1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include "brw_nir.h"
25#include "brw_nir_rt.h"
26#include "brw_shader.h"
27#include "dev/intel_debug.h"
28#include "compiler/glsl_types.h"
29#include "compiler/nir/nir_builder.h"
30#include "util/u_math.h"
31
32static bool
33remap_tess_levels(nir_builder *b, nir_intrinsic_instr *intr,
34                  enum tess_primitive_mode _primitive_mode)
35{
36   const int location = nir_intrinsic_base(intr);
37   const unsigned component = nir_intrinsic_component(intr);
38   bool out_of_bounds;
39
40   if (location == VARYING_SLOT_TESS_LEVEL_INNER) {
41      switch (_primitive_mode) {
42      case TESS_PRIMITIVE_QUADS:
43         /* gl_TessLevelInner[0..1] lives at DWords 3-2 (reversed). */
44         nir_intrinsic_set_base(intr, 0);
45         nir_intrinsic_set_component(intr, 3 - component);
46         out_of_bounds = false;
47         break;
48      case TESS_PRIMITIVE_TRIANGLES:
49         /* gl_TessLevelInner[0] lives at DWord 4. */
50         nir_intrinsic_set_base(intr, 1);
51         out_of_bounds = component > 0;
52         break;
53      case TESS_PRIMITIVE_ISOLINES:
54         out_of_bounds = true;
55         break;
56      default:
57         unreachable("Bogus tessellation domain");
58      }
59   } else if (location == VARYING_SLOT_TESS_LEVEL_OUTER) {
60      if (_primitive_mode == TESS_PRIMITIVE_ISOLINES) {
61         /* gl_TessLevelOuter[0..1] lives at DWords 6-7 (in order). */
62         nir_intrinsic_set_base(intr, 1);
63         nir_intrinsic_set_component(intr, 2 + nir_intrinsic_component(intr));
64         out_of_bounds = component > 1;
65      } else {
66         /* Triangles use DWords 7-5 (reversed); Quads use 7-4 (reversed) */
67         nir_intrinsic_set_base(intr, 1);
68         nir_intrinsic_set_component(intr, 3 - nir_intrinsic_component(intr));
69         out_of_bounds = component == 3 && _primitive_mode == TESS_PRIMITIVE_TRIANGLES;
70      }
71   } else {
72      return false;
73   }
74
75   if (out_of_bounds) {
76      if (nir_intrinsic_infos[intr->intrinsic].has_dest) {
77         b->cursor = nir_before_instr(&intr->instr);
78         nir_ssa_def *undef = nir_ssa_undef(b, 1, 32);
79         nir_ssa_def_rewrite_uses(&intr->dest.ssa, undef);
80      }
81      nir_instr_remove(&intr->instr);
82   }
83
84   return true;
85}
86
87static bool
88is_input(nir_intrinsic_instr *intrin)
89{
90   return intrin->intrinsic == nir_intrinsic_load_input ||
91          intrin->intrinsic == nir_intrinsic_load_per_vertex_input ||
92          intrin->intrinsic == nir_intrinsic_load_interpolated_input;
93}
94
95static bool
96is_output(nir_intrinsic_instr *intrin)
97{
98   return intrin->intrinsic == nir_intrinsic_load_output ||
99          intrin->intrinsic == nir_intrinsic_load_per_vertex_output ||
100          intrin->intrinsic == nir_intrinsic_store_output ||
101          intrin->intrinsic == nir_intrinsic_store_per_vertex_output;
102}
103
104
105static bool
106remap_patch_urb_offsets(nir_block *block, nir_builder *b,
107                        const struct brw_vue_map *vue_map,
108                        enum tess_primitive_mode tes_primitive_mode)
109{
110   const bool is_passthrough_tcs = b->shader->info.name &&
111      strcmp(b->shader->info.name, "passthrough TCS") == 0;
112
113   nir_foreach_instr_safe(instr, block) {
114      if (instr->type != nir_instr_type_intrinsic)
115         continue;
116
117      nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
118
119      gl_shader_stage stage = b->shader->info.stage;
120
121      if ((stage == MESA_SHADER_TESS_CTRL && is_output(intrin)) ||
122          (stage == MESA_SHADER_TESS_EVAL && is_input(intrin))) {
123
124         if (!is_passthrough_tcs &&
125             remap_tess_levels(b, intrin, tes_primitive_mode))
126            continue;
127
128         int vue_slot = vue_map->varying_to_slot[intrin->const_index[0]];
129         assert(vue_slot != -1);
130         intrin->const_index[0] = vue_slot;
131
132         nir_src *vertex = nir_get_io_arrayed_index_src(intrin);
133         if (vertex) {
134            if (nir_src_is_const(*vertex)) {
135               intrin->const_index[0] += nir_src_as_uint(*vertex) *
136                                         vue_map->num_per_vertex_slots;
137            } else {
138               b->cursor = nir_before_instr(&intrin->instr);
139
140               /* Multiply by the number of per-vertex slots. */
141               nir_ssa_def *vertex_offset =
142                  nir_imul(b,
143                           nir_ssa_for_src(b, *vertex, 1),
144                           nir_imm_int(b,
145                                       vue_map->num_per_vertex_slots));
146
147               /* Add it to the existing offset */
148               nir_src *offset = nir_get_io_offset_src(intrin);
149               nir_ssa_def *total_offset =
150                  nir_iadd(b, vertex_offset,
151                           nir_ssa_for_src(b, *offset, 1));
152
153               nir_instr_rewrite_src(&intrin->instr, offset,
154                                     nir_src_for_ssa(total_offset));
155            }
156         }
157      }
158   }
159   return true;
160}
161
162void
163brw_nir_lower_vs_inputs(nir_shader *nir,
164                        bool edgeflag_is_last,
165                        const uint8_t *vs_attrib_wa_flags)
166{
167   /* Start with the location of the variable's base. */
168   nir_foreach_shader_in_variable(var, nir)
169      var->data.driver_location = var->data.location;
170
171   /* Now use nir_lower_io to walk dereference chains.  Attribute arrays are
172    * loaded as one vec4 or dvec4 per element (or matrix column), depending on
173    * whether it is a double-precision type or not.
174    */
175   nir_lower_io(nir, nir_var_shader_in, type_size_vec4,
176                nir_lower_io_lower_64bit_to_32);
177
178   /* This pass needs actual constants */
179   nir_opt_constant_folding(nir);
180
181   nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
182
183   brw_nir_apply_attribute_workarounds(nir, vs_attrib_wa_flags);
184
185   /* The last step is to remap VERT_ATTRIB_* to actual registers */
186
187   /* Whether or not we have any system generated values.  gl_DrawID is not
188    * included here as it lives in its own vec4.
189    */
190   const bool has_sgvs =
191      BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FIRST_VERTEX) ||
192      BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_BASE_INSTANCE) ||
193      BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) ||
194      BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID);
195
196   const unsigned num_inputs = util_bitcount64(nir->info.inputs_read);
197
198   nir_foreach_function(function, nir) {
199      if (!function->impl)
200         continue;
201
202      nir_builder b;
203      nir_builder_init(&b, function->impl);
204
205      nir_foreach_block(block, function->impl) {
206         nir_foreach_instr_safe(instr, block) {
207            if (instr->type != nir_instr_type_intrinsic)
208               continue;
209
210            nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
211
212            switch (intrin->intrinsic) {
213            case nir_intrinsic_load_first_vertex:
214            case nir_intrinsic_load_base_instance:
215            case nir_intrinsic_load_vertex_id_zero_base:
216            case nir_intrinsic_load_instance_id:
217            case nir_intrinsic_load_is_indexed_draw:
218            case nir_intrinsic_load_draw_id: {
219               b.cursor = nir_after_instr(&intrin->instr);
220
221               /* gl_VertexID and friends are stored by the VF as the last
222                * vertex element.  We convert them to load_input intrinsics at
223                * the right location.
224                */
225               nir_intrinsic_instr *load =
226                  nir_intrinsic_instr_create(nir, nir_intrinsic_load_input);
227               load->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0));
228
229               nir_intrinsic_set_base(load, num_inputs);
230               switch (intrin->intrinsic) {
231               case nir_intrinsic_load_first_vertex:
232                  nir_intrinsic_set_component(load, 0);
233                  break;
234               case nir_intrinsic_load_base_instance:
235                  nir_intrinsic_set_component(load, 1);
236                  break;
237               case nir_intrinsic_load_vertex_id_zero_base:
238                  nir_intrinsic_set_component(load, 2);
239                  break;
240               case nir_intrinsic_load_instance_id:
241                  nir_intrinsic_set_component(load, 3);
242                  break;
243               case nir_intrinsic_load_draw_id:
244               case nir_intrinsic_load_is_indexed_draw:
245                  /* gl_DrawID and IsIndexedDraw are stored right after
246                   * gl_VertexID and friends if any of them exist.
