1/*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24/** @file brw_fs_copy_propagation.cpp
25 *
26 * Support for global copy propagation in two passes: A local pass that does
27 * intra-block copy (and constant) propagation, and a global pass that uses
28 * dataflow analysis on the copies available at the end of each block to re-do
29 * local copy propagation with more copies available.
30 *
31 * See Muchnick's Advanced Compiler Design and Implementation, section
32 * 12.5 (p356).
33 */
34
35#define ACP_HASH_SIZE 64
36
37#include "util/bitset.h"
38#include "util/u_math.h"
39#include "brw_fs.h"
40#include "brw_fs_live_variables.h"
41#include "brw_cfg.h"
42#include "brw_eu.h"
43
44using namespace brw;
45
46namespace { /* avoid conflict with opt_copy_propagation_elements */
47struct acp_entry : public exec_node {
48   fs_reg dst;
49   fs_reg src;
50   unsigned global_idx;
51   unsigned size_written;
52   unsigned size_read;
53   enum opcode opcode;
54   bool saturate;
55   bool is_partial_write;
56};
57
58struct block_data {
59   /**
60    * Which entries in the fs_copy_prop_dataflow acp table are live at the
61    * start of this block.  This is the useful output of the analysis, since
62    * it lets us plug those into the local copy propagation on the second
63    * pass.
64    */
65   BITSET_WORD *livein;
66
67   /**
68    * Which entries in the fs_copy_prop_dataflow acp table are live at the end
69    * of this block.  This is done in initial setup from the per-block acps
70    * returned by the first local copy prop pass.
71    */
72   BITSET_WORD *liveout;
73
74   /**
75    * Which entries in the fs_copy_prop_dataflow acp table are generated by
76    * instructions in this block which reach the end of the block without
77    * being killed.
78    */
79   BITSET_WORD *copy;
80
81   /**
82    * Which entries in the fs_copy_prop_dataflow acp table are killed over the
83    * course of this block.
84    */
85   BITSET_WORD *kill;
86
87   /**
88    * Which entries in the fs_copy_prop_dataflow acp table are guaranteed to
89    * have a fully uninitialized destination at the end of this block.
90    */
91   BITSET_WORD *undef;
92};
93
94class fs_copy_prop_dataflow
95{
96public:
97   fs_copy_prop_dataflow(void *mem_ctx, cfg_t *cfg,
98                         const fs_live_variables &live,
99                         exec_list *out_acp[ACP_HASH_SIZE]);
100
101   void setup_initial_values();
102   void run();
103
104   void dump_block_data() const UNUSED;
105
106   void *mem_ctx;
107   cfg_t *cfg;
108   const fs_live_variables &live;
109
110   acp_entry **acp;
111   int num_acp;
112   int bitset_words;
113
114  struct block_data *bd;
115};
116} /* anonymous namespace */
117
118fs_copy_prop_dataflow::fs_copy_prop_dataflow(void *mem_ctx, cfg_t *cfg,
119                                             const fs_live_variables &live,
120                                             exec_list *out_acp[ACP_HASH_SIZE])
121   : mem_ctx(mem_ctx), cfg(cfg), live(live)
122{
123   bd = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
124
125   num_acp = 0;
126   foreach_block (block, cfg) {
127      for (int i = 0; i < ACP_HASH_SIZE; i++) {
128         num_acp += out_acp[block->num][i].length();
129      }
130   }
131
132   acp = rzalloc_array(mem_ctx, struct acp_entry *, num_acp);
133
134   bitset_words = BITSET_WORDS(num_acp);
135
136   int next_acp = 0;
137   foreach_block (block, cfg) {
138      bd[block->num].livein = rzalloc_array(bd, BITSET_WORD, bitset_words);
139      bd[block->num].liveout = rzalloc_array(bd, BITSET_WORD, bitset_words);
140      bd[block->num].copy = rzalloc_array(bd, BITSET_WORD, bitset_words);
141      bd[block->num].kill = rzalloc_array(bd, BITSET_WORD, bitset_words);
142      bd[block->num].undef = rzalloc_array(bd, BITSET_WORD, bitset_words);
143
144      for (int i = 0; i < ACP_HASH_SIZE; i++) {
145         foreach_in_list(acp_entry, entry, &out_acp[block->num][i]) {
146            acp[next_acp] = entry;
147
148            entry->global_idx = next_acp;
149
150            /* opt_copy_propagation_local populates out_acp with copies created
151             * in a block which are still live at the end of the block.  This
152             * is exactly what we want in the COPY set.
153             */
154            BITSET_SET(bd[block->num].copy, next_acp);
155
156            next_acp++;
157         }
158      }
159   }
160
161   assert(next_acp == num_acp);
162
163   setup_initial_values();
164   run();
165}
166
167/**
168 * Set up initial values for each of the data flow sets, prior to running
169 * the fixed-point algorithm.
170 */
171void
172fs_copy_prop_dataflow::setup_initial_values()
173{
174   /* Initialize the COPY and KILL sets. */
175   {
176      /* Create a temporary table of ACP entries which we'll use for efficient
177       * look-up.  Unfortunately, we have to do this in two steps because we
178       * have to match both sources and destinations and an ACP entry can only
179       * be in one list at a time.
180       *
181       * We choose to make the table size between num_acp/2 and num_acp/4 to
182       * try and trade off between the time it takes to initialize the table
183       * via exec_list constructors or make_empty() and the cost of
184       * collisions.  In practice, it doesn't appear to matter too much what
185       * size we make the table as long as it's roughly the same order of
186       * magnitude as num_acp.  We get most of the benefit of the table
187       * approach even if we use a table of size ACP_HASH_SIZE though a
188       * full-sized table is 1-2% faster in practice.
