1/* 2 * Copyright © 2012 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28#include "brw_fs.h" 29#include "brw_fs_live_variables.h" 30 31using namespace brw; 32 33#define MAX_INSTRUCTION (1 << 30) 34 35/** @file brw_fs_live_variables.cpp 36 * 37 * Support for calculating liveness information about virtual GRFs. 38 * 39 * This produces a live interval for each whole virtual GRF. We could 40 * choose to expose per-component live intervals for VGRFs of size > 1, 41 * but we currently do not. It is easier for the consumers of this 42 * information to work with whole VGRFs. 43 * 44 * However, we internally track use/def information at the per-GRF level for 45 * greater accuracy. Large VGRFs may be accessed piecemeal over many 46 * (possibly non-adjacent) instructions. In this case, examining a single 47 * instruction is insufficient to decide whether a whole VGRF is ultimately 48 * used or defined. Tracking individual components allows us to easily 49 * assemble this information. 50 * 51 * See Muchnick's Advanced Compiler Design and Implementation, section 52 * 14.1 (p444). 53 */ 54 55void 56fs_live_variables::setup_one_read(struct block_data *bd, 57 int ip, const fs_reg ®) 58{ 59 int var = var_from_reg(reg); 60 assert(var < num_vars); 61 62 start[var] = MIN2(start[var], ip); 63 end[var] = MAX2(end[var], ip); 64 65 /* The use[] bitset marks when the block makes use of a variable (VGRF 66 * channel) without having completely defined that variable within the 67 * block. 68 */ 69 if (!BITSET_TEST(bd->def, var)) 70 BITSET_SET(bd->use, var); 71} 72 73void 74fs_live_variables::setup_one_write(struct block_data *bd, fs_inst *inst, 75 int ip, const fs_reg ®) 76{ 77 int var = var_from_reg(reg); 78 assert(var < num_vars); 79 80 start[var] = MIN2(start[var], ip); 81 end[var] = MAX2(end[var], ip); 82 83 /* The def[] bitset marks when an initialization in a block completely 84 * screens off previous updates of that variable (VGRF channel). 85 */ 86 if (inst->dst.file == VGRF) { 87 if (!inst->is_partial_write() && !BITSET_TEST(bd->use, var)) 88 BITSET_SET(bd->def, var); 89 90 BITSET_SET(bd->defout, var); 91 } 92} 93 94/** 95 * Sets up the use[] and def[] bitsets. 96 * 97 * The basic-block-level live variable analysis needs to know which 98 * variables get used before they're completely defined, and which 99 * variables are completely defined before they're used. 100 * 101 * These are tracked at the per-component level, rather than whole VGRFs. 102 */ 103void 104fs_live_variables::setup_def_use() 105{ 106 int ip = 0; 107 108 foreach_block (block, cfg) { 109 assert(ip == block->start_ip); 110 if (block->num > 0) 111 assert(cfg->blocks[block->num - 1]->end_ip == ip - 1); 112 113 struct block_data *bd = &block_data[block->num]; 114 115 foreach_inst_in_block(fs_inst, inst, block) { 116 /* Set use[] for this instruction */ 117 for (unsigned int i = 0; i < inst->sources; i++) { 118 fs_reg reg = inst->src[i]; 119 120 if (reg.file != VGRF) 121 continue; 122 123 for (unsigned j = 0; j < regs_read(inst, i); j++) { 124 setup_one_read(bd, ip, reg); 125 reg.offset += REG_SIZE; 126 } 127 } 128 129 bd->flag_use[0] |= inst->flags_read(devinfo) & ~bd->flag_def[0]; 130 131 /* Set def[] for this instruction */ 132 if (inst->dst.file == VGRF) { 133 fs_reg reg = inst->dst; 134 for (unsigned j = 0; j < regs_written(inst); j++) { 135 setup_one_write(bd, inst, ip, reg); 136 reg.offset += REG_SIZE; 137 } 138 } 139 140 if (!inst->predicate && inst->exec_size >= 8) 141 bd->flag_def[0] |= inst->flags_written(devinfo) & ~bd->flag_use[0]; 142 143 ip++; 144 } 145 } 146} 147 148/** 149 * The algorithm incrementally sets bits in liveout and livein, 150 * propagating it through control flow. It will eventually terminate 151 * because it only ever adds bits, and stops when no bits are added in 152 * a pass. 153 */ 154void 155fs_live_variables::compute_live_variables() 156{ 157 bool cont = true; 158 159 while (cont) { 160 cont = false; 161 162 foreach_block_reverse (block, cfg) { 163 struct block_data *bd = &block_data[block->num]; 164 165 /* Update liveout */ 166 foreach_list_typed(bblock_link, child_link, link, &block->children) { 167 struct block_data *child_bd = &block_data[child_link->block->num]; 168 169 for (int i = 0; i < bitset_words; i++) { 170 BITSET_WORD new_liveout = (child_bd->livein[i] & 171 ~bd->liveout[i]); 172 if (new_liveout) { 173 bd->liveout[i] |= new_liveout; 174 cont = true; 175 } 176 } 177 BITSET_WORD new_liveout = (child_bd->flag_livein[0] & 178 ~bd->flag_liveout[0]); 179 if (new_liveout) { 180 bd->flag_liveout[0] |= new_liveout; 181 cont = true; 182 } 183 } 184 185 /* Update livein */ 186 for (int i = 0; i < bitset_words; i++) { 187 BITSET_WORD new_livein = (bd->use[i] | 188 (bd->liveout[i] & 189 ~bd->def[i])); 190 if (new_livein & ~bd->livein[i]) { 191 bd->livein[i] |= new_livein; 192 cont = true; 193 } 194 } 195 BITSET_WORD new_livein = (bd->flag_use[0] | 196 (bd->flag_liveout[0] & 197 ~bd->flag_def[0])); 198 if (new_livein & ~bd->flag_livein[0]) { 199 bd->flag_livein[0] |= new_livein; 200 cont = true; 201 } 202 } 203 } 204 205 /* Propagate defin and defout down the CFG to calculate the union of live 206 * variables potentially defined along any possible control flow path. 207 */ 208 do { 209 cont = false; 210 211 foreach_block (block, cfg) { 212 const struct block_data *bd = &block_data[block->num]; 213 214 foreach_list_typed(bblock_link, child_link, link, &block->children) { 215 struct block_data *child_bd = &block_data[child_link->block->num]; 216 217 for (int i = 0; i < bitset_words; i++) { 218 const BITSET_WORD new_def = bd->defout[i] & ~child_bd->defin[i]; 219 child_bd->defin[i] |= new_def; 220 child_bd->defout[i] |= new_def; 221 cont |= new_def; 222 } 223 } 224 } 225 } while (cont); 226} 227 228/** 229 * Extend the start/end ranges for each variable to account for the 230 * new information calculated from control flow. 231 */ 232void 233fs_live_variables::compute_start_end() 234{ 235 foreach_block (block, cfg) { 236 struct block_data *bd = &block_data[block->num]; 237 238 for (int w = 0; w < bitset_words; w++) { 239 BITSET_WORD livedefin = bd->livein[w] & bd->defin[w]; 240 BITSET_WORD livedefout = bd->liveout[w] & bd->defout[w]; 241 BITSET_WORD livedefinout = livedefin | livedefout; 242 while (livedefinout) { 243 unsigned b = u_bit_scan(&livedefinout); 244 unsigned i = w * BITSET_WORDBITS + b; 245 if (livedefin & (1u << b)) { 246 start[i] = MIN2(start[i], block->start_ip); 247 end[i] = MAX2(end[i], block->start_ip); 248 } 249 if (livedefout & (1u << b)) { 250 start[i] = MIN2(start[i], block->end_ip); 251 end[i] = MAX2(end[i], block->end_ip); 252 } 253 } 254 } 255 } 256} 257 258fs_live_variables::fs_live_variables(const backend_shader *s) 259 : devinfo(s->devinfo), cfg(s->cfg) 260{ 261 mem_ctx = ralloc_context(NULL); 