1/* 2 * Copyright © 2010 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28#include "brw_eu.h" 29#include "brw_fs.h" 30#include "brw_cfg.h" 31#include "util/set.h" 32#include "util/register_allocate.h" 33 34using namespace brw; 35 36static void 37assign_reg(unsigned *reg_hw_locations, fs_reg *reg) 38{ 39 if (reg->file == VGRF) { 40 reg->nr = reg_hw_locations[reg->nr] + reg->offset / REG_SIZE; 41 reg->offset %= REG_SIZE; 42 } 43} 44 45void 46fs_visitor::assign_regs_trivial() 47{ 48 unsigned hw_reg_mapping[this->alloc.count + 1]; 49 unsigned i; 50 int reg_width = dispatch_width / 8; 51 52 /* Note that compressed instructions require alignment to 2 registers. */ 53 hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width); 54 for (i = 1; i <= this->alloc.count; i++) { 55 hw_reg_mapping[i] = (hw_reg_mapping[i - 1] + 56 this->alloc.sizes[i - 1]); 57 } 58 this->grf_used = hw_reg_mapping[this->alloc.count]; 59 60 foreach_block_and_inst(block, fs_inst, inst, cfg) { 61 assign_reg(hw_reg_mapping, &inst->dst); 62 for (i = 0; i < inst->sources; i++) { 63 assign_reg(hw_reg_mapping, &inst->src[i]); 64 } 65 } 66 67 if (this->grf_used >= max_grf) { 68 fail("Ran out of regs on trivial allocator (%d/%d)\n", 69 this->grf_used, max_grf); 70 } else { 71 this->alloc.count = this->grf_used; 72 } 73 74} 75 76/** 77 * Size of a register from the aligned_bary_class register class. 78 */ 79static unsigned 80aligned_bary_size(unsigned dispatch_width) 81{ 82 return (dispatch_width == 8 ? 2 : 4); 83} 84 85static void 86brw_alloc_reg_set(struct brw_compiler *compiler, int dispatch_width) 87{ 88 const struct intel_device_info *devinfo = compiler->devinfo; 89 int base_reg_count = BRW_MAX_GRF; 90 const int index = util_logbase2(dispatch_width / 8); 91 92 if (dispatch_width > 8 && devinfo->ver >= 7) { 93 /* For IVB+, we don't need the PLN hacks or the even-reg alignment in 94 * SIMD16. Therefore, we can use the exact same register sets for 95 * SIMD16 as we do for SIMD8 and we don't need to recalculate them. 96 */ 97 compiler->fs_reg_sets[index] = compiler->fs_reg_sets[0]; 98 return; 99 } 100 101 /* The registers used to make up almost all values handled in the compiler 102 * are a scalar value occupying a single register (or 2 registers in the 103 * case of SIMD16, which is handled by dividing base_reg_count by 2 and 104 * multiplying allocated register numbers by 2). Things that were 105 * aggregates of scalar values at the GLSL level were split to scalar 106 * values by split_virtual_grfs(). 107 * 108 * However, texture SEND messages return a series of contiguous registers 109 * to write into. We currently always ask for 4 registers, but we may 110 * convert that to use less some day. 111 * 112 * Additionally, on gfx5 we need aligned pairs of registers for the PLN 113 * instruction, and on gfx4 we need 8 contiguous regs for workaround simd16 114 * texturing. 115 */ 116 const int class_count = MAX_VGRF_SIZE; 117 int class_sizes[MAX_VGRF_SIZE]; 118 for (unsigned i = 0; i < MAX_VGRF_SIZE; i++) 119 class_sizes[i] = i + 1; 120 121 struct ra_regs *regs = ra_alloc_reg_set(compiler, BRW_MAX_GRF, false); 122 if (devinfo->ver >= 6) 123 ra_set_allocate_round_robin(regs); 124 struct ra_class **classes = ralloc_array(compiler, struct ra_class *, class_count); 125 struct ra_class *aligned_bary_class = NULL; 126 127 /* Now, make the register classes for each size of contiguous register 128 * allocation we might need to make. 129 */ 130 for (int i = 0; i < class_count; i++) { 131 classes[i] = ra_alloc_contig_reg_class(regs, class_sizes[i]); 132 133 if (devinfo->ver <= 5 && dispatch_width >= 16) { 134 /* From the G45 PRM: 135 * 136 * In order to reduce the hardware complexity, the following 137 * rules and restrictions apply to the compressed instruction: 138 * ... 139 * * Operand Alignment Rule: With the exceptions listed below, a 140 * source/destination operand in general should be aligned to 141 * even 256-bit physical register with a region size equal to 142 * two 256-bit physical register 143 */ 144 for (int reg = 0; reg <= base_reg_count - class_sizes[i]; reg += 2) 145 ra_class_add_reg(classes[i], reg); 146 } else { 147 for (int reg = 0; reg <= base_reg_count - class_sizes[i]; reg++) 148 ra_class_add_reg(classes[i], reg); 149 } 150 } 151 152 /* Add a special class for aligned barycentrics, which we'll put the 153 * first source of LINTERP on so that we can do PLN on Gen <= 6. 154 */ 155 if (devinfo->has_pln && (devinfo->ver == 6 || 156 (dispatch_width == 8 && devinfo->ver <= 5))) { 157 int contig_len = aligned_bary_size(dispatch_width); 158 aligned_bary_class = ra_alloc_contig_reg_class(regs, contig_len); 159 160 for (int i = 0; i <= base_reg_count - contig_len; i += 2) 161 ra_class_add_reg(aligned_bary_class, i); 162 } 163 164 ra_set_finalize(regs, NULL); 165 166 compiler->fs_reg_sets[index].regs = regs; 167 for (unsigned i = 0; i < ARRAY_SIZE(compiler->fs_reg_sets[index].classes); i++) 168 compiler->fs_reg_sets[index].classes[i] = NULL; 169 for (int i = 0; i < class_count; i++) 170 compiler->fs_reg_sets[index].classes[class_sizes[i] - 1] = classes[i]; 171 compiler->fs_reg_sets[index].aligned_bary_class = aligned_bary_class; 172} 173 174void 175brw_fs_alloc_reg_sets(struct brw_compiler *compiler) 176{ 177 brw_alloc_reg_set(compiler, 8); 178 brw_alloc_reg_set(compiler, 16); 179 brw_alloc_reg_set(compiler, 32); 180} 181 182static int 183count_to_loop_end(const bblock_t *block) 184{ 185 if (block->end()->opcode == BRW_OPCODE_WHILE) 186 return block->end_ip; 187 188 int depth = 1; 189 /* Skip the first block, since we don't want to count the do the calling 190 * function found. 