189       */
190      unsigned acp_table_size = util_next_power_of_two(num_acp) / 4;
191      acp_table_size = MAX2(acp_table_size, ACP_HASH_SIZE);
192      exec_list *acp_table = new exec_list[acp_table_size];
193
194      /* First, get all the KILLs for instructions which overwrite ACP
195       * destinations.
196       */
197      for (int i = 0; i < num_acp; i++) {
198         unsigned idx = reg_space(acp[i]->dst) & (acp_table_size - 1);
199         acp_table[idx].push_tail(acp[i]);
200      }
201
202      foreach_block (block, cfg) {
203         foreach_inst_in_block(fs_inst, inst, block) {
204            if (inst->dst.file != VGRF)
205               continue;
206
207            unsigned idx = reg_space(inst->dst) & (acp_table_size - 1);
208            foreach_in_list(acp_entry, entry, &acp_table[idx]) {
209               if (regions_overlap(inst->dst, inst->size_written,
210                                   entry->dst, entry->size_written))
211                  BITSET_SET(bd[block->num].kill, entry->global_idx);
212            }
213         }
214      }
215
216      /* Clear the table for the second pass */
217      for (unsigned i = 0; i < acp_table_size; i++)
218         acp_table[i].make_empty();
219
220      /* Next, get all the KILLs for instructions which overwrite ACP
221       * sources.
222       */
223      for (int i = 0; i < num_acp; i++) {
224         unsigned idx = reg_space(acp[i]->src) & (acp_table_size - 1);
225         acp_table[idx].push_tail(acp[i]);
226      }
227
228      foreach_block (block, cfg) {
229         foreach_inst_in_block(fs_inst, inst, block) {
230            if (inst->dst.file != VGRF &&
231                inst->dst.file != FIXED_GRF)
232               continue;
233
234            unsigned idx = reg_space(inst->dst) & (acp_table_size - 1);
235            foreach_in_list(acp_entry, entry, &acp_table[idx]) {
236               if (regions_overlap(inst->dst, inst->size_written,
237                                   entry->src, entry->size_read))
238                  BITSET_SET(bd[block->num].kill, entry->global_idx);
239            }
240         }
241      }
242
243      delete [] acp_table;
244   }
245
246   /* Populate the initial values for the livein and liveout sets.  For the
247    * block at the start of the program, livein = 0 and liveout = copy.
248    * For the others, set liveout and livein to ~0 (the universal set).
249    */
250   foreach_block (block, cfg) {
251      if (block->parents.is_empty()) {
252         for (int i = 0; i < bitset_words; i++) {
253            bd[block->num].livein[i] = 0u;
254            bd[block->num].liveout[i] = bd[block->num].copy[i];
255         }
256      } else {
257         for (int i = 0; i < bitset_words; i++) {
258            bd[block->num].liveout[i] = ~0u;
259            bd[block->num].livein[i] = ~0u;
260         }
261      }
262   }
263
264   /* Initialize the undef set. */
265   foreach_block (block, cfg) {
266      for (int i = 0; i < num_acp; i++) {
267         BITSET_SET(bd[block->num].undef, i);
268         for (unsigned off = 0; off < acp[i]->size_written; off += REG_SIZE) {
269            if (BITSET_TEST(live.block_data[block->num].defout,
270                            live.var_from_reg(byte_offset(acp[i]->dst, off))))
271               BITSET_CLEAR(bd[block->num].undef, i);
272         }
273      }
274   }
275}
276
277/**
278 * Walk the set of instructions in the block, marking which entries in the acp
279 * are killed by the block.
280 */
281void
282fs_copy_prop_dataflow::run()
283{
284   bool progress;
285
286   do {
287      progress = false;
288
289      foreach_block (block, cfg) {
290         if (block->parents.is_empty())
291            continue;
292
293         for (int i = 0; i < bitset_words; i++) {
294            const BITSET_WORD old_liveout = bd[block->num].liveout[i];
295            BITSET_WORD livein_from_any_block = 0;
296
297            /* Update livein for this block.  If a copy is live out of all
298             * parent blocks, it's live coming in to this block.
299             */
300            bd[block->num].livein[i] = ~0u;
301            foreach_list_typed(bblock_link, parent_link, link, &block->parents) {
302               bblock_t *parent = parent_link->block;
303               /* Consider ACP entries with a known-undefined destination to
304                * be available from the parent.  This is valid because we're
305                * free to set the undefined variable equal to the source of
306                * the ACP entry without breaking the application's
307                * expectations, since the variable is undefined.
308                */
309               bd[block->num].livein[i] &= (bd[parent->num].liveout[i] |
310                                            bd[parent->num].undef[i]);
311               livein_from_any_block |= bd[parent->num].liveout[i];
312            }
313
314            /* Limit to the set of ACP entries that can possibly be available
315             * at the start of the block, since propagating from a variable
316             * which is guaranteed to be undefined (rather than potentially
317             * undefined for some dynamic control-flow paths) doesn't seem
318             * particularly useful.