262 263 num_vgrfs = s->alloc.count; 264 num_vars = 0; 265 var_from_vgrf = rzalloc_array(mem_ctx, int, num_vgrfs); 266 for (int i = 0; i < num_vgrfs; i++) { 267 var_from_vgrf[i] = num_vars; 268 num_vars += s->alloc.sizes[i]; 269 } 270 271 vgrf_from_var = rzalloc_array(mem_ctx, int, num_vars); 272 for (int i = 0; i < num_vgrfs; i++) { 273 for (unsigned j = 0; j < s->alloc.sizes[i]; j++) { 274 vgrf_from_var[var_from_vgrf[i] + j] = i; 275 } 276 } 277 278 start = ralloc_array(mem_ctx, int, num_vars); 279 end = rzalloc_array(mem_ctx, int, num_vars); 280 for (int i = 0; i < num_vars; i++) { 281 start[i] = MAX_INSTRUCTION; 282 end[i] = -1; 283 } 284 285 vgrf_start = ralloc_array(mem_ctx, int, num_vgrfs); 286 vgrf_end = ralloc_array(mem_ctx, int, num_vgrfs); 287 for (int i = 0; i < num_vgrfs; i++) { 288 vgrf_start[i] = MAX_INSTRUCTION; 289 vgrf_end[i] = -1; 290 } 291 292 block_data = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks); 293 294 bitset_words = BITSET_WORDS(num_vars); 295 for (int i = 0; i < cfg->num_blocks; i++) { 296 block_data[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words); 297 block_data[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words); 298 block_data[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words); 299 block_data[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words); 300 block_data[i].defin = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words); 301 block_data[i].defout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words); 302 303 block_data[i].flag_def[0] = 0; 304 block_data[i].flag_use[0] = 0; 305 block_data[i].flag_livein[0] = 0; 306 block_data[i].flag_liveout[0] = 0; 307 } 308 309 setup_def_use(); 310 compute_live_variables(); 311 compute_start_end(); 312 313 /* Merge the per-component live ranges to whole VGRF live ranges. */ 314 for (int i = 0; i < num_vars; i++) { 315 const unsigned vgrf = vgrf_from_var[i]; 316 vgrf_start[vgrf] = MIN2(vgrf_start[vgrf], start[i]); 317 vgrf_end[vgrf] = MAX2(vgrf_end[vgrf], end[i]); 318 } 319} 320 321fs_live_variables::~fs_live_variables() 322{ 323 ralloc_free(mem_ctx); 324} 325 326static bool 327check_register_live_range(const fs_live_variables *live, int ip, 328 const fs_reg ®, unsigned n) 329{ 330 const unsigned var = live->var_from_reg(reg); 331 332 if (var + n > unsigned(live->num_vars) || 333 live->vgrf_start[reg.nr] > ip || live->vgrf_end[reg.nr] < ip) 334 return false; 335 336 for (unsigned j = 0; j < n; j++) { 337 if (live->start[var + j] > ip || live->end[var + j] < ip) 338 return false; 339 } 340 341 return true; 342} 343 344bool 345fs_live_variables::validate(const backend_shader *s) const 346{ 347 int ip = 0; 348 349 foreach_block_and_inst(block, fs_inst, inst, s->cfg) { 350 for (unsigned i = 0; i < inst->sources; i++) { 351 if (inst->src[i].file == VGRF && 352 !check_register_live_range(this, ip, 353 inst->src[i], regs_read(inst, i))) 354 return false; 355 } 356 357 if (inst->dst.file == VGRF && 358 !check_register_live_range(this, ip, inst->dst, regs_written(inst))) 359 return false; 360 361 ip++; 362 } 363 364 return true; 365} 366 367bool 368fs_live_variables::vars_interfere(int a, int b) const 369{ 370 return !(end[b] <= start[a] || 371 end[a] <= start[b]); 372} 373 374bool 375fs_live_variables::vgrfs_interfere(int a, int b) const 376{ 377 return !(vgrf_end[a] <= vgrf_start[b] || 378 vgrf_end[b] <= vgrf_start[a]); 379} 380