191 */ 192 for (block = block->next(); 193 depth > 0; 194 block = block->next()) { 195 if (block->start()->opcode == BRW_OPCODE_DO) 196 depth++; 197 if (block->end()->opcode == BRW_OPCODE_WHILE) { 198 depth--; 199 if (depth == 0) 200 return block->end_ip; 201 } 202 } 203 unreachable("not reached"); 204} 205 206void fs_visitor::calculate_payload_ranges(int payload_node_count, 207 int *payload_last_use_ip) const 208{ 209 int loop_depth = 0; 210 int loop_end_ip = 0; 211 212 for (int i = 0; i < payload_node_count; i++) 213 payload_last_use_ip[i] = -1; 214 215 int ip = 0; 216 foreach_block_and_inst(block, fs_inst, inst, cfg) { 217 switch (inst->opcode) { 218 case BRW_OPCODE_DO: 219 loop_depth++; 220 221 /* Since payload regs are deffed only at the start of the shader 222 * execution, any uses of the payload within a loop mean the live 223 * interval extends to the end of the outermost loop. Find the ip of 224 * the end now. 225 */ 226 if (loop_depth == 1) 227 loop_end_ip = count_to_loop_end(block); 228 break; 229 case BRW_OPCODE_WHILE: 230 loop_depth--; 231 break; 232 default: 233 break; 234 } 235 236 int use_ip; 237 if (loop_depth > 0) 238 use_ip = loop_end_ip; 239 else 240 use_ip = ip; 241 242 /* Note that UNIFORM args have been turned into FIXED_GRF by 243 * assign_curbe_setup(), and interpolation uses fixed hardware regs from 244 * the start (see interp_reg()). 245 */ 246 for (int i = 0; i < inst->sources; i++) { 247 if (inst->src[i].file == FIXED_GRF) { 248 int node_nr = inst->src[i].nr; 249 if (node_nr >= payload_node_count) 250 continue; 251 252 for (unsigned j = 0; j < regs_read(inst, i); j++) { 253 payload_last_use_ip[node_nr + j] = use_ip; 254 assert(node_nr + j < unsigned(payload_node_count)); 255 } 256 } 257 } 258 259 if (inst->dst.file == FIXED_GRF) { 260 int node_nr = inst->dst.nr; 261 if (node_nr < payload_node_count) { 262 for (unsigned j = 0; j < regs_written(inst); j++) { 263 payload_last_use_ip[node_nr + j] = use_ip; 264 assert(node_nr + j < unsigned(payload_node_count)); 265 } 266 } 267 } 268 269 /* Special case instructions which have extra implied registers used. */ 270 switch (inst->opcode) { 271 case CS_OPCODE_CS_TERMINATE: 272 payload_last_use_ip[0] = use_ip; 273 break; 274 275 default: 276 if (inst->eot) { 277 /* We could omit this for the !inst->header_present case, except 278 * that the simulator apparently incorrectly reads from g0/g1 279 * instead of sideband. It also really freaks out driver 280 * developers to see g0 used in unusual places, so just always 281 * reserve it. 282 */ 283 payload_last_use_ip[0] = use_ip; 284 payload_last_use_ip[1] = use_ip; 285 } 286 break; 287 } 288 289 ip++; 290 } 291} 292 293class fs_reg_alloc { 294public: 295 fs_reg_alloc(fs_visitor *fs): 296 fs(fs), devinfo(fs->devinfo), compiler(fs->compiler), 297 live(fs->live_analysis.require()), g(NULL), 298 have_spill_costs(false) 299 { 300 mem_ctx = ralloc_context(NULL); 301 302 /* Stash the number of instructions so we can sanity check that our 303 * counts still match liveness. 304 */ 305 live_instr_count = fs->cfg->last_block()->end_ip + 1; 306 307 spill_insts = _mesa_pointer_set_create(mem_ctx); 308 309 /* Most of this allocation was written for a reg_width of 1 310 * (dispatch_width == 8). In extending to SIMD16, the code was 311 * left in place and it was converted to have the hardware 312 * registers it's allocating be contiguous physical pairs of regs 313 * for reg_width == 2. 314 */ 315 int reg_width = fs->dispatch_width / 8; 316 rsi = util_logbase2(reg_width); 317 payload_node_count = ALIGN(fs->first_non_payload_grf, reg_width); 318 319 /* Get payload IP information */ 320 payload_last_use_ip = ralloc_array(mem_ctx, int, payload_node_count); 321 322 node_count = 0; 323 first_payload_node = 0; 324 first_mrf_hack_node = 0; 325 scratch_header_node = 0; 326 grf127_send_hack_node = 0; 327 first_vgrf_node = 0; 328 last_vgrf_node = 0; 329 first_spill_node = 0; 330 331 spill_vgrf_ip = NULL; 332 spill_vgrf_ip_alloc = 0; 333 spill_node_count = 0; 334 } 335 336 ~fs_reg_alloc() 337 { 338 ralloc_free(mem_ctx); 339 } 340 341 bool assign_regs(bool allow_spilling, bool spill_all); 342 343private: 344 void setup_live_interference(unsigned node, 345 int node_start_ip, int node_end_ip); 346 void setup_inst_interference(const fs_inst *inst); 347 348 void build_interference_graph(bool allow_spilling); 349 void discard_interference_graph(); 350 351 void emit_unspill(const fs_builder &bld, struct shader_stats *stats, 352 fs_reg dst, uint32_t spill_offset, unsigned count); 353 void emit_spill(const fs_builder &bld, struct shader_stats *stats, 354 fs_reg src, uint32_t spill_offset, unsigned count); 355 356 void set_spill_costs(); 357 int choose_spill_reg(); 358 fs_reg