1/* 2 * Copyright © 2010 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24/** @file brw_fs.cpp 25 * 26 * This file drives the GLSL IR -> LIR translation, contains the 27 * optimizations on the LIR, and drives the generation of native code 28 * from the LIR. 29 */ 30 31#include "main/macros.h" 32#include "brw_eu.h" 33#include "brw_fs.h" 34#include "brw_fs_live_variables.h" 35#include "brw_nir.h" 36#include "brw_vec4_gs_visitor.h" 37#include "brw_cfg.h" 38#include "brw_dead_control_flow.h" 39#include "brw_private.h" 40#include "dev/intel_debug.h" 41#include "compiler/glsl_types.h" 42#include "compiler/nir/nir_builder.h" 43#include "program/prog_parameter.h" 44#include "util/u_math.h" 45 46using namespace brw; 47 48static unsigned get_lowered_simd_width(const struct brw_compiler *compiler, 49 const fs_inst *inst); 50 51void 52fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst, 53 const fs_reg *src, unsigned sources) 54{ 55 memset((void*)this, 0, sizeof(*this)); 56 57 this->src = new fs_reg[MAX2(sources, 3)]; 58 for (unsigned i = 0; i < sources; i++) 59 this->src[i] = src[i]; 60 61 this->opcode = opcode; 62 this->dst = dst; 63 this->sources = sources; 64 this->exec_size = exec_size; 65 this->base_mrf = -1; 66 67 assert(dst.file != IMM && dst.file != UNIFORM); 68 69 assert(this->exec_size != 0); 70 71 this->conditional_mod = BRW_CONDITIONAL_NONE; 72 73 /* This will be the case for almost all instructions. */ 74 switch (dst.file) { 75 case VGRF: 76 case ARF: 77 case FIXED_GRF: 78 case MRF: 79 case ATTR: 80 this->size_written = dst.component_size(exec_size); 81 break; 82 case BAD_FILE: 83 this->size_written = 0; 84 break; 85 case IMM: 86 case UNIFORM: 87 unreachable("Invalid destination register file"); 88 } 89 90 this->writes_accumulator = false; 91} 92 93fs_inst::fs_inst() 94{ 95 init(BRW_OPCODE_NOP, 8, dst, NULL, 0); 96} 97 98fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size) 99{ 100 init(opcode, exec_size, reg_undef, NULL, 0); 101} 102 103fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst) 104{ 105 init(opcode, exec_size, dst, NULL, 0); 106} 107 108fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst, 109 const fs_reg &src0) 110{ 111 const fs_reg src[1] = { src0 }; 112 init(opcode, exec_size, dst, src, 1); 113} 114 115fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst, 116 const fs_reg &src0, const fs_reg &src1) 117{ 118 const fs_reg src[2] = { src0, src1 }; 119 init(opcode, exec_size, dst, src, 2); 120} 121 122fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst, 123 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2) 124{ 125 const fs_reg src[3] = { src0, src1, src2 }; 126 init(opcode, exec_size, dst, src, 3); 127} 128 129fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst, 130 const fs_reg src[], unsigned sources) 131{ 132 init(opcode, exec_width, dst, src, sources); 133} 134 135fs_inst::fs_inst(const fs_inst &that) 136{ 137 memcpy((void*)this, &that, sizeof(that)); 138 139 this->src = new fs_reg[MAX2(that.sources, 3)]; 140 141 for (unsigned i = 0; i < that.sources; i++) 142 this->src[i] = that.src[i]; 143} 144 145fs_inst::~fs_inst() 146{ 147 delete[] this->src; 148} 149 150void 151fs_inst::resize_sources(uint8_t num_sources) 152{ 153 if (this->sources != num_sources) { 154 fs_reg *src = new fs_reg[MAX2(num_sources, 3)]; 155 156 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i) 157 src[i] = this->src[i]; 158 159 delete[] this->src; 160 this->src = src; 161 this->sources = num_sources; 162 } 163} 164 165void 166fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld, 167 const fs_reg &dst, 168 const fs_reg &surf_index, 169 const fs_reg &varying_offset, 170 uint32_t const_offset, 171 uint8_t alignment) 172{ 173 /* We have our constant surface use a pitch of 4 bytes, so our index can 174 * be any component of a vector, and then we load 4 contiguous 175 * components starting from that. 176 * 177 * We break down the const_offset to a portion added to the variable offset 178 * and a portion done using fs_reg::offset, which means that if you have 179 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]", 180 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can 181 * later notice that those loads are all the same and eliminate the 182 * redundant ones. 183 */ 184 fs_reg vec4_offset = vgrf(glsl_type::uint_type); 185 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf)); 186 187 /* The pull load message will load a vec4 (16 bytes). If we are loading 188 * a double this means we are only loading 2 elements worth of data. 189 * We also want to use a 32-bit data type for the dst of the load operation 190 * so other parts of the driver don't get confused about the size of the 191 * result. 192 */ 193 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4); 194 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL, 195 vec4_result, surf_index, vec4_offset, 196 brw_imm_ud(alignment)); 197 inst->size_written = 4 * vec4_result.component_size(inst->exec_size); 198 199 shuffle_from_32bit_read(bld, dst, vec4_result, 200 (const_offset & 0xf) / type_sz(dst.type), 1); 201} 202 203/** 204 * A helper for MOV generation for fixing up broken hardware SEND dependency 205 * handling. 206 */ 207void 208fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf) 209{ 210 /* The caller always wants uncompressed to emit the minimal extra 211 * dependencies, and to avoid having to deal with aligning its regs to 2. 212 */ 213 const fs_builder ubld = bld.annotate("send dependency resolve") 214 .quarter(0); 215 216 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F)); 217} 218 219bool 220fs_inst::is_send_from_grf() const 221{ 222 switch (opcode) { 223 case SHADER_OPCODE_SEND: 224 case FS_OPCODE_INTERPOLATE_AT_SAMPLE: 225 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET: 226 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: 227 case SHADER_OPCODE_INTERLOCK: 228 case SHADER_OPCODE_MEMORY_FENCE: 229 case SHADER_OPCODE_BARRIER: 230 return true; 231 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD: 232 return src[1].file == VGRF; 233 case FS_OPCODE_FB_WRITE: 234 case FS_OPCODE_FB_READ: 235 return src[0].file == VGRF; 236 default: 237 if (is_tex()) 238 return src[0].file == VGRF; 239 240 return false; 241 } 242} 243 244bool 245fs_inst::is_control_source(unsigned arg) const 246{ 247 switch (opcode) { 248 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD: 249 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GFX7: 250 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GFX4: 251 return arg == 0; 252 253 case SHADER_OPCODE_BROADCAST: 254 case SHADER_OPCODE_SHUFFLE: 255 case SHADER_OPCODE_QUAD_SWIZZLE: 256 case FS_OPCODE_INTERPOLATE_AT_SAMPLE: 257 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET: 258 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: 259 case SHADER_OPCODE_GET_BUFFER_SIZE: 260 return arg == 1; 261 262 case SHADER_OPCODE_MOV_INDIRECT: 263 case SHADER_OPCODE_CLUSTER_BROADCAST: 264 case SHADER_OPCODE_TEX: 265 case FS_OPCODE_TXB: 266 case SHADER_OPCODE_TXD: 267 case SHADER_OPCODE_TXF: 268 case SHADER_OPCODE_TXF_LZ: 269 case SHADER_OPCODE_TXF_CMS: 270 case SHADER_OPCODE_TXF_CMS_W: 271 case SHADER_OPCODE_TXF_UMS: 272 case SHADER_OPCODE_TXF_MCS: 273 case SHADER_OPCODE_TXL: 274 case SHADER_OPCODE_TXL_LZ: 275 case SHADER_OPCODE_TXS: 276 case SHADER_OPCODE_LOD: 277 case SHADER_OPCODE_TG4: 278 case SHADER_OPCODE_TG4_OFFSET: 279 case SHADER_OPCODE_SAMPLEINFO: 280 return arg == 1 || arg == 2; 281 282 case SHADER_OPCODE_SEND: 283 return arg == 0 || arg == 1; 284 285 default: 286 return false; 287 } 288} 289 290bool 291fs_inst::is_payload(unsigned arg) const 292{ 293 switch (opcode) { 294 case FS_OPCODE_FB_WRITE: 295 case FS_OPCODE_FB_READ: 296 case VEC4_OPCODE_UNTYPED_ATOMIC: 297 case VEC4_OPCODE_UNTYPED_SURFACE_READ: 298 case VEC4_OPCODE_UNTYPED_SURFACE_WRITE: 299 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: 300 case FS_OPCODE_INTERPOLATE_AT_SAMPLE: 301 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET: 302 case SHADER_OPCODE_INTERLOCK: 303 case SHADER_OPCODE_MEMORY_FENCE: 304 case SHADER_OPCODE_BARRIER: 305 return arg == 0; 306 307 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GFX7: 308 return arg == 1; 309 310 case SHADER_OPCODE_SEND: 311 return arg == 2 || arg == 3; 312 313 default: 314 if (is_tex()) 315 return arg == 0; 316 else 317 return false; 318 } 319} 320 321/** 322 * Returns true if this instruction's sources and destinations cannot 323 * safely be the same register. 324 * 325 * In most cases, a register can be written over safely by the same 326 * instruction that is its last use. For a single instruction, the 327 * sources are dereferenced before writing of the destination starts 328 * (naturally). 329 * 330 * However, there are a few cases where this can be problematic: 331 * 332 * - Virtual opcodes that translate to multiple instructions in the 333 * code generator: if src == dst and one instruction writes the 334 * destination before a later instruction reads the source, then 335 * src will have been clobbered. 336 * 337 * - SIMD16 compressed instructions with certain regioning (see below). 338 * 339 * The register allocator uses this information to set up conflicts between 340 * GRF sources and the destination. 341 */ 342bool 343fs_inst::has_source_and_destination_hazard() const 344{ 345 switch (opcode) { 346 case FS_OPCODE_PACK_HALF_2x16_SPLIT: 347 /* Multiple partial writes to the destination */ 348 return true; 349 case SHADER_OPCODE_SHUFFLE: 350 /* This instruction returns an arbitrary channel from the source and 351 * gets split into smaller instructions in the generator. It's possible 352 * that one of the instructions will read from a channel corresponding 353 * to an earlier instruction. 354 */ 355 case SHADER_OPCODE_SEL_EXEC: 356 /* This is implemented as 357 * 358 * mov(16) g4<1>D 0D { align1 WE_all 1H }; 359 * mov(16) g4<1>D g5<8,8,1>D { align1 1H } 360 * 361 * Because the source is only read in the second instruction, the first 362 * may stomp all over it. 363 */ 364 return true; 365 case SHADER_OPCODE_QUAD_SWIZZLE: 366 switch (src[1].ud) { 367 case BRW_SWIZZLE_XXXX: 368 case BRW_SWIZZLE_YYYY: 369 case BRW_SWIZZLE_ZZZZ: 370 case BRW_SWIZZLE_WWWW: 371 case BRW_SWIZZLE_XXZZ: 372 case BRW_SWIZZLE_YYWW: 373 case BRW_SWIZZLE_XYXY: 374 case BRW_SWIZZLE_ZWZW: 375 /* These can be implemented as a single Align1 region on all 376 * platforms, so there's never a hazard between source and 377 * destination. C.f. fs_generator::generate_quad_swizzle(). 378 */ 379 return false; 380 default: 381 return !is_uniform(src[0]); 382 } 383 default: 384 /* The SIMD16 compressed instruction 385 * 386 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F 387 * 388 * is actually decoded in hardware as: 389 * 390 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F 391 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F 392 * 393 * Which is safe. However, if we have uniform accesses 394 * happening, we get into trouble: 395 * 396 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F 397 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F 398 * 399 * Now our destination for the first instruction overwrote the 400 * second instruction's src0, and we get garbage for those 8 401 * pixels. There's a similar issue for the pre-gfx6 402 * pixel_x/pixel_y, which are registers of 16-bit values and thus 403 * would get stomped by the first decode as well. 404 */ 405 if (exec_size == 16) { 406 for (int i = 0; i < sources; i++) { 407 if (src[i].file == VGRF && (src[i].stride == 0 || 408 src[i].type == BRW_REGISTER_TYPE_UW || 409 src[i].type == BRW_REGISTER_TYPE_W || 410 src[i].type == BRW_REGISTER_TYPE_UB || 411 src[i].type == BRW_REGISTER_TYPE_B)) { 412 return true; 413 } 414 } 415 } 416 return false; 417 } 418} 419 420bool 421fs_inst::can_do_source_mods(const struct intel_device_info *devinfo) const 422{ 423 if (devinfo->ver == 6 && is_math()) 424 return false; 425 426 if (is_send_from_grf()) 427 return false; 428 429 /* From Wa_1604601757: 430 * 431 * "When multiplying a DW and any lower precision integer, source modifier 432 * is not supported." 