1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24/** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR.  The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30#include "brw_eu.h"
31#include "brw_fs.h"
32#include "compiler/glsl_types.h"
33
34using namespace brw;
35
36/* Sample from the MCS surface attached to this multisample texture. */
37fs_reg
38fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components,
39                           const fs_reg &texture,
40                           const fs_reg &texture_handle)
41{
42   const fs_reg dest = vgrf(glsl_type::uvec4_type);
43
44   fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
45   srcs[TEX_LOGICAL_SRC_COORDINATE] = coordinate;
46   srcs[TEX_LOGICAL_SRC_SURFACE] = texture;
47   srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
48   srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = texture_handle;
49   srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(components);
50   srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
51
52   fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs,
53                            ARRAY_SIZE(srcs));
54
55   /* We only care about one or two regs of response, but the sampler always
56    * writes 4/8.
57    */
58   inst->size_written = 4 * dest.component_size(inst->exec_size);
59
60   return dest;
61}
62
63/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
64void
65fs_visitor::emit_dummy_fs()
66{
67   int reg_width = dispatch_width / 8;
68
69   /* Everyone's favorite color. */
70   const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
71   for (int i = 0; i < 4; i++) {
72      bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F),
73              brw_imm_f(color[i]));
74   }
75
76   fs_inst *write;
77   write = bld.emit(FS_OPCODE_FB_WRITE);
78   write->eot = true;
79   write->last_rt = true;
80   if (devinfo->ver >= 6) {
81      write->base_mrf = 2;
82      write->mlen = 4 * reg_width;
83   } else {
84      write->header_size = 2;
85      write->base_mrf = 0;
86      write->mlen = 2 + 4 * reg_width;
87   }
88
89   /* Tell the SF we don't have any inputs.  Gfx4-5 require at least one
90    * varying to avoid GPU hangs, so set that.
91    */
92   struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
93   wm_prog_data->num_varying_inputs = devinfo->ver < 6 ? 1 : 0;
94   memset(wm_prog_data->urb_setup, -1,
95          sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
96   brw_compute_urb_setup_index(wm_prog_data);
97
98   /* We don't have any uniforms. */
99   stage_prog_data->nr_params = 0;
100   stage_prog_data->curb_read_length = 0;
101   stage_prog_data->dispatch_grf_start_reg = 2;
102   wm_prog_data->dispatch_grf_start_reg_16 = 2;
103   wm_prog_data->dispatch_grf_start_reg_32 = 2;
104   grf_used = 1; /* Gfx4-5 don't allow zero GRF blocks */
105
106   calculate_cfg();
107}
108
109/* Input data is organized with first the per-primitive values, followed
110 * by per-vertex values.  The per-vertex will have interpolation information
111 * associated, so use 4 components for each value.
112 */
113
114/* The register location here is relative to the start of the URB
115 * data.  It will get adjusted to be a real location before
116 * generate_code() time.
117 */
118fs_reg
119fs_visitor::interp_reg(int location, int channel)
120{
121   assert(stage == MESA_SHADER_FRAGMENT);
122   assert(BITFIELD64_BIT(location) & ~nir->info.per_primitive_inputs);
123
124   const struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
125
126   assert(prog_data->urb_setup[location] >= 0);
127   unsigned nr = prog_data->urb_setup[location];
128
129   /* Adjust so we start counting from the first per_vertex input. */
130   assert(nr >= prog_data->num_per_primitive_inputs);
131   nr -= prog_data->num_per_primitive_inputs;
132
133   const unsigned per_vertex_start = prog_data->num_per_primitive_inputs;
134   const unsigned regnr = per_vertex_start + (nr * 4) + channel;
135
136   return fs_reg(ATTR, regnr, BRW_REGISTER_TYPE_F);
137}
138
139/* The register location here is relative to the start of the URB
140 * data.  It will get adjusted to be a real location before
141 * generate_code() time.
142 */
143fs_reg
144fs_visitor::per_primitive_reg(int location)
145{
146   assert(stage == MESA_SHADER_FRAGMENT);
147   assert(BITFIELD64_BIT(location) & nir->info.per_primitive_inputs);
148
149   const struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
150
151   assert(prog_data->urb_setup[location] >= 0);
152
153   const unsigned regnr = prog_data->urb_setup[location];
154   assert(regnr < prog_data->num_per_primitive_inputs);
155
156   return fs_reg(ATTR, regnr, BRW_REGISTER_TYPE_F);
157}
158
159/** Emits the interpolation for the varying inputs. */
160void
161fs_visitor::emit_interpolation_setup_gfx4()
162{
163   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
164
165   fs_builder abld = bld.annotate("compute pixel centers");
166   this->pixel_x = vgrf(glsl_type::uint_type);
167   this->pixel_y = vgrf(glsl_type::uint_type);
168   this->pixel_x.type = BRW_REGISTER_TYPE_UW;
169   this->pixel_y.type = BRW_REGISTER_TYPE_UW;
170   abld.ADD(this->pixel_x,
171            fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
172            fs_reg(brw_imm_v(0x10101010)));
173   abld.ADD(this->pixel_y,
174            fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
175            fs_reg(brw_imm_v(0x11001100)));
176
177   abld = bld.annotate("compute pixel deltas from v0");
178
179   this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL] =
180      vgrf(glsl_type::vec2_type);
181   const fs_reg &delta_xy = this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL];
182   const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
183   const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
184
185   if (devinfo->has_pln) {
186      for (unsigned i = 0; i < dispatch_width / 8; i++) {
187         abld.quarter(i).ADD(quarter(offset(delta_xy, abld, 0), i),
188                             quarter(this->pixel_x, i), xstart);
189         abld.quarter(i).ADD(quarter(offset(delta_xy, abld, 1), i),
190                             quarter(this->pixel_y, i), ystart);
191      }
192   } else {
193      abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
194      abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
195   }
196
197   this->pixel_z = fetch_payload_reg(bld, payload.source_depth_reg);
198
199   /* The SF program automatically handles doing the perspective correction or
200    * not based on wm_prog_data::interp_mode[] so we can use the same pixel
201    * offsets for both perspective and non-perspective.