alloc_scratch_header(); 359 fs_reg alloc_spill_reg(unsigned size, int ip); 360 void spill_reg(unsigned spill_reg); 361 362 void *mem_ctx; 363 fs_visitor *fs; 364 const intel_device_info *devinfo; 365 const brw_compiler *compiler; 366 const fs_live_variables &live; 367 int live_instr_count; 368 369 set *spill_insts; 370 371 /* Which compiler->fs_reg_sets[] to use */ 372 int rsi; 373 374 ra_graph *g; 375 bool have_spill_costs; 376 377 int payload_node_count; 378 int *payload_last_use_ip; 379 380 int node_count; 381 int first_payload_node; 382 int first_mrf_hack_node; 383 int scratch_header_node; 384 int grf127_send_hack_node; 385 int first_vgrf_node; 386 int last_vgrf_node; 387 int first_spill_node; 388 389 int *spill_vgrf_ip; 390 int spill_vgrf_ip_alloc; 391 int spill_node_count; 392 393 fs_reg scratch_header; 394}; 395 396/** 397 * Sets the mrf_used array to indicate which MRFs are used by the shader IR 398 * 399 * This is used in assign_regs() to decide which of the GRFs that we use as 400 * MRFs on gfx7 get normally register allocated, and in register spilling to 401 * see if we can actually use MRFs to do spills without overwriting normal MRF 402 * contents. 403 */ 404static void 405get_used_mrfs(const fs_visitor *v, bool *mrf_used) 406{ 407 int reg_width = v->dispatch_width / 8; 408 409 memset(mrf_used, 0, BRW_MAX_MRF(v->devinfo->ver) * sizeof(bool)); 410 411 foreach_block_and_inst(block, fs_inst, inst, v->cfg) { 412 if (inst->dst.file == MRF) { 413 int reg = inst->dst.nr & ~BRW_MRF_COMPR4; 414 mrf_used[reg] = true; 415 if (reg_width == 2) { 416 if (inst->dst.nr & BRW_MRF_COMPR4) { 417 mrf_used[reg + 4] = true; 418 } else { 419 mrf_used[reg + 1] = true; 420 } 421 } 422 } 423 424 if (inst->mlen > 0) { 425 for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) { 426 mrf_used[inst->base_mrf + i] = true; 427 } 428 } 429 } 430} 431 432namespace { 433 /** 434 * Maximum spill block size we expect to encounter in 32B units. 435 * 436 * This is somewhat arbitrary and doesn't necessarily limit the maximum 437 * variable size that can be spilled -- A higher value will allow a 438 * variable of a given size to be spilled more efficiently with a smaller 439 * number of scratch messages, but will increase the likelihood of a 440 * collision between the MRFs reserved for spilling and other MRFs used by 441 * the program (and possibly increase GRF register pressure on platforms 442 * without hardware MRFs), what could cause register allocation to fail. 443 * 444 * For the moment reserve just enough space so a register of 32 bit 445 * component type and natural region width can be spilled without splitting 446 * into multiple (force_writemask_all) scratch messages. 447 */ 448 unsigned 449 spill_max_size(const backend_shader *s) 450 { 451 /* FINISHME - On Gfx7+ it should be possible to avoid this limit 452 * altogether by spilling directly from the temporary GRF 453 * allocated to hold the result of the instruction (and the 454 * scratch write header). 455 */ 456 /* FINISHME - The shader's dispatch width probably belongs in 457 * backend_shader (or some nonexistent fs_shader class?) 458 * rather than in the visitor class. 459 */ 460 return static_cast<const fs_visitor *>(s)->dispatch_width / 8; 461 } 462 463 /** 464 * First MRF register available for spilling. 465 */ 466 unsigned 467 spill_base_mrf(const backend_shader *s) 468 { 469 /* We don't use the MRF hack on Gfx9+ */ 470 assert(s->devinfo->ver < 9); 471 return BRW_MAX_MRF(s->devinfo->ver) - spill_max_size(s) - 1; 472 } 473} 474 475void 476fs_reg_alloc::setup_live_interference(unsigned node, 477 int node_start_ip, int node_end_ip) 478{ 479 /* Mark any virtual grf that is live between the start of the program and 480 * the last use of a payload node interfering with that payload node. 481 */ 482 for (int i = 0; i < payload_node_count; i++) { 483 if (payload_last_use_ip[i] == -1) 484 continue; 485 486 /* Note that we use a <= comparison, unlike vgrfs_interfere(), 487 * in order to not have to worry about the uniform issue described in 488 * calculate_live_intervals(). 489 */ 490 if (node_start_ip <= payload_last_use_ip[i]) 491 ra_add_node_interference(g, node, first_payload_node + i); 492 } 493 494 /* If we have the MRF hack enabled, mark this node as interfering with all 495 * MRF registers. 496 */ 497 if (first_mrf_hack_node >= 0) { 498 for (int i = spill_base_mrf(fs); i < BRW_MAX_MRF(devinfo->ver); i++) 499 ra_add_node_interference(g, node, first_mrf_hack_node + i); 500 } 501 502 /* Everything interferes with the scratch header */ 503 if (scratch_header_node >= 0) 504 ra_add_node_interference(g, node, scratch_header_node); 505 506 /* Add interference with every vgrf whose live range intersects this 507 * node's. We only need to look at nodes below this one as the reflexivity 508 * of interference will take care of the rest. 509 */ 510 for (unsigned n2 = first_vgrf_node; 511 n2 <= (unsigned)last_vgrf_node && n2 < node; n2++) { 512 unsigned vgrf = n2 - first_vgrf_node; 513 if (!(node_end_ip <= live.vgrf_start[vgrf] || 514 live.vgrf_end[vgrf] <= node_start_ip)) 515 ra_add_node_interference(g, node, n2); 516 } 517} 518 519void 520fs_reg_alloc::setup_inst_interference(const fs_inst *inst) 521{ 522 /* Certain instructions can't safely use the same register for their 523 * sources and destination. Add interference. 