433 */ 434 if (devinfo->ver >= 12 && (opcode == BRW_OPCODE_MUL || 435 opcode == BRW_OPCODE_MAD)) { 436 const brw_reg_type exec_type = get_exec_type(this); 437 const unsigned min_type_sz = opcode == BRW_OPCODE_MAD ? 438 MIN2(type_sz(src[1].type), type_sz(src[2].type)) : 439 MIN2(type_sz(src[0].type), type_sz(src[1].type)); 440 441 if (brw_reg_type_is_integer(exec_type) && 442 type_sz(exec_type) >= 4 && 443 type_sz(exec_type) != min_type_sz) 444 return false; 445 } 446 447 if (!backend_instruction::can_do_source_mods()) 448 return false; 449 450 return true; 451} 452 453bool 454fs_inst::can_do_cmod() 455{ 456 if (!backend_instruction::can_do_cmod()) 457 return false; 458 459 /* The accumulator result appears to get used for the conditional modifier 460 * generation. When negating a UD value, there is a 33rd bit generated for 461 * the sign in the accumulator value, so now you can't check, for example, 462 * equality with a 32-bit value. See piglit fs-op-neg-uvec4. 463 */ 464 for (unsigned i = 0; i < sources; i++) { 465 if (brw_reg_type_is_unsigned_integer(src[i].type) && src[i].negate) 466 return false; 467 } 468 469 return true; 470} 471 472bool 473fs_inst::can_change_types() const 474{ 475 return dst.type == src[0].type && 476 !src[0].abs && !src[0].negate && !saturate && 477 (opcode == BRW_OPCODE_MOV || 478 (opcode == BRW_OPCODE_SEL && 479 dst.type == src[1].type && 480 predicate != BRW_PREDICATE_NONE && 481 !src[1].abs && !src[1].negate)); 482} 483 484void 485fs_reg::init() 486{ 487 memset((void*)this, 0, sizeof(*this)); 488 type = BRW_REGISTER_TYPE_UD; 489 stride = 1; 490} 491 492/** Generic unset register constructor. */ 493fs_reg::fs_reg() 494{ 495 init(); 496 this->file = BAD_FILE; 497} 498 499fs_reg::fs_reg(struct ::brw_reg reg) : 500 backend_reg(reg) 501{ 502 this->offset = 0; 503 this->stride = 1; 504 if (this->file == IMM && 505 (this->type != BRW_REGISTER_TYPE_V && 506 this->type != BRW_REGISTER_TYPE_UV && 507 this->type != BRW_REGISTER_TYPE_VF)) { 508 this->stride = 0; 509 } 510} 511 512bool 513fs_reg::equals(const fs_reg &r) const 514{ 515 return (this->backend_reg::equals(r) && 516 stride == r.stride); 517} 518 519bool 520fs_reg::negative_equals(const fs_reg &r) const 521{ 522 return (this->backend_reg::negative_equals(r) && 523 stride == r.stride); 524} 525 526bool 527fs_reg::is_contiguous() const 528{ 529 switch (file) { 530 case ARF: 531 case FIXED_GRF: 532 return hstride == BRW_HORIZONTAL_STRIDE_1 && 533 vstride == width + hstride; 534 case MRF: 535 case VGRF: 536 case ATTR: 537 return stride == 1; 538 case UNIFORM: 539 case IMM: 540 case BAD_FILE: 541 return true; 542 } 543 544 unreachable("Invalid register file"); 545} 546 547unsigned 548fs_reg::component_size(unsigned width) const 549{ 550 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride : 551 hstride == 0 ? 0 : 552 1 << (hstride - 1)); 553 return MAX2(width * stride, 1) * type_sz(type); 554} 555 556/** 557 * Create a MOV to read the timestamp register. 558 */ 559fs_reg 560fs_visitor::get_timestamp(const fs_builder &bld) 561{ 562 assert(devinfo->ver >= 7); 563 564 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE, 565 BRW_ARF_TIMESTAMP, 566 0), 567 BRW_REGISTER_TYPE_UD)); 568 569 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD); 570 571 /* We want to read the 3 fields we care about even if it's not enabled in 572 * the dispatch. 573 */ 574 bld.group(4, 0).exec_all().MOV(dst, ts); 575 576 return dst; 577} 578 579void 580fs_visitor::vfail(const char *format, va_list va) 581{ 582 char *msg; 583 584 if (failed) 585 return; 586 587 failed = true; 588 589 msg = ralloc_vasprintf(mem_ctx, format, va); 590 msg = ralloc_asprintf(mem_ctx, "SIMD%d %s compile failed: %s\n", 591 dispatch_width, stage_abbrev, msg); 592 593 this->fail_msg = msg; 594 595 if (unlikely(debug_enabled)) { 596 fprintf(stderr, "%s", msg); 597 } 598} 599 600void 601fs_visitor::fail(const char *format, ...) 602{ 603 va_list va; 604 605 va_start(va, format); 606 vfail(format, va); 607 va_end(va); 608} 609 610/** 611 * Mark this program as impossible to compile with dispatch width greater 612 * than n. 613 * 614 * During the SIMD8 compile (which happens first), we can detect and flag 615 * things that are unsupported in SIMD16+ mode, so the compiler can skip the 616 * SIMD16+ compile altogether. 617 * 618 * During a compile of dispatch width greater than n (if one happens anyway), 619 * this just calls fail(). 620 */ 621void 622fs_visitor::limit_dispatch_width(unsigned n, const char *msg) 623{ 624 if (dispatch_width > n) { 625 fail("%s", msg); 626 } else { 627 max_dispatch_width = MIN2(max_dispatch_width, n); 628 brw_shader_perf_log(compiler, log_data, 629 "Shader dispatch width limited to SIMD%d: %s\n", 630 n, msg); 631 } 632} 633 634/** 635 * Returns true if the instruction has a flag that means it won't 636 * update an entire destination register. 637 * 638 * For example, dead code elimination and live variable analysis want to know 639 * when a write to a variable screens off any preceding values that were in 640 * it. 641 */ 642bool 643fs_inst::is_partial_write() const 644{ 645 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) || 646 (this->exec_size * type_sz(this->dst.type)) < 32 || 647 !this->dst.is_contiguous() || 648 this->dst.offset % REG_SIZE != 0); 649} 650 651unsigned 652fs_inst::components_read(unsigned i) const 653{ 654 /* Return zero if the source is not present. */ 655 if (src[i].file == BAD_FILE) 656 return 0; 657 658 switch (opcode) { 659 case FS_OPCODE_LINTERP: 660 if (i == 0) 661 return 2; 662 else 663 return 1; 664 665 case FS_OPCODE_PIXEL_X: 666 case FS_OPCODE_PIXEL_Y: 667 assert(i < 2); 668 if (i == 0) 669 return 2; 670 else 671 return 1; 672 673 case FS_OPCODE_FB_WRITE_LOGICAL: 674 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM); 675 /* First/second FB write color. */ 676 if (i < 2) 677 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud; 678 else 679 return 1; 680 681 case SHADER_OPCODE_TEX_LOGICAL: 682 case SHADER_OPCODE_TXD_LOGICAL: 683 case SHADER_OPCODE_TXF_LOGICAL: 684 case SHADER_OPCODE_TXL_LOGICAL: 685 case SHADER_OPCODE_TXS_LOGICAL: 686 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL: 687 case FS_OPCODE_TXB_LOGICAL: 688 case SHADER_OPCODE_TXF_CMS_LOGICAL: 689 case SHADER_OPCODE_TXF_CMS_W_LOGICAL: 690 case SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL: 691 case SHADER_OPCODE_TXF_UMS_LOGICAL: 692 case SHADER_OPCODE_TXF_MCS_LOGICAL: 693 case SHADER_OPCODE_LOD_LOGICAL: 694 case SHADER_OPCODE_TG4_LOGICAL: 695 case SHADER_OPCODE_TG4_OFFSET_LOGICAL: 696 case SHADER_OPCODE_SAMPLEINFO_LOGICAL: 697 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM && 698 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM); 699 /* Texture coordinates. */ 700 if (i == TEX_LOGICAL_SRC_COORDINATE) 701 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud; 702 /* Texture derivatives. */ 703 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) && 704 opcode == SHADER_OPCODE_TXD_LOGICAL) 705 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud; 706 /* Texture offset. */ 707 else if (i == TEX_LOGICAL_SRC_TG4_OFFSET) 708 return 2; 709 /* MCS */ 710 else if (i == TEX_LOGICAL_SRC_MCS) { 711 if (opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL) 712 return 2; 713 else if (opcode == SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL) 714 return 4; 715 else 716 return 1; 717 } else 718 return 1; 719 720 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL: 721 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL: 722 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM); 723 /* Surface coordinates. */ 724 if (i == SURFACE_LOGICAL_SRC_ADDRESS) 725 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud; 726 /* Surface operation source (ignored for reads). */ 727 else if (i == SURFACE_LOGICAL_SRC_DATA) 728 return 0; 729 else 730 return 1; 731 732 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL: 733 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL: 734 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM && 735 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM); 736 /* Surface coordinates. */ 737 if (i == SURFACE_LOGICAL_SRC_ADDRESS) 738 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud; 739 /* Surface operation source. */ 740 else if (i == SURFACE_LOGICAL_SRC_DATA) 741 return src[SURFACE_LOGICAL_SRC_IMM_ARG].ud; 742 else 743 return 1; 744 745 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL: 746 case SHADER_OPCODE_A64_OWORD_BLOCK_READ_LOGICAL: 747 case SHADER_OPCODE_A64_UNALIGNED_OWORD_BLOCK_READ_LOGICAL: 748 assert(src[2].file == IMM); 749 return 1; 750 751 case SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL: 752 assert(src[2].file == IMM); 753 if (i == 1) { /* data to write */ 754 const unsigned comps = src[2].ud / exec_size; 755 assert(comps > 0); 756 return comps; 757 } else { 758 return 1; 759 } 760 761 case SHADER_OPCODE_OWORD_BLOCK_READ_LOGICAL: 762 case SHADER_OPCODE_UNALIGNED_OWORD_BLOCK_READ_LOGICAL: 763 assert(src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM); 764 return 1; 765 766 case SHADER_OPCODE_OWORD_BLOCK_WRITE_LOGICAL: 767 assert(src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM); 768 if (i == SURFACE_LOGICAL_SRC_DATA) { 769 const unsigned comps = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud / exec_size; 770 assert(comps > 0); 771 return comps; 772 } else { 773 return 1; 774 } 775 776 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL: 777 assert(src[2].file == IMM); 778 return i == 1 ? src[2].ud : 1; 779 780 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL: 781 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT16_LOGICAL: 782 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL: 783 assert(src[2].file == IMM); 784 if (i == 1) { 785 /* Data source */ 786 const unsigned op = src[2].ud; 787 switch (op) { 788 case BRW_AOP_INC: 789 case BRW_AOP_DEC: 790 case BRW_AOP_PREDEC: 791 return 0; 792 case BRW_AOP_CMPWR: 793 return 2; 794 default: 795 return 1; 796 } 797 } else { 798 return 1; 799 } 800 801 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT16_LOGICAL: 802 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT32_LOGICAL: 803 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT64_LOGICAL: 804 assert(src[2].file == IMM); 805 if (i == 1) { 806 /* Data source */ 807 const unsigned op = src[2].ud; 808 return op == BRW_AOP_FCMPWR ? 2 : 1; 809 } else { 810 return 1; 811 } 812 813 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL: 814 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL: 815 /* Scattered logical opcodes use the following params: 816 * src[0] Surface coordinates 817 * src[1] Surface operation source (ignored for reads) 818 * src[2] Surface 819 * src[3] IMM with always 1 dimension. 820 * src[4] IMM with arg bitsize for scattered read/write 8, 16, 32 821 */ 822 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM && 823 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM); 824 return i == SURFACE_LOGICAL_SRC_DATA ? 0 : 1; 825 826 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL: 827 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL: 828 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM && 829 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM); 830 return 1; 831 832 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL: 833 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: { 834 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM && 835 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM); 836 const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud; 837 /* Surface coordinates. */ 838 if (i == SURFACE_LOGICAL_SRC_ADDRESS) 839 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud; 840 /* Surface operation source. */ 841 else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_CMPWR) 842 return 2; 843 else if (i == SURFACE_LOGICAL_SRC_DATA && 844 (op == BRW_AOP_INC || op == BRW_AOP_DEC || op == BRW_AOP_PREDEC)) 845 return 0; 846 else 847 return 1; 848 } 849 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: 850 return (i == 0 ? 