319             */
320            bd[block->num].livein[i] &= livein_from_any_block;
321
322            /* Update liveout for this block. */
323            bd[block->num].liveout[i] =
324               bd[block->num].copy[i] | (bd[block->num].livein[i] &
325                                         ~bd[block->num].kill[i]);
326
327            if (old_liveout != bd[block->num].liveout[i])
328               progress = true;
329         }
330      }
331   } while (progress);
332}
333
334void
335fs_copy_prop_dataflow::dump_block_data() const
336{
337   foreach_block (block, cfg) {
338      fprintf(stderr, "Block %d [%d, %d] (parents ", block->num,
339             block->start_ip, block->end_ip);
340      foreach_list_typed(bblock_link, link, link, &block->parents) {
341         bblock_t *parent = link->block;
342         fprintf(stderr, "%d ", parent->num);
343      }
344      fprintf(stderr, "):\n");
345      fprintf(stderr, "       livein = 0x");
346      for (int i = 0; i < bitset_words; i++)
347         fprintf(stderr, "%08x", bd[block->num].livein[i]);
348      fprintf(stderr, ", liveout = 0x");
349      for (int i = 0; i < bitset_words; i++)
350         fprintf(stderr, "%08x", bd[block->num].liveout[i]);
351      fprintf(stderr, ",\n       copy   = 0x");
352      for (int i = 0; i < bitset_words; i++)
353         fprintf(stderr, "%08x", bd[block->num].copy[i]);
354      fprintf(stderr, ", kill    = 0x");
355      for (int i = 0; i < bitset_words; i++)
356         fprintf(stderr, "%08x", bd[block->num].kill[i]);
357      fprintf(stderr, "\n");
358   }
359}
360
361static bool
362is_logic_op(enum opcode opcode)
363{
364   return (opcode == BRW_OPCODE_AND ||
365           opcode == BRW_OPCODE_OR  ||
366           opcode == BRW_OPCODE_XOR ||
367           opcode == BRW_OPCODE_NOT);
368}
369
370static bool
371can_take_stride(fs_inst *inst, brw_reg_type dst_type,
372                unsigned arg, unsigned stride,
373                const struct brw_compiler *compiler)
374{
375   const struct intel_device_info *devinfo = compiler->devinfo;
376
377   if (stride > 4)
378      return false;
379
380   /* Bail if the channels of the source need to be aligned to the byte offset
381    * of the corresponding channel of the destination, and the provided stride
382    * would break this restriction.
383    */
384   if (has_dst_aligned_region_restriction(devinfo, inst, dst_type) &&
385       !(type_sz(inst->src[arg].type) * stride ==
386           type_sz(dst_type) * inst->dst.stride ||
387         stride == 0))
388      return false;
389
390   /* 3-source instructions can only be Align16, which restricts what strides
391    * they can take. They can only take a stride of 1 (the usual case), or 0
392    * with a special "repctrl" bit. But the repctrl bit doesn't work for
393    * 64-bit datatypes, so if the source type is 64-bit then only a stride of
394    * 1 is allowed. From the Broadwell PRM, Volume 7 "3D Media GPGPU", page
395    * 944:
396    *
397    *    This is applicable to 32b datatypes and 16b datatype. 64b datatypes
398    *    cannot use the replicate control.
399    */
400   if (inst->is_3src(compiler)) {
401      if (type_sz(inst->src[arg].type) > 4)
402         return stride == 1;
403      else
404         return stride == 1 || stride == 0;
405   }
406
407   /* From the Broadwell PRM, Volume 2a "Command Reference - Instructions",
408    * page 391 ("Extended Math Function"):
409    *
410    *     The following restrictions apply for align1 mode: Scalar source is
411    *     supported. Source and destination horizontal stride must be the
412    *     same.
413    *
414    * From the Haswell PRM Volume 2b "Command Reference - Instructions", page
415    * 134 ("Extended Math Function"):
416    *
417    *    Scalar source is supported. Source and destination horizontal stride
418    *    must be 1.
419    *
420    * and similar language exists for IVB and SNB. Pre-SNB, math instructions
421    * are sends, so the sources are moved to MRF's and there are no
422    * restrictions.
423    */
424   if (inst->is_math()) {
425      if (devinfo->ver == 6 || devinfo->ver == 7) {
426         assert(inst->dst.stride == 1);
427         return stride == 1 || stride == 0;
428      } else if (devinfo->ver >= 8) {
429         return stride == inst->dst.stride || stride == 0;
430      }
431   }
432
433   return true;
434}
435
436static bool
437instruction_requires_packed_data(fs_inst *inst)
438{
439   switch (inst->opcode) {
440   case FS_OPCODE_DDX_FINE:
441   case FS_OPCODE_DDX_COARSE:
442   case FS_OPCODE_DDY_FINE:
443   case FS_OPCODE_DDY_COARSE:
444   case SHADER_OPCODE_QUAD_SWIZZLE:
445      return true;
446   default:
447      return false;
448   }
449}
450
451bool
452fs_visitor::try_copy_propagate(fs_inst *inst, int arg, acp_entry *entry)
453{
454   if (inst->src[arg].file != VGRF)
455      return false;
456
457   if (entry->src.file == IMM)
458      return false;
459   assert(entry->src.file == VGRF || entry->src.file == UNIFORM ||
460          entry->src.file == ATTR || entry->src.file == FIXED_GRF);
461
462   /* Avoid propagating a LOAD_PAYLOAD instruction into another if there is a
463    * good chance that we'll be able to eliminate the latter through register
464    * coalescing.  If only part of the sources of the second LOAD_PAYLOAD can
465    * be simplified through copy propagation we would be making register
466    * coalescing impossible, ending up with unnecessary copies in the program.
467    * This is also the case for is_multi_copy_payload() copies that can only
468    * be coalesced when the instruction is lowered into a sequence of MOVs.