247                   */
248                  nir_intrinsic_set_base(load, num_inputs + has_sgvs);
249                  if (intrin->intrinsic == nir_intrinsic_load_draw_id)
250                     nir_intrinsic_set_component(load, 0);
251                  else
252                     nir_intrinsic_set_component(load, 1);
253                  break;
254               default:
255                  unreachable("Invalid system value intrinsic");
256               }
257
258               load->num_components = 1;
259               nir_ssa_dest_init(&load->instr, &load->dest, 1, 32, NULL);
260               nir_builder_instr_insert(&b, &load->instr);
261
262               nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
263                                        &load->dest.ssa);
264               nir_instr_remove(&intrin->instr);
265               break;
266            }
267
268            case nir_intrinsic_load_input: {
269               /* Attributes come in a contiguous block, ordered by their
270                * gl_vert_attrib value.  That means we can compute the slot
271                * number for an attribute by masking out the enabled attributes
272                * before it and counting the bits.
273                */
274               int attr = nir_intrinsic_base(intrin);
275               uint64_t inputs_read = nir->info.inputs_read;
276               int slot = -1;
277               if (edgeflag_is_last) {
278                  inputs_read &= ~BITFIELD64_BIT(VERT_ATTRIB_EDGEFLAG);
279                  if (attr == VERT_ATTRIB_EDGEFLAG)
280                     slot = num_inputs - 1;
281               }
282               if (slot == -1)
283                  slot = util_bitcount64(inputs_read &
284                                         BITFIELD64_MASK(attr));
285               nir_intrinsic_set_base(intrin, slot);
286               break;
287            }
288
289            default:
290               break; /* Nothing to do */
291            }
292         }
293      }
294   }
295}
296
297void
298brw_nir_lower_vue_inputs(nir_shader *nir,
299                         const struct brw_vue_map *vue_map)
300{
301   nir_foreach_shader_in_variable(var, nir)
302      var->data.driver_location = var->data.location;
303
304   /* Inputs are stored in vec4 slots, so use type_size_vec4(). */
305   nir_lower_io(nir, nir_var_shader_in, type_size_vec4,
306                nir_lower_io_lower_64bit_to_32);
307
308   /* This pass needs actual constants */
309   nir_opt_constant_folding(nir);
310
311   nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
312
313   nir_foreach_function(function, nir) {
314      if (!function->impl)
315         continue;
316
317      nir_foreach_block(block, function->impl) {
318         nir_foreach_instr(instr, block) {
319            if (instr->type != nir_instr_type_intrinsic)
320               continue;
321
322            nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
323
324            if (intrin->intrinsic == nir_intrinsic_load_input ||
325                intrin->intrinsic == nir_intrinsic_load_per_vertex_input) {
326               /* Offset 0 is the VUE header, which contains
327                * VARYING_SLOT_LAYER [.y], VARYING_SLOT_VIEWPORT [.z], and
328                * VARYING_SLOT_PSIZ [.w].
329                */
330               int varying = nir_intrinsic_base(intrin);
331               int vue_slot;
332               switch (varying) {
333               case VARYING_SLOT_PSIZ:
334                  nir_intrinsic_set_base(intrin, 0);
335                  nir_intrinsic_set_component(intrin, 3);
336                  break;
337
338               default:
339                  vue_slot = vue_map->varying_to_slot[varying];
340                  assert(vue_slot != -1);
341                  nir_intrinsic_set_base(intrin, vue_slot);
342                  break;
343               }
344            }
345         }
346      }
347   }
348}
349
350void
351brw_nir_lower_tes_inputs(nir_shader *nir, const struct brw_vue_map *vue_map)
352{
353   nir_foreach_shader_in_variable(var, nir)
354      var->data.driver_location = var->data.location;
355
356   nir_lower_io(nir, nir_var_shader_in, type_size_vec4,
357                nir_lower_io_lower_64bit_to_32);
358
359   /* This pass needs actual constants */
360   nir_opt_constant_folding(nir);
361
362   nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
363
364   nir_foreach_function(function, nir) {
365      if (function->impl) {
366         nir_builder b;
367         nir_builder_init(&b, function->impl);
368         nir_foreach_block(block, function->impl) {
369            remap_patch_urb_offsets(block, &b, vue_map,
370                                    nir->info.tess._primitive_mode);
371         }
372      }
373   }
374}
375
376/**
377 * Convert interpolateAtOffset() offsets from [-0.5, +0.5] floating point
378 * offsets to integer [-8, +7] offsets (in units of 1/16th of a pixel).
379 *
380 * We clamp to +7/16 on the upper end of the range, since +0.5 isn't
381 * representable in a S0.4 value; a naive conversion would give us -8/16,
382 * which is the opposite of what was intended.
383 *
384 * This is allowed by GL_ARB_gpu_shader5's quantization rules:
385 *
386 *    "Not all values of <offset> may be supported; x and y offsets may
387 *     be rounded to fixed-point values with the number of fraction bits
388 *     given by the implementation-dependent constant
389 *     FRAGMENT_INTERPOLATION_OFFSET_BITS."
390 */
391static bool
392lower_barycentric_at_offset(nir_builder *b, nir_instr *instr, void *data)
393{
394   if (instr->type != nir_instr_type_intrinsic)
395      return false;
396
397   nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
398
399   if (intrin->intrinsic != nir_intrinsic_load_barycentric_at_offset)
400      return false;
401
402   b->cursor = nir_before_instr(instr);
403
404   assert(intrin->src[0].ssa);
405   nir_ssa_def *offset =
406      nir_imin(b, nir_imm_int(b, 7),
407               nir_f2i32(b, nir_fmul(b, nir_imm_float(b, 16),
408                                     intrin->src[0].ssa)));
409
410   nir_instr_rewrite_src(instr, &intrin->src[0], nir_src_for_ssa(offset));
411
412   return true;
413}
414
415void
416brw_nir_lower_fs_inputs(nir_shader *nir,
417                        const struct intel_device_info *devinfo,
418                        const struct brw_wm_prog_key *key)
419{
420   nir_foreach_shader_in_variable(var, nir) {
421      var->data.driver_location = var->data.location;
422
423      /* Apply default interpolation mode.
424       *
425       * Everything defaults to smooth except for the legacy GL color
426       * built-in variables, which might be flat depending on API state.
427       */
428      if (var->data.interpolation == INTERP_MODE_NONE) {
429         const bool flat = key->flat_shade &&
430            (var->data.location == VARYING_SLOT_COL0 ||
431             var->data.location == VARYING_SLOT_COL1);
432
433         var->data.interpolation = flat ? INTERP_MODE_FLAT
434                                        : INTERP_MODE_SMOOTH;
435      }
436
437      /* On Ironlake and below, there is only one interpolation mode.
438       * Centroid interpolation doesn't mean anything on this hardware --
439       * there is no multisampling.