2 : 1); 851 852 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL: { 853 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM && 854 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM); 855 const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud; 856 /* Surface coordinates. */ 857 if (i == SURFACE_LOGICAL_SRC_ADDRESS) 858 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud; 859 /* Surface operation source. */ 860 else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_FCMPWR) 861 return 2; 862 else 863 return 1; 864 } 865 866 case SHADER_OPCODE_URB_WRITE_LOGICAL: 867 if (i == URB_LOGICAL_SRC_DATA) 868 return mlen - 1 - 869 unsigned(src[URB_LOGICAL_SRC_PER_SLOT_OFFSETS].file != BAD_FILE) - 870 unsigned(src[URB_LOGICAL_SRC_CHANNEL_MASK].file != BAD_FILE); 871 else 872 return 1; 873 874 default: 875 return 1; 876 } 877} 878 879unsigned 880fs_inst::size_read(int arg) const 881{ 882 switch (opcode) { 883 case SHADER_OPCODE_SEND: 884 if (arg == 2) { 885 return mlen * REG_SIZE; 886 } else if (arg == 3) { 887 return ex_mlen * REG_SIZE; 888 } 889 break; 890 891 case FS_OPCODE_FB_WRITE: 892 case FS_OPCODE_REP_FB_WRITE: 893 if (arg == 0) { 894 if (base_mrf >= 0) 895 return src[0].file == BAD_FILE ? 0 : 2 * REG_SIZE; 896 else 897 return mlen * REG_SIZE; 898 } 899 break; 900 901 case FS_OPCODE_FB_READ: 902 case FS_OPCODE_INTERPOLATE_AT_SAMPLE: 903 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET: 904 if (arg == 0) 905 return mlen * REG_SIZE; 906 break; 907 908 case FS_OPCODE_SET_SAMPLE_ID: 909 if (arg == 1) 910 return 1; 911 break; 912 913 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GFX7: 914 /* The payload is actually stored in src1 */ 915 if (arg == 1) 916 return mlen * REG_SIZE; 917 break; 918 919 case FS_OPCODE_LINTERP: 920 if (arg == 1) 921 return 16; 922 break; 923 924 case SHADER_OPCODE_LOAD_PAYLOAD: 925 if (arg < this->header_size) 926 return REG_SIZE; 927 break; 928 929 case CS_OPCODE_CS_TERMINATE: 930 case SHADER_OPCODE_BARRIER: 931 return REG_SIZE; 932 933 case SHADER_OPCODE_MOV_INDIRECT: 934 if (arg == 0) { 935 assert(src[2].file == IMM); 936 return src[2].ud; 937 } 938 break; 939 940 default: 941 if (is_tex() && arg == 0 && src[0].file == VGRF) 942 return mlen * REG_SIZE; 943 break; 944 } 945 946 switch (src[arg].file) { 947 case UNIFORM: 948 case IMM: 949 return components_read(arg) * type_sz(src[arg].type); 950 case BAD_FILE: 951 case ARF: 952 case FIXED_GRF: 953 case VGRF: 954 case ATTR: 955 return components_read(arg) * src[arg].component_size(exec_size); 956 case MRF: 957 unreachable("MRF registers are not allowed as sources"); 958 } 959 return 0; 960} 961 962namespace { 963 unsigned 964 predicate_width(brw_predicate predicate) 965 { 966 switch (predicate) { 967 case BRW_PREDICATE_NONE: return 1; 968 case BRW_PREDICATE_NORMAL: return 1; 969 case BRW_PREDICATE_ALIGN1_ANY2H: return 2; 970 case BRW_PREDICATE_ALIGN1_ALL2H: return 2; 971 case BRW_PREDICATE_ALIGN1_ANY4H: return 4; 972 case BRW_PREDICATE_ALIGN1_ALL4H: return 4; 973 case BRW_PREDICATE_ALIGN1_ANY8H: return 8; 974 case BRW_PREDICATE_ALIGN1_ALL8H: return 8; 975 case BRW_PREDICATE_ALIGN1_ANY16H: return 16; 976 case BRW_PREDICATE_ALIGN1_ALL16H: return 16; 977 case BRW_PREDICATE_ALIGN1_ANY32H: return 32; 978 case BRW_PREDICATE_ALIGN1_ALL32H: return 32; 979 default: unreachable("Unsupported predicate"); 980 } 981 } 982 983 /* Return the subset of flag registers that an instruction could 984 * potentially read or write based on the execution controls and flag 985 * subregister number of the instruction. 986 */ 987 unsigned 988 flag_mask(const fs_inst *inst, unsigned width) 989 { 990 assert(util_is_power_of_two_nonzero(width)); 991 const unsigned start = (inst->flag_subreg * 16 + inst->group) & 992 ~(width - 1); 993 const unsigned end = start + ALIGN(inst->exec_size, width); 994 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1); 995 } 996 997 unsigned 998 bit_mask(unsigned n) 999 { 1000 return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1); 1001 } 1002 1003 unsigned 1004 flag_mask(const fs_reg &r, unsigned sz) 1005 { 1006 if (r.file == ARF) { 1007 const unsigned start = (r.nr - BRW_ARF_FLAG) * 4 + r.subnr; 1008 const unsigned end = start + sz; 1009 return bit_mask(end) & ~bit_mask(start); 1010 } else { 1011 return 0; 1012 } 1013 } 1014} 1015 1016unsigned 1017fs_inst::flags_read(const intel_device_info *devinfo) const 1018{ 1019 if (predicate == BRW_PREDICATE_ALIGN1_ANYV || 1020 predicate == BRW_PREDICATE_ALIGN1_ALLV) { 1021 /* The vertical predication modes combine corresponding bits from 1022 * f0.0 and f1.0 on Gfx7+, and f0.0 and f0.1 on older hardware. 1023 */ 1024 const unsigned shift = devinfo->ver >= 7 ? 4 : 2; 1025 return flag_mask(this, 1) << shift | flag_mask(this, 1); 1026 } else if (predicate) { 1027 return flag_mask(this, predicate_width(predicate)); 1028 } else { 1029 unsigned mask = 0; 1030 for (int i = 0; i < sources; i++) { 1031 mask |= flag_mask(src[i], size_read(i)); 1032 } 1033 return mask; 1034 } 1035} 1036 1037unsigned 1038fs_inst::flags_written(const intel_device_info *devinfo) const 1039{ 1040 /* On Gfx4 and Gfx5, sel.l (for min) and sel.ge (for max) are implemented 1041 * using a separate cmpn and sel instruction. This lowering occurs in 1042 * fs_vistor::lower_minmax which is called very, very late. 1043 */ 1044 if ((conditional_mod && ((opcode != BRW_OPCODE_SEL || devinfo->ver <= 5) && 1045 opcode != BRW_OPCODE_CSEL && 1046 opcode != BRW_OPCODE_IF && 1047 opcode != BRW_OPCODE_WHILE)) || 1048 opcode == FS_OPCODE_FB_WRITE) { 1049 return flag_mask(this, 1); 1050 } else if (opcode == SHADER_OPCODE_FIND_LIVE_CHANNEL || 1051 opcode == SHADER_OPCODE_FIND_LAST_LIVE_CHANNEL || 1052 opcode == FS_OPCODE_LOAD_LIVE_CHANNELS) { 1053 return flag_mask(this, 32); 1054 } else { 1055 return flag_mask(dst, size_written); 1056 } 1057} 1058 1059/** 1060 * Returns how many MRFs an FS opcode will write over. 1061 * 1062 * Note that this is not the 0 or 1 implied writes in an actual gen 1063 * instruction -- the FS opcodes often generate MOVs in addition. 1064 */ 1065unsigned 1066fs_inst::implied_mrf_writes() const 1067{ 1068 if (mlen == 0) 1069 return 0; 1070 1071 if (base_mrf == -1) 1072 return 0; 1073 1074 switch (opcode) { 1075 case SHADER_OPCODE_RCP: 1076 case SHADER_OPCODE_RSQ: 1077 case SHADER_OPCODE_SQRT: 1078 case SHADER_OPCODE_EXP2: 1079 case SHADER_OPCODE_LOG2: 1080 case SHADER_OPCODE_SIN: 1081 case SHADER_OPCODE_COS: 1082 return 1 * exec_size / 8; 1083 case SHADER_OPCODE_POW: 1084 case SHADER_OPCODE_INT_QUOTIENT: 1085 case SHADER_OPCODE_INT_REMAINDER: 1086 return 2 * exec_size / 8; 1087 case SHADER_OPCODE_TEX: 1088 case FS_OPCODE_TXB: 1089 case SHADER_OPCODE_TXD: 1090 case SHADER_OPCODE_TXF: 1091 case SHADER_OPCODE_TXF_CMS: 1092 case SHADER_OPCODE_TXF_MCS: 1093 case SHADER_OPCODE_TG4: 1094 case SHADER_OPCODE_TG4_OFFSET: 1095 case SHADER_OPCODE_TXL: 1096 case SHADER_OPCODE_TXS: 1097 case SHADER_OPCODE_LOD: 1098 case SHADER_OPCODE_SAMPLEINFO: 1099 return 1; 1100 case FS_OPCODE_FB_WRITE: 1101 case FS_OPCODE_REP_FB_WRITE: 1102 return src[0].file == BAD_FILE ? 0 : 2; 1103 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD: 1104 case SHADER_OPCODE_GFX4_SCRATCH_READ: 1105 return 1; 1106 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GFX4: 1107 return mlen; 1108 case SHADER_OPCODE_GFX4_SCRATCH_WRITE: 1109 return mlen; 1110 default: 1111 unreachable("not reached"); 1112 } 1113} 1114 1115fs_reg 1116fs_visitor::vgrf(const glsl_type *const type) 1117{ 1118 int reg_width = dispatch_width / 8; 1119 return fs_reg(VGRF, 1120 alloc.allocate(glsl_count_dword_slots(type, false) * reg_width), 1121 brw_type_for_base_type(type)); 1122} 1123 1124fs_reg::fs_reg(enum brw_reg_file file, int nr) 1125{ 1126 init(); 1127 this->file = file; 1128 this->nr = nr; 1129 this->type = BRW_REGISTER_TYPE_F; 1130 this->stride = (file == UNIFORM ? 0 : 1); 1131} 1132 1133fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type) 1134{ 1135 init(); 1136 this->file = file; 1137 this->nr = nr; 1138 this->type = type; 1139 this->stride = (file == UNIFORM ? 0 : 1); 1140} 1141 1142/* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch. 1143 * This brings in those uniform definitions 1144 */ 1145void 1146fs_visitor::import_uniforms(fs_visitor *v) 1147{ 1148 this->push_constant_loc = v->push_constant_loc; 1149 this->uniforms = v->uniforms; 1150 this->subgroup_id = v->subgroup_id; 1151 for (unsigned i = 0; i < ARRAY_SIZE(this->group_size); i++) 1152 this->group_size[i] = v->group_size[i]; 1153} 1154 1155void 1156fs_visitor::emit_fragcoord_interpolation(fs_reg wpos) 1157{ 1158 assert(stage == MESA_SHADER_FRAGMENT); 1159 1160 /* gl_FragCoord.x */ 1161 bld.MOV(wpos, this->pixel_x); 1162 wpos = offset(wpos, bld, 1); 1163 1164 /* gl_FragCoord.y */ 1165 bld.MOV(wpos, this->pixel_y); 1166 wpos = offset(wpos, bld, 1); 1167 1168 /* gl_FragCoord.z */ 1169 if (devinfo->ver >= 6) { 1170 bld.MOV(wpos, this->pixel_z); 1171 } else { 1172 bld.emit(FS_OPCODE_LINTERP, wpos, 1173 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL], 1174 component(interp_reg(VARYING_SLOT_POS, 2), 0)); 1175 } 1176 wpos = offset(wpos, bld, 1); 1177 1178 /* gl_FragCoord.w: Already set up in emit_interpolation */ 1179 bld.MOV(wpos, this->wpos_w); 1180} 1181 1182enum brw_barycentric_mode 1183brw_barycentric_mode(nir_intrinsic_instr *intr) 1184{ 1185 const glsl_interp_mode mode = 1186 (enum glsl_interp_mode) nir_intrinsic_interp_mode(intr); 1187 1188 /* Barycentric modes don't make sense for flat inputs. */ 1189 assert(mode != INTERP_MODE_FLAT); 1190 1191 unsigned bary; 1192 switch (intr->intrinsic) { 1193 case nir_intrinsic_load_barycentric_pixel: 1194 case nir_intrinsic_load_barycentric_at_offset: 1195 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL; 1196 break; 1197 case nir_intrinsic_load_barycentric_centroid: 1198 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID; 1199 break; 1200 case nir_intrinsic_load_barycentric_sample: 1201 case nir_intrinsic_load_barycentric_at_sample: 1202 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE; 1203 break; 1204 default: 1205 unreachable("invalid intrinsic"); 1206 } 1207 1208 if (mode == INTERP_MODE_NOPERSPECTIVE) 1209 bary += 3; 1210 1211 return (enum brw_barycentric_mode) bary; 1212} 1213 1214/** 1215 * Turn one of the two CENTROID barycentric modes into PIXEL mode. 1216 */ 1217static enum brw_barycentric_mode 1218centroid_to_pixel(enum brw_barycentric_mode bary) 1219{ 1220 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID || 1221 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID); 1222 return (enum brw_barycentric_mode) ((unsigned) bary - 1); 1223} 1224 1225fs_reg 1226fs_visitor::emit_frontfacing_interpolation() 1227{ 1228 fs_reg ff = bld.vgrf(BRW_REGISTER_TYPE_D); 1229 1230 if (devinfo->ver >= 12) { 1231 fs_reg g1 = fs_reg(retype(brw_vec1_grf(1, 1), BRW_REGISTER_TYPE_W)); 1232 1233 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_W); 1234 bld.ASR(tmp, g1, brw_imm_d(15)); 1235 bld.NOT(ff, tmp); 1236 } else if (devinfo->ver >= 6) { 1237 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create 1238 * a boolean result from this (~0/true or 0/false). 1239 * 1240 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish 1241 * this task in only one instruction: 1242 * - a negation source modifier will flip the bit; and 1243 * - a W -> D type conversion will sign extend the bit into the high 1244 * word of the destination. 1245 * 1246 * An ASR 15 fills the low word of the destination. 1247 */ 1248 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W)); 1249 g0.negate = true; 1250 1251 bld.ASR(ff, g0, brw_imm_d(15)); 1252 } else { 1253 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create 1254 * a boolean result from this (1/true or 0/false). 1255 * 1256 * Like in the above case, since the bit is the MSB of g1.6:UD we can use 1257 * the negation source modifier to flip it. Unfortunately the SHR 1258 * instruction only operates on UD (or D with an abs source modifier) 1259 * sources without negation. 1260 * 1261 * Instead, use ASR (which will give ~0/true or 0/false). 