469    *
470    * Worse -- In cases where the ACP entry was the result of CSE combining
471    * multiple LOAD_PAYLOAD subexpressions, propagating the first LOAD_PAYLOAD
472    * into the second would undo the work of CSE, leading to an infinite
473    * optimization loop.  Avoid this by detecting LOAD_PAYLOAD copies from CSE
474    * temporaries which should match is_coalescing_payload().
475    */
476   if (entry->opcode == SHADER_OPCODE_LOAD_PAYLOAD &&
477       (is_coalescing_payload(alloc, inst) || is_multi_copy_payload(inst)))
478      return false;
479
480   assert(entry->dst.file == VGRF);
481   if (inst->src[arg].nr != entry->dst.nr)
482      return false;
483
484   /* Bail if inst is reading a range that isn't contained in the range
485    * that entry is writing.
486    */
487   if (!region_contained_in(inst->src[arg], inst->size_read(arg),
488                            entry->dst, entry->size_written))
489      return false;
490
491   /* Send messages with EOT set are restricted to use g112-g127 (and we
492    * sometimes need g127 for other purposes), so avoid copy propagating
493    * anything that would make it impossible to satisfy that restriction.
494    */
495   if (inst->eot) {
496      /* Avoid propagating a FIXED_GRF register, as that's already pinned. */
497      if (entry->src.file == FIXED_GRF)
498         return false;
499
500      /* We might be propagating from a large register, while the SEND only
501       * is reading a portion of it (say the .A channel in an RGBA value).
502       * We need to pin both split SEND sources in g112-g126/127, so only
503       * allow this if the registers aren't too large.
504       */
505      if (inst->opcode == SHADER_OPCODE_SEND && entry->src.file == VGRF) {
506         int other_src = arg == 2 ? 3 : 2;
507         unsigned other_size = inst->src[other_src].file == VGRF ?
508                               alloc.sizes[inst->src[other_src].nr] :
509                               inst->size_read(other_src);
510         unsigned prop_src_size = alloc.sizes[entry->src.nr];
511         if (other_size + prop_src_size > 15)
512            return false;
513      }
514   }
515
516   /* Avoid propagating odd-numbered FIXED_GRF registers into the first source
517    * of a LINTERP instruction on platforms where the PLN instruction has
518    * register alignment restrictions.
519    */
520   if (devinfo->has_pln && devinfo->ver <= 6 &&
521       entry->src.file == FIXED_GRF && (entry->src.nr & 1) &&
522       inst->opcode == FS_OPCODE_LINTERP && arg == 0)
523      return false;
524
525   /* we can't generally copy-propagate UD negations because we
526    * can end up accessing the resulting values as signed integers
527    * instead. See also resolve_ud_negate() and comment in
528    * fs_generator::generate_code.
529    */
530   if (entry->src.type == BRW_REGISTER_TYPE_UD &&
531       entry->src.negate)
532      return false;
533
534   bool has_source_modifiers = entry->src.abs || entry->src.negate;
535
536   if (has_source_modifiers && !inst->can_do_source_mods(devinfo))
537      return false;
538
539   /* Reject cases that would violate register regioning restrictions. */
540   if ((entry->src.file == UNIFORM || !entry->src.is_contiguous()) &&
541       ((devinfo->ver == 6 && inst->is_math()) ||
542        inst->is_send_from_grf() ||
543        inst->uses_indirect_addressing())) {
544      return false;
545   }
546
547   if (has_source_modifiers &&
548       inst->opcode == SHADER_OPCODE_GFX4_SCRATCH_WRITE)
549      return false;
550
551   /* Some instructions implemented in the generator backend, such as
552    * derivatives, assume that their operands are packed so we can't
553    * generally propagate strided regions to them.
554    */
555   const unsigned entry_stride = (entry->src.file == FIXED_GRF ? 1 :
556                                  entry->src.stride);
557   if (instruction_requires_packed_data(inst) && entry_stride != 1)
558      return false;
559
560   const brw_reg_type dst_type = (has_source_modifiers &&
561                                  entry->dst.type != inst->src[arg].type) ?
562      entry->dst.type : inst->dst.type;
563
564   /* Bail if the result of composing both strides would exceed the
565    * hardware limit.
566    */
567   if (!can_take_stride(inst, dst_type, arg,
568                        entry_stride * inst->src[arg].stride,
569                        compiler))
570      return false;
571
572   /* From the Cherry Trail/Braswell PRMs, Volume 7: 3D Media GPGPU:
573    *    EU Overview
574    *       Register Region Restrictions
575    *          Special Requirements for Handling Double Precision Data Types :
576    *
577    *   "When source or destination datatype is 64b or operation is integer
578    *    DWord multiply, regioning in Align1 must follow these rules:
579    *
580    *      1. Source and Destination horizontal stride must be aligned to the
581    *         same qword.
582    *      2. Regioning must ensure Src.Vstride = Src.Width * Src.Hstride.
583    *      3. Source and Destination offset must be the same, except the case
584    *         of scalar source."
585    *
586    * Most of this is already checked in can_take_stride(), we're only left
587    * with checking 3.
588    */
589   if (has_dst_aligned_region_restriction(devinfo, inst, dst_type) &&
590       entry_stride != 0 &&
591       (reg_offset(inst->dst) % REG_SIZE) != (reg_offset(entry->src) % REG_SIZE))
592      return false;
593
594   /* Bail if the source FIXED_GRF region of the copy cannot be trivially
595    * composed with the source region of the instruction -- E.g. because the
596    * copy uses some extended stride greater than 4 not supported natively by
597    * the hardware as a horizontal stride, or because instruction compression
598    * could require us to use a vertical stride shorter than a GRF.