524 */ 525 if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) { 526 for (unsigned i = 0; i < inst->sources; i++) { 527 if (inst->src[i].file == VGRF) { 528 ra_add_node_interference(g, first_vgrf_node + inst->dst.nr, 529 first_vgrf_node + inst->src[i].nr); 530 } 531 } 532 } 533 534 /* In 16-wide instructions we have an issue where a compressed 535 * instruction is actually two instructions executed simultaneously. 536 * It's actually ok to have the source and destination registers be 537 * the same. In this case, each instruction over-writes its own 538 * source and there's no problem. The real problem here is if the 539 * source and destination registers are off by one. Then you can end 540 * up in a scenario where the first instruction over-writes the 541 * source of the second instruction. Since the compiler doesn't know 542 * about this level of granularity, we simply make the source and 543 * destination interfere. 544 */ 545 if (inst->exec_size >= 16 && inst->dst.file == VGRF) { 546 for (int i = 0; i < inst->sources; ++i) { 547 if (inst->src[i].file == VGRF) { 548 ra_add_node_interference(g, first_vgrf_node + inst->dst.nr, 549 first_vgrf_node + inst->src[i].nr); 550 } 551 } 552 } 553 554 if (grf127_send_hack_node >= 0) { 555 /* At Intel Broadwell PRM, vol 07, section "Instruction Set Reference", 556 * subsection "EUISA Instructions", Send Message (page 990): 557 * 558 * "r127 must not be used for return address when there is a src and 559 * dest overlap in send instruction." 560 * 561 * We are avoiding using grf127 as part of the destination of send 562 * messages adding a node interference to the grf127_send_hack_node. 563 * This node has a fixed assignment to grf127. 564 * 565 * We don't apply it to SIMD16 instructions because previous code avoids 566 * any register overlap between sources and destination. 567 */ 568 if (inst->exec_size < 16 && inst->is_send_from_grf() && 569 inst->dst.file == VGRF) 570 ra_add_node_interference(g, first_vgrf_node + inst->dst.nr, 571 grf127_send_hack_node); 572 573 /* Spilling instruction are generated as SEND messages from MRF but as 574 * Gfx7+ supports sending from GRF the driver will maps assingn these 575 * MRF registers to a GRF. Implementations reuses the dest of the send 576 * message as source. So as we will have an overlap for sure, we create 577 * an interference between destination and grf127. 578 */ 579 if ((inst->opcode == SHADER_OPCODE_GFX7_SCRATCH_READ || 580 inst->opcode == SHADER_OPCODE_GFX4_SCRATCH_READ) && 581 inst->dst.file == VGRF) 582 ra_add_node_interference(g, first_vgrf_node + inst->dst.nr, 583 grf127_send_hack_node); 584 } 585 586 /* From the Skylake PRM Vol. 2a docs for sends: 587 * 588 * "It is required that the second block of GRFs does not overlap with 589 * the first block." 590 * 591 * Normally, this is taken care of by fixup_sends_duplicate_payload() but 592 * in the case where one of the registers is an undefined value, the 593 * register allocator may decide that they don't interfere even though 594 * they're used as sources in the same instruction. We also need to add 595 * interference here. 596 */ 597 if (devinfo->ver >= 9) { 598 if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 && 599 inst->src[2].file == VGRF && inst->src[3].file == VGRF && 600 inst->src[2].nr != inst->src[3].nr) 601 ra_add_node_interference(g, first_vgrf_node + inst->src[2].nr, 602 first_vgrf_node + inst->src[3].nr); 603 } 604 605 /* When we do send-from-GRF for FB writes, we need to ensure that the last 606 * write instruction sends from a high register. This is because the 607 * vertex fetcher wants to start filling the low payload registers while 608 * the pixel data port is still working on writing out the memory. If we 609 * don't do this, we get rendering artifacts. 610 * 611 * We could just do "something high". Instead, we just pick the highest 612 * register that works. 613 */ 614 if (inst->eot) { 615 const int vgrf = inst->opcode == SHADER_OPCODE_SEND ? 616 inst->src[2].nr : inst->src[0].nr; 617 int reg = BRW_MAX_GRF - fs->alloc.sizes[vgrf]; 618 619 if (first_mrf_hack_node >= 0) { 620 /* If something happened to spill, we want to push the EOT send 621 * register early enough in the register file that we don't 622 * conflict with any used MRF hack registers. 623 */ 624 reg -= BRW_MAX_MRF(devinfo->ver) - spill_base_mrf(fs); 625 } else if (grf127_send_hack_node >= 0) { 626 /* Avoid r127 which might be unusable if the node was previously 627 * written by a SIMD8 SEND message with source/destination overlap. 