1262 */ 1263 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D)); 1264 g1_6.negate = true; 1265 1266 bld.ASR(ff, g1_6, brw_imm_d(31)); 1267 } 1268 1269 return ff; 1270} 1271 1272fs_reg 1273fs_visitor::emit_samplepos_setup() 1274{ 1275 assert(stage == MESA_SHADER_FRAGMENT); 1276 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data); 1277 assert(devinfo->ver >= 6); 1278 1279 const fs_builder abld = bld.annotate("compute sample position"); 1280 fs_reg pos = abld.vgrf(BRW_REGISTER_TYPE_F, 2); 1281 1282 if (!wm_prog_data->persample_dispatch) { 1283 /* From ARB_sample_shading specification: 1284 * "When rendering to a non-multisample buffer, or if multisample 1285 * rasterization is disabled, gl_SamplePosition will always be 1286 * (0.5, 0.5). 1287 */ 1288 bld.MOV(offset(pos, bld, 0), brw_imm_f(0.5f)); 1289 bld.MOV(offset(pos, bld, 1), brw_imm_f(0.5f)); 1290 return pos; 1291 } 1292 1293 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16 1294 * mode will be enabled. 1295 * 1296 * From the Ivy Bridge PRM, volume 2 part 1, page 344: 1297 * R31.1:0 Position Offset X/Y for Slot[3:0] 1298 * R31.3:2 Position Offset X/Y for Slot[7:4] 1299 * ..... 1300 * 1301 * The X, Y sample positions come in as bytes in thread payload. So, read 1302 * the positions using vstride=16, width=8, hstride=2. 1303 */ 1304 const fs_reg sample_pos_reg = 1305 fetch_payload_reg(abld, payload.sample_pos_reg, BRW_REGISTER_TYPE_W); 1306 1307 for (unsigned i = 0; i < 2; i++) { 1308 fs_reg tmp_d = bld.vgrf(BRW_REGISTER_TYPE_D); 1309 abld.MOV(tmp_d, subscript(sample_pos_reg, BRW_REGISTER_TYPE_B, i)); 1310 /* Convert int_sample_pos to floating point */ 1311 fs_reg tmp_f = bld.vgrf(BRW_REGISTER_TYPE_F); 1312 abld.MOV(tmp_f, tmp_d); 1313 /* Scale to the range [0, 1] */ 1314 abld.MUL(offset(pos, abld, i), tmp_f, brw_imm_f(1 / 16.0f)); 1315 } 1316 1317 return pos; 1318} 1319 1320fs_reg 1321fs_visitor::emit_sampleid_setup() 1322{ 1323 assert(stage == MESA_SHADER_FRAGMENT); 1324 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key; 1325 assert(devinfo->ver >= 6); 1326 1327 const fs_builder abld = bld.annotate("compute sample id"); 1328 fs_reg sample_id = abld.vgrf(BRW_REGISTER_TYPE_UD); 1329 1330 assert(key->multisample_fbo); 1331 1332 if (devinfo->ver >= 8) { 1333 /* Sample ID comes in as 4-bit numbers in g1.0: 1334 * 1335 * 15:12 Slot 3 SampleID (only used in SIMD16) 1336 * 11:8 Slot 2 SampleID (only used in SIMD16) 1337 * 7:4 Slot 1 SampleID 1338 * 3:0 Slot 0 SampleID 1339 * 1340 * Each slot corresponds to four channels, so we want to replicate each 1341 * half-byte value to 4 channels in a row: 1342 * 1343 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0 1344 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0 1345 * 1346 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16) 1347 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8 1348 * 1349 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8 1350 * channels to read the first byte (7:0), and the second group of 8 1351 * channels to read the second byte (15:8). Then, we shift right by 1352 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3 1353 * values into place. Finally, we AND with 0xf to keep the low nibble. 1354 * 1355 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V 1356 * and(16) dst<1>D tmp<8,8,1>W 0xf:W 1357 * 1358 * TODO: These payload bits exist on Gfx7 too, but they appear to always 1359 * be zero, so this code fails to work. We should find out why. 1360 */ 1361 const fs_reg tmp = abld.vgrf(BRW_REGISTER_TYPE_UW); 1362 1363 for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) { 1364 const fs_builder hbld = abld.group(MIN2(16, dispatch_width), i); 1365 hbld.SHR(offset(tmp, hbld, i), 1366 stride(retype(brw_vec1_grf(1 + i, 0), BRW_REGISTER_TYPE_UB), 1367 1, 8, 0), 1368 brw_imm_v(0x44440000)); 1369 } 1370 1371 abld.AND(sample_id, tmp, brw_imm_w(0xf)); 1372 } else { 1373 const fs_reg t1 = component(abld.vgrf(BRW_REGISTER_TYPE_UD), 0); 1374 const fs_reg t2 = abld.vgrf(BRW_REGISTER_TYPE_UW); 1375 1376 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with 1377 * 8x multisampling, subspan 0 will represent sample N (where N 1378 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or 1379 * 7. We can find the value of N by looking at R0.0 bits 7:6 1380 * ("Starting Sample Pair Index (SSPI)") and multiplying by two 1381 * (since samples are always delivered in pairs). That is, we 1382 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then 1383 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in 1384 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 1385 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by 1386 * populating a temporary variable with the sequence (0, 1, 2, 3), 1387 * and then reading from it using vstride=1, width=4, hstride=0. 1388 * These computations hold good for 4x multisampling as well. 1389 * 1390 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1): 1391 * the first four slots are sample 0 of subspan 0; the next four 1392 * are sample 1 of subspan 0; the third group is sample 0 of 1393 * subspan 1, and finally sample 1 of subspan 1. 1394 */ 1395 1396 /* SKL+ has an extra bit for the Starting Sample Pair Index to 1397 * accommodate 16x MSAA. 1398 */ 1399 abld.exec_all().group(1, 0) 1400 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)), 1401 brw_imm_ud(0xc0)); 1402 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5)); 1403 1404 /* This works for SIMD8-SIMD16. It also works for SIMD32 but only if we 1405 * can assume 4x MSAA. Disallow it on IVB+ 1406 * 1407 * FINISHME: One day, we could come up with a way to do this that 1408 * actually works on gfx7. 1409 */ 1410 if (devinfo->ver >= 7) 1411 limit_dispatch_width(16, "gl_SampleId is unsupported in SIMD32 on gfx7"); 1412 abld.exec_all().group(8, 0).MOV(t2, brw_imm_v(0x32103210)); 1413 1414 /* This special instruction takes care of setting vstride=1, 1415 * width=4, hstride=0 of t2 during an ADD instruction. 1416 */ 1417 abld.emit(FS_OPCODE_SET_SAMPLE_ID, sample_id, t1, t2); 1418 } 1419 1420 return sample_id; 1421} 1422 1423fs_reg 1424fs_visitor::emit_samplemaskin_setup() 1425{ 1426 assert(stage == MESA_SHADER_FRAGMENT); 1427 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data); 1428 assert(devinfo->ver >= 6); 1429 1430 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_D); 1431 1432 /* The HW doesn't provide us with expected values. */ 1433 assert(!wm_prog_data->per_coarse_pixel_dispatch); 1434 1435 fs_reg coverage_mask = 1436 fetch_payload_reg(bld, payload.sample_mask_in_reg, BRW_REGISTER_TYPE_D); 1437 1438 if (wm_prog_data->persample_dispatch) { 1439 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask, 1440 * and a mask representing which sample is being processed by the 1441 * current shader invocation. 1442 * 1443 * From the OES_sample_variables specification: 1444 * "When per-sample shading is active due to the use of a fragment input 1445 * qualified by "sample" or due to the use of the gl_SampleID or 1446 * gl_SamplePosition variables, only the bit for the current sample is 1447 * set in gl_SampleMaskIn." 1448 */ 1449 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn"); 1450 1451 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE) 1452 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = emit_sampleid_setup(); 1453 1454 fs_reg one = vgrf(glsl_type::int_type); 1455 fs_reg enabled_mask = vgrf(glsl_type::int_type); 1456 abld.MOV(one, brw_imm_d(1)); 1457 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]); 1458 abld.AND(mask, enabled_mask, coverage_mask); 1459 } else { 1460 /* In per-pixel mode, the coverage mask is sufficient. */ 1461 mask = coverage_mask; 1462 } 1463 return mask; 1464} 1465 1466fs_reg 1467fs_visitor::emit_shading_rate_setup() 1468{ 1469 assert(devinfo->ver >= 11); 1470 1471 const fs_builder abld = bld.annotate("compute fragment shading rate"); 1472 fs_reg rate = abld.vgrf(BRW_REGISTER_TYPE_UD); 1473 1474 struct brw_wm_prog_data *wm_prog_data = 1475 brw_wm_prog_data(bld.shader->stage_prog_data); 1476 1477 /* Coarse pixel shading size fields overlap with other fields of not in 1478 * coarse pixel dispatch mode, so report 0 when that's not the case. 1479 */ 1480 if (wm_prog_data->per_coarse_pixel_dispatch) { 1481 /* The shading rates provided in the shader are the actual 2D shading 1482 * rate while the SPIR-V built-in is the enum value that has the shading 1483 * rate encoded as a bitfield. Fortunately, the bitfield value is just 1484 * the shading rate divided by two and shifted. 1485 */ 1486 1487 /* r1.0 - 0:7 ActualCoarsePixelShadingSize.X */ 1488 fs_reg actual_x = fs_reg(retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UB)); 1489 /* r1.0 - 15:8 ActualCoarsePixelShadingSize.Y */ 1490 fs_reg actual_y = byte_offset(actual_x, 1); 1491 1492 fs_reg int_rate_x = bld.vgrf(BRW_REGISTER_TYPE_UD); 1493 fs_reg int_rate_y = bld.vgrf(BRW_REGISTER_TYPE_UD); 1494 1495 abld.SHR(int_rate_y, actual_y, brw_imm_ud(1)); 1496 abld.SHR(int_rate_x, actual_x, brw_imm_ud(1)); 1497 abld.SHL(int_rate_x, int_rate_x, brw_imm_ud(2)); 1498 abld.OR(rate, int_rate_x, int_rate_y); 1499 } else { 1500 abld.MOV(rate, brw_imm_ud(0)); 1501 } 1502 1503 return rate; 1504} 1505 1506fs_reg 1507fs_visitor::resolve_source_modifiers(const fs_reg &src) 1508{ 1509 if (!src.abs && !src.negate) 1510 return src; 1511 1512 fs_reg temp = bld.vgrf(src.type); 1513 bld.MOV(temp, src); 1514 1515 return temp; 1516} 1517 1518void 1519fs_visitor::emit_gs_thread_end() 1520{ 1521 assert(stage == MESA_SHADER_GEOMETRY); 1522 1523 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data); 1524 1525 if (gs_compile->control_data_header_size_bits > 0) { 1526 emit_gs_control_data_bits(this->final_gs_vertex_count); 1527 } 1528 1529 const fs_builder abld = bld.annotate("thread end"); 1530 fs_inst *inst; 1531 1532 if (gs_prog_data->static_vertex_count != -1) { 1533 foreach_in_list_reverse(fs_inst, prev, &this->instructions) { 1534 if (prev->opcode == SHADER_OPCODE_URB_WRITE_LOGICAL) { 1535 prev->eot = true; 1536 1537 /* Delete now dead instructions. */ 1538 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) { 1539 if (dead == prev) 1540 break; 1541 dead->remove(); 1542 } 1543 return; 1544 } else if (prev->is_control_flow() || prev->has_side_effects()) { 1545 break; 1546 } 1547 } 1548 fs_reg srcs[URB_LOGICAL_NUM_SRCS]; 1549 srcs[URB_LOGICAL_SRC_HANDLE] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)); 1550 inst = abld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef, 1551 srcs, ARRAY_SIZE(srcs)); 1552 inst->mlen = 1; 1553 } else { 1554 fs_reg srcs[URB_LOGICAL_NUM_SRCS]; 1555 srcs[URB_LOGICAL_SRC_HANDLE] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)); 1556 srcs[URB_LOGICAL_SRC_DATA] = this->final_gs_vertex_count; 1557 inst = abld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef, 1558 srcs, ARRAY_SIZE(srcs)); 1559 inst->mlen = 2; 1560 } 1561 inst->eot = true; 1562 inst->offset = 0; 1563} 1564 1565void 1566fs_visitor::assign_curb_setup() 1567{ 1568 unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8); 1569 1570 unsigned ubo_push_length = 0; 1571 unsigned ubo_push_start[4]; 1572 for (int i = 0; i < 4; i++) { 1573 ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length); 1574 ubo_push_length += stage_prog_data->ubo_ranges[i].length; 1575 } 1576 1577 prog_data->curb_read_length = uniform_push_length + ubo_push_length; 1578 1579 uint64_t used = 0; 1580 bool is_compute = gl_shader_stage_is_compute(stage); 1581 1582 if (is_compute && brw_cs_prog_data(prog_data)->uses_inline_data) { 1583 /* With COMPUTE_WALKER, we can push up to one register worth of data via 1584 * the inline data parameter in the COMPUTE_WALKER command itself. 1585 * 1586 * TODO: Support inline data and push at the same time. 1587 */ 1588 assert(devinfo->verx10 >= 125); 1589 assert(uniform_push_length <= 1); 1590 } else if (is_compute && devinfo->verx10 >= 125) { 1591 fs_builder ubld = bld.exec_all().group(8, 0).at( 1592 cfg->first_block(), cfg->first_block()->start()); 1593 1594 /* The base address for our push data is passed in as R0.0[31:6]. We 1595 * have to mask off the bottom 6 bits. 1596 */ 1597 fs_reg base_addr = ubld.vgrf(BRW_REGISTER_TYPE_UD); 1598 ubld.group(1, 0).AND(base_addr, 1599 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD), 1600 brw_imm_ud(INTEL_MASK(31, 6))); 1601 1602 fs_reg header0 = ubld.vgrf(BRW_REGISTER_TYPE_UD); 1603 ubld.MOV(header0, brw_imm_ud(0)); 1604 ubld.group(1, 0).SHR(component(header0, 2), base_addr, brw_imm_ud(4)); 1605 1606 /* On Gfx12-HP we load constants at the start of the program using A32 1607 * stateless messages. 