440       */
441      if (devinfo->ver < 6) {
442         var->data.centroid = false;
443         var->data.sample = false;
444      }
445   }
446
447   nir_lower_io_options lower_io_options = nir_lower_io_lower_64bit_to_32;
448   if (key->persample_interp)
449      lower_io_options |= nir_lower_io_force_sample_interpolation;
450
451   nir_lower_io(nir, nir_var_shader_in, type_size_vec4, lower_io_options);
452   if (devinfo->ver >= 11)
453      nir_lower_interpolation(nir, ~0);
454
455   if (!key->multisample_fbo)
456      nir_lower_single_sampled(nir);
457
458   nir_shader_instructions_pass(nir, lower_barycentric_at_offset,
459                                nir_metadata_block_index |
460                                nir_metadata_dominance,
461                                NULL);
462
463   /* This pass needs actual constants */
464   nir_opt_constant_folding(nir);
465
466   nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
467}
468
469void
470brw_nir_lower_vue_outputs(nir_shader *nir)
471{
472   nir_foreach_shader_out_variable(var, nir) {
473      var->data.driver_location = var->data.location;
474   }
475
476   nir_lower_io(nir, nir_var_shader_out, type_size_vec4,
477                nir_lower_io_lower_64bit_to_32);
478}
479
480void
481brw_nir_lower_tcs_outputs(nir_shader *nir, const struct brw_vue_map *vue_map,
482                          enum tess_primitive_mode tes_primitive_mode)
483{
484   nir_foreach_shader_out_variable(var, nir) {
485      var->data.driver_location = var->data.location;
486   }
487
488   nir_lower_io(nir, nir_var_shader_out, type_size_vec4,
489                nir_lower_io_lower_64bit_to_32);
490
491   /* This pass needs actual constants */
492   nir_opt_constant_folding(nir);
493
494   nir_io_add_const_offset_to_base(nir, nir_var_shader_out);
495
496   nir_foreach_function(function, nir) {
497      if (function->impl) {
498         nir_builder b;
499         nir_builder_init(&b, function->impl);
500         nir_foreach_block(block, function->impl) {
501            remap_patch_urb_offsets(block, &b, vue_map, tes_primitive_mode);
502         }
503      }
504   }
505}
506
507void
508brw_nir_lower_fs_outputs(nir_shader *nir)
509{
510   nir_foreach_shader_out_variable(var, nir) {
511      var->data.driver_location =
512         SET_FIELD(var->data.index, BRW_NIR_FRAG_OUTPUT_INDEX) |
513         SET_FIELD(var->data.location, BRW_NIR_FRAG_OUTPUT_LOCATION);
514   }
515
516   nir_lower_io(nir, nir_var_shader_out, type_size_dvec4, 0);
517}
518
519#define OPT(pass, ...) ({                                  \
520   bool this_progress = false;                             \
521   NIR_PASS(this_progress, nir, pass, ##__VA_ARGS__);      \
522   if (this_progress)                                      \
523      progress = true;                                     \
524   this_progress;                                          \
525})
526
527void
528brw_nir_optimize(nir_shader *nir, const struct brw_compiler *compiler,
529                 bool is_scalar, bool allow_copies)
530{
531   bool progress;
532   unsigned lower_flrp =
533      (nir->options->lower_flrp16 ? 16 : 0) |
534      (nir->options->lower_flrp32 ? 32 : 0) |
535      (nir->options->lower_flrp64 ? 64 : 0);
536
537   do {
538      progress = false;
539      OPT(nir_split_array_vars, nir_var_function_temp);
540      OPT(nir_shrink_vec_array_vars, nir_var_function_temp);
541      OPT(nir_opt_deref);
542      if (OPT(nir_opt_memcpy))
543         OPT(nir_split_var_copies);
544      OPT(nir_lower_vars_to_ssa);
545      if (allow_copies) {
546         /* Only run this pass in the first call to brw_nir_optimize.  Later
547          * calls assume that we've lowered away any copy_deref instructions
548          * and we don't want to introduce any more.
549          */
550         OPT(nir_opt_find_array_copies);
551      }
552      OPT(nir_opt_copy_prop_vars);
553      OPT(nir_opt_dead_write_vars);
554      OPT(nir_opt_combine_stores, nir_var_all);
555
556      OPT(nir_opt_ray_queries);
557
558      if (is_scalar) {
559         OPT(nir_lower_alu_to_scalar, NULL, NULL);
560      } else {
561         OPT(nir_opt_shrink_stores, true);
562         OPT(nir_opt_shrink_vectors);
563      }
564
565      OPT(nir_copy_prop);
566
567      if (is_scalar) {
568         OPT(nir_lower_phis_to_scalar, false);
569      }
570
571      OPT(nir_copy_prop);
572      OPT(nir_opt_dce);
573      OPT(nir_opt_cse);
574      OPT(nir_opt_combine_stores, nir_var_all);
575
576      /* Passing 0 to the peephole select pass causes it to convert
577       * if-statements that contain only move instructions in the branches
578       * regardless of the count.
579       *
580       * Passing 1 to the peephole select pass causes it to convert
581       * if-statements that contain at most a single ALU instruction (total)
582       * in both branches.  Before Gfx6, some math instructions were
583       * prohibitively expensive and the results of compare operations need an
584       * extra resolve step.  For these reasons, this pass is more harmful
585       * than good on those platforms.
586       *
587       * For indirect loads of uniforms (push constants), we assume that array
588       * indices will nearly always be in bounds and the cost of the load is
589       * low.  Therefore there shouldn't be a performance benefit to avoid it.
590       * However, in vec4 tessellation shaders, these loads operate by
591       * actually pulling from memory.
592       */
593      const bool is_vec4_tessellation = !is_scalar &&
594         (nir->info.stage == MESA_SHADER_TESS_CTRL ||
595          nir->info.stage == MESA_SHADER_TESS_EVAL);
596      OPT(nir_opt_peephole_select, 0, !is_vec4_tessellation, false);
597      OPT(nir_opt_peephole_select, 8, !is_vec4_tessellation,
598          compiler->devinfo->ver >= 6);
599
600      OPT(nir_opt_intrinsics);
601      OPT(nir_opt_idiv_const, 32);
602      OPT(nir_opt_algebraic);
603      OPT(nir_lower_constant_convert_alu_types);
604      OPT(nir_opt_constant_folding);
605
606      if (lower_flrp != 0) {
607         if (OPT(nir_lower_flrp,
608                 lower_flrp,
609                 false /* always_precise */)) {
610            OPT(nir_opt_constant_folding);
611         }
612
613         /* Nothing should rematerialize any flrps, so we only need to do this
614          * lowering once.
615          */
616         lower_flrp = 0;
617      }
618
619      OPT(nir_opt_dead_cf);
620      if (OPT(nir_opt_trivial_continues)) {
621         /* If nir_opt_trivial_continues makes progress, then we need to clean
622          * things up if we want any hope of nir_opt_if or nir_opt_loop_unroll
623          * to make progress.
624          */
625         OPT(nir_copy_prop);
626         OPT(nir_opt_dce);
627      }
628      OPT(nir_opt_if, nir_opt_if_optimize_phi_true_false);
629      OPT(nir_opt_conditional_discard);
630      if (nir->options->max_unroll_iterations != 0) {
631         OPT(nir_opt_loop_unroll);
632      }
633      OPT(nir_opt_remove_phis);
634      OPT(nir_opt_gcm, false);
635      OPT(nir_opt_undef);
636      OPT(nir_lower_pack);
637   } while (progress);
638
639   /* Workaround Gfxbench unused local sampler variable which will trigger an
640    * assert in the opt_large_constants pass.
641    */
642   OPT(nir_remove_dead_variables, nir_var_function_temp, NULL);
643}
644
645static unsigned
646lower_bit_size_callback(const nir_instr *instr, UNUSED void *data)
647{
648   const struct brw_compiler *compiler = (const struct brw_compiler *) data;
649   const struct intel_device_info *devinfo = compiler->devinfo;
650
651   switch (instr->type) {
652   case nir_instr_type_alu: {
653      nir_alu_instr *alu = nir_instr_as_alu(instr);
654      switch (alu->op) {
655      case nir_op_bit_count:
656      case nir_op_ufind_msb:
657      case nir_op_ifind_msb:
658      case nir_op_find_lsb:
659         /* These are handled specially because the destination is always
660          * 32-bit and so the bit size of the instruction is given by the
661          * source.
662          */
663         assert(alu->src[0].src.is_ssa);
664         return alu->src[0].src.ssa->bit_size == 32 ? 0 : 32;
665      default:
666         break;
667      }
668
669      assert(alu->dest.dest.is_ssa);
670      if (alu->dest.dest.ssa.bit_size >= 32)
671         return 0;
672
673      /* Note: nir_op_iabs and nir_op_ineg are not lowered here because the
674       * 8-bit ABS or NEG instruction should eventually get copy propagated
675       * into the MOV that does the type conversion.  This results in far
676       * fewer MOV instructions.