202    */
203   this->delta_xy[BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL] =
204      this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL];
205
206   abld = bld.annotate("compute pos.w and 1/pos.w");
207   /* Compute wpos.w.  It's always in our setup, since it's needed to
208    * interpolate the other attributes.
209    */
210   this->wpos_w = vgrf(glsl_type::float_type);
211   abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
212             component(interp_reg(VARYING_SLOT_POS, 3), 0));
213   /* Compute the pixel 1/W value from wpos.w. */
214   this->pixel_w = vgrf(glsl_type::float_type);
215   abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
216}
217
218static unsigned
219brw_rnd_mode_from_nir(unsigned mode, unsigned *mask)
220{
221   unsigned brw_mode = 0;
222   *mask = 0;
223
224   if ((FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 |
225        FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 |
226        FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64) &
227       mode) {
228      brw_mode |= BRW_RND_MODE_RTZ << BRW_CR0_RND_MODE_SHIFT;
229      *mask |= BRW_CR0_RND_MODE_MASK;
230   }
231   if ((FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 |
232        FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32 |
233        FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64) &
234       mode) {
235      brw_mode |= BRW_RND_MODE_RTNE << BRW_CR0_RND_MODE_SHIFT;
236      *mask |= BRW_CR0_RND_MODE_MASK;
237   }
238   if (mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP16) {
239      brw_mode |= BRW_CR0_FP16_DENORM_PRESERVE;
240      *mask |= BRW_CR0_FP16_DENORM_PRESERVE;
241   }
242   if (mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) {
243      brw_mode |= BRW_CR0_FP32_DENORM_PRESERVE;
244      *mask |= BRW_CR0_FP32_DENORM_PRESERVE;
245   }
246   if (mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP64) {
247      brw_mode |= BRW_CR0_FP64_DENORM_PRESERVE;
248      *mask |= BRW_CR0_FP64_DENORM_PRESERVE;
249   }
250   if (mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16)
251      *mask |= BRW_CR0_FP16_DENORM_PRESERVE;
252   if (mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32)
253      *mask |= BRW_CR0_FP32_DENORM_PRESERVE;
254   if (mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64)
255      *mask |= BRW_CR0_FP64_DENORM_PRESERVE;
256   if (mode == FLOAT_CONTROLS_DEFAULT_FLOAT_CONTROL_MODE)
257      *mask |= BRW_CR0_FP_MODE_MASK;
258
259   if (*mask != 0)
260      assert((*mask & brw_mode) == brw_mode);
261
262   return brw_mode;
263}
264
265void
266fs_visitor::emit_shader_float_controls_execution_mode()
267{
268   unsigned execution_mode = this->nir->info.float_controls_execution_mode;
269   if (execution_mode == FLOAT_CONTROLS_DEFAULT_FLOAT_CONTROL_MODE)
270      return;
271
272   fs_builder abld = bld.annotate("shader floats control execution mode");
273   unsigned mask, mode = brw_rnd_mode_from_nir(execution_mode, &mask);
274
275   if (mask == 0)
276      return;
277
278   abld.emit(SHADER_OPCODE_FLOAT_CONTROL_MODE, bld.null_reg_ud(),
279             brw_imm_d(mode), brw_imm_d(mask));
280}
281
282/** Emits the interpolation for the varying inputs. */
283void
284fs_visitor::emit_interpolation_setup_gfx6()
285{
286   fs_builder abld = bld.annotate("compute pixel centers");
287
288   this->pixel_x = vgrf(glsl_type::float_type);
289   this->pixel_y = vgrf(glsl_type::float_type);
290
291   struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(prog_data);
292
293   fs_reg int_pixel_offset_x, int_pixel_offset_y; /* Used on Gen12HP+ */
294   fs_reg int_pixel_offset_xy; /* Used on Gen8+ */
295   fs_reg half_int_pixel_offset_x, half_int_pixel_offset_y;
296   if (!wm_prog_data->per_coarse_pixel_dispatch) {
297      /* The thread payload only delivers subspan locations (ss0, ss1,
298       * ss2, ...). Since subspans covers 2x2 pixels blocks, we need to
299       * generate 4 pixel coordinates out of each subspan location. We do this
300       * by replicating a subspan coordinate 4 times and adding an offset of 1
301       * in each direction from the initial top left (tl) location to generate
302       * top right (tr = +1 in x), bottom left (bl = +1 in y) and bottom right
303       * (br = +1 in x, +1 in y).
304       *
305       * The locations we build look like this in SIMD8 :
306       *
307       *    ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
308       *
309       * The value 0x11001010 is a vector of 8 half byte vector. It adds
310       * following to generate the 4 pixels coordinates out of the subspan0:
311       *
312       *  0x
313       *    1 : ss0.y + 1 -> ss0.br.y
314       *    1 : ss0.y + 1 -> ss0.bl.y
315       *    0 : ss0.y + 0 -> ss0.tr.y
316       *    0 : ss0.y + 0 -> ss0.tl.y
317       *    1 : ss0.x + 1 -> ss0.br.x
318       *    0 : ss0.x + 0 -> ss0.bl.x
319       *    1 : ss0.x + 1 -> ss0.tr.x
320       *    0 : ss0.x + 0 -> ss0.tl.x
321       *
322       * By doing a SIMD16 add in a SIMD8 shader, we can generate the 8 pixels
323       * coordinates out of 2 subspans coordinates in a single ADD instruction
324       * (twice the operation above).
325       */
326      int_pixel_offset_xy = fs_reg(brw_imm_v(0x11001010));
327      half_int_pixel_offset_x = fs_reg(brw_imm_uw(0));
328      half_int_pixel_offset_y = fs_reg(brw_imm_uw(0));
329      /* On Gfx12.5, because of regioning restrictions, the interpolation code
330       * is slightly different and works off X & Y only inputs. The ordering
331       * of the half bytes here is a bit odd, with each subspan replicated
332       * twice and every other element is discarded :
333       *
334       *             ss0.tl ss0.tl ss0.tr ss0.tr ss0.bl ss0.bl ss0.br ss0.br
335       *  X offset:    0      0      1      0      0      0      1      0
336       *  Y offset:    0      0      0      0      1      0      1      0
337       */
338      int_pixel_offset_x = fs_reg(brw_imm_v(0x01000100));
339      int_pixel_offset_y = fs_reg(brw_imm_v(0x01010000));
340   } else {
341      /* In coarse pixel dispatch we have to do the same ADD instruction that
342       * we do in normal per pixel dispatch, except this time we're not adding
343       * 1 in each direction, but instead the coarse pixel size.