599    */
600   if (entry->src.file == FIXED_GRF &&
601       (inst->src[arg].stride > 4 ||
602        inst->dst.component_size(inst->exec_size) >
603        inst->src[arg].component_size(inst->exec_size)))
604      return false;
605
606   /* Bail if the instruction type is larger than the execution type of the
607    * copy, what implies that each channel is reading multiple channels of the
608    * destination of the copy, and simply replacing the sources would give a
609    * program with different semantics.
610    */
611   if ((type_sz(entry->dst.type) < type_sz(inst->src[arg].type) ||
612        entry->is_partial_write) &&
613       inst->opcode != BRW_OPCODE_MOV) {
614      return false;
615   }
616
617   /* Bail if the result of composing both strides cannot be expressed
618    * as another stride. This avoids, for example, trying to transform
619    * this:
620    *
621    *     MOV (8) rX<1>UD rY<0;1,0>UD
622    *     FOO (8) ...     rX<8;8,1>UW
623    *
624    * into this:
625    *
626    *     FOO (8) ...     rY<0;1,0>UW
627    *
628    * Which would have different semantics.
629    */
630   if (entry_stride != 1 &&
631       (inst->src[arg].stride *
632        type_sz(inst->src[arg].type)) % type_sz(entry->src.type) != 0)
633      return false;
634
635   /* Since semantics of source modifiers are type-dependent we need to
636    * ensure that the meaning of the instruction remains the same if we
637    * change the type. If the sizes of the types are different the new
638    * instruction will read a different amount of data than the original
639    * and the semantics will always be different.
640    */
641   if (has_source_modifiers &&
642       entry->dst.type != inst->src[arg].type &&
643       (!inst->can_change_types() ||
644        type_sz(entry->dst.type) != type_sz(inst->src[arg].type)))
645      return false;
646
647   if (devinfo->ver >= 8 && (entry->src.negate || entry->src.abs) &&
648       is_logic_op(inst->opcode)) {
649      return false;
650   }
651
652   if (entry->saturate) {
653      switch(inst->opcode) {
654      case BRW_OPCODE_SEL:
655         if ((inst->conditional_mod != BRW_CONDITIONAL_GE &&
656              inst->conditional_mod != BRW_CONDITIONAL_L) ||
657             inst->src[1].file != IMM ||
658             inst->src[1].f < 0.0 ||
659             inst->src[1].f > 1.0) {
660            return false;
661         }
662         break;
663      default:
664         return false;
665      }
666   }
667
668   /* Save the offset of inst->src[arg] relative to entry->dst for it to be
669    * applied later.
670    */
671   const unsigned rel_offset = inst->src[arg].offset - entry->dst.offset;
672
673   /* Fold the copy into the instruction consuming it. */
674   inst->src[arg].file = entry->src.file;
675   inst->src[arg].nr = entry->src.nr;
676   inst->src[arg].subnr = entry->src.subnr;
677   inst->src[arg].offset = entry->src.offset;
678
679   /* Compose the strides of both regions. */
680   if (entry->src.file == FIXED_GRF) {
681      if (inst->src[arg].stride) {
682         const unsigned orig_width = 1 << entry->src.width;
683         const unsigned reg_width = REG_SIZE / (type_sz(inst->src[arg].type) *
684                                                inst->src[arg].stride);
685         inst->src[arg].width = cvt(MIN2(orig_width, reg_width)) - 1;
686         inst->src[arg].hstride = cvt(inst->src[arg].stride);
687         inst->src[arg].vstride = inst->src[arg].hstride + inst->src[arg].width;
688      } else {
689         inst->src[arg].vstride = inst->src[arg].hstride =
690            inst->src[arg].width = 0;
691      }
692
693      inst->src[arg].stride = 1;
694
695      /* Hopefully no Align16 around here... */
696      assert(entry->src.swizzle == BRW_SWIZZLE_XYZW);
697      inst->src[arg].swizzle = entry->src.swizzle;
698   } else {
699      inst->src[arg].stride *= entry->src.stride;
700   }
701
702   /* Compose any saturate modifiers. */
703   inst->saturate = inst->saturate || entry->saturate;
704
705   /* Compute the first component of the copy that the instruction is
706    * reading, and the base byte offset within that component.
707    */
708   assert((entry->dst.offset % REG_SIZE == 0 || inst->opcode == BRW_OPCODE_MOV) &&
709           entry->dst.stride == 1);
710   const unsigned component = rel_offset / type_sz(entry->dst.type);
711   const unsigned suboffset = rel_offset % type_sz(entry->dst.type);
712
713   /* Calculate the byte offset at the origin of the copy of the given
714    * component and suboffset.
715    */
716   inst->src[arg] = byte_offset(inst->src[arg],
717      component * entry_stride * type_sz(entry->src.type) + suboffset);
718
719   if (has_source_modifiers) {
720      if (entry->dst.type != inst->src[arg].type) {
721         /* We are propagating source modifiers from a MOV with a different
722          * type.  If we got here, then we can just change the source and
723          * destination types of the instruction and keep going.