628 */ 629 reg--; 630 } 631 632 ra_set_node_reg(g, first_vgrf_node + vgrf, reg); 633 634 if (inst->ex_mlen > 0) { 635 const int vgrf = inst->src[3].nr; 636 reg -= fs->alloc.sizes[vgrf]; 637 ra_set_node_reg(g, first_vgrf_node + vgrf, reg); 638 } 639 } 640} 641 642void 643fs_reg_alloc::build_interference_graph(bool allow_spilling) 644{ 645 /* Compute the RA node layout */ 646 node_count = 0; 647 first_payload_node = node_count; 648 node_count += payload_node_count; 649 if (devinfo->ver >= 7 && devinfo->ver < 9 && allow_spilling) { 650 first_mrf_hack_node = node_count; 651 node_count += BRW_MAX_GRF - GFX7_MRF_HACK_START; 652 } else { 653 first_mrf_hack_node = -1; 654 } 655 if (devinfo->ver >= 8) { 656 grf127_send_hack_node = node_count; 657 node_count ++; 658 } else { 659 grf127_send_hack_node = -1; 660 } 661 first_vgrf_node = node_count; 662 node_count += fs->alloc.count; 663 last_vgrf_node = node_count - 1; 664 if (devinfo->ver >= 9 && allow_spilling) { 665 scratch_header_node = node_count++; 666 } else { 667 scratch_header_node = -1; 668 } 669 first_spill_node = node_count; 670 671 fs->calculate_payload_ranges(payload_node_count, 672 payload_last_use_ip); 673 674 assert(g == NULL); 675 g = ra_alloc_interference_graph(compiler->fs_reg_sets[rsi].regs, node_count); 676 ralloc_steal(mem_ctx, g); 677 678 /* Set up the payload nodes */ 679 for (int i = 0; i < payload_node_count; i++) 680 ra_set_node_reg(g, first_payload_node + i, i); 681 682 if (first_mrf_hack_node >= 0) { 683 /* Mark each MRF reg node as being allocated to its physical 684 * register. 685 * 686 * The alternative would be to have per-physical-register classes, 687 * which would just be silly. 688 */ 689 for (int i = 0; i < BRW_MAX_MRF(devinfo->ver); i++) { 690 ra_set_node_reg(g, first_mrf_hack_node + i, 691 GFX7_MRF_HACK_START + i); 692 } 693 } 694 695 if (grf127_send_hack_node >= 0) 696 ra_set_node_reg(g, grf127_send_hack_node, 127); 697 698 /* Specify the classes of each virtual register. */ 699 for (unsigned i = 0; i < fs->alloc.count; i++) { 700 unsigned size = fs->alloc.sizes[i]; 701 702 assert(size <= ARRAY_SIZE(compiler->fs_reg_sets[rsi].classes) && 703 "Register allocation relies on split_virtual_grfs()"); 704 705 ra_set_node_class(g, first_vgrf_node + i, 706 compiler->fs_reg_sets[rsi].classes[size - 1]); 707 } 708 709 /* Special case: on pre-Gfx7 hardware that supports PLN, the second operand 710 * of a PLN instruction needs to be an even-numbered register, so we have a 711 * special register class aligned_bary_class to handle this case. 712 */ 713 if (compiler->fs_reg_sets[rsi].aligned_bary_class) { 714 foreach_block_and_inst(block, fs_inst, inst, fs->cfg) { 715 if (inst->opcode == FS_OPCODE_LINTERP && inst->src[0].file == VGRF && 716 fs->alloc.sizes[inst->src[0].nr] == 717 aligned_bary_size(fs->dispatch_width)) { 718 ra_set_node_class(g, first_vgrf_node + inst->src[0].nr, 719 compiler->fs_reg_sets[rsi].aligned_bary_class); 720 } 721 } 722 } 723 724 /* Add interference based on the live range of the register */ 725 for (unsigned i = 0; i < fs->alloc.count; i++) { 726 setup_live_interference(first_vgrf_node + i, 727 live.vgrf_start[i], 728 live.vgrf_end[i]); 729 } 730 731 /* Add interference based on the instructions in which a register is used. 732 */ 733 foreach_block_and_inst(block, fs_inst, inst, fs->cfg) 734 setup_inst_interference(inst); 735} 736 737void 738fs_reg_alloc::discard_interference_graph() 739{ 740 ralloc_free(g); 741 g = NULL; 742 have_spill_costs = false; 743} 744 745void 746fs_reg_alloc::emit_unspill(const fs_builder &bld, 747 struct shader_stats *stats, 748 fs_reg dst, 749 uint32_t spill_offset, unsigned count) 750{ 751 const intel_device_info *devinfo = bld.shader->devinfo; 752 const unsigned reg_size = dst.component_size(bld.dispatch_width()) / 753 REG_SIZE; 754 assert(count % reg_size == 0); 755 756 for (unsigned i = 0; i < count / reg_size; i++) { 757 ++stats->fill_count; 758 759 fs_inst *unspill_inst; 760 if (devinfo->ver >= 9) { 761 fs_reg header = this->scratch_header; 762 fs_builder ubld = bld.exec_all().group(1, 0); 763 assert(spill_offset % 16 == 0); 764 unspill_inst = ubld.MOV(component(header, 2), 765 brw_imm_ud(spill_offset / 16)); 766 _mesa_set_add(spill_insts, unspill_inst); 767 768 unsigned bti; 769 fs_reg ex_desc; 770 if (devinfo->verx10 >= 125) { 771 bti = GFX9_BTI_BINDLESS; 772 ex_desc = component(this->scratch_header, 0); 773 } else { 774 bti = GFX8_BTI_STATELESS_NON_COHERENT; 775 ex_desc = brw_imm_ud(0); 776 } 777 778 fs_reg srcs[] = { brw_imm_ud(0), ex_desc, header }; 779 unspill_inst = bld.emit(SHADER_OPCODE_SEND, dst, 780 srcs, ARRAY_SIZE(srcs)); 781 unspill_inst->mlen = 1; 782 unspill_inst->header_size = 1; 783 unspill_inst->size_written = reg_size * REG_SIZE; 784 unspill_inst->send_has_side_effects = false; 785 unspill_inst->send_is_volatile = true; 786 unspill_inst->sfid = GFX7_SFID_DATAPORT_DATA_CACHE; 787 unspill_inst->desc = 788 brw_dp_desc(devinfo, bti, 789 BRW_DATAPORT_READ_MESSAGE_OWORD_BLOCK_READ, 790 BRW_DATAPORT_OWORD_BLOCK_DWORDS(reg_size * 8)); 791 } else if (devinfo->ver >= 7 && spill_offset < (1 << 12) * REG_SIZE) { 792 /* The Gfx7 descriptor-based offset is 12 bits of HWORD units. 793 * Because the Gfx7-style scratch block read is hardwired to BTI 255, 794 * on Gfx9+ it would cause the DC to do an IA-coherent read, what 795 * largely outweighs the slight advantage from not having to provide 796 * the address as part of the message header, so we're better off 797 * using plain old oword block reads. 