {
2504         if (failed)
2505            return false;
2506      }
2507
2508      /* We want to run this after spilling because 64-bit (un)spills need to
2509       * emit code to shuffle 64-bit data for the 32-bit scratch read/write
2510       * messages that can produce unsupported 64-bit swizzle regions.
2511       */
2512      OPT(scalarize_df);
2513   }
2514
2515   opt_schedule_instructions();
2516
2517   opt_set_dependency_control();
2518
2519   convert_to_hw_regs();
2520
2521   if (last_scratch > 0) {
2522      prog_data->base.total_scratch =
2523         brw_get_scratch_size(last_scratch * REG_SIZE);
2524   }
2525
2526   return !failed;
2527}
2528
2529} /* namespace brw */
2530
2531extern "C" {
2532
2533const unsigned *
2534brw_compile_vs(const struct brw_compiler *compiler,
2535               void *mem_ctx,
2536               struct brw_compile_vs_params *params)
2537{
2538   struct nir_shader *nir = params->nir;
2539   const struct brw_vs_prog_key *key = params->key;
2540   struct brw_vs_prog_data *prog_data = params->prog_data;
2541   const bool debug_enabled =
2542      INTEL_DEBUG(params->debug_flag ? params->debug_flag : DEBUG_VS);
2543
2544   prog_data->base.base.stage = MESA_SHADER_VERTEX;
2545   prog_data->base.base.ray_queries = nir->info.ray_queries;
2546   prog_data->base.base.total_scratch = 0;
2547
2548   const bool is_scalar = compiler->scalar_stage[MESA_SHADER_VERTEX];
2549   brw_nir_apply_key(nir, compiler, &key->base, 8, is_scalar);
2550
2551   const unsigned *assembly = NULL;
2552
2553   prog_data->inputs_read = nir->info.inputs_read;
2554   prog_data->double_inputs_read = nir->info.vs.double_inputs;
2555
2556   brw_nir_lower_vs_inputs(nir, params->edgeflag_is_last, key->gl_attrib_wa_flags);
2557   brw_nir_lower_vue_outputs(nir);
2558   brw_postprocess_nir(nir, compiler, is_scalar, debug_enabled,
2559                       key->base.robust_buffer_access);
2560
2561   prog_data->base.clip_distance_mask =
2562      ((1 << nir->info.clip_distance_array_size) - 1);
2563   prog_data->base.cull_distance_mask =
2564      ((1 << nir->info.cull_distance_array_size) - 1) <<
2565      nir->info.clip_distance_array_size;
2566
2567   unsigned nr_attribute_slots = util_bitcount64(prog_data->inputs_read);
2568
2569   /* gl_VertexID and gl_InstanceID are system values, but arrive via an
2570    * incoming vertex attribute.  So, add an extra slot.
2571    */
2572   if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FIRST_VERTEX) ||
2573       BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_BASE_INSTANCE) ||
2574       BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) ||
2575       BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID)) {
2576      nr_attribute_slots++;
2577   }
2578
2579   /* gl_DrawID and IsIndexedDraw share its very own vec4 */
2580   if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_DRAW_ID) ||
2581       BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_IS_INDEXED_DRAW)) {
2582      nr_attribute_slots++;
2583   }
2584
2585   if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_IS_INDEXED_DRAW))
2586      prog_data->uses_is_indexed_draw = true;
2587
2588   if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FIRST_VERTEX))
2589      prog_data->uses_firstvertex = true;
2590
2591   if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_BASE_INSTANCE))
2592      prog_data->uses_baseinstance = true;
2593
2594   if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_VERTEX_ID_ZERO_BASE))
2595      prog_data->uses_vertexid = true;
2596
2597   if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID))
2598      prog_data->uses_instanceid = true;
2599
2600   if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_DRAW_ID))
2601          prog_data->uses_drawid = true;
2602
2603   /* The 3DSTATE_VS documentation lists the lower bound on "Vertex URB Entry
2604    * Read Length" as 1 in vec4 mode, and 0 in SIMD8 mode.  Empirically, in
2605    * vec4 mode, the hardware appears to wedge unless we read something.
2606    */
2607   if (is_scalar)
2608      prog_data->base.urb_read_length =
2609         DIV_ROUND_UP(nr_attribute_slots, 2);
2610   else
2611      prog_data->base.urb_read_length =
2612         DIV_ROUND_UP(MAX2(nr_attribute_slots, 1), 2);
2613
2614   prog_data->nr_attribute_slots = nr_attribute_slots;
2615
2616   /* Since vertex shaders reuse the same VUE entry for inputs and outputs
2617    * (overwriting the original contents), we need to make sure the size is
2618    * the larger of the two.
2619    */
2620   const unsigned vue_entries =
2621      MAX2(nr_attribute_slots, (unsigned)prog_data->base.vue_map.num_slots);
2622
2623   if (compiler->devinfo->ver == 6) {
2624      prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 8);
2625   } else {
2626      prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 4);
2627   }
2628
2629   if (unlikely(debug_enabled)) {
2630      fprintf(stderr, "VS Output ");
2631      brw_print_vue_map(stderr, &prog_data->base.vue_map, MESA_SHADER_VERTEX);
2632   }
2633
2634   if (is_scalar) {
2635      prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
2636
2637      fs_visitor v(compiler, params->log_data, mem_ctx, &key->base,
2638                   &prog_data->base.base, nir, 8,
2639                   debug_enabled);
2640      if (!v.run_vs()) {
2641         params->error_str = ralloc_strdup(mem_ctx, v.fail_msg);
2642         return NULL;
2643      }
2644
2645      prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
2646
2647      fs_generator g(compiler, params->log_data, mem_ctx,
2648                     &prog_data->base.base, v.runtime_check_aads_emit,
2649                     MESA_SHADER_VERTEX);
2650      if (unlikely(debug_enabled)) {
2651         const char *debug_name =
2652            ralloc_asprintf(mem_ctx, "%s vertex shader %s",
2653                            nir->info.label ? nir->info.label :
2654                               "unnamed",
2655                            nir->info.name);
2656
2657         g.enable_debug(debug_name);
2658      }
2659      g.generate_code(v.cfg, 8, v.shader_stats,
2660                      v.performance_analysis.require(), params->stats);
2661      g.add_const_data(nir->constant_data, nir->constant_data_size);
2662      assembly = g.get_assembly();
2663   }
2664
2665   if (!assembly) {
2666      prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT;
2667
2668      vec4_vs_visitor v(compiler, params->log_data, key, prog_data,
2669                        nir, mem_ctx,
2670                        debug_enabled);
2671      if (!v.run()) {
2672         params->error_str = ralloc_strdup(mem_ctx, v.fail_msg);
2673         return NULL;
2674      }
2675
2676      assembly = brw_vec4_generate_assembly(compiler, params->log_data, mem_ctx,
2677                                            nir, &prog_data->base,
2678                                            v.cfg,
2679                                            v.performance_analysis.require(),
2680                                            params->stats, debug_enabled);
2681   }
2682
2683   return assembly;
2684}
2685
2686} /* extern "C" */
2687