1/*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "brw_fs.h"
29#include "brw_fs_live_variables.h"
30
31using namespace brw;
32
33#define MAX_INSTRUCTION (1 << 30)
34
35/** @file brw_fs_live_variables.cpp
36 *
37 * Support for calculating liveness information about virtual GRFs.
38 *
39 * This produces a live interval for each whole virtual GRF.  We could
40 * choose to expose per-component live intervals for VGRFs of size > 1,
41 * but we currently do not.  It is easier for the consumers of this
42 * information to work with whole VGRFs.
43 *
44 * However, we internally track use/def information at the per-GRF level for
45 * greater accuracy.  Large VGRFs may be accessed piecemeal over many
46 * (possibly non-adjacent) instructions.  In this case, examining a single
47 * instruction is insufficient to decide whether a whole VGRF is ultimately
48 * used or defined.  Tracking individual components allows us to easily
49 * assemble this information.
50 *
51 * See Muchnick's Advanced Compiler Design and Implementation, section
52 * 14.1 (p444).
53 */
54
55void
56fs_live_variables::setup_one_read(struct block_data *bd,
57                                  int ip, const fs_reg &reg)
58{
59   int var = var_from_reg(reg);
60   assert(var < num_vars);
61
62   start[var] = MIN2(start[var], ip);
63   end[var] = MAX2(end[var], ip);
64
65   /* The use[] bitset marks when the block makes use of a variable (VGRF
66    * channel) without having completely defined that variable within the
67    * block.
68    */
69   if (!BITSET_TEST(bd->def, var))
70      BITSET_SET(bd->use, var);
71}
72
73void
74fs_live_variables::setup_one_write(struct block_data *bd, fs_inst *inst,
75                                   int ip, const fs_reg &reg)
76{
77   int var = var_from_reg(reg);
78   assert(var < num_vars);
79
80   start[var] = MIN2(start[var], ip);
81   end[var] = MAX2(end[var], ip);
82
83   /* The def[] bitset marks when an initialization in a block completely
84    * screens off previous updates of that variable (VGRF channel).
85    */
86   if (inst->dst.file == VGRF) {
87      if (!inst->is_partial_write() && !BITSET_TEST(bd->use, var))
88         BITSET_SET(bd->def, var);
89
90      BITSET_SET(bd->defout, var);
91   }
92}
93
94/**
95 * Sets up the use[] and def[] bitsets.
96 *
97 * The basic-block-level live variable analysis needs to know which
98 * variables get used before they're completely defined, and which
99 * variables are completely defined before they're used.
100 *
101 * These are tracked at the per-component level, rather than whole VGRFs.
102 */
103void
104fs_live_variables::setup_def_use()
105{
106   int ip = 0;
107
108   foreach_block (block, cfg) {
109      assert(ip == block->start_ip);
110      if (block->num > 0)
111	 assert(cfg->blocks[block->num - 1]->end_ip == ip - 1);
112
113      struct block_data *bd = &block_data[block->num];
114
115      foreach_inst_in_block(fs_inst, inst, block) {
116	 /* Set use[] for this instruction */
117	 for (unsigned int i = 0; i < inst->sources; i++) {
118            fs_reg reg = inst->src[i];
119
120            if (reg.file != VGRF)
121               continue;
122
123            for (unsigned j = 0; j < regs_read(inst, i); j++) {
124               setup_one_read(bd, ip, reg);
125               reg.offset += REG_SIZE;
126            }
127	 }
128
129         bd->flag_use[0] |= inst->flags_read(devinfo) & ~bd->flag_def[0];
130
131         /* Set def[] for this instruction */
132         if (inst->dst.file == VGRF) {
133            fs_reg reg = inst->dst;
134            for (unsigned j = 0; j < regs_written(inst); j++) {
135               setup_one_write(bd, inst, ip, reg);
136               reg.offset += REG_SIZE;
137            }
138	 }
139
140         if (!inst->predicate && inst->exec_size >= 8)
141            bd->flag_def[0] |= inst->flags_written(devinfo) & ~bd->flag_use[0];
142
143	 ip++;
144      }
145   }
146}
147
148/**
149 * The algorithm incrementally sets bits in liveout and livein,
150 * propagating it through control flow.  It will eventually terminate
151 * because it only ever adds bits, and stops when no bits are added in
152 * a pass.