798 */ 799 unspill_inst = bld.emit(SHADER_OPCODE_GFX7_SCRATCH_READ, dst); 800 unspill_inst->offset = spill_offset; 801 } else { 802 unspill_inst = bld.emit(SHADER_OPCODE_GFX4_SCRATCH_READ, dst); 803 unspill_inst->offset = spill_offset; 804 unspill_inst->base_mrf = spill_base_mrf(bld.shader); 805 unspill_inst->mlen = 1; /* header contains offset */ 806 } 807 _mesa_set_add(spill_insts, unspill_inst); 808 809 dst.offset += reg_size * REG_SIZE; 810 spill_offset += reg_size * REG_SIZE; 811 } 812} 813 814void 815fs_reg_alloc::emit_spill(const fs_builder &bld, 816 struct shader_stats *stats, 817 fs_reg src, 818 uint32_t spill_offset, unsigned count) 819{ 820 const intel_device_info *devinfo = bld.shader->devinfo; 821 const unsigned reg_size = src.component_size(bld.dispatch_width()) / 822 REG_SIZE; 823 assert(count % reg_size == 0); 824 825 for (unsigned i = 0; i < count / reg_size; i++) { 826 ++stats->spill_count; 827 828 fs_inst *spill_inst; 829 if (devinfo->ver >= 9) { 830 fs_reg header = this->scratch_header; 831 fs_builder ubld = bld.exec_all().group(1, 0); 832 assert(spill_offset % 16 == 0); 833 spill_inst = ubld.MOV(component(header, 2), 834 brw_imm_ud(spill_offset / 16)); 835 _mesa_set_add(spill_insts, spill_inst); 836 837 unsigned bti; 838 fs_reg ex_desc; 839 if (devinfo->verx10 >= 125) { 840 bti = GFX9_BTI_BINDLESS; 841 ex_desc = component(this->scratch_header, 0); 842 } else { 843 bti = GFX8_BTI_STATELESS_NON_COHERENT; 844 ex_desc = brw_imm_ud(0); 845 } 846 847 fs_reg srcs[] = { brw_imm_ud(0), ex_desc, header, src }; 848 spill_inst = bld.emit(SHADER_OPCODE_SEND, bld.null_reg_f(), 849 srcs, ARRAY_SIZE(srcs)); 850 spill_inst->mlen = 1; 851 spill_inst->ex_mlen = reg_size; 852 spill_inst->size_written = 0; 853 spill_inst->header_size = 1; 854 spill_inst->send_has_side_effects = true; 855 spill_inst->send_is_volatile = false; 856 spill_inst->sfid = GFX7_SFID_DATAPORT_DATA_CACHE; 857 spill_inst->desc = 858 brw_dp_desc(devinfo, bti, 859 GFX6_DATAPORT_WRITE_MESSAGE_OWORD_BLOCK_WRITE, 860 BRW_DATAPORT_OWORD_BLOCK_DWORDS(reg_size * 8)); 861 } else { 862 spill_inst = bld.emit(SHADER_OPCODE_GFX4_SCRATCH_WRITE, 863 bld.null_reg_f(), src); 864 spill_inst->offset = spill_offset; 865 spill_inst->mlen = 1 + reg_size; /* header, value */ 866 spill_inst->base_mrf = spill_base_mrf(bld.shader); 867 } 868 _mesa_set_add(spill_insts, spill_inst); 869 870 src.offset += reg_size * REG_SIZE; 871 spill_offset += reg_size * REG_SIZE; 872 } 873} 874 875void 876fs_reg_alloc::set_spill_costs() 877{ 878 float block_scale = 1.0; 879 float spill_costs[fs->alloc.count]; 880 bool no_spill[fs->alloc.count]; 881 882 for (unsigned i = 0; i < fs->alloc.count; i++) { 883 spill_costs[i] = 0.0; 884 no_spill[i] = false; 885 } 886 887 /* Calculate costs for spilling nodes. Call it a cost of 1 per 888 * spill/unspill we'll have to do, and guess that the insides of 889 * loops run 10 times. 890 */ 891 foreach_block_and_inst(block, fs_inst, inst, fs->cfg) { 892 for (unsigned int i = 0; i < inst->sources; i++) { 893 if (inst->src[i].file == VGRF) 894 spill_costs[inst->src[i].nr] += regs_read(inst, i) * block_scale; 895 } 896 897 if (inst->dst.file == VGRF) 898 spill_costs[inst->dst.nr] += regs_written(inst) * block_scale; 899 900 /* Don't spill anything we generated while spilling */ 901 if (_mesa_set_search(spill_insts, inst)) { 902 for (unsigned int i = 0; i < inst->sources; i++) { 903 if (inst->src[i].file == VGRF) 904 no_spill[inst->src[i].nr] = true; 905 } 906 if (inst->dst.file == VGRF) 907 no_spill[inst->dst.nr] = true; 908 } 909 910 switch (inst->opcode) { 911 912 case BRW_OPCODE_DO: 913 block_scale *= 10; 914 break; 915 916 case BRW_OPCODE_WHILE: 917 block_scale /= 10; 918 break; 919 920 case BRW_OPCODE_IF: 921 case BRW_OPCODE_IFF: 922 block_scale *= 0.5; 923 break; 924 925 case BRW_OPCODE_ENDIF: 926 block_scale /= 0.5; 927 break; 928 929 default: 930 break; 931 } 932 } 933 934 for (unsigned i = 0; i < fs->alloc.count; i++) { 935 /* Do the no_spill check first. Registers that are used as spill 936 * temporaries may have been allocated after we calculated liveness so 937 * we shouldn't look their liveness up. Fortunately, they're always 938 * used in SCRATCH_READ/WRITE instructions so they'll always be flagged 939 * no_spill. 940 */ 941 if (no_spill[i]) 942 continue; 943 944 int live_length = live.vgrf_end[i] - live.vgrf_start[i]; 945 if (live_length <= 0) 946 continue; 947 948 /* Divide the cost (in number of spills/fills) by the log of the length 949 * of the live range of the register. This will encourage spill logic 950 * to spill long-living things before spilling short-lived things where 951 * spilling is less likely to actually do us any good. We use the log 952 * of the length because it will fall off very quickly and not cause us 953 * to spill medium length registers with more uses. 954 */ 955 float adjusted_cost = spill_costs[i] / logf(live_length); 956 ra_set_node_spill_cost(g, first_vgrf_node + i, adjusted_cost); 957 } 958 959 have_spill_costs = true; 960} 961 962int 963fs_reg_alloc::choose_spill_reg() 964{ 965 if (!have_spill_costs) 966 set_spill_costs(); 967 968 int node = ra_get_best_spill_node(g); 969 if (node < 0) 970 return -1; 971 972 assert(node >= first_vgrf_node); 973 return node - first_vgrf_node; 974} 975 976fs_reg 977fs_reg_alloc::alloc_scratch_header() 978{ 979 int vgrf = fs->alloc.allocate(1); 980 assert(first_vgrf_node + vgrf == scratch_header_node); 981 ra_set_node_class(g, scratch_header_node, 982 compiler->fs_reg_sets[rsi].classes[0]); 983 984 setup_live_interference(scratch_header_node, 0, INT_MAX); 985 986 return fs_reg(VGRF, vgrf, BRW_REGISTER_TYPE_UD); 987} 988 989fs_reg 990fs_reg_alloc::alloc_spill_reg(unsigned size, int ip) 991{ 992 int vgrf = fs->alloc.allocate(size); 993 int n = ra_add_node(g, compiler->fs_reg_sets[rsi].classes[size - 1]); 994 assert(n == first_vgrf_node + vgrf); 995 assert(n == first_spill_node + spill_node_count); 996 997 setup_live_interference(n, ip - 1, ip + 1); 998 999 /* Add interference between this spill node and any other spill nodes for 1000 * the same instruction. 