344       *
345       * The coarse pixel size is delivered as 2 u8 in r1.0
346       */
347      struct brw_reg r1_0 = retype(brw_vec1_reg(BRW_GENERAL_REGISTER_FILE, 1, 0), BRW_REGISTER_TYPE_UB);
348
349      const fs_builder dbld =
350         abld.exec_all().group(MIN2(16, dispatch_width) * 2, 0);
351
352      if (devinfo->verx10 >= 125) {
353         /* To build the array of half bytes we do and AND operation with the
354          * right mask in X.
355          */
356         int_pixel_offset_x = dbld.vgrf(BRW_REGISTER_TYPE_UW);
357         dbld.AND(int_pixel_offset_x, byte_offset(r1_0, 0), brw_imm_v(0x0f000f00));
358
359         /* And the right mask in Y. */
360         int_pixel_offset_y = dbld.vgrf(BRW_REGISTER_TYPE_UW);
361         dbld.AND(int_pixel_offset_y, byte_offset(r1_0, 1), brw_imm_v(0x0f0f0000));
362      } else {
363         /* To build the array of half bytes we do and AND operation with the
364          * right mask in X.
365          */
366         int_pixel_offset_x = dbld.vgrf(BRW_REGISTER_TYPE_UW);
367         dbld.AND(int_pixel_offset_x, byte_offset(r1_0, 0), brw_imm_v(0x0000f0f0));
368
369         /* And the right mask in Y. */
370         int_pixel_offset_y = dbld.vgrf(BRW_REGISTER_TYPE_UW);
371         dbld.AND(int_pixel_offset_y, byte_offset(r1_0, 1), brw_imm_v(0xff000000));
372
373         /* Finally OR the 2 registers. */
374         int_pixel_offset_xy = dbld.vgrf(BRW_REGISTER_TYPE_UW);
375         dbld.OR(int_pixel_offset_xy, int_pixel_offset_x, int_pixel_offset_y);
376      }
377
378      /* Also compute the half pixel size used to center pixels. */
379      half_int_pixel_offset_x = bld.vgrf(BRW_REGISTER_TYPE_UW);
380      half_int_pixel_offset_y = bld.vgrf(BRW_REGISTER_TYPE_UW);
381
382      bld.SHR(half_int_pixel_offset_x, suboffset(r1_0, 0), brw_imm_ud(1));
383      bld.SHR(half_int_pixel_offset_y, suboffset(r1_0, 1), brw_imm_ud(1));
384   }
385
386   for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
387      const fs_builder hbld = abld.group(MIN2(16, dispatch_width), i);
388      struct brw_reg gi_uw = retype(brw_vec1_grf(1 + i, 0), BRW_REGISTER_TYPE_UW);
389
390      if (devinfo->verx10 >= 125) {
391         const fs_builder dbld =
392            abld.exec_all().group(hbld.dispatch_width() * 2, 0);
393         const fs_reg int_pixel_x = dbld.vgrf(BRW_REGISTER_TYPE_UW);
394         const fs_reg int_pixel_y = dbld.vgrf(BRW_REGISTER_TYPE_UW);
395
396         dbld.ADD(int_pixel_x,
397                  fs_reg(stride(suboffset(gi_uw, 4), 2, 8, 0)),
398                  int_pixel_offset_x);
399         dbld.ADD(int_pixel_y,
400                  fs_reg(stride(suboffset(gi_uw, 5), 2, 8, 0)),
401                  int_pixel_offset_y);
402
403         if (wm_prog_data->per_coarse_pixel_dispatch) {
404            dbld.ADD(int_pixel_x, int_pixel_x,
405                     horiz_stride(half_int_pixel_offset_x, 0));
406            dbld.ADD(int_pixel_y, int_pixel_y,
407                     horiz_stride(half_int_pixel_offset_y, 0));
408         }
409
410         hbld.MOV(offset(pixel_x, hbld, i), horiz_stride(int_pixel_x, 2));
411         hbld.MOV(offset(pixel_y, hbld, i), horiz_stride(int_pixel_y, 2));
412
413      } else if (devinfo->ver >= 8 || dispatch_width == 8) {
414         /* The "Register Region Restrictions" page says for BDW (and newer,
415          * presumably):
416          *
417          *     "When destination spans two registers, the source may be one or
418          *      two registers. The destination elements must be evenly split
419          *      between the two registers."
420          *
421          * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16
422          * to compute our pixel centers.
423          */
424         const fs_builder dbld =
425            abld.exec_all().group(hbld.dispatch_width() * 2, 0);
426         fs_reg int_pixel_xy = dbld.vgrf(BRW_REGISTER_TYPE_UW);
427
428         dbld.ADD(int_pixel_xy,
429                  fs_reg(stride(suboffset(gi_uw, 4), 1, 4, 0)),
430                  int_pixel_offset_xy);
431
432         hbld.emit(FS_OPCODE_PIXEL_X, offset(pixel_x, hbld, i), int_pixel_xy,
433                                      horiz_stride(half_int_pixel_offset_x, 0));
434         hbld.emit(FS_OPCODE_PIXEL_Y, offset(pixel_y, hbld, i), int_pixel_xy,
435                                      horiz_stride(half_int_pixel_offset_y, 0));
436      } else {
437         /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
438          *
439          *     "When destination spans two registers, the source MUST span
440          *      two registers."
441          *
442          * Since the GRF source of the ADD will only read a single register,
443          * we must do two separate ADDs in SIMD16.
444          */
445         const fs_reg int_pixel_x = hbld.vgrf(BRW_REGISTER_TYPE_UW);
446         const fs_reg int_pixel_y = hbld.vgrf(BRW_REGISTER_TYPE_UW);
447
448         hbld.ADD(int_pixel_x,
449                  fs_reg(stride(suboffset(gi_uw, 4), 2, 4, 0)),
450                  fs_reg(brw_imm_v(0x10101010)));
451         hbld.ADD(int_pixel_y,
452                  fs_reg(stride(suboffset(gi_uw, 5), 2, 4, 0)),
453                  fs_reg(brw_imm_v(0x11001100)));
454
455         /* As of gfx6, we can no longer mix float and int sources.  We have
456          * to turn the integer pixel centers into floats for their actual
457          * use.