1608 */ 1609 for (unsigned i = 0; i < uniform_push_length;) { 1610 /* Limit ourselves to HW limit of 8 Owords (8 * 16bytes = 128 bytes 1611 * or 4 registers). 1612 */ 1613 unsigned num_regs = MIN2(uniform_push_length - i, 4); 1614 assert(num_regs > 0); 1615 num_regs = 1 << util_logbase2(num_regs); 1616 1617 fs_reg header; 1618 if (i == 0) { 1619 header = header0; 1620 } else { 1621 header = ubld.vgrf(BRW_REGISTER_TYPE_UD); 1622 ubld.MOV(header, brw_imm_ud(0)); 1623 ubld.group(1, 0).ADD(component(header, 2), 1624 component(header0, 2), 1625 brw_imm_ud(i * 2)); 1626 } 1627 1628 fs_reg srcs[4] = { 1629 brw_imm_ud(0), /* desc */ 1630 brw_imm_ud(0), /* ex_desc */ 1631 header, /* payload */ 1632 fs_reg(), /* payload2 */ 1633 }; 1634 1635 fs_reg dest = retype(brw_vec8_grf(payload.num_regs + i, 0), 1636 BRW_REGISTER_TYPE_UD); 1637 1638 /* This instruction has to be run SIMD16 if we're filling more than a 1639 * single register. 1640 */ 1641 unsigned send_width = MIN2(16, num_regs * 8); 1642 1643 fs_inst *send = ubld.group(send_width, 0).emit(SHADER_OPCODE_SEND, 1644 dest, srcs, 4); 1645 send->sfid = GFX7_SFID_DATAPORT_DATA_CACHE; 1646 send->desc = brw_dp_desc(devinfo, GFX8_BTI_STATELESS_NON_COHERENT, 1647 GFX7_DATAPORT_DC_OWORD_BLOCK_READ, 1648 BRW_DATAPORT_OWORD_BLOCK_OWORDS(num_regs * 2)); 1649 send->header_size = 1; 1650 send->mlen = 1; 1651 send->size_written = num_regs * REG_SIZE; 1652 send->send_is_volatile = true; 1653 1654 i += num_regs; 1655 } 1656 1657 invalidate_analysis(DEPENDENCY_INSTRUCTIONS); 1658 } 1659 1660 /* Map the offsets in the UNIFORM file to fixed HW regs. */ 1661 foreach_block_and_inst(block, fs_inst, inst, cfg) { 1662 for (unsigned int i = 0; i < inst->sources; i++) { 1663 if (inst->src[i].file == UNIFORM) { 1664 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4; 1665 int constant_nr; 1666 if (inst->src[i].nr >= UBO_START) { 1667 /* constant_nr is in 32-bit units, the rest are in bytes */ 1668 constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] + 1669 inst->src[i].offset / 4; 1670 } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) { 1671 constant_nr = push_constant_loc[uniform_nr]; 1672 } else { 1673 /* Section 5.11 of the OpenGL 4.1 spec says: 1674 * "Out-of-bounds reads return undefined values, which include 1675 * values from other variables of the active program or zero." 1676 * Just return the first push constant. 1677 */ 1678 constant_nr = 0; 1679 } 1680 1681 assert(constant_nr / 8 < 64); 1682 used |= BITFIELD64_BIT(constant_nr / 8); 1683 1684 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs + 1685 constant_nr / 8, 1686 constant_nr % 8); 1687 brw_reg.abs = inst->src[i].abs; 1688 brw_reg.negate = inst->src[i].negate; 1689 1690 assert(inst->src[i].stride == 0); 1691 inst->src[i] = byte_offset( 1692 retype(brw_reg, inst->src[i].type), 1693 inst->src[i].offset % 4); 1694 } 1695 } 1696 } 1697 1698 uint64_t want_zero = used & stage_prog_data->zero_push_reg; 1699 if (want_zero) { 1700 fs_builder ubld = bld.exec_all().group(8, 0).at( 1701 cfg->first_block(), cfg->first_block()->start()); 1702 1703 /* push_reg_mask_param is in 32-bit units */ 1704 unsigned mask_param = stage_prog_data->push_reg_mask_param; 1705 struct brw_reg mask = brw_vec1_grf(payload.num_regs + mask_param / 8, 1706 mask_param % 8); 1707 1708 fs_reg b32; 1709 for (unsigned i = 0; i < 64; i++) { 1710 if (i % 16 == 0 && (want_zero & BITFIELD64_RANGE(i, 16))) { 1711 fs_reg shifted = ubld.vgrf(BRW_REGISTER_TYPE_W, 2); 1712 ubld.SHL(horiz_offset(shifted, 8), 1713 byte_offset(retype(mask, BRW_REGISTER_TYPE_W), i / 8), 1714 brw_imm_v(0x01234567)); 1715 ubld.SHL(shifted, horiz_offset(shifted, 8), brw_imm_w(8)); 1716 1717 fs_builder ubld16 = ubld.group(16, 0); 1718 b32 = ubld16.vgrf(BRW_REGISTER_TYPE_D); 1719 ubld16.group(16, 0).ASR(b32, shifted, brw_imm_w(15)); 1720 } 1721 1722 if (want_zero & BITFIELD64_BIT(i)) { 1723 assert(i < prog_data->curb_read_length); 1724 struct brw_reg push_reg = 1725 retype(brw_vec8_grf(payload.num_regs + i, 0), 1726 BRW_REGISTER_TYPE_D); 1727 1728 ubld.AND(push_reg, push_reg, component(b32, i % 16)); 1729 } 1730 } 1731 1732 invalidate_analysis(DEPENDENCY_INSTRUCTIONS); 1733 } 1734 1735 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */ 1736 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length; 1737} 1738 1739/* 1740 * Build up an array of indices into the urb_setup array that 1741 * references the active entries of the urb_setup array. 1742 * Used to accelerate walking the active entries of the urb_setup array 1743 * on each upload. 1744 */ 1745void 1746brw_compute_urb_setup_index(struct brw_wm_prog_data *wm_prog_data) 1747{ 1748 /* TODO(mesh): Review usage of this in the context of Mesh, we may want to 1749 * skip per-primitive attributes here. 1750 */ 1751 1752 /* Make sure uint8_t is sufficient */ 1753 STATIC_ASSERT(VARYING_SLOT_MAX <= 0xff); 1754 uint8_t index = 0; 1755 for (uint8_t attr = 0; attr < VARYING_SLOT_MAX; attr++) { 1756 if (wm_prog_data->urb_setup[attr] >= 0) { 1757 wm_prog_data->urb_setup_attribs[index++] = attr; 1758 } 1759 } 1760 wm_prog_data->urb_setup_attribs_count = index; 1761} 1762 1763static void 1764calculate_urb_setup(const struct intel_device_info *devinfo, 1765 const struct brw_wm_prog_key *key, 1766 struct brw_wm_prog_data *prog_data, 1767 const nir_shader *nir, 1768 const struct brw_mue_map *mue_map) 1769{ 1770 memset(prog_data->urb_setup, -1, 1771 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX); 1772 1773 int urb_next = 0; 1774 1775 const uint64_t inputs_read = 1776 nir->info.inputs_read & ~nir->info.per_primitive_inputs; 1777 1778 /* Figure out where each of the incoming setup attributes lands. */ 1779 if (mue_map) { 1780 /* Per-Primitive Attributes are laid out by Hardware before the regular 1781 * attributes, so order them like this to make easy later to map setup 1782 * into real HW registers. 1783 */ 1784 if (nir->info.per_primitive_inputs) { 1785 uint64_t per_prim_inputs_read = 1786 nir->info.inputs_read & nir->info.per_primitive_inputs; 1787 1788 /* In Mesh, PRIMITIVE_SHADING_RATE, VIEWPORT and LAYER slots 1789 * are always at the beginning, because they come from MUE 1790 * Primitive Header, not Per-Primitive Attributes. 1791 */ 1792 const uint64_t primitive_header_bits = VARYING_BIT_VIEWPORT | 1793 VARYING_BIT_LAYER | 1794 VARYING_BIT_PRIMITIVE_SHADING_RATE; 1795 1796 if (per_prim_inputs_read & primitive_header_bits) { 1797 /* Primitive Shading Rate, Layer and Viewport live in the same 1798 * 4-dwords slot (psr is dword 0, layer is dword 1, and viewport 1799 * is dword 2). 1800 */ 1801 if (per_prim_inputs_read & VARYING_BIT_PRIMITIVE_SHADING_RATE) 1802 prog_data->urb_setup[VARYING_SLOT_PRIMITIVE_SHADING_RATE] = 0; 1803 1804 if (per_prim_inputs_read & VARYING_BIT_LAYER) 1805 prog_data->urb_setup[VARYING_SLOT_LAYER] = 0; 1806 1807 if (per_prim_inputs_read & VARYING_BIT_VIEWPORT) 1808 prog_data->urb_setup[VARYING_SLOT_VIEWPORT] = 0; 1809 1810 /* 3DSTATE_SBE_MESH.Per[Primitive|Vertex]URBEntryOutputRead[Offset|Length] 1811 * are in full GRFs (8 dwords) and MUE Primitive Header is 8 dwords, 1812 * so next per-primitive attribute must be placed in slot 2 (each slot 1813 * is 4 dwords long). 1814 */ 1815 urb_next = 2; 1816 per_prim_inputs_read &= ~primitive_header_bits; 1817 } 1818 1819 for (unsigned i = 0; i < VARYING_SLOT_MAX; i++) { 1820 if (per_prim_inputs_read & BITFIELD64_BIT(i)) { 1821 prog_data->urb_setup[i] = urb_next++; 1822 } 1823 } 1824 1825 /* The actual setup attributes later must be aligned to a full GRF. */ 1826 urb_next = ALIGN(urb_next, 2); 1827 1828 prog_data->num_per_primitive_inputs = urb_next; 1829 } 1830 1831 const uint64_t clip_dist_bits = VARYING_BIT_CLIP_DIST0 | 1832 VARYING_BIT_CLIP_DIST1; 1833 1834 uint64_t unique_fs_attrs = inputs_read & BRW_FS_VARYING_INPUT_MASK; 1835 1836 if (inputs_read & clip_dist_bits) { 1837 assert(mue_map->per_vertex_header_size_dw > 8); 1838 unique_fs_attrs &= ~clip_dist_bits; 1839 } 1840 1841 /* In Mesh, CLIP_DIST slots are always at the beginning, because 1842 * they come from MUE Vertex Header, not Per-Vertex Attributes. 1843 */ 1844 if (inputs_read & clip_dist_bits) { 1845 prog_data->urb_setup[VARYING_SLOT_CLIP_DIST0] = urb_next++; 1846 prog_data->urb_setup[VARYING_SLOT_CLIP_DIST1] = urb_next++; 1847 } 1848 1849 /* Per-Vertex attributes are laid out ordered. Because we always link 1850 * Mesh and Fragment shaders, the which slots are written and read by 1851 * each of them will match. */ 1852 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) { 1853 if (unique_fs_attrs & BITFIELD64_BIT(i)) 1854 prog_data->urb_setup[i] = urb_next++; 1855 } 1856 } else if (devinfo->ver >= 6) { 1857 uint64_t vue_header_bits = 1858 VARYING_BIT_PSIZ | VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT; 1859 1860 uint64_t unique_fs_attrs = inputs_read & BRW_FS_VARYING_INPUT_MASK; 1861 1862 /* VUE header fields all live in the same URB slot, so we pass them 1863 * as a single FS input attribute. We want to only count them once. 1864 */ 1865 if (inputs_read & vue_header_bits) { 1866 unique_fs_attrs &= ~vue_header_bits; 1867 unique_fs_attrs |= VARYING_BIT_PSIZ; 1868 } 1869 1870 if (util_bitcount64(unique_fs_attrs) <= 16) { 1871 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the 1872 * first 16 varying inputs, so we can put them wherever we want. 1873 * Just put them in order. 1874 * 1875 * This is useful because it means that (a) inputs not used by the 1876 * fragment shader won't take up valuable register space, and (b) we 1877 * won't have to recompile the fragment shader if it gets paired with 1878 * a different vertex (or geometry) shader. 1879 * 1880 * VUE header fields share the same FS input attribute. 1881 */ 1882 if (inputs_read & vue_header_bits) { 1883 if (inputs_read & VARYING_BIT_PSIZ) 1884 prog_data->urb_setup[VARYING_SLOT_PSIZ] = urb_next; 1885 if (inputs_read & VARYING_BIT_LAYER) 1886 prog_data->urb_setup[VARYING_SLOT_LAYER] = urb_next; 1887 if (inputs_read & VARYING_BIT_VIEWPORT) 1888 prog_data->urb_setup[VARYING_SLOT_VIEWPORT] = urb_next; 1889 1890 urb_next++; 1891 } 1892 1893 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) { 1894 if (inputs_read & BRW_FS_VARYING_INPUT_MASK & ~vue_header_bits & 1895 BITFIELD64_BIT(i)) { 1896 prog_data->urb_setup[i] = urb_next++; 1897 } 1898 } 1899 } else { 1900 /* We have enough input varyings that the SF/SBE pipeline stage can't 1901 * arbitrarily rearrange them to suit our whim; we have to put them 1902 * in an order that matches the output of the previous pipeline stage 1903 * (geometry or vertex shader). 1904 */ 1905 1906 /* Re-compute the VUE map here in the case that the one coming from 1907 * geometry has more than one position slot (used for Primitive 1908 * Replication). 