1001 */ 1002 for (int s = 0; s < spill_node_count; s++) { 1003 if (spill_vgrf_ip[s] == ip) 1004 ra_add_node_interference(g, n, first_spill_node + s); 1005 } 1006 1007 /* Add this spill node to the list for next time */ 1008 if (spill_node_count >= spill_vgrf_ip_alloc) { 1009 if (spill_vgrf_ip_alloc == 0) 1010 spill_vgrf_ip_alloc = 16; 1011 else 1012 spill_vgrf_ip_alloc *= 2; 1013 spill_vgrf_ip = reralloc(mem_ctx, spill_vgrf_ip, int, 1014 spill_vgrf_ip_alloc); 1015 } 1016 spill_vgrf_ip[spill_node_count++] = ip; 1017 1018 return fs_reg(VGRF, vgrf); 1019} 1020 1021void 1022fs_reg_alloc::spill_reg(unsigned spill_reg) 1023{ 1024 int size = fs->alloc.sizes[spill_reg]; 1025 unsigned int spill_offset = fs->last_scratch; 1026 assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */ 1027 1028 /* Spills may use MRFs 13-15 in the SIMD16 case. Our texturing is done 1029 * using up to 11 MRFs starting from either m1 or m2, and fb writes can use 1030 * up to m13 (gfx6+ simd16: 2 header + 8 color + 2 src0alpha + 2 omask) or 1031 * m15 (gfx4-5 simd16: 2 header + 8 color + 1 aads + 2 src depth + 2 dst 1032 * depth), starting from m1. In summary: We may not be able to spill in 1033 * SIMD16 mode, because we'd stomp the FB writes. 1034 */ 1035 if (!fs->spilled_any_registers) { 1036 if (devinfo->ver >= 9) { 1037 this->scratch_header = alloc_scratch_header(); 1038 fs_builder ubld = fs->bld.exec_all().group(8, 0).at( 1039 fs->cfg->first_block(), fs->cfg->first_block()->start()); 1040 1041 fs_inst *inst; 1042 if (devinfo->verx10 >= 125) { 1043 inst = ubld.MOV(this->scratch_header, brw_imm_ud(0)); 1044 _mesa_set_add(spill_insts, inst); 1045 inst = ubld.group(1, 0).AND(component(this->scratch_header, 0), 1046 retype(brw_vec1_grf(0, 5), 1047 BRW_REGISTER_TYPE_UD), 1048 brw_imm_ud(INTEL_MASK(31, 10))); 1049 _mesa_set_add(spill_insts, inst); 1050 } else { 1051 inst = ubld.emit(SHADER_OPCODE_SCRATCH_HEADER, 1052 this->scratch_header); 1053 _mesa_set_add(spill_insts, inst); 1054 } 1055 } else { 1056 bool mrf_used[BRW_MAX_MRF(devinfo->ver)]; 1057 get_used_mrfs(fs, mrf_used); 1058 1059 for (int i = spill_base_mrf(fs); i < BRW_MAX_MRF(devinfo->ver); i++) { 1060 if (mrf_used[i]) { 1061 fs->fail("Register spilling not supported with m%d used", i); 1062 return; 1063 } 1064 } 1065 } 1066 1067 fs->spilled_any_registers = true; 1068 } 1069 1070 fs->last_scratch += size * REG_SIZE; 1071 1072 /* We're about to replace all uses of this register. It no longer 1073 * conflicts with anything so we can get rid of its interference. 1074 */ 1075 ra_set_node_spill_cost(g, first_vgrf_node + spill_reg, 0); 1076 ra_reset_node_interference(g, first_vgrf_node + spill_reg); 1077 1078 /* Generate spill/unspill instructions for the objects being 1079 * spilled. Right now, we spill or unspill the whole thing to a 1080 * virtual grf of the same size. For most instructions, though, we 1081 * could just spill/unspill the GRF being accessed. 1082 */ 1083 int ip = 0; 1084 foreach_block_and_inst (block, fs_inst, inst, fs->cfg) { 1085 const fs_builder ibld = fs_builder(fs, block, inst); 1086 exec_node *before = inst->prev; 1087 exec_node *after = inst->next; 1088 1089 for (unsigned int i = 0; i < inst->sources; i++) { 1090 if (inst->src[i].file == VGRF && 1091 inst->src[i].nr == spill_reg) { 1092 int count = regs_read(inst, i); 1093 int subset_spill_offset = spill_offset + 1094 ROUND_DOWN_TO(inst->src[i].offset, REG_SIZE); 1095 fs_reg unspill_dst = alloc_spill_reg(count, ip); 1096 1097 inst->src[i].nr = unspill_dst.nr; 1098 inst->src[i].offset %= REG_SIZE; 1099 1100 /* We read the largest power-of-two divisor of the register count 1101 * (because only POT scratch read blocks are allowed by the 1102 * hardware) up to the maximum supported block size. 1103 */ 1104 const unsigned width = 1105 MIN2(32, 1u << (ffs(MAX2(1, count) * 8) - 1)); 1106 1107 /* Set exec_all() on unspill messages under the (rather 1108 * pessimistic) assumption that there is no one-to-one 1109 * correspondence between channels of the spilled variable in 1110 * scratch space and the scratch read message, which operates on 1111 * 32 bit channels. It shouldn't hurt in any case because the 1112 * unspill destination is a block-local temporary. 