458          */
459         hbld.MOV(offset(pixel_x, hbld, i), int_pixel_x);
460         hbld.MOV(offset(pixel_y, hbld, i), int_pixel_y);
461      }
462   }
463
464   abld = bld.annotate("compute pos.z");
465   if (wm_prog_data->uses_depth_w_coefficients) {
466      assert(!wm_prog_data->uses_src_depth);
467      /* In coarse pixel mode, the HW doesn't interpolate Z coordinate
468       * properly. In the same way we have to add the coarse pixel size to
469       * pixels locations, here we recompute the Z value with 2 coefficients
470       * in X & Y axis.
471       */
472      fs_reg coef_payload = fetch_payload_reg(abld, payload.depth_w_coef_reg, BRW_REGISTER_TYPE_F);
473      const fs_reg x_start = brw_vec1_grf(coef_payload.nr, 2);
474      const fs_reg y_start = brw_vec1_grf(coef_payload.nr, 6);
475      const fs_reg z_cx    = brw_vec1_grf(coef_payload.nr, 1);
476      const fs_reg z_cy    = brw_vec1_grf(coef_payload.nr, 0);
477      const fs_reg z_c0    = brw_vec1_grf(coef_payload.nr, 3);
478
479      const fs_reg float_pixel_x = abld.vgrf(BRW_REGISTER_TYPE_F);
480      const fs_reg float_pixel_y = abld.vgrf(BRW_REGISTER_TYPE_F);
481
482      abld.ADD(float_pixel_x, this->pixel_x, negate(x_start));
483      abld.ADD(float_pixel_y, this->pixel_y, negate(y_start));
484
485      /* r1.0 - 0:7 ActualCoarsePixelShadingSize.X */
486      const fs_reg u8_cps_width = fs_reg(retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UB));
487      /* r1.0 - 15:8 ActualCoarsePixelShadingSize.Y */
488      const fs_reg u8_cps_height = byte_offset(u8_cps_width, 1);
489      const fs_reg u32_cps_width = abld.vgrf(BRW_REGISTER_TYPE_UD);
490      const fs_reg u32_cps_height = abld.vgrf(BRW_REGISTER_TYPE_UD);
491      abld.MOV(u32_cps_width, u8_cps_width);
492      abld.MOV(u32_cps_height, u8_cps_height);
493
494      const fs_reg f_cps_width = abld.vgrf(BRW_REGISTER_TYPE_F);
495      const fs_reg f_cps_height = abld.vgrf(BRW_REGISTER_TYPE_F);
496      abld.MOV(f_cps_width, u32_cps_width);
497      abld.MOV(f_cps_height, u32_cps_height);
498
499      /* Center in the middle of the coarse pixel. */
500      abld.MAD(float_pixel_x, float_pixel_x, brw_imm_f(0.5f), f_cps_width);
501      abld.MAD(float_pixel_y, float_pixel_y, brw_imm_f(0.5f), f_cps_height);
502
503      this->pixel_z = abld.vgrf(BRW_REGISTER_TYPE_F);
504      abld.MAD(this->pixel_z, z_c0, z_cx, float_pixel_x);
505      abld.MAD(this->pixel_z, this->pixel_z, z_cy, float_pixel_y);
506   }
507
508   if (wm_prog_data->uses_src_depth) {
509      assert(!wm_prog_data->uses_depth_w_coefficients);
510      this->pixel_z = fetch_payload_reg(bld, payload.source_depth_reg);
511   }
512
513   if (wm_prog_data->uses_src_w) {
514      abld = bld.annotate("compute pos.w");
515      this->pixel_w = fetch_payload_reg(abld, payload.source_w_reg);
516      this->wpos_w = vgrf(glsl_type::float_type);
517      abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
518   }
519
520   for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
521      this->delta_xy[i] = fetch_barycentric_reg(
522         bld, payload.barycentric_coord_reg[i]);
523   }
524
525   uint32_t centroid_modes = wm_prog_data->barycentric_interp_modes &
526      (1 << BRW_BARYCENTRIC_PERSPECTIVE_CENTROID |
527       1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
528
529   if (devinfo->needs_unlit_centroid_workaround && centroid_modes) {
530      /* Get the pixel/sample mask into f0 so that we know which
531       * pixels are lit.  Then, for each channel that is unlit,
532       * replace the centroid data with non-centroid data.
533       */
534      for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
535         bld.exec_all().group(1, 0)
536            .MOV(retype(brw_flag_reg(0, i), BRW_REGISTER_TYPE_UW),
537                 retype(brw_vec1_grf(1 + i, 7), BRW_REGISTER_TYPE_UW));
538      }
539
540      for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
541         if (!(centroid_modes & (1 << i)))
542            continue;
543
544         const fs_reg centroid_delta_xy = delta_xy[i];
545         const fs_reg &pixel_delta_xy = delta_xy[i - 1];
546
547         delta_xy[i] = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
548
549         for (unsigned c = 0; c < 2; c++) {
550            for (unsigned q = 0; q < dispatch_width / 8; q++) {
551               set_predicate(BRW_PREDICATE_NORMAL,
552                  bld.quarter(q).SEL(
553                     quarter(offset(delta_xy[i], bld, c), q),
554                     quarter(offset(centroid_delta_xy, bld, c), q),
555                     quarter(offset(pixel_delta_xy, bld, c), q)));
556            }
557         }
558      }
559   }
560}
561
562static enum brw_conditional_mod
563cond_for_alpha_func(enum compare_func func)
564{
565   switch(func) {
566   case COMPARE_FUNC_GREATER:
567      return BRW_CONDITIONAL_G;
568   case COMPARE_FUNC_GEQUAL:
569      return BRW_CONDITIONAL_GE;
570   case COMPARE_FUNC_LESS:
571      return BRW_CONDITIONAL_L;
572   case COMPARE_FUNC_LEQUAL:
573      return BRW_CONDITIONAL_LE;
574   case COMPARE_FUNC_EQUAL:
575      return BRW_CONDITIONAL_EQ;
576   case COMPARE_FUNC_NOTEQUAL:
577      return BRW_CONDITIONAL_NEQ;
578   default:
579      unreachable("Not reached");
580   }
581}
582
583/**
584 * Alpha test support for when we compile it into the shader instead
585 * of using the normal fixed-function alpha test.