677       */
678      switch (alu->op) {
679      case nir_op_idiv:
680      case nir_op_imod:
681      case nir_op_irem:
682      case nir_op_udiv:
683      case nir_op_umod:
684      case nir_op_fceil:
685      case nir_op_ffloor:
686      case nir_op_ffract:
687      case nir_op_fround_even:
688      case nir_op_ftrunc:
689         return 32;
690      case nir_op_frcp:
691      case nir_op_frsq:
692      case nir_op_fsqrt:
693      case nir_op_fpow:
694      case nir_op_fexp2:
695      case nir_op_flog2:
696      case nir_op_fsin:
697      case nir_op_fcos:
698         return devinfo->ver < 9 ? 32 : 0;
699      case nir_op_isign:
700         assert(!"Should have been lowered by nir_opt_algebraic.");
701         return 0;
702      default:
703         if (nir_op_infos[alu->op].num_inputs >= 2 &&
704             alu->dest.dest.ssa.bit_size == 8)
705            return 16;
706
707         if (nir_alu_instr_is_comparison(alu) &&
708             alu->src[0].src.ssa->bit_size == 8)
709            return 16;
710
711         return 0;
712      }
713      break;
714   }
715
716   case nir_instr_type_intrinsic: {
717      nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
718      switch (intrin->intrinsic) {
719      case nir_intrinsic_read_invocation:
720      case nir_intrinsic_read_first_invocation:
721      case nir_intrinsic_vote_feq:
722      case nir_intrinsic_vote_ieq:
723      case nir_intrinsic_shuffle:
724      case nir_intrinsic_shuffle_xor:
725      case nir_intrinsic_shuffle_up:
726      case nir_intrinsic_shuffle_down:
727      case nir_intrinsic_quad_broadcast:
728      case nir_intrinsic_quad_swap_horizontal:
729      case nir_intrinsic_quad_swap_vertical:
730      case nir_intrinsic_quad_swap_diagonal:
731         if (intrin->src[0].ssa->bit_size == 8)
732            return 16;
733         return 0;
734
735      case nir_intrinsic_reduce:
736      case nir_intrinsic_inclusive_scan:
737      case nir_intrinsic_exclusive_scan:
738         /* There are a couple of register region issues that make things
739          * complicated for 8-bit types:
740          *
741          *    1. Only raw moves are allowed to write to a packed 8-bit
742          *       destination.
743          *    2. If we use a strided destination, the efficient way to do
744          *       scan operations ends up using strides that are too big to
745          *       encode in an instruction.
746          *
747          * To get around these issues, we just do all 8-bit scan operations
748          * in 16 bits.  It's actually fewer instructions than what we'd have
749          * to do if we were trying to do it in native 8-bit types and the
750          * results are the same once we truncate to 8 bits at the end.
751          */
752         if (intrin->dest.ssa.bit_size == 8)
753            return 16;
754         return 0;
755
756      default:
757         return 0;
758      }
759      break;
760   }
761
762   case nir_instr_type_phi: {
763      nir_phi_instr *phi = nir_instr_as_phi(instr);
764      if (phi->dest.ssa.bit_size == 8)
765         return 16;
766      return 0;
767   }
768
769   default:
770      return 0;
771   }
772}
773
774/* On gfx12.5+, if the offsets are not both constant and in the {-8,7} range,
775 * we will have nir_lower_tex() lower the source offset by returning true from
776 * this filter function.
777 */
778static bool
779lower_xehp_tg4_offset_filter(const nir_instr *instr, UNUSED const void *data)
780{
781   if (instr->type != nir_instr_type_tex)
782      return false;
783
784   nir_tex_instr *tex = nir_instr_as_tex(instr);
785
786   if (tex->op != nir_texop_tg4)
787      return false;
788
789   int offset_index = nir_tex_instr_src_index(tex, nir_tex_src_offset);
790   if (offset_index < 0)
791      return false;
792
793   if (!nir_src_is_const(tex->src[offset_index].src))
794      return true;
795
796   int64_t offset_x = nir_src_comp_as_int(tex->src[offset_index].src, 0);
797   int64_t offset_y = nir_src_comp_as_int(tex->src[offset_index].src, 1);
798
799   return offset_x < -8 || offset_x > 7 || offset_y < -8 || offset_y > 7;
800}
801
802/* Does some simple lowering and runs the standard suite of optimizations
803 *
804 * This is intended to be called more-or-less directly after you get the
805 * shader out of GLSL or some other source.  While it is geared towards i965,
806 * it is not at all generator-specific except for the is_scalar flag.  Even
807 * there, it is safe to call with is_scalar = false for a shader that is
808 * intended for the FS backend as long as nir_optimize is called again with
809 * is_scalar = true to scalarize everything prior to code gen.
810 */
811void
812brw_preprocess_nir(const struct brw_compiler *compiler, nir_shader *nir,
813                   const nir_shader *softfp64)
814{
815   const struct intel_device_info *devinfo = compiler->devinfo;
816   UNUSED bool progress; /* Written by OPT */
817
818   const bool is_scalar = compiler->scalar_stage[nir->info.stage];
819
820   nir_validate_ssa_dominance(nir, "before brw_preprocess_nir");
821
822   if (is_scalar) {
823      OPT(nir_lower_alu_to_scalar, NULL, NULL);
824   }
825
826   if (nir->info.stage == MESA_SHADER_GEOMETRY)
827      OPT(nir_lower_gs_intrinsics, 0);
828
829   /* See also brw_nir_trig_workarounds.py */
830   if (compiler->precise_trig &&
831       !(devinfo->ver >= 10 || devinfo->platform == INTEL_PLATFORM_KBL))
832      OPT(brw_nir_apply_trig_workarounds);
833
834   if (devinfo->ver >= 12)
835      OPT(brw_nir_clamp_image_1d_2d_array_sizes);
836
837   const nir_lower_tex_options tex_options = {
838      .lower_txp = ~0,
839      .lower_txf_offset = true,
840      .lower_rect_offset = true,
841      .lower_txd_cube_map = true,
842      .lower_txd_3d = devinfo->verx10 >= 125,    /* Wa_1209978020 */
843      .lower_txd_array = devinfo->verx10 >= 125, /* Wa_1209978020 */
844      .lower_txb_shadow_clamp = true,
845      .lower_txd_shadow_clamp = true,
846      .lower_txd_offset_clamp = true,
847      .lower_tg4_offsets = true,
848      .lower_txs_lod = true, /* Wa_14012320009 */
849      .lower_offset_filter =
850         devinfo->verx10 >= 125 ? lower_xehp_tg4_offset_filter : NULL,
851      .lower_invalid_implicit_lod = true,
852   };
853
854   OPT(nir_lower_tex, &tex_options);
855   OPT(nir_normalize_cubemap_coords);
856
857   OPT(nir_lower_global_vars_to_local);
858
859   OPT(nir_split_var_copies);
860   OPT(nir_split_struct_vars, nir_var_function_temp);
861
862   brw_nir_optimize(nir, compiler, is_scalar, true);
863
864   OPT(nir_lower_doubles, softfp64, nir->options->lower_doubles_options);
865   OPT(nir_lower_int64);
866
867   OPT(nir_lower_bit_size, lower_bit_size_callback, (void *)compiler);
868
869   if (is_scalar) {
870      OPT(nir_lower_load_const_to_scalar);
871   }
872
873   /* Lower a bunch of stuff */
874   OPT(nir_lower_var_copies);
875
876   /* This needs to be run after the first optimization pass but before we
877    * lower indirect derefs away
878    */
879   if (compiler->supports_shader_constants) {
880      OPT(nir_opt_large_constants, NULL, 32);
881   }
882
883   OPT(nir_lower_system_values);
884   OPT(nir_lower_compute_system_values, NULL);
885
886   const nir_lower_subgroups_options subgroups_options = {
887      .ballot_bit_size = 32,
888      .ballot_components = 1,
889      .lower_to_scalar = true,
890      .lower_vote_trivial = !is_scalar,
891      .lower_relative_shuffle = true,
892      .lower_quad_broadcast_dynamic = true,
893      .lower_elect = true,
894   };
895   OPT(nir_lower_subgroups, &subgroups_options);
896
897   nir_variable_mode indirect_mask =
898      brw_nir_no_indirect_mask(compiler, nir->info.stage);
899   OPT(nir_lower_indirect_derefs, indirect_mask, UINT32_MAX);
900
901   /* Even in cases where we can handle indirect temporaries via scratch, we
902    * it can still be expensive.  Lower indirects on small arrays to
903    * conditional load/stores.
904    *
905    * The threshold of 16 was chosen semi-arbitrarily.  The idea is that an
906    * indirect on an array of 16 elements is about 30 instructions at which
907    * point, you may be better off doing a send.  With a SIMD8 program, 16
908    * floats is 1/8 of the entire register file.  Any array larger than that
909    * is likely to cause pressure issues.  Also, this value is sufficiently
910    * high that the benchmarks known to suffer from large temporary array
911    * issues are helped but nothing else in shader-db is hurt except for maybe
912    * that one kerbal space program shader.