724          */
725         assert(inst->can_change_types());
726         for (int i = 0; i < inst->sources; i++) {
727            inst->src[i].type = entry->dst.type;
728         }
729         inst->dst.type = entry->dst.type;
730      }
731
732      if (!inst->src[arg].abs) {
733         inst->src[arg].abs = entry->src.abs;
734         inst->src[arg].negate ^= entry->src.negate;
735      }
736   }
737
738   return true;
739}
740
741
742bool
743fs_visitor::try_constant_propagate(fs_inst *inst, acp_entry *entry)
744{
745   bool progress = false;
746
747   if (entry->src.file != IMM)
748      return false;
749   if (type_sz(entry->src.type) > 4)
750      return false;
751   if (entry->saturate)
752      return false;
753
754   for (int i = inst->sources - 1; i >= 0; i--) {
755      if (inst->src[i].file != VGRF)
756         continue;
757
758      assert(entry->dst.file == VGRF);
759      if (inst->src[i].nr != entry->dst.nr)
760         continue;
761
762      /* Bail if inst is reading a range that isn't contained in the range
763       * that entry is writing.
764       */
765      if (!region_contained_in(inst->src[i], inst->size_read(i),
766                               entry->dst, entry->size_written))
767         continue;
768
769      /* If the type sizes don't match each channel of the instruction is
770       * either extracting a portion of the constant (which could be handled
771       * with some effort but the code below doesn't) or reading multiple
772       * channels of the source at once.
773       */
774      if (type_sz(inst->src[i].type) != type_sz(entry->dst.type))
775         continue;
776
777      fs_reg val = entry->src;
778      val.type = inst->src[i].type;
779
780      if (inst->src[i].abs) {
781         if ((devinfo->ver >= 8 && is_logic_op(inst->opcode)) ||
782             !brw_abs_immediate(val.type, &val.as_brw_reg())) {
783            continue;
784         }
785      }
786
787      if (inst->src[i].negate) {
788         if ((devinfo->ver >= 8 && is_logic_op(inst->opcode)) ||
789             !brw_negate_immediate(val.type, &val.as_brw_reg())) {
790            continue;
791         }
792      }
793
794      switch (inst->opcode) {
795      case BRW_OPCODE_MOV:
796      case SHADER_OPCODE_LOAD_PAYLOAD:
797      case FS_OPCODE_PACK:
798         inst->src[i] = val;
799         progress = true;
800         break;
801
802      case SHADER_OPCODE_INT_QUOTIENT:
803      case SHADER_OPCODE_INT_REMAINDER:
804         /* FINISHME: Promote non-float constants and remove this. */
805         if (devinfo->ver < 8)
806            break;
807         FALLTHROUGH;
808      case SHADER_OPCODE_POW:
809         /* Allow constant propagation into src1 (except on Gen 6 which
810          * doesn't support scalar source math), and let constant combining
811          * promote the constant on Gen < 8.
812          */
813         if (devinfo->ver == 6)
814            break;
815         FALLTHROUGH;
816      case BRW_OPCODE_BFI1:
817      case BRW_OPCODE_ASR:
818      case BRW_OPCODE_SHL:
819      case BRW_OPCODE_SHR:
820      case BRW_OPCODE_SUBB:
821         if (i == 1) {
822            inst->src[i] = val;
823            progress = true;
824         }
825         break;
826
827      case BRW_OPCODE_MACH:
828      case BRW_OPCODE_MUL:
829      case SHADER_OPCODE_MULH:
830      case BRW_OPCODE_ADD:
831      case BRW_OPCODE_OR:
832      case BRW_OPCODE_AND:
833      case BRW_OPCODE_XOR:
834      case BRW_OPCODE_ADDC:
835         if (i == 1) {
836            inst->src[i] = val;
837            progress = true;
838         } else if (i == 0 && inst->src[1].file != IMM) {
839            /* Don't copy propagate the constant in situations like
840             *
841             *    mov(8)          g8<1>D          0x7fffffffD
842             *    mul(8)          g16<1>D         g8<8,8,1>D      g15<16,8,2>W
843             *
844             * On platforms that only have a 32x16 multiplier, this will
845             * result in lowering the multiply to
846             *
847             *    mul(8)          g15<1>D         g14<8,8,1>D     0xffffUW
848             *    mul(8)          g16<1>D         g14<8,8,1>D     0x7fffUW
849             *    add(8)          g15.1<2>UW      g15.1<16,8,2>UW g16<16,8,2>UW
850             *
851             * On Gfx8 and Gfx9, which have the full 32x32 multiplier, it
852             * results in
853             *
854             *    mul(8)          g16<1>D         g15<16,8,2>W    0x7fffffffD
855             *
856             * Volume 2a of the Skylake PRM says:
857             *
858             *    When multiplying a DW and any lower precision integer, the
859             *    DW operand must on src0.
860             */
861            if (inst->opcode == BRW_OPCODE_MUL &&
862                type_sz(inst->src[1].type) < 4 &&
863                type_sz(val.type) == 4)
864               break;
865
866            /* Fit this constant in by commuting the operands.
867             * Exception: we can't do this for 32-bit integer MUL/MACH
868             * because it's asymmetric.
869             *
870             * The BSpec says for Broadwell that
871             *
872             *    "When multiplying DW x DW, the dst cannot be accumulator."
873             *
874             * Integer MUL with a non-accumulator destination will be lowered
875             * by lower_integer_multiplication(), so don't restrict it.