586 */
587void
588fs_visitor::emit_alpha_test()
589{
590   assert(stage == MESA_SHADER_FRAGMENT);
591   brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
592   const fs_builder abld = bld.annotate("Alpha test");
593
594   fs_inst *cmp;
595   if (key->alpha_test_func == COMPARE_FUNC_ALWAYS)
596      return;
597
598   if (key->alpha_test_func == COMPARE_FUNC_NEVER) {
599      /* f0.1 = 0 */
600      fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
601                                      BRW_REGISTER_TYPE_UW));
602      cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
603                     BRW_CONDITIONAL_NEQ);
604   } else {
605      /* RT0 alpha */
606      fs_reg color = offset(outputs[0], bld, 3);
607
608      /* f0.1 &= func(color, ref) */
609      cmp = abld.CMP(bld.null_reg_f(), color, brw_imm_f(key->alpha_test_ref),
610                     cond_for_alpha_func(key->alpha_test_func));
611   }
612   cmp->predicate = BRW_PREDICATE_NORMAL;
613   cmp->flag_subreg = 1;
614}
615
616fs_inst *
617fs_visitor::emit_single_fb_write(const fs_builder &bld,
618                                 fs_reg color0, fs_reg color1,
619                                 fs_reg src0_alpha, unsigned components)
620{
621   assert(stage == MESA_SHADER_FRAGMENT);
622   struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
623
624   /* Hand over gl_FragDepth or the payload depth. */
625   const fs_reg dst_depth = fetch_payload_reg(bld, payload.dest_depth_reg);
626   fs_reg src_depth, src_stencil;
627
628   if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
629      src_depth = frag_depth;
630   } else if (source_depth_to_render_target) {
631      /* If we got here, we're in one of those strange Gen4-5 cases where
632       * we're forced to pass the source depth, unmodified, to the FB write.
633       * In this case, we don't want to use pixel_z because we may not have
634       * set up interpolation.  It's also perfectly safe because it only
635       * happens on old hardware (no coarse interpolation) and this is
636       * explicitly the pass-through case.
637       */
638      assert(devinfo->ver <= 5);
639      src_depth = fetch_payload_reg(bld, payload.source_depth_reg);
640   }
641
642   if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL))
643      src_stencil = frag_stencil;
644
645   const fs_reg sources[] = {
646      color0, color1, src0_alpha, src_depth, dst_depth, src_stencil,
647      (prog_data->uses_omask ? sample_mask : fs_reg()),
648      brw_imm_ud(components)
649   };
650   assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS);
651   fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
652                             sources, ARRAY_SIZE(sources));
653
654   if (prog_data->uses_kill) {
655      write->predicate = BRW_PREDICATE_NORMAL;
656      write->flag_subreg = sample_mask_flag_subreg(this);
657   }
658
659   return write;
660}
661
662void
663fs_visitor::emit_fb_writes()
664{
665   assert(stage == MESA_SHADER_FRAGMENT);
666   struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
667   brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
668
669   fs_inst *inst = NULL;
670
671   if (source_depth_to_render_target && devinfo->ver == 6) {
672      /* For outputting oDepth on gfx6, SIMD8 writes have to be used.  This
673       * would require SIMD8 moves of each half to message regs, e.g. by using
674       * the SIMD lowering pass.  Unfortunately this is more difficult than it
675       * sounds because the SIMD8 single-source message lacks channel selects
676       * for the second and third subspans.
677       */
678      limit_dispatch_width(8, "Depth writes unsupported in SIMD16+ mode.\n");
679   }
680
681   if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
682      /* From the 'Render Target Write message' section of the docs:
683       * "Output Stencil is not supported with SIMD16 Render Target Write
684       * Messages."
685       */
686      limit_dispatch_width(8, "gl_FragStencilRefARB unsupported "
687                           "in SIMD16+ mode.\n");
688   }
689
690   /* ANV doesn't know about sample mask output during the wm key creation
691    * so we compute if we need replicate alpha and emit alpha to coverage
692    * workaround here.
693    */
694   const bool replicate_alpha = key->alpha_test_replicate_alpha ||
695      (key->nr_color_regions > 1 && key->alpha_to_coverage &&
696       (sample_mask.file == BAD_FILE || devinfo->ver == 6));
697
698   for (int target = 0; target < key->nr_color_regions; target++) {
699      /* Skip over outputs that weren't written. */
700      if (this->outputs[target].file == BAD_FILE)
701         continue;
702
703      const fs_builder abld = bld.annotate(
704         ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
705
706      fs_reg src0_alpha;
707      if (devinfo->ver >= 6 && replicate_alpha && target != 0)
708         src0_alpha = offset(outputs[0], bld, 3);
709
710      inst = emit_single_fb_write(abld, this->outputs[target],
711                                  this->dual_src_output, src0_alpha, 4);
712      inst->target = target;
713   }
714
715   prog_data->dual_src_blend = (this->dual_src_output.file != BAD_FILE &&
716                                this->outputs[0].file != BAD_FILE);
717   assert(!prog_data->dual_src_blend || key->nr_color_regions == 1);
718
719   if (inst == NULL) {
720      /* Even if there's no color buffers enabled, we still need to send
721       * alpha out the pipeline to our null renderbuffer to support
722       * alpha-testing, alpha-to-coverage, and so on.
723       */
724      /* FINISHME: Factor out this frequently recurring pattern into a
725       * helper function.
726       */
727      const fs_reg srcs[] = { reg_undef, reg_undef,
728                              reg_undef, offset(this->outputs[0], bld, 3) };
729      const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
730      bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
731
732      inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
733      inst->target = 0;
734   }
735
736   inst->last_rt = true;
737   inst->eot = true;
738
739   if (devinfo->ver >= 11 && devinfo->ver <= 12 &&
740       prog_data->dual_src_blend) {
741      /* The dual-source RT write messages fail to release the thread
742       * dependency on ICL and TGL with SIMD32 dispatch, leading to hangs.