1909 */ 1910 struct brw_vue_map prev_stage_vue_map; 1911 brw_compute_vue_map(devinfo, &prev_stage_vue_map, 1912 key->input_slots_valid, 1913 nir->info.separate_shader, 1); 1914 1915 int first_slot = 1916 brw_compute_first_urb_slot_required(inputs_read, 1917 &prev_stage_vue_map); 1918 1919 assert(prev_stage_vue_map.num_slots <= first_slot + 32); 1920 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots; 1921 slot++) { 1922 int varying = prev_stage_vue_map.slot_to_varying[slot]; 1923 if (varying != BRW_VARYING_SLOT_PAD && 1924 (inputs_read & BRW_FS_VARYING_INPUT_MASK & 1925 BITFIELD64_BIT(varying))) { 1926 prog_data->urb_setup[varying] = slot - first_slot; 1927 } 1928 } 1929 urb_next = prev_stage_vue_map.num_slots - first_slot; 1930 } 1931 } else { 1932 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */ 1933 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) { 1934 /* Point size is packed into the header, not as a general attribute */ 1935 if (i == VARYING_SLOT_PSIZ) 1936 continue; 1937 1938 if (key->input_slots_valid & BITFIELD64_BIT(i)) { 1939 /* The back color slot is skipped when the front color is 1940 * also written to. In addition, some slots can be 1941 * written in the vertex shader and not read in the 1942 * fragment shader. So the register number must always be 1943 * incremented, mapped or not. 1944 */ 1945 if (_mesa_varying_slot_in_fs((gl_varying_slot) i)) 1946 prog_data->urb_setup[i] = urb_next; 1947 urb_next++; 1948 } 1949 } 1950 1951 /* 1952 * It's a FS only attribute, and we did interpolation for this attribute 1953 * in SF thread. So, count it here, too. 1954 * 1955 * See compile_sf_prog() for more info. 1956 */ 1957 if (inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC)) 1958 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++; 1959 } 1960 1961 prog_data->num_varying_inputs = urb_next - prog_data->num_per_primitive_inputs; 1962 prog_data->inputs = inputs_read; 1963 1964 brw_compute_urb_setup_index(prog_data); 1965} 1966 1967void 1968fs_visitor::assign_urb_setup() 1969{ 1970 assert(stage == MESA_SHADER_FRAGMENT); 1971 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data); 1972 1973 int urb_start = payload.num_regs + prog_data->base.curb_read_length; 1974 1975 /* Offset all the urb_setup[] index by the actual position of the 1976 * setup regs, now that the location of the constants has been chosen. 1977 */ 1978 foreach_block_and_inst(block, fs_inst, inst, cfg) { 1979 for (int i = 0; i < inst->sources; i++) { 1980 if (inst->src[i].file == ATTR) { 1981 /* ATTR regs in the FS are in units of logical scalar inputs each 1982 * of which consumes half of a GRF register. 1983 */ 1984 assert(inst->src[i].offset < REG_SIZE / 2); 1985 const unsigned grf = urb_start + inst->src[i].nr / 2; 1986 const unsigned offset = (inst->src[i].nr % 2) * (REG_SIZE / 2) + 1987 inst->src[i].offset; 1988 const unsigned width = inst->src[i].stride == 0 ? 1989 1 : MIN2(inst->exec_size, 8); 1990 struct brw_reg reg = stride( 1991 byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type), 1992 offset), 1993 width * inst->src[i].stride, 1994 width, inst->src[i].stride); 1995 reg.abs = inst->src[i].abs; 1996 reg.negate = inst->src[i].negate; 1997 inst->src[i] = reg; 1998 } 1999 } 2000 } 2001 2002 /* Each attribute is 4 setup channels, each of which is half a reg. */ 2003 this->first_non_payload_grf += prog_data->num_varying_inputs * 2; 2004 2005 /* Unlike regular attributes, per-primitive attributes have all 4 channels 2006 * in the same slot, so each GRF can store two slots. 2007 */ 2008 assert(prog_data->num_per_primitive_inputs % 2 == 0); 2009 this->first_non_payload_grf += prog_data->num_per_primitive_inputs / 2; 2010} 2011 2012void 2013fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst) 2014{ 2015 for (int i = 0; i < inst->sources; i++) { 2016 if (inst->src[i].file == ATTR) { 2017 int grf = payload.num_regs + 2018 prog_data->curb_read_length + 2019 inst->src[i].nr + 2020 inst->src[i].offset / REG_SIZE; 2021 2022 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM: 2023 * 2024 * VertStride must be used to cross GRF register boundaries. This 2025 * rule implies that elements within a 'Width' cannot cross GRF 2026 * boundaries. 2027 * 2028 * So, for registers that are large enough, we have to split the exec 2029 * size in two and trust the compression state to sort it out. 2030 */ 2031 unsigned total_size = inst->exec_size * 2032 inst->src[i].stride * 2033 type_sz(inst->src[i].type); 2034 2035 assert(total_size <= 2 * REG_SIZE); 2036 const unsigned exec_size = 2037 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2; 2038 2039 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size; 2040 struct brw_reg reg = 2041 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type), 2042 inst->src[i].offset % REG_SIZE), 2043 exec_size * inst->src[i].stride, 2044 width, inst->src[i].stride); 2045 reg.abs = inst->src[i].abs; 2046 reg.negate = inst->src[i].negate; 2047 2048 inst->src[i] = reg; 2049 } 2050 } 2051} 2052 2053void 2054fs_visitor::assign_vs_urb_setup() 2055{ 2056 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data); 2057 2058 assert(stage == MESA_SHADER_VERTEX); 2059 2060 /* Each attribute is 4 regs. */ 2061 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots; 2062 2063 assert(vs_prog_data->base.urb_read_length <= 15); 2064 2065 /* Rewrite all ATTR file references to the hw grf that they land in. */ 2066 foreach_block_and_inst(block, fs_inst, inst, cfg) { 2067 convert_attr_sources_to_hw_regs(inst); 2068 } 2069} 2070 2071void 2072fs_visitor::assign_tcs_urb_setup() 2073{ 2074 assert(stage == MESA_SHADER_TESS_CTRL); 2075 2076 /* Rewrite all ATTR file references to HW_REGs. */ 2077 foreach_block_and_inst(block, fs_inst, inst, cfg) { 2078 convert_attr_sources_to_hw_regs(inst); 2079 } 2080} 2081 2082void 2083fs_visitor::assign_tes_urb_setup() 2084{ 2085 assert(stage == MESA_SHADER_TESS_EVAL); 2086 2087 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data); 2088 2089 first_non_payload_grf += 8 * vue_prog_data->urb_read_length; 2090 2091 /* Rewrite all ATTR file references to HW_REGs. */ 2092 foreach_block_and_inst(block, fs_inst, inst, cfg) { 2093 convert_attr_sources_to_hw_regs(inst); 2094 } 2095} 2096 2097void 2098fs_visitor::assign_gs_urb_setup() 2099{ 2100 assert(stage == MESA_SHADER_GEOMETRY); 2101 2102 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data); 2103 2104 first_non_payload_grf += 2105 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in; 2106 2107 foreach_block_and_inst(block, fs_inst, inst, cfg) { 2108 /* Rewrite all ATTR file references to GRFs. */ 2109 convert_attr_sources_to_hw_regs(inst); 2110 } 2111} 2112 2113 2114/** 2115 * Split large virtual GRFs into separate components if we can. 2116 * 2117 * This pass aggressively splits VGRFs into as small a chunks as possible, 2118 * down to single registers if it can. If no VGRFs can be split, we return 2119 * false so this pass can safely be used inside an optimization loop. We 2120 * want to split, because virtual GRFs are what we register allocate and 2121 * spill (due to contiguousness requirements for some instructions), and 2122 * they're what we naturally generate in the codegen process, but most 2123 * virtual GRFs don't actually need to be contiguous sets of GRFs. If we 2124 * split, we'll end up with reduced live intervals and better dead code 2125 * elimination and coalescing. 2126 */ 2127bool 2128fs_visitor::split_virtual_grfs() 2129{ 2130 /* Compact the register file so we eliminate dead vgrfs. This 2131 * only defines split points for live registers, so if we have 2132 * too large dead registers they will hit assertions later. 2133 */ 2134 compact_virtual_grfs(); 2135 2136 int num_vars = this->alloc.count; 2137 2138 /* Count the total number of registers */ 2139 int reg_count = 0; 2140 int vgrf_to_reg[num_vars]; 2141 for (int i = 0; i < num_vars; i++) { 2142 vgrf_to_reg[i] = reg_count; 2143 reg_count += alloc.sizes[i]; 2144 } 2145 2146 /* An array of "split points". For each register slot, this indicates 2147 * if this slot can be separated from the previous slot. Every time an 2148 * instruction uses multiple elements of a register (as a source or 2149 * destination), we mark the used slots as inseparable. Then we go 2150 * through and split the registers into the smallest pieces we can. 2151 */ 2152 bool *split_points = new bool[reg_count]; 2153 memset(split_points, 0, reg_count * sizeof(*split_points)); 2154 2155 /* Mark all used registers as fully splittable */ 2156 foreach_block_and_inst(block, fs_inst, inst, cfg) { 2157 if (inst->dst.file == VGRF) { 2158 int reg = vgrf_to_reg[inst->dst.nr]; 2159 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++) 2160 split_points[reg + j] = true; 2161 } 2162 2163 for (int i = 0; i < inst->sources; i++) { 2164 if (inst->src[i].file == VGRF) { 2165 int reg = vgrf_to_reg[inst->src[i].nr]; 2166 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++) 2167 split_points[reg + j] = true; 2168 } 2169 } 2170 } 2171 2172 foreach_block_and_inst(block, fs_inst, inst, cfg) { 2173 /* We fix up undef instructions later */ 2174 if (inst->opcode == SHADER_OPCODE_UNDEF) { 2175 /* UNDEF instructions are currently only used to undef entire 2176 * registers. We need this invariant later when we split them. 2177 */ 2178 assert(inst->dst.file == VGRF); 2179 assert(inst->dst.offset == 0); 2180 assert(inst->size_written == alloc.sizes[inst->dst.nr] * REG_SIZE); 2181 continue; 2182 } 2183 2184 if (inst->dst.file == VGRF) { 2185 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE; 2186 for (unsigned j = 1; j < regs_written(inst); j++) 2187 split_points[reg + j] = false; 2188 } 2189 for (int i = 0; i < inst->sources; i++) { 2190 if (inst->src[i].file == VGRF) { 2191 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE; 2192 for (unsigned j = 1; j < regs_read(inst, i); j++) 2193 split_points[reg + j] = false; 2194 } 2195 } 2196 } 2197 2198 /* Bitset of which registers have been split */ 2199 bool *vgrf_has_split = new bool[num_vars]; 2200 memset(vgrf_has_split, 0, num_vars * sizeof(*vgrf_has_split)); 2201 2202 int *new_virtual_grf = new int[reg_count]; 2203 int *new_reg_offset = new int[reg_count]; 2204 2205 int reg = 0; 2206 bool has_splits = false; 2207 for (int i = 0; i < num_vars; i++) { 2208 /* The first one should always be 0 as a quick sanity check. */ 2209 assert(split_points[reg] == false); 2210 2211 /* j = 0 case */ 2212 new_reg_offset[reg] = 0; 2213 reg++; 2214 int offset = 1; 2215 2216 /* j > 0 case */ 2217 for (unsigned j = 1; j < alloc.sizes[i]; j++) { 2218 /* If this is a split point, reset the offset to 0 and allocate a 2219 * new virtual GRF for the previous offset many registers 2220 */ 2221 if (split_points[reg]) { 2222 has_splits = true; 2223 vgrf_has_split[i] = true; 2224 assert(offset <= MAX_VGRF_SIZE); 2225 int grf = alloc.allocate(offset); 2226 for (int k = reg - offset; k < reg; k++) 2227 new_virtual_grf[k] = grf; 2228 offset = 0; 2229 } 2230 new_reg_offset[reg] = offset; 2231 offset++; 2232 reg++; 2233 } 2234 2235 /* The last one gets the original register number */ 2236 assert(offset <= MAX_VGRF_SIZE); 2237 alloc.sizes[i] = offset; 2238 for (int k = reg - offset; k < reg; k++) 2239 new_virtual_grf[k] = i; 2240 } 2241 assert(reg == reg_count); 2242 2243 bool progress; 2244 if (!has_splits) { 2245 progress = false; 2246 goto cleanup; 2247 } 2248 2249 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) { 2250 if (inst->opcode == SHADER_OPCODE_UNDEF) { 2251 assert(inst->dst.file == VGRF); 2252 if (vgrf_has_split[inst->dst.nr]) { 2253 const fs_builder ibld(this, block, inst); 2254 assert(inst->size_written % REG_SIZE == 0); 2255 unsigned reg_offset = 0; 2256 while (reg_offset < inst->size_written / REG_SIZE) { 2257 reg = vgrf_to_reg[inst->dst.nr] + reg_offset; 2258 ibld.UNDEF(fs_reg(VGRF, new_virtual_grf[reg], inst->dst.type)); 2259 reg_offset += alloc.sizes[new_virtual_grf[reg]]; 2260 } 2261 inst->remove(block); 2262 } else { 2263 reg = vgrf_to_reg[inst->dst.nr]; 2264 assert(new_reg_offset[reg] == 0); 2265 assert(new_virtual_grf[reg] == (int)inst->dst.nr); 2266 } 2267 continue; 2268 } 2269 2270 if (inst->dst.file == VGRF) { 2271 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE; 2272 if (vgrf_has_split[inst->dst.nr]) { 2273 inst->dst.nr = new_virtual_grf[reg]; 2274 inst->dst.offset = new_reg_offset[reg] * REG_SIZE + 2275 inst->dst.offset % REG_SIZE; 2276 assert((unsigned)new_reg_offset[reg] < 2277 alloc.sizes[new_virtual_grf[reg]]); 2278 } else { 2279 assert(new_reg_offset[reg] == inst->dst.offset / REG_SIZE); 2280 assert(new_virtual_grf[reg] == (int)inst->dst.nr); 2281 } 2282 } 2283 for (int i = 0; i < inst->sources; i++) { 2284 if (inst->src[i].file != VGRF) 2285 continue; 2286 2287 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE; 2288 if (vgrf_has_split[inst->src[i].nr]) { 2289 inst->src[i].nr = new_virtual_grf[reg]; 2290 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE + 2291 inst->src[i].offset % REG_SIZE; 2292 assert((unsigned)new_reg_offset[reg] < 2293 alloc.sizes[new_virtual_grf[reg]]); 2294 } else { 2295 assert(new_reg_offset[reg] == inst->src[i].offset / REG_SIZE); 2296 assert(new_virtual_grf[reg] == (int)inst->src[i].nr); 2297 } 2298 } 2299 } 2300 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES); 2301 2302 progress = true; 2303 2304cleanup: 2305 delete[] split_points; 2306 delete[] vgrf_has_split; 2307 delete[] new_virtual_grf; 2308 delete[] new_reg_offset; 2309 2310 return progress; 2311} 2312 2313/** 2314 * Remove unused virtual GRFs and compact the vgrf_* arrays. 