876             */
877            if (((inst->opcode == BRW_OPCODE_MUL &&
878                  inst->dst.is_accumulator()) ||
879                 inst->opcode == BRW_OPCODE_MACH) &&
880                (inst->src[1].type == BRW_REGISTER_TYPE_D ||
881                 inst->src[1].type == BRW_REGISTER_TYPE_UD))
882               break;
883            inst->src[0] = inst->src[1];
884            inst->src[1] = val;
885            progress = true;
886         }
887         break;
888
889      case BRW_OPCODE_CMP:
890      case BRW_OPCODE_IF:
891         if (i == 1) {
892            inst->src[i] = val;
893            progress = true;
894         } else if (i == 0 && inst->src[1].file != IMM) {
895            enum brw_conditional_mod new_cmod;
896
897            new_cmod = brw_swap_cmod(inst->conditional_mod);
898            if (new_cmod != BRW_CONDITIONAL_NONE) {
899               /* Fit this constant in by swapping the operands and
900                * flipping the test
901                */
902               inst->src[0] = inst->src[1];
903               inst->src[1] = val;
904               inst->conditional_mod = new_cmod;
905               progress = true;
906            }
907         }
908         break;
909
910      case BRW_OPCODE_SEL:
911         if (i == 1) {
912            inst->src[i] = val;
913            progress = true;
914         } else if (i == 0 && inst->src[1].file != IMM &&
915                    (inst->conditional_mod == BRW_CONDITIONAL_NONE ||
916                     /* Only GE and L are commutative. */
917                     inst->conditional_mod == BRW_CONDITIONAL_GE ||
918                     inst->conditional_mod == BRW_CONDITIONAL_L)) {
919            inst->src[0] = inst->src[1];
920            inst->src[1] = val;
921
922            /* If this was predicated, flipping operands means
923             * we also need to flip the predicate.
924             */
925            if (inst->conditional_mod == BRW_CONDITIONAL_NONE) {
926               inst->predicate_inverse =
927                  !inst->predicate_inverse;
928            }
929            progress = true;
930         }
931         break;
932
933      case FS_OPCODE_FB_WRITE_LOGICAL:
934         /* The stencil and omask sources of FS_OPCODE_FB_WRITE_LOGICAL are
935          * bit-cast using a strided region so they cannot be immediates.
936          */
937         if (i != FB_WRITE_LOGICAL_SRC_SRC_STENCIL &&
938             i != FB_WRITE_LOGICAL_SRC_OMASK) {
939            inst->src[i] = val;
940            progress = true;
941         }
942         break;
943
944      case SHADER_OPCODE_TEX_LOGICAL:
945      case SHADER_OPCODE_TXD_LOGICAL:
946      case SHADER_OPCODE_TXF_LOGICAL:
947      case SHADER_OPCODE_TXL_LOGICAL:
948      case SHADER_OPCODE_TXS_LOGICAL:
949      case FS_OPCODE_TXB_LOGICAL:
950      case SHADER_OPCODE_TXF_CMS_LOGICAL:
951      case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
952      case SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL:
953      case SHADER_OPCODE_TXF_UMS_LOGICAL:
954      case SHADER_OPCODE_TXF_MCS_LOGICAL:
955      case SHADER_OPCODE_LOD_LOGICAL:
956      case SHADER_OPCODE_TG4_LOGICAL:
957      case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
958      case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
959      case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
960      case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
961      case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
962      case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
963      case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
964      case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
965      case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
966      case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
967      case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
968      case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
969         inst->src[i] = val;
970         progress = true;
971         break;
972
973      case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
974      case SHADER_OPCODE_BROADCAST:
975         inst->src[i] = val;
976         progress = true;
977         break;
978
979      case BRW_OPCODE_MAD:
980      case BRW_OPCODE_LRP:
981         inst->src[i] = val;
982         progress = true;
983         break;
984
985      case FS_OPCODE_PACK_HALF_2x16_SPLIT:
986         inst->src[i] = val;
987         progress = true;
988         break;
989
990      default:
991         break;
992      }
993   }
994
995   return progress;
996}
997
998static bool
999can_propagate_from(fs_inst *inst)
1000{
1001   return (inst->opcode == BRW_OPCODE_MOV &&
1002           inst->dst.file == VGRF &&
1003           ((inst->src[0].file == VGRF &&
1004             !regions_overlap(inst->dst, inst->size_written,
1005                              inst->src[0], inst->size_read(0))) ||
1006            inst->src[0].file == ATTR ||
1007            inst->src[0].file == UNIFORM ||
1008            inst->src[0].file == IMM ||
1009            (inst->src[0].file == FIXED_GRF &&
1010             inst->src[0].is_contiguous())) &&
1011           inst->src[0].type == inst->dst.type &&
1012           /* Subset of !is_partial_write() conditions. */
1013           !((inst->predicate && inst->opcode != BRW_OPCODE_SEL) ||
1014             !inst->dst.is_contiguous())) ||
1015          is_identity_payload(FIXED_GRF, inst);
1016}
1017
1018/* Walks a basic block and does copy propagation on it using the acp
1019 * list.
1020 */
1021bool
1022fs_visitor::opt_copy_propagation_local(void *copy_prop_ctx, bblock_t *block,
1023                                       exec_list *acp)
1024{
1025   bool progress = false;
1026
1027   foreach_inst_in_block(fs_inst, inst, block) {
1028      /* Try propagating into this instruction. */
1029      for (int i = 0; i < inst->sources; i++) {
1030         if (inst->src[i].file != VGRF)
1031            continue;
1032
1033         foreach_in_list(acp_entry, entry, &acp[inst->src[i].nr % ACP_HASH_SIZE]) {
1034            if (try_constant_propagate(inst, entry))
1035               progress = true;
1036            else if (try_copy_propagate(inst, i, entry))
1037               progress = true;
1038         }
1039      }
1040
1041      /* kill the destination from the ACP */
1042      if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) {
1043         foreach_in_list_safe(acp_entry, entry, &acp[inst->dst.nr % ACP_HASH_SIZE]) {
1044            if (regions_overlap(entry->dst, entry->size_written,
1045                                inst->dst, inst->size_written))
1046               entry->remove();
1047         }
1048
1049         /* Oops, we only have the chaining hash based on the destination, not
1050          * the source, so walk across the entire table.