743       *
744       * XXX - Emit an extra single-source NULL RT-write marked LastRT in
745       *       order to release the thread dependency without disabling
746       *       SIMD32.
747       *
748       * The dual-source RT write messages may lead to hangs with SIMD16
749       * dispatch on ICL due some unknown reasons, see
750       * https://gitlab.freedesktop.org/mesa/mesa/-/issues/2183
751       */
752      limit_dispatch_width(8, "Dual source blending unsupported "
753                           "in SIMD16 and SIMD32 modes.\n");
754   }
755}
756
757void
758fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count)
759{
760   int slot, urb_offset, length;
761   int starting_urb_offset = 0;
762   const struct brw_vue_prog_data *vue_prog_data =
763      brw_vue_prog_data(this->prog_data);
764   const struct brw_vs_prog_key *vs_key =
765      (const struct brw_vs_prog_key *) this->key;
766   const GLbitfield64 psiz_mask =
767      VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ | VARYING_BIT_PRIMITIVE_SHADING_RATE;
768   const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
769   bool flush;
770   fs_reg sources[8];
771   fs_reg urb_handle;
772
773   if (stage == MESA_SHADER_TESS_EVAL)
774      urb_handle = fs_reg(retype(brw_vec8_grf(4, 0), BRW_REGISTER_TYPE_UD));
775   else
776      urb_handle = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
777
778   int header_size = 1;
779   fs_reg per_slot_offsets;
780
781   if (stage == MESA_SHADER_GEOMETRY) {
782      const struct brw_gs_prog_data *gs_prog_data =
783         brw_gs_prog_data(this->prog_data);
784
785      /* We need to increment the Global Offset to skip over the control data
786       * header and the extra "Vertex Count" field (1 HWord) at the beginning
787       * of the VUE.  We're counting in OWords, so the units are doubled.
788       */
789      starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
790      if (gs_prog_data->static_vertex_count == -1)
791         starting_urb_offset += 2;
792
793      /* We also need to use per-slot offsets.  The per-slot offset is the
794       * Vertex Count.  SIMD8 mode processes 8 different primitives at a
795       * time; each may output a different number of vertices.
796       */
797      header_size++;
798
799      /* The URB offset is in 128-bit units, so we need to multiply by 2 */
800      const int output_vertex_size_owords =
801         gs_prog_data->output_vertex_size_hwords * 2;
802
803      if (gs_vertex_count.file == IMM) {
804         per_slot_offsets = brw_imm_ud(output_vertex_size_owords *
805                                       gs_vertex_count.ud);
806      } else {
807         per_slot_offsets = vgrf(glsl_type::uint_type);
808         bld.MUL(per_slot_offsets, gs_vertex_count,
809                 brw_imm_ud(output_vertex_size_owords));
810      }
811   }
812
813   length = 0;
814   urb_offset = starting_urb_offset;
815   flush = false;
816
817   /* SSO shaders can have VUE slots allocated which are never actually
818    * written to, so ignore them when looking for the last (written) slot.
819    */
820   int last_slot = vue_map->num_slots - 1;
821   while (last_slot > 0 &&
822          (vue_map->slot_to_varying[last_slot] == BRW_VARYING_SLOT_PAD ||
823           outputs[vue_map->slot_to_varying[last_slot]].file == BAD_FILE)) {
824      last_slot--;
825   }
826
827   bool urb_written = false;
828   for (slot = 0; slot < vue_map->num_slots; slot++) {
829      int varying = vue_map->slot_to_varying[slot];
830      switch (varying) {
831      case VARYING_SLOT_PSIZ: {
832         /* The point size varying slot is the vue header and is always in the
833          * vue map.  But often none of the special varyings that live there
834          * are written and in that case we can skip writing to the vue
835          * header, provided the corresponding state properly clamps the
836          * values further down the pipeline. */
837         if ((vue_map->slots_valid & psiz_mask) == 0) {
838            assert(length == 0);
839            urb_offset++;
840            break;
841         }
842
843         fs_reg zero(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
844         bld.MOV(zero, brw_imm_ud(0u));
845
846         if (vue_map->slots_valid & VARYING_BIT_PRIMITIVE_SHADING_RATE &&
847             this->outputs[VARYING_SLOT_PRIMITIVE_SHADING_RATE].file != BAD_FILE) {
848            sources[length++] = this->outputs[VARYING_SLOT_PRIMITIVE_SHADING_RATE];
849         } else if (devinfo->has_coarse_pixel_primitive_and_cb) {
850            uint32_t one_fp16 = 0x3C00;
851            fs_reg one_by_one_fp16(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
852            bld.MOV(one_by_one_fp16, brw_imm_ud((one_fp16 << 16) | one_fp16));
853            sources[length++] = one_by_one_fp16;
854         } else {
855            sources[length++] = zero;
856         }
857
858         if (vue_map->slots_valid & VARYING_BIT_LAYER)
859            sources[length++] = this->outputs[VARYING_SLOT_LAYER];
860         else
861            sources[length++] = zero;
862
863         if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
864            sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
865         else
866            sources[length++] = zero;
867
868         if (vue_map->slots_valid & VARYING_BIT_PSIZ)
869            sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
870         else
871            sources[length++] = zero;
872         break;
873      }
874      case BRW_VARYING_SLOT_NDC:
875      case VARYING_SLOT_EDGE:
876         unreachable("unexpected scalar vs output");
877         break;
878
879      default:
880         /* gl_Position is always in the vue map, but isn't always written by
881          * the shader.  Other varyings (clip distances) get added to the vue
882          * map but don't always get written.  In those cases, the
883          * corresponding this->output[] slot will be invalid we and can skip
884          * the urb write for the varying.  If we've already queued up a vue
885          * slot for writing we flush a mlen 5 urb write, otherwise we just
886          * advance the urb_offset.
887          */
888         if (varying == BRW_VARYING_SLOT_PAD ||
889             this->outputs[varying].file == BAD_FILE) {
890            if (length > 0)
891               flush = true;
892            else
893               urb_offset++;
894            break;
895         }
896
897         if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
898             (varying == VARYING_SLOT_COL0 ||
899              varying == VARYING_SLOT_COL1 ||
900              varying == VARYING_SLOT_BFC0 ||
901              varying == VARYING_SLOT_BFC1)) {
902            /* We need to clamp these guys, so do a saturating MOV into a
903             * temp register and use that for the payload.