913    */
914   if (is_scalar && !(indirect_mask & nir_var_function_temp))
915      OPT(nir_lower_indirect_derefs, nir_var_function_temp, 16);
916
917   /* Lower array derefs of vectors for SSBO and UBO loads.  For both UBOs and
918    * SSBOs, our back-end is capable of loading an entire vec4 at a time and
919    * we would like to take advantage of that whenever possible regardless of
920    * whether or not the app gives us full loads.  This should allow the
921    * optimizer to combine UBO and SSBO load operations and save us some send
922    * messages.
923    */
924   OPT(nir_lower_array_deref_of_vec,
925       nir_var_mem_ubo | nir_var_mem_ssbo,
926       nir_lower_direct_array_deref_of_vec_load);
927
928   /* Get rid of split copies */
929   brw_nir_optimize(nir, compiler, is_scalar, false);
930}
931
932void
933brw_nir_link_shaders(const struct brw_compiler *compiler,
934                     nir_shader *producer, nir_shader *consumer)
935{
936   if (producer->info.stage == MESA_SHADER_MESH &&
937       consumer->info.stage == MESA_SHADER_FRAGMENT) {
938      /* gl_MeshPerPrimitiveNV[].gl_ViewportIndex, gl_PrimitiveID and gl_Layer
939       * are per primitive, but fragment shader does not have them marked as
940       * such. Add the annotation here.
941       */
942      nir_foreach_shader_in_variable(var, consumer) {
943         switch (var->data.location) {
944            case VARYING_SLOT_LAYER:
945            case VARYING_SLOT_PRIMITIVE_ID:
946            case VARYING_SLOT_VIEWPORT:
947               var->data.per_primitive = 1;
948               break;
949            default:
950               continue;
951         }
952      }
953   }
954
955   nir_lower_io_arrays_to_elements(producer, consumer);
956   nir_validate_shader(producer, "after nir_lower_io_arrays_to_elements");
957   nir_validate_shader(consumer, "after nir_lower_io_arrays_to_elements");
958
959   const bool p_is_scalar = compiler->scalar_stage[producer->info.stage];
960   const bool c_is_scalar = compiler->scalar_stage[consumer->info.stage];
961
962   if (p_is_scalar && c_is_scalar) {
963      NIR_PASS(_, producer, nir_lower_io_to_scalar_early, nir_var_shader_out);
964      NIR_PASS(_, consumer, nir_lower_io_to_scalar_early, nir_var_shader_in);
965      brw_nir_optimize(producer, compiler, p_is_scalar, false);
966      brw_nir_optimize(consumer, compiler, c_is_scalar, false);
967   }
968
969   if (nir_link_opt_varyings(producer, consumer))
970      brw_nir_optimize(consumer, compiler, c_is_scalar, false);
971
972   NIR_PASS(_, producer, nir_remove_dead_variables, nir_var_shader_out, NULL);
973   NIR_PASS(_, consumer, nir_remove_dead_variables, nir_var_shader_in, NULL);
974
975   if (nir_remove_unused_varyings(producer, consumer)) {
976      if (should_print_nir(producer)) {
977         printf("nir_remove_unused_varyings\n");
978         nir_print_shader(producer, stdout);
979      }
980      if (should_print_nir(consumer)) {
981         printf("nir_remove_unused_varyings\n");
982         nir_print_shader(consumer, stdout);
983      }
984
985      NIR_PASS(_, producer, nir_lower_global_vars_to_local);
986      NIR_PASS(_, consumer, nir_lower_global_vars_to_local);
987
988      /* The backend might not be able to handle indirects on
989       * temporaries so we need to lower indirects on any of the
990       * varyings we have demoted here.
991       */
992      NIR_PASS(_, producer, nir_lower_indirect_derefs,
993                  brw_nir_no_indirect_mask(compiler, producer->info.stage),
994                  UINT32_MAX);
995      NIR_PASS(_, consumer, nir_lower_indirect_derefs,
996                  brw_nir_no_indirect_mask(compiler, consumer->info.stage),
997                  UINT32_MAX);
998
999      brw_nir_optimize(producer, compiler, p_is_scalar, false);
1000      brw_nir_optimize(consumer, compiler, c_is_scalar, false);
1001   }
1002
1003   NIR_PASS(_, producer, nir_lower_io_to_vector, nir_var_shader_out);
1004   NIR_PASS(_, producer, nir_opt_combine_stores, nir_var_shader_out);
1005   NIR_PASS(_, consumer, nir_lower_io_to_vector, nir_var_shader_in);
1006
1007   if (producer->info.stage != MESA_SHADER_TESS_CTRL &&
1008       producer->info.stage != MESA_SHADER_MESH &&
1009       producer->info.stage != MESA_SHADER_TASK) {
1010      /* Calling lower_io_to_vector creates output variable writes with
1011       * write-masks.  On non-TCS outputs, the back-end can't handle it and we
1012       * need to call nir_lower_io_to_temporaries to get rid of them.  This,
1013       * in turn, creates temporary variables and extra copy_deref intrinsics
1014       * that we need to clean up.
1015       *
1016       * Note Mesh/Task don't support I/O as temporaries (I/O is shared
1017       * between whole workgroup, possibly using multiple HW threads). For
1018       * those write-mask in output is handled by I/O lowering.
1019       */
1020      NIR_PASS_V(producer, nir_lower_io_to_temporaries,
1021                 nir_shader_get_entrypoint(producer), true, false);
1022      NIR_PASS(_, producer, nir_lower_global_vars_to_local);
1023      NIR_PASS(_, producer, nir_split_var_copies);
1024      NIR_PASS(_, producer, nir_lower_var_copies);
1025   }
1026}
1027
1028static bool
1029brw_nir_should_vectorize_mem(unsigned align_mul, unsigned align_offset,
1030                             unsigned bit_size,
1031                             unsigned num_components,
1032                             nir_intrinsic_instr *low,
1033                             nir_intrinsic_instr *high,
1034                             void *data)
1035{
1036   /* Don't combine things to generate 64-bit loads/stores.  We have to split
1037    * those back into 32-bit ones anyway and UBO loads aren't split in NIR so
1038    * we don't want to make a mess for the back-end.
1039    */
1040   if (bit_size > 32)
1041      return false;
1042
1043   /* We can handle at most a vec4 right now.  Anything bigger would get
1044    * immediately split by brw_nir_lower_mem_access_bit_sizes anyway.
1045    */
1046   if (num_components > 4)
1047      return false;
1048
1049
1050   uint32_t align;
1051   if (align_offset)
1052      align = 1 << (ffs(align_offset) - 1);
1053   else
1054      align = align_mul;
1055
1056   if (align < bit_size / 8)
1057      return false;
1058
1059   return true;
1060}
1061
1062static
1063bool combine_all_barriers(nir_intrinsic_instr *a,
1064                          nir_intrinsic_instr *b,
1065                          void *data)
1066{
1067   /* Translation to backend IR will get rid of modes we don't care about, so
1068    * no harm in always combining them.
1069    *
1070    * TODO: While HW has only ACQUIRE|RELEASE fences, we could improve the
1071    * scheduling so that it can take advantage of the different semantics.