1051          */
1052         for (int i = 0; i < ACP_HASH_SIZE; i++) {
1053            foreach_in_list_safe(acp_entry, entry, &acp[i]) {
1054               /* Make sure we kill the entry if this instruction overwrites
1055                * _any_ of the registers that it reads
1056                */
1057               if (regions_overlap(entry->src, entry->size_read,
1058                                   inst->dst, inst->size_written))
1059                  entry->remove();
1060            }
1061	 }
1062      }
1063
1064      /* If this instruction's source could potentially be folded into the
1065       * operand of another instruction, add it to the ACP.
1066       */
1067      if (can_propagate_from(inst)) {
1068         acp_entry *entry = rzalloc(copy_prop_ctx, acp_entry);
1069         entry->dst = inst->dst;
1070         entry->src = inst->src[0];
1071         entry->size_written = inst->size_written;
1072         for (unsigned i = 0; i < inst->sources; i++)
1073            entry->size_read += inst->size_read(i);
1074         entry->opcode = inst->opcode;
1075         entry->saturate = inst->saturate;
1076         entry->is_partial_write = inst->is_partial_write();
1077         acp[entry->dst.nr % ACP_HASH_SIZE].push_tail(entry);
1078      } else if (inst->opcode == SHADER_OPCODE_LOAD_PAYLOAD &&
1079                 inst->dst.file == VGRF) {
1080         int offset = 0;
1081         for (int i = 0; i < inst->sources; i++) {
1082            int effective_width = i < inst->header_size ? 8 : inst->exec_size;
1083            const unsigned size_written = effective_width *
1084                                          type_sz(inst->src[i].type);
1085            if (inst->src[i].file == VGRF ||
1086                (inst->src[i].file == FIXED_GRF &&
1087                 inst->src[i].is_contiguous())) {
1088               acp_entry *entry = rzalloc(copy_prop_ctx, acp_entry);
1089               entry->dst = byte_offset(inst->dst, offset);
1090               entry->src = inst->src[i];
1091               entry->size_written = size_written;
1092               entry->size_read = inst->size_read(i);
1093               entry->opcode = inst->opcode;
1094               if (!entry->dst.equals(inst->src[i])) {
1095                  acp[entry->dst.nr % ACP_HASH_SIZE].push_tail(entry);
1096               } else {
1097                  ralloc_free(entry);
1098               }
1099            }
1100            offset += size_written;
1101         }
1102      }
1103   }
1104
1105   return progress;
1106}
1107
1108bool
1109fs_visitor::opt_copy_propagation()
1110{
1111   bool progress = false;
1112   void *copy_prop_ctx = ralloc_context(NULL);
1113   exec_list *out_acp[cfg->num_blocks];
1114
1115   for (int i = 0; i < cfg->num_blocks; i++)
1116      out_acp[i] = new exec_list [ACP_HASH_SIZE];
1117
1118   const fs_live_variables &live = live_analysis.require();
1119
1120   /* First, walk through each block doing local copy propagation and getting
1121    * the set of copies available at the end of the block.
1122    */
1123   foreach_block (block, cfg) {
1124      progress = opt_copy_propagation_local(copy_prop_ctx, block,
1125                                            out_acp[block->num]) || progress;
1126
1127      /* If the destination of an ACP entry exists only within this block,
1128       * then there's no need to keep it for dataflow analysis.  We can delete
1129       * it from the out_acp table and avoid growing the bitsets any bigger
1130       * than we absolutely have to.
1131       *
1132       * Because nothing in opt_copy_propagation_local touches the block
1133       * start/end IPs and opt_copy_propagation_local is incapable of
1134       * extending the live range of an ACP destination beyond the block,
1135       * it's safe to use the liveness information in this way.
1136       */
1137      for (unsigned a = 0; a < ACP_HASH_SIZE; a++) {
1138         foreach_in_list_safe(acp_entry, entry, &out_acp[block->num][a]) {
1139            assert(entry->dst.file == VGRF);
1140            if (block->start_ip <= live.vgrf_start[entry->dst.nr] &&
1141                live.vgrf_end[entry->dst.nr] <= block->end_ip)
1142               entry->remove();
1143         }
1144      }
1145   }
1146
1147   /* Do dataflow analysis for those available copies. */
1148   fs_copy_prop_dataflow dataflow(copy_prop_ctx, cfg, live, out_acp);
1149
1150   /* Next, re-run local copy propagation, this time with the set of copies
1151    * provided by the dataflow analysis available at the start of a block.
1152    */
1153   foreach_block (block, cfg) {
1154      exec_list in_acp[ACP_HASH_SIZE];
1155
1156      for (int i = 0; i < dataflow.num_acp; i++) {
1157         if (BITSET_TEST(dataflow.bd[block->num].livein, i)) {
1158            struct acp_entry *entry = dataflow.acp[i];
1159            in_acp[entry->dst.nr % ACP_HASH_SIZE].push_tail(entry);
1160         }
1161      }
1162
1163      progress = opt_copy_propagation_local(copy_prop_ctx, block, in_acp) ||
1164                 progress;
1165   }
1166
1167   for (int i = 0; i < cfg->num_blocks; i++)
1168      delete [] out_acp[i];
1169   ralloc_free(copy_prop_ctx);
1170
1171   if (progress)
1172      invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW |
1173                          DEPENDENCY_INSTRUCTION_DETAIL);
1174
1175   return progress;
1176}
1177