904             */
905            for (int i = 0; i < 4; i++) {
906               fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type);
907               fs_reg src = offset(this->outputs[varying], bld, i);
908               set_saturate(true, bld.MOV(reg, src));
909               sources[length++] = reg;
910            }
911         } else {
912            int slot_offset = 0;
913
914            /* When using Primitive Replication, there may be multiple slots
915             * assigned to POS.
916             */
917            if (varying == VARYING_SLOT_POS)
918               slot_offset = slot - vue_map->varying_to_slot[VARYING_SLOT_POS];
919
920            for (unsigned i = 0; i < 4; i++) {
921               sources[length++] = offset(this->outputs[varying], bld,
922                                          i + (slot_offset * 4));
923            }
924         }
925         break;
926      }
927
928      const fs_builder abld = bld.annotate("URB write");
929
930      /* If we've queued up 8 registers of payload (2 VUE slots), if this is
931       * the last slot or if we need to flush (see BAD_FILE varying case
932       * above), emit a URB write send now to flush out the data.
933       */
934      if (length == 8 || (length > 0 && slot == last_slot))
935         flush = true;
936      if (flush) {
937         fs_reg srcs[URB_LOGICAL_NUM_SRCS];
938
939         srcs[URB_LOGICAL_SRC_HANDLE] = urb_handle;
940         srcs[URB_LOGICAL_SRC_PER_SLOT_OFFSETS] = per_slot_offsets;
941         srcs[URB_LOGICAL_SRC_DATA] = fs_reg(VGRF, alloc.allocate(length),
942                                             BRW_REGISTER_TYPE_F);
943         abld.LOAD_PAYLOAD(srcs[URB_LOGICAL_SRC_DATA], sources, length, 0);
944
945         fs_inst *inst = abld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef,
946                                   srcs, ARRAY_SIZE(srcs));
947
948         /* For ICL Wa_1805992985 one needs additional write in the end. */
949         if (devinfo->ver == 11 && stage == MESA_SHADER_TESS_EVAL)
950            inst->eot = false;
951         else
952            inst->eot = slot == last_slot && stage != MESA_SHADER_GEOMETRY;
953
954         inst->mlen = length + header_size;
955         inst->offset = urb_offset;
956         urb_offset = starting_urb_offset + slot + 1;
957         length = 0;
958         flush = false;
959         urb_written = true;
960      }
961   }
962
963   /* If we don't have any valid slots to write, just do a minimal urb write
964    * send to terminate the shader.  This includes 1 slot of undefined data,
965    * because it's invalid to write 0 data:
966    *
967    * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
968    * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
969    * Write Data Payload:
970    *
971    *    "The write data payload can be between 1 and 8 message phases long."
972    */
973   if (!urb_written) {
974      /* For GS, just turn EmitVertex() into a no-op.  We don't want it to
975       * end the thread, and emit_gs_thread_end() already emits a SEND with
976       * EOT at the end of the program for us.
977       */
978      if (stage == MESA_SHADER_GEOMETRY)
979         return;
980
981      fs_reg uniform_urb_handle = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
982      fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
983
984      bld.exec_all().MOV(uniform_urb_handle, urb_handle);
985
986      fs_reg srcs[URB_LOGICAL_NUM_SRCS];
987      srcs[URB_LOGICAL_SRC_HANDLE] = uniform_urb_handle;
988      srcs[URB_LOGICAL_SRC_DATA] = payload;
989
990      fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef,
991                               srcs, ARRAY_SIZE(srcs));
992      inst->eot = true;
993      inst->mlen = 2;
994      inst->offset = 1;
995      return;
996   }
997
998   /* ICL Wa_1805992985:
999    *
1000    * ICLLP GPU hangs on one of tessellation vkcts tests with DS not done. The
1001    * send cycle, which is a urb write with an eot must be 4 phases long and
1002    * all 8 lanes must valid.
1003    */
1004   if (devinfo->ver == 11 && stage == MESA_SHADER_TESS_EVAL) {
1005      fs_reg uniform_urb_handle = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
1006      fs_reg uniform_mask = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
1007      fs_reg payload = fs_reg(VGRF, alloc.allocate(4), BRW_REGISTER_TYPE_UD);
1008
1009      /* Workaround requires all 8 channels (lanes) to be valid. This is
1010       * understood to mean they all need to be alive. First trick is to find
1011       * a live channel and copy its urb handle for all the other channels to
1012       * make sure all handles are valid.
1013       */
1014      bld.exec_all().MOV(uniform_urb_handle, bld.emit_uniformize(urb_handle));
1015
1016      /* Second trick is to use masked URB write where one can tell the HW to
1017       * actually write data only for selected channels even though all are
1018       * active.
1019       * Third trick is to take advantage of the must-be-zero (MBZ) area in
1020       * the very beginning of the URB.
1021       *
1022       * One masks data to be written only for the first channel and uses
1023       * offset zero explicitly to land data to the MBZ area avoiding trashing
1024       * any other part of the URB.
1025       *
1026       * Since the WA says that the write needs to be 4 phases long one uses
1027       * 4 slots data. All are explicitly zeros in order to to keep the MBZ
1028       * area written as zeros.