153 */
154void
155fs_live_variables::compute_live_variables()
156{
157   bool cont = true;
158
159   while (cont) {
160      cont = false;
161
162      foreach_block_reverse (block, cfg) {
163         struct block_data *bd = &block_data[block->num];
164
165	 /* Update liveout */
166	 foreach_list_typed(bblock_link, child_link, link, &block->children) {
167       struct block_data *child_bd = &block_data[child_link->block->num];
168
169	    for (int i = 0; i < bitset_words; i++) {
170               BITSET_WORD new_liveout = (child_bd->livein[i] &
171                                          ~bd->liveout[i]);
172               if (new_liveout) {
173                  bd->liveout[i] |= new_liveout;
174                  cont = true;
175               }
176	    }
177            BITSET_WORD new_liveout = (child_bd->flag_livein[0] &
178                                       ~bd->flag_liveout[0]);
179            if (new_liveout) {
180               bd->flag_liveout[0] |= new_liveout;
181               cont = true;
182            }
183	 }
184
185         /* Update livein */
186         for (int i = 0; i < bitset_words; i++) {
187            BITSET_WORD new_livein = (bd->use[i] |
188                                      (bd->liveout[i] &
189                                       ~bd->def[i]));
190            if (new_livein & ~bd->livein[i]) {
191               bd->livein[i] |= new_livein;
192               cont = true;
193            }
194         }
195         BITSET_WORD new_livein = (bd->flag_use[0] |
196                                   (bd->flag_liveout[0] &
197                                    ~bd->flag_def[0]));
198         if (new_livein & ~bd->flag_livein[0]) {
199            bd->flag_livein[0] |= new_livein;
200            cont = true;
201         }
202      }
203   }
204
205   /* Propagate defin and defout down the CFG to calculate the union of live
206    * variables potentially defined along any possible control flow path.
207    */
208   do {
209      cont = false;
210
211      foreach_block (block, cfg) {
212         const struct block_data *bd = &block_data[block->num];
213
214	 foreach_list_typed(bblock_link, child_link, link, &block->children) {
215       struct block_data *child_bd = &block_data[child_link->block->num];
216
217	    for (int i = 0; i < bitset_words; i++) {
218               const BITSET_WORD new_def = bd->defout[i] & ~child_bd->defin[i];
219               child_bd->defin[i] |= new_def;
220               child_bd->defout[i] |= new_def;
221               cont |= new_def;
222	    }
223	 }
224      }
225   } while (cont);
226}
227
228/**
229 * Extend the start/end ranges for each variable to account for the
230 * new information calculated from control flow.