2315 * 2316 * During code generation, we create tons of temporary variables, many of 2317 * which get immediately killed and are never used again. Yet, in later 2318 * optimization and analysis passes, such as compute_live_intervals, we need 2319 * to loop over all the virtual GRFs. Compacting them can save a lot of 2320 * overhead. 2321 */ 2322bool 2323fs_visitor::compact_virtual_grfs() 2324{ 2325 bool progress = false; 2326 int *remap_table = new int[this->alloc.count]; 2327 memset(remap_table, -1, this->alloc.count * sizeof(int)); 2328 2329 /* Mark which virtual GRFs are used. */ 2330 foreach_block_and_inst(block, const fs_inst, inst, cfg) { 2331 if (inst->dst.file == VGRF) 2332 remap_table[inst->dst.nr] = 0; 2333 2334 for (int i = 0; i < inst->sources; i++) { 2335 if (inst->src[i].file == VGRF) 2336 remap_table[inst->src[i].nr] = 0; 2337 } 2338 } 2339 2340 /* Compact the GRF arrays. */ 2341 int new_index = 0; 2342 for (unsigned i = 0; i < this->alloc.count; i++) { 2343 if (remap_table[i] == -1) { 2344 /* We just found an unused register. This means that we are 2345 * actually going to compact something. 2346 */ 2347 progress = true; 2348 } else { 2349 remap_table[i] = new_index; 2350 alloc.sizes[new_index] = alloc.sizes[i]; 2351 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES); 2352 ++new_index; 2353 } 2354 } 2355 2356 this->alloc.count = new_index; 2357 2358 /* Patch all the instructions to use the newly renumbered registers */ 2359 foreach_block_and_inst(block, fs_inst, inst, cfg) { 2360 if (inst->dst.file == VGRF) 2361 inst->dst.nr = remap_table[inst->dst.nr]; 2362 2363 for (int i = 0; i < inst->sources; i++) { 2364 if (inst->src[i].file == VGRF) 2365 inst->src[i].nr = remap_table[inst->src[i].nr]; 2366 } 2367 } 2368 2369 /* Patch all the references to delta_xy, since they're used in register 2370 * allocation. If they're unused, switch them to BAD_FILE so we don't 2371 * think some random VGRF is delta_xy. 2372 */ 2373 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) { 2374 if (delta_xy[i].file == VGRF) { 2375 if (remap_table[delta_xy[i].nr] != -1) { 2376 delta_xy[i].nr = remap_table[delta_xy[i].nr]; 2377 } else { 2378 delta_xy[i].file = BAD_FILE; 2379 } 2380 } 2381 } 2382 2383 delete[] remap_table; 2384 2385 return progress; 2386} 2387 2388static int 2389get_subgroup_id_param_index(const intel_device_info *devinfo, 2390 const brw_stage_prog_data *prog_data) 2391{ 2392 if (prog_data->nr_params == 0) 2393 return -1; 2394 2395 if (devinfo->verx10 >= 125) 2396 return -1; 2397 2398 /* The local thread id is always the last parameter in the list */ 2399 uint32_t last_param = prog_data->param[prog_data->nr_params - 1]; 2400 if (last_param == BRW_PARAM_BUILTIN_SUBGROUP_ID) 2401 return prog_data->nr_params - 1; 2402 2403 return -1; 2404} 2405 2406/** 2407 * Assign UNIFORM file registers to either push constants or pull constants. 2408 * 2409 * We allow a fragment shader to have more than the specified minimum 2410 * maximum number of fragment shader uniform components (64). If 2411 * there are too many of these, they'd fill up all of register space. 2412 * So, this will push some of them out to the pull constant buffer and 2413 * update the program to load them. 2414 */ 2415void 2416fs_visitor::assign_constant_locations() 2417{ 2418 /* Only the first compile gets to decide on locations. */ 2419 if (push_constant_loc) 2420 return; 2421 2422 push_constant_loc = ralloc_array(mem_ctx, int, uniforms); 2423 for (unsigned u = 0; u < uniforms; u++) 2424 push_constant_loc[u] = u; 2425 2426 /* Now that we know how many regular uniforms we'll push, reduce the 2427 * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits. 2428 */ 2429 /* For gen4/5: 2430 * Only allow 16 registers (128 uniform components) as push constants. 2431 * 2432 * If changing this value, note the limitation about total_regs in 2433 * brw_curbe.c/crocus_state.c 2434 */ 2435 const unsigned max_push_length = compiler->devinfo->ver < 6 ? 16 : 64; 2436 unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8); 2437 for (int i = 0; i < 4; i++) { 2438 struct brw_ubo_range *range = &prog_data->ubo_ranges[i]; 2439 2440 if (push_length + range->length > max_push_length) 2441 range->length = max_push_length - push_length; 2442 2443 push_length += range->length; 2444 } 2445 assert(push_length <= max_push_length); 2446} 2447 2448bool 2449fs_visitor::get_pull_locs(const fs_reg &src, 2450 unsigned *out_surf_index, 2451 unsigned *out_pull_index) 2452{ 2453 assert(src.file == UNIFORM); 2454 2455 if (src.nr < UBO_START) 2456 return false; 2457 2458 const struct brw_ubo_range *range = 2459 &prog_data->ubo_ranges[src.nr - UBO_START]; 2460 2461 /* If this access is in our (reduced) range, use the push data. */ 2462 if (src.offset / 32 < range->length) 2463 return false; 2464 2465 *out_surf_index = range->block; 2466 *out_pull_index = (32 * range->start + src.offset) / 4; 2467 2468 prog_data->has_ubo_pull = true; 2469 2470 return true; 2471} 2472 2473/** 2474 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD 2475 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs. 2476 */ 2477void 2478fs_visitor::lower_constant_loads() 2479{ 2480 unsigned index, pull_index; 2481 2482 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) { 2483 /* Set up the annotation tracking for new generated instructions. */ 2484 const fs_builder ibld(this, block, inst); 2485 2486 for (int i = 0; i < inst->sources; i++) { 2487 if (inst->src[i].file != UNIFORM) 2488 continue; 2489 2490 /* We'll handle this case later */ 2491 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) 2492 continue; 2493 2494 if (!get_pull_locs(inst->src[i], &index, &pull_index)) 2495 continue; 2496 2497 assert(inst->src[i].stride == 0); 2498 2499 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */ 2500 const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0); 2501 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD); 2502 const unsigned base = pull_index * 4; 2503 2504 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, 2505 dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1))); 2506 2507 /* Rewrite the instruction to use the temporary VGRF. */ 2508 inst->src[i].file = VGRF; 2509 inst->src[i].nr = dst.nr; 2510 inst->src[i].offset = (base & (block_sz - 1)) + 2511 inst->src[i].offset % 4; 2512 } 2513 2514 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && 2515 inst->src[0].file == UNIFORM) { 2516 2517 if (!get_pull_locs(inst->src[0], &index, &pull_index)) 2518 continue; 2519 2520 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst, 2521 brw_imm_ud(index), 2522 inst->src[1], 2523 pull_index * 4, 4); 2524 inst->remove(block); 2525 } 2526 } 2527 invalidate_analysis(DEPENDENCY_INSTRUCTIONS); 2528} 2529 2530bool 2531fs_visitor::opt_algebraic() 2532{ 2533 bool progress = false; 2534 2535 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) { 2536 switch (inst->opcode) { 2537 case BRW_OPCODE_MOV: 2538 if (!devinfo->has_64bit_float && 2539 inst->dst.type == BRW_REGISTER_TYPE_DF) { 2540 assert(inst->dst.type == inst->src[0].type); 2541 assert(!inst->saturate); 2542 assert(!inst->src[0].abs); 2543 assert(!inst->src[0].negate); 2544 const brw::fs_builder ibld(this, block, inst); 2545 2546 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_F, 1), 2547 subscript(inst->src[0], BRW_REGISTER_TYPE_F, 1)); 2548 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_F, 0), 2549 subscript(inst->src[0], BRW_REGISTER_TYPE_F, 0)); 2550 2551 inst->remove(block); 2552 progress = true; 2553 } 2554 2555 if (!devinfo->has_64bit_int && 2556 (inst->dst.type == BRW_REGISTER_TYPE_UQ || 2557 inst->dst.type == BRW_REGISTER_TYPE_Q)) { 2558 assert(inst->dst.type == inst->src[0].type); 2559 assert(!inst->saturate); 2560 assert(!inst->src[0].abs); 2561 assert(!inst->src[0].negate); 2562 const brw::fs_builder ibld(this, block, inst); 2563 2564 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1), 2565 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1)); 2566 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0), 2567 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0)); 2568 2569 inst->remove(block); 2570 progress = true; 2571 } 2572 2573 if ((inst->conditional_mod == BRW_CONDITIONAL_Z || 2574 inst->conditional_mod == BRW_CONDITIONAL_NZ) && 2575 inst->dst.is_null() && 2576 (inst->src[0].abs || inst->src[0].negate)) { 2577 inst->src[0].abs = false; 2578 inst->src[0].negate = false; 2579 progress = true; 2580 break; 2581 } 2582 2583 if (inst->src[0].file != IMM) 2584 break; 2585 2586 if (inst->saturate) { 2587 /* Full mixed-type saturates don't happen. However, we can end up 2588 * with things like: 2589 * 2590 * mov.sat(8) g21<1>DF -1F 2591 * 2592 * Other mixed-size-but-same-base-type cases may also be possible. 2593 */ 2594 if (inst->dst.type != inst->src[0].type && 2595 inst->dst.type != BRW_REGISTER_TYPE_DF && 2596 inst->src[0].type != BRW_REGISTER_TYPE_F) 2597 assert(!"unimplemented: saturate mixed types"); 2598 2599 if (brw_saturate_immediate(inst->src[0].type, 2600 &inst->src[0].as_brw_reg())) { 2601 inst->saturate = false; 2602 progress = true; 2603 } 2604 } 2605 break; 2606 2607 case BRW_OPCODE_MUL: 2608 if (inst->src[1].file != IMM) 2609 continue; 2610 2611 if (brw_reg_type_is_floating_point(inst->src[1].type)) 2612 break; 2613 2614 /* a * 1.0 = a */ 2615 if (inst->src[1].is_one()) { 2616 inst->opcode = BRW_OPCODE_MOV; 2617 inst->src[1] = reg_undef; 2618 progress = true; 2619 break; 2620 } 2621 2622 /* a * -1.0 = -a */ 2623 if (inst->src[1].is_negative_one()) { 2624 inst->opcode = BRW_OPCODE_MOV; 2625 inst->src[0].negate = !inst->src[0].negate; 2626 inst->src[1] = reg_undef; 2627 progress = true; 2628 break; 2629 } 2630 2631 break; 2632 case BRW_OPCODE_ADD: 2633 if (inst->src[1].file != IMM) 2634 continue; 2635 2636 if (brw_reg_type_is_integer(inst->src[1].type) && 2637 inst->src[1].is_zero()) { 2638 inst->opcode = BRW_OPCODE_MOV; 2639 inst->src[1] = reg_undef; 2640 progress = true; 2641 break; 2642 } 2643 2644 if (inst->src[0].file == IMM) { 2645 assert(inst->src[0].type == BRW_REGISTER_TYPE_F); 2646 inst->opcode = BRW_OPCODE_MOV; 2647 inst->src[0].f += inst->src[1].f; 2648 inst->src[1] = reg_undef; 2649 progress = true; 2650 break; 2651 } 2652 break; 2653 case BRW_OPCODE_OR: 2654 if (inst->src[0].equals(inst->src[1]) || 2655 inst->src[1].is_zero()) { 2656 /* On Gfx8+, the OR instruction can have a source modifier that 2657 * performs logical not on the operand. Cases of 'OR r0, ~r1, 0' 2658 * or 'OR r0, ~r1, ~r1' should become a NOT instead of a MOV. 2659 */ 2660 if (inst->src[0].negate) { 2661 inst->opcode = BRW_OPCODE_NOT; 2662 inst->src[0].negate = false; 2663 } else { 2664 inst->opcode = BRW_OPCODE_MOV; 2665 } 2666 inst->src[1] = reg_undef; 2667 progress = true; 2668 break; 2669 } 2670 break; 2671 case BRW_OPCODE_CMP: 2672 if ((inst->conditional_mod == BRW_CONDITIONAL_Z || 2673 inst->conditional_mod == BRW_CONDITIONAL_NZ) && 2674 inst->src[1].is_zero() && 2675 (inst->src[0].abs || inst->src[0].negate)) { 2676 inst->src[0].abs = false; 2677 inst->src[0].negate = false; 2678 progress = true; 2679 break; 2680 } 2681 break; 2682 case BRW_OPCODE_SEL: 2683 if (!devinfo->has_64bit_float && 2684 !devinfo->has_64bit_int && 2685 (inst->dst.type == BRW_REGISTER_TYPE_DF || 2686 inst->dst.type == BRW_REGISTER_TYPE_UQ || 2687 inst->dst.type == BRW_REGISTER_TYPE_Q)) { 2688 assert(inst->dst.type == inst->src[0].type); 2689 assert(!inst->saturate); 2690 assert(!inst->src[0].abs && !inst->src[0].negate); 2691 assert(!inst->src[1].abs && !inst->src[1].negate); 2692 const brw::fs_builder ibld(this, block, inst); 2693 2694 set_predicate(inst->predicate, 2695 ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0), 2696 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0), 2697 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0))); 2698 