1029       */
1030      bld.exec_all().MOV(uniform_mask, brw_imm_ud(0x10000u));
1031      bld.exec_all().MOV(offset(payload, bld, 0), brw_imm_ud(0u));
1032      bld.exec_all().MOV(offset(payload, bld, 1), brw_imm_ud(0u));
1033      bld.exec_all().MOV(offset(payload, bld, 2), brw_imm_ud(0u));
1034      bld.exec_all().MOV(offset(payload, bld, 3), brw_imm_ud(0u));
1035
1036      fs_reg srcs[URB_LOGICAL_NUM_SRCS];
1037      srcs[URB_LOGICAL_SRC_HANDLE] = uniform_urb_handle;
1038      srcs[URB_LOGICAL_SRC_CHANNEL_MASK] = uniform_mask;
1039      srcs[URB_LOGICAL_SRC_DATA] = payload;
1040
1041      fs_inst *inst = bld.exec_all().emit(SHADER_OPCODE_URB_WRITE_LOGICAL,
1042                                          reg_undef, srcs, ARRAY_SIZE(srcs));
1043      inst->eot = true;
1044      inst->mlen = 6;
1045      inst->offset = 0;
1046   }
1047}
1048
1049void
1050fs_visitor::emit_urb_fence()
1051{
1052   fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_UD);
1053   fs_inst *fence = bld.emit(SHADER_OPCODE_MEMORY_FENCE, dst,
1054                             brw_vec8_grf(0, 0),
1055                             brw_imm_ud(true),
1056                             brw_imm_ud(0));
1057   fence->sfid = BRW_SFID_URB;
1058   fence->desc = lsc_fence_msg_desc(devinfo, LSC_FENCE_LOCAL,
1059                                    LSC_FLUSH_TYPE_NONE, true);
1060
1061   bld.exec_all().group(1, 0).emit(FS_OPCODE_SCHEDULING_FENCE,
1062                                   bld.null_reg_ud(),
1063                                   &dst,
1064                                   1);
1065}
1066
1067void
1068fs_visitor::emit_cs_terminate()
1069{
1070   assert(devinfo->ver >= 7);
1071
1072   /* We can't directly send from g0, since sends with EOT have to use
1073    * g112-127. So, copy it to a virtual register, The register allocator will
1074    * make sure it uses the appropriate register range.
1075    */
1076   struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
1077   fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
1078   bld.group(8, 0).exec_all().MOV(payload, g0);
1079
1080   /* Send a message to the thread spawner to terminate the thread. */
1081   fs_inst *inst = bld.exec_all()
1082                      .emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
1083   inst->eot = true;
1084}
1085
1086void
1087fs_visitor::emit_barrier()
1088{
1089   /* We are getting the barrier ID from the compute shader header */
1090   assert(gl_shader_stage_uses_workgroup(stage));
1091
1092   fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
1093
1094   /* Clear the message payload */
1095   bld.exec_all().group(8, 0).MOV(payload, brw_imm_ud(0u));
1096
1097   if (devinfo->verx10 >= 125) {
1098      /* mov r0.2[31:24] into m0.2[31:24] and m0.2[23:16] */
1099      fs_reg m0_10ub = component(retype(payload, BRW_REGISTER_TYPE_UB), 10);
1100      fs_reg r0_11ub =
1101         stride(suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UB), 11),
1102                0, 1, 0);
1103      bld.exec_all().group(2, 0).MOV(m0_10ub, r0_11ub);
1104   } else {
1105      assert(gl_shader_stage_is_compute(stage));
1106
1107      uint32_t barrier_id_mask;
1108      switch (devinfo->ver) {
1109      case 7:
1110      case 8:
1111         barrier_id_mask = 0x0f000000u; break;
1112      case 9:
1113         barrier_id_mask = 0x8f000000u; break;
1114      case 11:
1115      case 12:
1116         barrier_id_mask = 0x7f000000u; break;
1117      default:
1118         unreachable("barrier is only available on gen >= 7");
1119      }
1120
1121      /* Copy the barrier id from r0.2 to the message payload reg.2 */
1122      fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
1123      bld.exec_all().group(1, 0).AND(component(payload, 2), r0_2,
1124                                     brw_imm_ud(barrier_id_mask));
1125   }
1126
1127   /* Emit a gateway "barrier" message using the payload we set up, followed
1128    * by a wait instruction.
1129    */
1130   bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
1131}
1132
1133fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
1134                       void *mem_ctx,
1135                       const brw_base_prog_key *key,
1136                       struct brw_stage_prog_data *prog_data,
1137                       const nir_shader *shader,
1138                       unsigned dispatch_width,
1139                       bool debug_enabled)
1140   : backend_shader(compiler, log_data, mem_ctx, shader, prog_data,
1141                    debug_enabled),
1142     key(key), gs_compile(NULL), prog_data(prog_data),
1143     live_analysis(this), regpressure_analysis(this),
1144     performance_analysis(this),
1145     dispatch_width(dispatch_width),
1146     bld(fs_builder(this, dispatch_width).at_end())
1147{
1148   init();
1149}
1150
1151fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
1152                       void *mem_ctx,
1153                       struct brw_gs_compile *c,
1154                       struct brw_gs_prog_data *prog_data,
1155                       const nir_shader *shader,
1156                       bool debug_enabled)
1157   : backend_shader(compiler, log_data, mem_ctx, shader,
1158                    &prog_data->base.base, debug_enabled),
1159     key(&c->key.base), gs_compile(c),
1160     prog_data(&prog_data->base.base),
1161     live_analysis(this), regpressure_analysis(this),
1162     performance_analysis(this),
1163     dispatch_width(8),
1164     bld(fs_builder(this, dispatch_width).at_end())
1165{
1166   init();
1167}
1168
1169
1170void
1171fs_visitor::init()
1172{
1173   if (key)
1174      this->key_tex = &key->tex;
1175   else
1176      this->key_tex = NULL;
1177
1178   this->max_dispatch_width = 32;
1179   this->prog_data = this->stage_prog_data;
1180
1181   this->failed = false;
1182   this->fail_msg = NULL;
1183
1184   this->nir_locals = NULL;
1185   this->nir_ssa_values = NULL;
1186   this->nir_system_values = NULL;
1187
1188   memset(&this->payload, 0, sizeof(this->payload));
1189   this->source_depth_to_render_target = false;
1190   this->runtime_check_aads_emit = false;
1191   this->first_non_payload_grf = 0;
1192   this->max_grf = devinfo->ver >= 7 ? GFX7_MRF_HACK_START : BRW_MAX_GRF;
1193
1194   this->uniforms = 0;
1195   this->last_scratch = 0;
1196   this->push_constant_loc = NULL;
1197
1198   this->shader_stats.scheduler_mode = NULL;
1199   this->shader_stats.promoted_constants = 0,
1200   this->shader_stats.spill_count = 0,
1201   this->shader_stats.fill_count = 0,
1202
1203   this->grf_used = 0;
1204   this->spilled_any_registers = false;
1205}
1206
1207fs_visitor::~fs_visitor()
1208{
1209}
1210