1072    */
1073   nir_intrinsic_set_memory_modes(a, nir_intrinsic_memory_modes(a) |
1074                                     nir_intrinsic_memory_modes(b));
1075   nir_intrinsic_set_memory_semantics(a, nir_intrinsic_memory_semantics(a) |
1076                                         nir_intrinsic_memory_semantics(b));
1077   nir_intrinsic_set_memory_scope(a, MAX2(nir_intrinsic_memory_scope(a),
1078                                          nir_intrinsic_memory_scope(b)));
1079   return true;
1080}
1081
1082static void
1083brw_vectorize_lower_mem_access(nir_shader *nir,
1084                               const struct brw_compiler *compiler,
1085                               bool is_scalar,
1086                               bool robust_buffer_access)
1087{
1088   const struct intel_device_info *devinfo = compiler->devinfo;
1089   bool progress = false;
1090
1091   if (is_scalar) {
1092      nir_load_store_vectorize_options options = {
1093         .modes = nir_var_mem_ubo | nir_var_mem_ssbo |
1094                  nir_var_mem_global | nir_var_mem_shared |
1095                  nir_var_mem_task_payload,
1096         .callback = brw_nir_should_vectorize_mem,
1097         .robust_modes = (nir_variable_mode)0,
1098      };
1099
1100      if (robust_buffer_access) {
1101         options.robust_modes = nir_var_mem_ubo | nir_var_mem_ssbo |
1102                                nir_var_mem_global;
1103      }
1104
1105      OPT(nir_opt_load_store_vectorize, &options);
1106   }
1107
1108   OPT(brw_nir_lower_mem_access_bit_sizes, devinfo);
1109
1110   while (progress) {
1111      progress = false;
1112
1113      OPT(nir_lower_pack);
1114      OPT(nir_copy_prop);
1115      OPT(nir_opt_dce);
1116      OPT(nir_opt_cse);
1117      OPT(nir_opt_algebraic);
1118      OPT(nir_opt_constant_folding);
1119   }
1120}
1121
1122static bool
1123nir_shader_has_local_variables(const nir_shader *nir)
1124{
1125   nir_foreach_function(func, nir) {
1126      if (func->impl && !exec_list_is_empty(&func->impl->locals))
1127         return true;
1128   }
1129
1130   return false;
1131}
1132
1133/* Prepare the given shader for codegen
1134 *
1135 * This function is intended to be called right before going into the actual
1136 * backend and is highly backend-specific.  Also, once this function has been
1137 * called on a shader, it will no longer be in SSA form so most optimizations
1138 * will not work.
1139 */
1140void
1141brw_postprocess_nir(nir_shader *nir, const struct brw_compiler *compiler,
1142                    bool is_scalar, bool debug_enabled,
1143                    bool robust_buffer_access)
1144{
1145   const struct intel_device_info *devinfo = compiler->devinfo;
1146
1147   UNUSED bool progress; /* Written by OPT */
1148
1149   OPT(nir_lower_bit_size, lower_bit_size_callback, (void *)compiler);
1150
1151   OPT(brw_nir_lower_scoped_barriers);
1152   OPT(nir_opt_combine_memory_barriers, combine_all_barriers, NULL);
1153
1154   do {
1155      progress = false;
1156      OPT(nir_opt_algebraic_before_ffma);
1157   } while (progress);
1158
1159   if (devinfo->verx10 >= 125) {
1160      const nir_lower_idiv_options options = {
1161         .imprecise_32bit_lowering = false,
1162         .allow_fp16 = false
1163      };
1164      OPT(nir_lower_idiv, &options);
1165   }
1166
1167   if (gl_shader_stage_can_set_fragment_shading_rate(nir->info.stage))
1168      brw_nir_lower_shading_rate_output(nir);
1169
1170   brw_nir_optimize(nir, compiler, is_scalar, false);
1171
1172   if (is_scalar && nir_shader_has_local_variables(nir)) {
1173      OPT(nir_lower_vars_to_explicit_types, nir_var_function_temp,
1174          glsl_get_natural_size_align_bytes);
1175      OPT(nir_lower_explicit_io, nir_var_function_temp,
1176          nir_address_format_32bit_offset);
1177      brw_nir_optimize(nir, compiler, is_scalar, false);
1178   }
1179
1180   brw_vectorize_lower_mem_access(nir, compiler, is_scalar,
1181                                  robust_buffer_access);
1182
1183   if (OPT(nir_lower_int64))
1184      brw_nir_optimize(nir, compiler, is_scalar, false);
1185
1186   if (devinfo->ver >= 6) {
1187      /* Try and fuse multiply-adds */
1188      OPT(brw_nir_opt_peephole_ffma);
1189   }
1190
1191   if (OPT(nir_opt_comparison_pre)) {
1192      OPT(nir_copy_prop);
1193      OPT(nir_opt_dce);
1194      OPT(nir_opt_cse);
1195
1196      /* Do the select peepehole again.  nir_opt_comparison_pre (combined with
1197       * the other optimization passes) will have removed at least one
1198       * instruction from one of the branches of the if-statement, so now it
1199       * might be under the threshold of conversion to bcsel.
1200       *
1201       * See brw_nir_optimize for the explanation of is_vec4_tessellation.
1202       */
1203      const bool is_vec4_tessellation = !is_scalar &&
1204         (nir->info.stage == MESA_SHADER_TESS_CTRL ||
1205          nir->info.stage == MESA_SHADER_TESS_EVAL);
1206      OPT(nir_opt_peephole_select, 0, is_vec4_tessellation, false);
1207      OPT(nir_opt_peephole_select, 1, is_vec4_tessellation,
1208          compiler->devinfo->ver >= 6);
1209   }
1210
1211   do {
1212      progress = false;
1213      if (OPT(nir_opt_algebraic_late)) {
1214         /* At this late stage, anything that makes more constants will wreak
1215          * havok on the vec4 backend.  The handling of constants in the vec4
1216          * backend is not good.
1217          */
1218         if (is_scalar)
1219            OPT(nir_opt_constant_folding);
1220
1221         OPT(nir_copy_prop);
1222         OPT(nir_opt_dce);
1223         OPT(nir_opt_cse);
1224      }
1225   } while (progress);
1226
1227
1228   OPT(brw_nir_lower_conversions);
1229
1230   if (is_scalar)
1231      OPT(nir_lower_alu_to_scalar, NULL, NULL);
1232
1233   while (OPT(nir_opt_algebraic_distribute_src_mods)) {
1234      OPT(nir_copy_prop);
1235      OPT(nir_opt_dce);
1236      OPT(nir_opt_cse);
1237   }
1238
1239   OPT(nir_copy_prop);
1240   OPT(nir_opt_dce);
1241   OPT(nir_opt_move, nir_move_comparisons);
1242   OPT(nir_opt_dead_cf);
1243
1244   NIR_PASS_V(nir, nir_convert_to_lcssa, true, true);
1245   NIR_PASS_V(nir, nir_divergence_analysis);
1246
1247   /* TODO: Enable nir_opt_uniform_atomics on Gfx7.x too.
1248    * It currently fails Vulkan tests on Haswell for an unknown reason.
1249    *
1250    * TODO: Using this optimization on RT/OpenCL kernels also seems to cause
1251    *       issues. Until we can understand those issues, disable it.
1252    */
1253   bool opt_uniform_atomic_stage_allowed =
1254      devinfo->ver >= 8 &&
1255      nir->info.stage != MESA_SHADER_KERNEL &&
1256      nir->info.stage != MESA_SHADER_RAYGEN &&
1257      !gl_shader_stage_is_callable(nir->info.stage);
1258
1259   if (opt_uniform_atomic_stage_allowed && OPT(nir_opt_uniform_atomics)) {
1260      const nir_lower_subgroups_options subgroups_options = {
1261         .ballot_bit_size = 32,
1262         .ballot_components = 1,
1263         .lower_elect = true,
1264      };
1265      OPT(nir_lower_subgroups, &subgroups_options);
1266
1267      if (OPT(nir_lower_int64))
1268         brw_nir_optimize(nir, compiler, is_scalar, false);
1269   }
1270
1271   /* Clean up LCSSA phis */
1272   OPT(nir_opt_remove_phis);
1273
1274   OPT(nir_lower_bool_to_int32);
1275   OPT(nir_copy_prop);
1276   OPT(nir_opt_dce);
1277
1278   OPT(nir_lower_locals_to_regs);
1279
1280   if (unlikely(debug_enabled)) {
1281      /* Re-index SSA defs so we print more sensible numbers. */
1282      nir_foreach_function(function, nir) {
1283         if (function->impl)
1284            nir_index_ssa_defs(function->impl);
1285      }
1286
1287      fprintf(stderr, "NIR (SSA form) for %s shader:\n",
1288              _mesa_shader_stage_to_string(nir->info.stage));
1289      nir_print_shader(nir, stderr);
1290   }
1291
1292   nir_validate_ssa_dominance(nir, "before nir_convert_from_ssa");
1293
1294   OPT(nir_convert_from_ssa, true);
1295
1296   if (!is_scalar) {
1297      OPT(nir_move_vec_src_uses_to_dest);
1298      OPT(nir_lower_vec_to_movs, NULL, NULL);
1299   }
1300
1301   OPT(nir_opt_dce);
1302
1303   if (OPT(nir_opt_rematerialize_compares))
1304      OPT(nir_opt_dce);
1305
1306   /* This is the last pass we run before we start emitting stuff.  It
1307    * determines when we need to insert boolean resolves on Gen <= 5.  We
1308    * run it last because it stashes data in instr->pass_flags and we don't
1309    * want that to be squashed by other NIR passes.