231 */
232void
233fs_live_variables::compute_start_end()
234{
235   foreach_block (block, cfg) {
236      struct block_data *bd = &block_data[block->num];
237
238      for (int w = 0; w < bitset_words; w++) {
239         BITSET_WORD livedefin = bd->livein[w] & bd->defin[w];
240         BITSET_WORD livedefout = bd->liveout[w] & bd->defout[w];
241         BITSET_WORD livedefinout = livedefin | livedefout;
242         while (livedefinout) {
243            unsigned b = u_bit_scan(&livedefinout);
244            unsigned i = w * BITSET_WORDBITS + b;
245            if (livedefin & (1u << b)) {
246               start[i] = MIN2(start[i], block->start_ip);
247               end[i] = MAX2(end[i], block->start_ip);
248            }
249            if (livedefout & (1u << b)) {
250               start[i] = MIN2(start[i], block->end_ip);
251               end[i] = MAX2(end[i], block->end_ip);
252            }
253         }
254      }
255   }
256}
257
258fs_live_variables::fs_live_variables(const backend_shader *s)
259   : devinfo(s->devinfo), cfg(s->cfg)
260{
261   mem_ctx = ralloc_context(NULL);
262
263   num_vgrfs = s->alloc.count;
264   num_vars = 0;
265   var_from_vgrf = rzalloc_array(mem_ctx, int, num_vgrfs);
266   for (int i = 0; i < num_vgrfs; i++) {
267      var_from_vgrf[i] = num_vars;
268      num_vars += s->alloc.sizes[i];
269   }
270
271   vgrf_from_var = rzalloc_array(mem_ctx, int, num_vars);
272   for (int i = 0; i < num_vgrfs; i++) {
273      for (unsigned j = 0; j < s->alloc.sizes[i]; j++) {
274         vgrf_from_var[var_from_vgrf[i] + j] = i;
275      }
276   }
277
278   start = ralloc_array(mem_ctx, int, num_vars);
279   end = rzalloc_array(mem_ctx, int, num_vars);
280   for (int i = 0; i < num_vars; i++) {
281      start[i] = MAX_INSTRUCTION;
282      end[i] = -1;
283   }
284
285   vgrf_start = ralloc_array(mem_ctx, int, num_vgrfs);
286   vgrf_end = ralloc_array(mem_ctx, int, num_vgrfs);
287   for (int i = 0; i < num_vgrfs; i++) {
288      vgrf_start[i] = MAX_INSTRUCTION;
289      vgrf_end[i] = -1;
290   }
291
292   block_data = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
293
294   bitset_words = BITSET_WORDS(num_vars);
295   for (int i = 0; i < cfg->num_blocks; i++) {
296      block_data[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
297      block_data[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
298      block_data[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
299      block_data[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
300      block_data[i].defin = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
301      block_data[i].defout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
302
303      block_data[i].flag_def[0] = 0;
304      block_data[i].flag_use[0] = 0;
305      block_data[i].flag_livein[0] = 0;
306      block_data[i].flag_liveout[0] = 0;
307   }
308
309   setup_def_use();
310   compute_live_variables();
311   compute_start_end();
312
313   /* Merge the per-component live ranges to whole VGRF live ranges. */
314   for (int i = 0; i < num_vars; i++) {
315      const unsigned vgrf = vgrf_from_var[i];
316      vgrf_start[vgrf] = MIN2(vgrf_start[vgrf], start[i]);
317      vgrf_end[vgrf] = MAX2(vgrf_end[vgrf], end[i]);
318   }
319}
320
321fs_live_variables::~fs_live_variables()
322{
323   ralloc_free(mem_ctx);
324}
325
326static bool
327check_register_live_range(const fs_live_variables *live, int ip,
328                          const fs_reg &reg, unsigned n)
329{
330   const unsigned var = live->var_from_reg(reg);
331
332   if (var + n > unsigned(live->num_vars) ||
333       live->vgrf_start[reg.nr] > ip || live->vgrf_end[reg.nr] < ip)
334      return false;
335
336   for (unsigned j = 0; j < n; j++) {
337      if (live->start[var + j] > ip || live->end[var + j] < ip)
338         return false;
339   }
340
341   return true;
342}
343
344bool
345fs_live_variables::validate(const backend_shader *s) const
346{
347   int ip = 0;
348
349   foreach_block_and_inst(block, fs_inst, inst, s->cfg) {
350      for (unsigned i = 0; i < inst->sources; i++) {
351         if (inst->src[i].file == VGRF &&
352             !check_register_live_range(this, ip,
353                                        inst->src[i], regs_read(inst, i)))
354            return false;
355      }
356
357      if (inst->dst.file == VGRF &&
358          !check_register_live_range(this, ip, inst->dst, regs_written(inst)))
359         return false;
360
361      ip++;
362   }
363
364   return true;
365}
366
367bool
368fs_live_variables::vars_interfere(int a, int b) const
369{
370   return !(end[b] <= start[a] ||
371            end[a] <= start[b]);
372}
373
374bool
375fs_live_variables::vgrfs_interfere(int a, int b) const
376{
377   return !(vgrf_end[a] <= vgrf_start[b] ||
378            vgrf_end[b] <= vgrf_start[a]);
379}
380