1113 */ 1114 emit_unspill(ibld.exec_all().group(width, 0), &fs->shader_stats, 1115 unspill_dst, subset_spill_offset, count); 1116 } 1117 } 1118 1119 if (inst->dst.file == VGRF && 1120 inst->dst.nr == spill_reg && 1121 inst->opcode != SHADER_OPCODE_UNDEF) { 1122 int subset_spill_offset = spill_offset + 1123 ROUND_DOWN_TO(inst->dst.offset, REG_SIZE); 1124 fs_reg spill_src = alloc_spill_reg(regs_written(inst), ip); 1125 1126 inst->dst.nr = spill_src.nr; 1127 inst->dst.offset %= REG_SIZE; 1128 1129 /* If we're immediately spilling the register, we should not use 1130 * destination dependency hints. Doing so will cause the GPU do 1131 * try to read and write the register at the same time and may 1132 * hang the GPU. 1133 */ 1134 inst->no_dd_clear = false; 1135 inst->no_dd_check = false; 1136 1137 /* Calculate the execution width of the scratch messages (which work 1138 * in terms of 32 bit components so we have a fixed number of eight 1139 * channels per spilled register). We attempt to write one 1140 * exec_size-wide component of the variable at a time without 1141 * exceeding the maximum number of (fake) MRF registers reserved for 1142 * spills. 1143 */ 1144 const unsigned width = 8 * MIN2( 1145 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE), 1146 spill_max_size(fs)); 1147 1148 /* Spills should only write data initialized by the instruction for 1149 * whichever channels are enabled in the execution mask. If that's 1150 * not possible we'll have to emit a matching unspill before the 1151 * instruction and set force_writemask_all on the spill. 1152 */ 1153 const bool per_channel = 1154 inst->dst.is_contiguous() && type_sz(inst->dst.type) == 4 && 1155 inst->exec_size == width; 1156 1157 /* Builder used to emit the scratch messages. */ 1158 const fs_builder ubld = ibld.exec_all(!per_channel).group(width, 0); 1159 1160 /* If our write is going to affect just part of the 1161 * regs_written(inst), then we need to unspill the destination since 1162 * we write back out all of the regs_written(). If the original 1163 * instruction had force_writemask_all set and is not a partial 1164 * write, there should be no need for the unspill since the 1165 * instruction will be overwriting the whole destination in any case. 1166 */ 1167 if (inst->is_partial_write() || 1168 (!inst->force_writemask_all && !per_channel)) 1169 emit_unspill(ubld, &fs->shader_stats, spill_src, 1170 subset_spill_offset, regs_written(inst)); 1171 1172 emit_spill(ubld.at(block, inst->next), &fs->shader_stats, spill_src, 1173 subset_spill_offset, regs_written(inst)); 1174 } 1175 1176 for (fs_inst *inst = (fs_inst *)before->next; 1177 inst != after; inst = (fs_inst *)inst->next) 1178 setup_inst_interference(inst); 1179 1180 /* We don't advance the ip for scratch read/write instructions 1181 * because we consider them to have the same ip as instruction we're 1182 * spilling around for the purposes of interference. Also, we're 1183 * inserting spill instructions without re-running liveness analysis 1184 * and we don't want to mess up our IPs. 1185 */ 1186 if (!_mesa_set_search(spill_insts, inst)) 1187 ip++; 1188 } 1189 1190 assert(ip == live_instr_count); 1191} 1192 1193bool 1194fs_reg_alloc::assign_regs(bool allow_spilling, bool spill_all) 1195{ 1196 build_interference_graph(fs->spilled_any_registers || spill_all); 1197 1198 bool spilled = false; 1199 while (1) { 1200 /* Debug of register spilling: Go spill everything. */ 1201 if (unlikely(spill_all)) { 1202 int reg = choose_spill_reg(); 1203 if (reg != -1) { 1204 spill_reg(reg); 1205 continue; 1206 } 1207 } 1208 1209 if (ra_allocate(g)) 1210 break; 1211 1212 if (!allow_spilling) 1213 return false; 1214 1215 /* Failed to allocate registers. Spill a reg, and the caller will 1216 * loop back into here to try again. 1217 */ 1218 int reg = choose_spill_reg(); 1219 if (reg == -1) 1220 return false; 1221 1222 /* If we're going to spill but we've never spilled before, we need to 1223 * re-build the interference graph with MRFs enabled to allow spilling. 1224 */ 1225 if (!fs->spilled_any_registers) { 1226 discard_interference_graph(); 1227 build_interference_graph(true); 1228 } 1229 1230 spilled = true; 1231 1232 spill_reg(reg); 1233 } 1234 1235 if (spilled) 1236 fs->invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES); 1237 1238 /* Get the chosen virtual registers for each node, and map virtual 1239 * regs in the register classes back down to real hardware reg 1240 * numbers. 1241 */ 1242 unsigned hw_reg_mapping[fs->alloc.count]; 1243 fs->grf_used = fs->first_non_payload_grf; 1244 for (unsigned i = 0; i < fs->alloc.count; i++) { 1245 int reg = ra_get_node_reg(g, first_vgrf_node + i); 1246 1247 hw_reg_mapping[i] = reg; 1248 fs->grf_used = MAX2(fs->grf_used, 1249 hw_reg_mapping[i] + fs->alloc.sizes[i]); 1250 } 1251 1252 foreach_block_and_inst(block, fs_inst, inst, fs->cfg) { 1253 assign_reg(hw_reg_mapping, &inst->dst); 1254 for (int i = 0; i < inst->sources; i++) { 1255 assign_reg(hw_reg_mapping, &inst->src[i]); 1256 } 1257 } 1258 1259 fs->alloc.count = fs->grf_used; 1260 1261 return true; 1262} 1263 1264bool 1265fs_visitor::assign_regs(bool allow_spilling, bool spill_all) 1266{ 1267 fs_reg_alloc alloc(this); 1268 bool success = alloc.assign_regs(allow_spilling, spill_all); 1269 if (!success && allow_spilling) { 1270 fail("no register to spill:\n"); 1271 dump_instructions(NULL); 1272 } 1273 return success; 1274} 1275