1310    */
1311   if (devinfo->ver <= 5)
1312      brw_nir_analyze_boolean_resolves(nir);
1313
1314   nir_sweep(nir);
1315
1316   if (unlikely(debug_enabled)) {
1317      fprintf(stderr, "NIR (final form) for %s shader:\n",
1318              _mesa_shader_stage_to_string(nir->info.stage));
1319      nir_print_shader(nir, stderr);
1320   }
1321}
1322
1323static bool
1324brw_nir_apply_sampler_key(nir_shader *nir,
1325                          const struct brw_compiler *compiler,
1326                          const struct brw_sampler_prog_key_data *key_tex)
1327{
1328   const struct intel_device_info *devinfo = compiler->devinfo;
1329   nir_lower_tex_options tex_options = {
1330      .lower_txd_clamp_bindless_sampler = true,
1331      .lower_txd_clamp_if_sampler_index_not_lt_16 = true,
1332      .lower_invalid_implicit_lod = true,
1333   };
1334
1335   /* Iron Lake and prior require lowering of all rectangle textures */
1336   if (devinfo->ver < 6)
1337      tex_options.lower_rect = true;
1338
1339   /* Prior to Broadwell, our hardware can't actually do GL_CLAMP */
1340   if (devinfo->ver < 8) {
1341      tex_options.saturate_s = key_tex->gl_clamp_mask[0];
1342      tex_options.saturate_t = key_tex->gl_clamp_mask[1];
1343      tex_options.saturate_r = key_tex->gl_clamp_mask[2];
1344   }
1345
1346   /* Prior to Haswell, we have to lower gradients on shadow samplers */
1347   tex_options.lower_txd_shadow = devinfo->verx10 <= 70;
1348
1349   tex_options.lower_y_uv_external = key_tex->y_uv_image_mask;
1350   tex_options.lower_y_u_v_external = key_tex->y_u_v_image_mask;
1351   tex_options.lower_yx_xuxv_external = key_tex->yx_xuxv_image_mask;
1352   tex_options.lower_xy_uxvx_external = key_tex->xy_uxvx_image_mask;
1353   tex_options.lower_ayuv_external = key_tex->ayuv_image_mask;
1354   tex_options.lower_xyuv_external = key_tex->xyuv_image_mask;
1355   tex_options.bt709_external = key_tex->bt709_mask;
1356   tex_options.bt2020_external = key_tex->bt2020_mask;
1357
1358   /* Setup array of scaling factors for each texture. */
1359   memcpy(&tex_options.scale_factors, &key_tex->scale_factors,
1360          sizeof(tex_options.scale_factors));
1361
1362   return nir_lower_tex(nir, &tex_options);
1363}
1364
1365static unsigned
1366get_subgroup_size(const struct shader_info *info, unsigned max_subgroup_size)
1367{
1368   switch (info->subgroup_size) {
1369   case SUBGROUP_SIZE_API_CONSTANT:
1370      /* We have to use the global constant size. */
1371      return BRW_SUBGROUP_SIZE;
1372
1373   case SUBGROUP_SIZE_UNIFORM:
1374      /* It has to be uniform across all invocations but can vary per stage
1375       * if we want.  This gives us a bit more freedom.
1376       *
1377       * For compute, brw_nir_apply_key is called per-dispatch-width so this
1378       * is the actual subgroup size and not a maximum.  However, we only
1379       * invoke one size of any given compute shader so it's still guaranteed
1380       * to be uniform across invocations.
1381       */
1382      return max_subgroup_size;
1383
1384   case SUBGROUP_SIZE_VARYING:
1385      /* The subgroup size is allowed to be fully varying.  For geometry
1386       * stages, we know it's always 8 which is max_subgroup_size so we can
1387       * return that.  For compute, brw_nir_apply_key is called once per
1388       * dispatch-width so max_subgroup_size is the real subgroup size.
1389       *
1390       * For fragment, we return 0 and let it fall through to the back-end
1391       * compiler.  This means we can't optimize based on subgroup size but
1392       * that's a risk the client took when it asked for a varying subgroup
1393       * size.
1394       */
1395      return info->stage == MESA_SHADER_FRAGMENT ? 0 : max_subgroup_size;
1396
1397   case SUBGROUP_SIZE_REQUIRE_8:
1398   case SUBGROUP_SIZE_REQUIRE_16:
1399   case SUBGROUP_SIZE_REQUIRE_32:
1400      assert(gl_shader_stage_uses_workgroup(info->stage));
1401      /* These enum values are expressly chosen to be equal to the subgroup
1402       * size that they require.
1403       */
1404      return info->subgroup_size;
1405
1406   case SUBGROUP_SIZE_FULL_SUBGROUPS:
1407   case SUBGROUP_SIZE_REQUIRE_64:
1408   case SUBGROUP_SIZE_REQUIRE_128:
1409      break;
1410   }
1411
1412   unreachable("Invalid subgroup size type");
1413}
1414
1415void
1416brw_nir_apply_key(nir_shader *nir,
1417                  const struct brw_compiler *compiler,
1418                  const struct brw_base_prog_key *key,
1419                  unsigned max_subgroup_size,
1420                  bool is_scalar)
1421{
1422   bool progress = false;
1423
1424   OPT(brw_nir_apply_sampler_key, compiler, &key->tex);
1425
1426   const nir_lower_subgroups_options subgroups_options = {
1427      .subgroup_size = get_subgroup_size(&nir->info, max_subgroup_size),
1428      .ballot_bit_size = 32,
1429      .ballot_components = 1,
1430      .lower_subgroup_masks = true,
1431   };
1432   OPT(nir_lower_subgroups, &subgroups_options);
1433
1434   if (key->limit_trig_input_range)
1435      OPT(brw_nir_limit_trig_input_range_workaround);
1436
1437   if (progress)
1438      brw_nir_optimize(nir, compiler, is_scalar, false);
1439}
1440
1441enum brw_conditional_mod
1442brw_cmod_for_nir_comparison(nir_op op)
1443{
1444   switch (op) {
1445   case nir_op_flt:
1446   case nir_op_flt32:
1447   case nir_op_ilt:
1448   case nir_op_ilt32:
1449   case nir_op_ult:
1450   case nir_op_ult32:
1451      return BRW_CONDITIONAL_L;
1452
1453   case nir_op_fge:
1454   case nir_op_fge32:
1455   case nir_op_ige:
1456   case nir_op_ige32:
1457   case nir_op_uge:
1458   case nir_op_uge32:
1459      return BRW_CONDITIONAL_GE;
1460
1461   case nir_op_feq:
1462   case nir_op_feq32:
1463   case nir_op_ieq:
1464   case nir_op_ieq32:
1465   case nir_op_b32all_fequal2:
1466   case nir_op_b32all_iequal2:
1467   case nir_op_b32all_fequal3:
1468   case nir_op_b32all_iequal3:
1469   case nir_op_b32all_fequal4:
1470   case nir_op_b32all_iequal4:
1471      return BRW_CONDITIONAL_Z;
1472
1473   case nir_op_fneu:
1474   case nir_op_fneu32:
1475   case nir_op_ine:
1476   case nir_op_ine32:
1477   case nir_op_b32any_fnequal2:
1478   case nir_op_b32any_inequal2:
1479   case nir_op_b32any_fnequal3:
1480   case nir_op_b32any_inequal3:
1481   case nir_op_b32any_fnequal4:
1482   case nir_op_b32any_inequal4:
1483      return BRW_CONDITIONAL_NZ;
1484
1485   default:
1486      unreachable("Unsupported NIR comparison op");
1487   }
1488}
1489
1490uint32_t
1491brw_aop_for_nir_intrinsic(const nir_intrinsic_instr *atomic)
1492{
1493   switch (atomic->intrinsic) {
1494#define AOP_CASE(atom) \
1495   case nir_intrinsic_image_atomic_##atom:            \
1496   case nir_intrinsic_bindless_image_atomic_##atom:   \
1497   case nir_intrinsic_ssbo_atomic_##atom:             \
1498   case nir_intrinsic_shared_atomic_##atom:           \
1499   case nir_intrinsic_global_atomic_##atom
1500
1501   AOP_CASE(add): {
1502      unsigned src_idx;
1503      switch (atomic->intrinsic) {
1504      case nir_intrinsic_image_atomic_add:
1505      case nir_intrinsic_bindless_image_atomic_add:
1506         src_idx = 3;
1507         break;
1508      case nir_intrinsic_ssbo_atomic_add:
1509         src_idx = 2;
1510         break;
1511      case nir_intrinsic_shared_atomic_add:
1512      case nir_intrinsic_global_atomic_add:
1513         src_idx = 1;
1514         break;
1515      default:
1516         unreachable("Invalid add atomic opcode");
1517      }
1518
1519      if (nir_src_is_const(atomic->src[src_idx])) {
1520         int64_t add_val = nir_src_as_int(atomic->src[src_idx]);
1521         if (add_val == 1)
1522            return BRW_AOP_INC;
1523         else if (add_val == -1)
1524            return BRW_AOP_DEC;
1525      }
1526      return BRW_AOP_ADD;
1527   }
1528
1529   AOP_CASE(imin):         return BRW_AOP_IMIN;
1530   AOP_CASE(umin):         return BRW_AOP_UMIN;
1531   AOP_CASE(imax):         return BRW_AOP_IMAX;
1532   AOP_CASE(umax):         return BRW_AOP_UMAX;
1533   AOP_CASE(and):          return BRW_AOP_AND;
1534   AOP_CASE(or):           return BRW_AOP_OR;
1535   AOP_CASE(xor):          return BRW_AOP_XOR;
1536   AOP_CASE(exchange):     return BRW_AOP_MOV;
1537   AOP_CASE(comp_swap):    return BRW_AOP_CMPWR;
1538
1539#undef AOP_CASE
1540#define AOP_CASE(atom) \
1541   case nir_intrinsic_ssbo_atomic_##atom:          \
1542   case nir_intrinsic_shared_atomic_##atom:        \
1543   case nir_intrinsic_global_atomic_##atom
1544
1545   AOP_CASE(fmin):         return BRW_AOP_FMIN;
1546   AOP_CASE(fmax):         return BRW_AOP_FMAX;
1547   AOP_CASE(fcomp_swap):   return BRW_AOP_FCMPWR;
1548   AOP_CASE(fadd):         return BRW_AOP_FADD;
1549
1550#undef AOP_CASE
1551
1552   default:
1553      unreachable("Unsupported NIR atomic intrinsic");
1554   }
1555}
1556
1557enum brw_reg_type
1558brw_type_for_nir_type(const struct intel_device_info *devinfo,
1559                      nir_alu_type type)
1560{
1561   switch (type) {
1562   case nir_type_uint:
1563   case nir_type_uint32:
1564      return BRW_REGISTER_TYPE_UD;
1565   case nir_type_bool:
1566   case nir_type_int:
1567   case nir_type_bool32:
1568   case nir_type_int32:
1569      return BRW_REGISTER_TYPE_D;
1570   case nir_type_float:
1571   case nir_type_float32:
1572      return BRW_REGISTER_TYPE_F;
1573   case nir_type_float16:
1574      return BRW_REGISTER_TYPE_HF;
1575   case nir_type_float64:
1576      return BRW_REGISTER_TYPE_DF;
1577   case nir_type_int64:
1578      return devinfo->ver < 8 ? BRW_REGISTER_TYPE_DF : BRW_REGISTER_TYPE_Q;
1579   case nir_type_uint64:
1580      return devinfo->ver < 8 ? BRW_REGISTER_TYPE_DF : BRW_REGISTER_TYPE_UQ;
1581   case nir_type_int16:
1582      return BRW_REGISTER_TYPE_W;
1583   case nir_type_uint16:
1584      return BRW_REGISTER_TYPE_UW;
1585   case nir_type_int8:
1586      return BRW_REGISTER_TYPE_B;
1587   case nir_type_uint8:
1588      return BRW_REGISTER_TYPE_UB;
1589   default:
1590      unreachable("unknown type");
1591   }
1592
1593   return BRW_REGISTER_TYPE_F;
1594}
1595
1596nir_shader *
1597brw_nir_create_passthrough_tcs(void *mem_ctx, const struct brw_compiler *compiler,
1598                               const nir_shader_compiler_options *options,
1599                               const struct brw_tcs_prog_key *key)
1600{
1601   nir_builder b = nir_builder_init_simple_shader(MESA_SHADER_TESS_CTRL,
1602                                                  options, "passthrough TCS");
1603   ralloc_steal(mem_ctx, b.shader);
1604   nir_shader *nir = b.shader;
1605   nir_variable *var;
1606   nir_ssa_def *load;
1607   nir_ssa_def *zero = nir_imm_int(&b, 0);
1608   nir_ssa_def *invoc_id = nir_load_invocation_id(&b);
1609
1610   nir->info.inputs_read = key->outputs_written &
1611      ~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER);
1612   nir->info.outputs_written = key->outputs_written;
1613   nir->info.tess.tcs_vertices_out = key->input_vertices;
1614   nir->num_uniforms = 8 * sizeof(uint32_t);
1615
1616   var = nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "hdr_0");
1617   var->data.location = 0;
1618   var = nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "hdr_1");
1619   var->data.location = 1;
1620
1621   /* Write the patch URB header. */
1622   for (int i = 0; i <= 1; i++) {
1623      load = nir_load_uniform(&b, 4, 32, zero, .base = i * 4 * sizeof(uint32_t));
1624
1625      nir_store_output(&b, load, zero,
1626                       .base = VARYING_SLOT_TESS_LEVEL_INNER - i,
1627                       .write_mask = WRITEMASK_XYZW);
1628   }
1629
1630   /* Copy inputs to outputs. */
1631   uint64_t varyings = nir->info.inputs_read;
1632
1633   while (varyings != 0) {
1634      const int varying = ffsll(varyings) - 1;
1635
1636      load = nir_load_per_vertex_input(&b, 4, 32, invoc_id, zero, .base = varying);
1637
1638      nir_store_per_vertex_output(&b, load, invoc_id, zero,
1639                                  .base = varying,
1640                                  .write_mask = WRITEMASK_XYZW);
1641
1642      varyings &= ~BITFIELD64_BIT(varying);
1643   }
1644
1645   nir_validate_shader(nir, "in brw_nir_create_passthrough_tcs");
1646
1647   brw_preprocess_nir(compiler, nir, NULL);
1648
1649   return nir;
1650}
1651
1652nir_ssa_def *
1653brw_nir_load_global_const(nir_builder *b, nir_intrinsic_instr *load_uniform,
1654      nir_ssa_def *base_addr, unsigned off)
1655{
1656   assert(load_uniform->intrinsic == nir_intrinsic_load_uniform);
1657   assert(load_uniform->dest.is_ssa);
1658   assert(load_uniform->src[0].is_ssa);
1659
1660   unsigned bit_size = load_uniform->dest.ssa.bit_size;
1661   assert(bit_size >= 8 && bit_size % 8 == 0);
1662   unsigned byte_size = bit_size / 8;
1663   nir_ssa_def *sysval;
1664
1665   if (nir_src_is_const(load_uniform->src[0])) {
1666      uint64_t offset = off +
1667                        nir_intrinsic_base(load_uniform) +
1668                        nir_src_as_uint(load_uniform->src[0]);
1669
1670      /* Things should be component-aligned. */
1671      assert(offset % byte_size == 0);
1672
1673      unsigned suboffset = offset % 64;
1674      uint64_t aligned_offset = offset - suboffset;
1675
1676      /* Load two just in case we go over a 64B boundary */
1677      nir_ssa_def *data[2];
1678      for (unsigned i = 0; i < 2; i++) {
1679         nir_ssa_def *addr = nir_iadd_imm(b, base_addr, aligned_offset + i * 64);
1680         data[i] = nir_load_global_const_block_intel(b, 16, addr,
1681                                                     nir_imm_true(b));
1682      }
1683
1684      sysval = nir_extract_bits(b, data, 2, suboffset * 8,
1685                                load_uniform->num_components, bit_size);
1686   } else {
1687      nir_ssa_def *offset32 =
1688         nir_iadd_imm(b, load_uniform->src[0].ssa,
1689                         off + nir_intrinsic_base(load_uniform));
1690      nir_ssa_def *addr = nir_iadd(b, base_addr, nir_u2u64(b, offset32));
1691      sysval = nir_load_global_constant(b, addr, byte_size,
1692                                        load_uniform->num_components, bit_size);
1693   }
1694
1695   return sysval;
1696}
1697