set_predicate(inst->predicate, 2699 ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1), 2700 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1), 2701 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 1))); 2702 2703 inst->remove(block); 2704 progress = true; 2705 } 2706 if (inst->src[0].equals(inst->src[1])) { 2707 inst->opcode = BRW_OPCODE_MOV; 2708 inst->src[1] = reg_undef; 2709 inst->predicate = BRW_PREDICATE_NONE; 2710 inst->predicate_inverse = false; 2711 progress = true; 2712 } else if (inst->saturate && inst->src[1].file == IMM) { 2713 switch (inst->conditional_mod) { 2714 case BRW_CONDITIONAL_LE: 2715 case BRW_CONDITIONAL_L: 2716 switch (inst->src[1].type) { 2717 case BRW_REGISTER_TYPE_F: 2718 if (inst->src[1].f >= 1.0f) { 2719 inst->opcode = BRW_OPCODE_MOV; 2720 inst->src[1] = reg_undef; 2721 inst->conditional_mod = BRW_CONDITIONAL_NONE; 2722 progress = true; 2723 } 2724 break; 2725 default: 2726 break; 2727 } 2728 break; 2729 case BRW_CONDITIONAL_GE: 2730 case BRW_CONDITIONAL_G: 2731 switch (inst->src[1].type) { 2732 case BRW_REGISTER_TYPE_F: 2733 if (inst->src[1].f <= 0.0f) { 2734 inst->opcode = BRW_OPCODE_MOV; 2735 inst->src[1] = reg_undef; 2736 inst->conditional_mod = BRW_CONDITIONAL_NONE; 2737 progress = true; 2738 } 2739 break; 2740 default: 2741 break; 2742 } 2743 default: 2744 break; 2745 } 2746 } 2747 break; 2748 case BRW_OPCODE_MAD: 2749 if (inst->src[0].type != BRW_REGISTER_TYPE_F || 2750 inst->src[1].type != BRW_REGISTER_TYPE_F || 2751 inst->src[2].type != BRW_REGISTER_TYPE_F) 2752 break; 2753 if (inst->src[1].is_one()) { 2754 inst->opcode = BRW_OPCODE_ADD; 2755 inst->src[1] = inst->src[2]; 2756 inst->src[2] = reg_undef; 2757 progress = true; 2758 } else if (inst->src[2].is_one()) { 2759 inst->opcode = BRW_OPCODE_ADD; 2760 inst->src[2] = reg_undef; 2761 progress = true; 2762 } 2763 break; 2764 case SHADER_OPCODE_BROADCAST: 2765 if (is_uniform(inst->src[0])) { 2766 inst->opcode = BRW_OPCODE_MOV; 2767 inst->sources = 1; 2768 inst->force_writemask_all = true; 2769 progress = true; 2770 } else if (inst->src[1].file == IMM) { 2771 inst->opcode = BRW_OPCODE_MOV; 2772 /* It's possible that the selected component will be too large and 2773 * overflow the register. This can happen if someone does a 2774 * readInvocation() from GLSL or SPIR-V and provides an OOB 2775 * invocationIndex. If this happens and we some how manage 2776 * to constant fold it in and get here, then component() may cause 2777 * us to start reading outside of the VGRF which will lead to an 2778 * assert later. Instead, just let it wrap around if it goes over 2779 * exec_size. 2780 */ 2781 const unsigned comp = inst->src[1].ud & (inst->exec_size - 1); 2782 inst->src[0] = component(inst->src[0], comp); 2783 inst->sources = 1; 2784 inst->force_writemask_all = true; 2785 progress = true; 2786 } 2787 break; 2788 2789 case SHADER_OPCODE_SHUFFLE: 2790 if (is_uniform(inst->src[0])) { 2791 inst->opcode = BRW_OPCODE_MOV; 2792 inst->sources = 1; 2793 progress = true; 2794 } else if (inst->src[1].file == IMM) { 2795 inst->opcode = BRW_OPCODE_MOV; 2796 inst->src[0] = component(inst->src[0], 2797 inst->src[1].ud); 2798 inst->sources = 1; 2799 progress = true; 2800 } 2801 break; 2802 2803 default: 2804 break; 2805 } 2806 2807 /* Swap if src[0] is immediate. */ 2808 if (progress && inst->is_commutative()) { 2809 if (inst->src[0].file == IMM) { 2810 fs_reg tmp = inst->src[1]; 2811 inst->src[1] = inst->src[0]; 2812 inst->src[0] = tmp; 2813 } 2814 } 2815 } 2816 2817 if (progress) 2818 invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW | 2819 DEPENDENCY_INSTRUCTION_DETAIL); 2820 2821 return progress; 2822} 2823 2824/** 2825 * Optimize sample messages that have constant zero values for the trailing 2826 * texture coordinates. We can just reduce the message length for these 2827 * instructions instead of reserving a register for it. Trailing parameters 2828 * that aren't sent default to zero anyway. This will cause the dead code 2829 * eliminator to remove the MOV instruction that would otherwise be emitted to 2830 * set up the zero value. 2831 */ 2832bool 2833fs_visitor::opt_zero_samples() 2834{ 2835 /* Gfx4 infers the texturing opcode based on the message length so we can't 2836 * change it. Gfx12.5 has restrictions on the number of coordinate 2837 * parameters that have to be provided for some texture types 2838 * (Wa_14013363432). 2839 */ 2840 if (devinfo->ver < 5 || devinfo->verx10 == 125) 2841 return false; 2842 2843 bool progress = false; 2844 2845 foreach_block_and_inst(block, fs_inst, inst, cfg) { 2846 if (!inst->is_tex()) 2847 continue; 2848 2849 fs_inst *load_payload = (fs_inst *) inst->prev; 2850 2851 if (load_payload->is_head_sentinel() || 2852 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD) 2853 continue; 2854 2855 /* We don't want to remove the message header or the first parameter. 2856 * Removing the first parameter is not allowed, see the Haswell PRM 2857 * volume 7, page 149: 2858 * 2859 * "Parameter 0 is required except for the sampleinfo message, which 2860 * has no parameter 0" 2861 */ 2862 while (inst->mlen > inst->header_size + inst->exec_size / 8 && 2863 load_payload->src[(inst->mlen - inst->header_size) / 2864 (inst->exec_size / 8) + 2865 inst->header_size - 1].is_zero()) { 2866 inst->mlen -= inst->exec_size / 8; 2867 progress = true; 2868 } 2869 } 2870 2871 if (progress) 2872 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL); 2873 2874 return progress; 2875} 2876 2877/** 2878 * Opportunistically split SEND message payloads. 2879 * 2880 * Gfx9+ supports "split" SEND messages, which take two payloads that are 2881 * implicitly concatenated. If we find a SEND message with a single payload, 2882 * we can split that payload in two. This results in smaller contiguous 2883 * register blocks for us to allocate. But it can help beyond that, too. 2884 * 2885 * We try and split a LOAD_PAYLOAD between sources which change registers. 2886 * For example, a sampler message often contains a x/y/z coordinate that may 2887 * already be in a contiguous VGRF, combined with an LOD, shadow comparitor, 2888 * or array index, which comes from elsewhere. In this case, the first few 2889 * sources will be different offsets of the same VGRF, then a later source 2890 * will be a different VGRF. So we split there, possibly eliminating the 2891 * payload concatenation altogether. 2892 */ 2893bool 2894fs_visitor::opt_split_sends() 2895{ 2896 if (devinfo->ver < 9) 2897 return false; 2898 2899 bool progress = false; 2900 2901 const fs_live_variables &live = live_analysis.require(); 2902 2903 int next_ip = 0; 2904 2905 foreach_block_and_inst_safe(block, fs_inst, send, cfg) { 2906 int ip = next_ip; 2907 next_ip++; 2908 2909 if (send->opcode != SHADER_OPCODE_SEND || 2910 send->mlen == 1 || send->ex_mlen > 0) 2911 continue; 2912 2913 /* Don't split payloads which are also read later. */ 2914 assert(send->src[2].file == VGRF); 2915 if (live.vgrf_end[send->src[2].nr] > ip) 2916 continue; 2917 2918 fs_inst *lp = (fs_inst *) send->prev; 2919 2920 if (lp->is_head_sentinel() || lp->opcode != SHADER_OPCODE_LOAD_PAYLOAD) 2921 continue; 2922 2923 if (lp->dst.file != send->src[2].file || lp->dst.nr != send->src[2].nr) 2924 continue; 2925 2926 /* Split either after the header (if present), or when consecutive 2927 * sources switch from one VGRF to a different one. 2928 */ 2929 unsigned i = lp->header_size; 2930 if (lp->header_size == 0) { 2931 for (i = 1; i < lp->sources; i++) { 2932 if (lp->src[i].file == BAD_FILE) 2933 continue; 2934 2935 if (lp->src[0].file != lp->src[i].file || 2936 lp->src[0].nr != lp->src[i].nr) 2937 break; 2938 } 2939 } 2940 2941 if (i != lp->sources) { 2942 const fs_builder ibld(this, block, lp); 2943 fs_inst *lp2 = 2944 ibld.LOAD_PAYLOAD(lp->dst, &lp->src[i], lp->sources - i, 0); 2945 2946 lp->resize_sources(i); 2947 lp->size_written -= lp2->size_written; 2948 2949 lp->dst = fs_reg(VGRF, alloc.allocate(lp->size_written / REG_SIZE), lp->dst.type); 2950 lp2->dst = fs_reg(VGRF, alloc.allocate(lp2->size_written / REG_SIZE), lp2->dst.type); 2951 2952 send->resize_sources(4); 2953 send->src[2] = lp->dst; 2954 send->src[3] = lp2->dst; 2955 send->ex_mlen = lp2->size_written / REG_SIZE; 2956 send->mlen -= send->ex_mlen; 2957 2958 progress = true; 2959 } 2960 } 2961 2962 if (progress) 2963 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES); 2964 2965 return progress; 2966} 2967 2968 2969bool 2970fs_visitor::opt_register_renaming() 2971{ 2972 bool progress = false; 2973 int depth = 0; 2974 2975 unsigned remap[alloc.count]; 2976 memset(remap, ~0u, sizeof(unsigned) * alloc.count); 2977 2978 foreach_block_and_inst(block, fs_inst, inst, cfg) { 2979 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) { 2980 depth++; 2981 } else if (inst->opcode == BRW_OPCODE_ENDIF || 2982 inst->opcode == BRW_OPCODE_WHILE) { 2983 depth--; 2984 } 2985 2986 /* Rewrite instruction sources. */ 2987 for (int i = 0; i < inst->sources; i++) { 2988 if (inst->src[i].file == VGRF && 2989 remap[inst->src[i].nr] != ~0u && 2990 remap[inst->src[i].nr] != inst->src[i].nr) { 2991 inst->src[i].nr = remap[inst->src[i].nr]; 2992 progress = true; 2993 } 2994 } 2995 2996 const unsigned dst = inst->dst.nr; 2997 2998 if (depth == 0 && 2999 inst->dst.file == VGRF && 3000 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written && 3001 !inst->is_partial_write()) { 3002 if (remap[dst] == ~0u) { 3003 remap[dst] = dst; 3004 } else { 3005 remap[dst] = alloc.allocate(regs_written(inst)); 3006 inst->dst.nr = remap[dst]; 3007 progress = true; 3008 } 3009 } else if (inst->dst.file == VGRF && 3010 remap[dst] != ~0u && 3011 remap[dst] != dst) { 3012 inst->dst.nr = remap[dst]; 3013 progress = true; 3014 } 3015 } 3016 3017 if (progress) { 3018 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | 3019 DEPENDENCY_VARIABLES); 3020 3021 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) { 3022 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != ~0u) { 3023 delta_xy[i].nr = remap[delta_xy[i].nr]; 3024 } 3025 } 3026 } 3027 3028 return progress; 3029} 3030 3031/** 3032 * Remove redundant or useless halts. 3033 * 3034 * For example, we can eliminate halts in the following sequence: 3035 * 3036 * halt (redundant with the next halt) 3037 * halt (useless; jumps to the next instruction) 3038 * halt-target 3039 */ 3040bool 3041fs_visitor::opt_redundant_halt() 3042{ 3043 bool progress = false; 3044 3045 unsigned halt_count = 0; 3046 fs_inst *halt_target = NULL; 3047 bblock_t *halt_target_block = NULL; 3048 foreach_block_and_inst(block, fs_inst, inst, cfg) { 3049 if (inst->opcode == BRW_OPCODE_HALT) 3050 halt_count++; 3051 3052 if (inst->opcode == SHADER_OPCODE_HALT_TARGET) { 3053 halt_target = inst; 3054 halt_target_block = block; 3055 break; 3056 } 3057 } 3058 3059 if (!halt_target) { 3060 assert(halt_count == 0); 3061 return false; 3062 } 3063 3064 /* Delete any HALTs immediately before the halt target. */ 3065 for (fs_inst *prev = (fs_inst *) halt_target->prev; 3066 !prev->is_head_sentinel() && prev->opcode == BRW_OPCODE_HALT; 3067 prev = (fs_inst *) halt_target->prev) { 3068 prev->remove(halt_target_block); 3069 halt_count--; 3070 progress = true; 3071 } 3072 3073 if (halt_count == 0) { 3074 halt_target->remove(halt_target_block); 3075 progress = true; 3076 } 3077 3078 if (progress) 3079 invalidate_analysis(DEPENDENCY_INSTRUCTIONS); 3080 3081 return progress; 3082} 3083 3084/** 3085 * Compute a bitmask with GRF granularity with a bit set for each GRF starting 3086 * from \p r.offset which overlaps the region starting at \p s.offset and 3087 * spanning \p ds bytes. 3088 */ 3089static inline unsigned 3090mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds) 3091{ 3092 const int rel_offset = reg_offset(s) - reg_offset(r); 3093 const int shift = rel_offset / REG_SIZE; 3094 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE); 3095 assert(reg_space(r) == reg_space(s) && 3096 shift >= 0 && shift < int(8 * sizeof(unsigned))); 3097 return ((1 << n) - 1) << shift; 3098} 3099 3100bool 3101fs_visitor::compute_to_mrf() 3102{ 3103 bool progress = false; 3104 int next_ip = 0; 3105 3106 /* No MRFs on Gen >= 7. */ 3107 if (devinfo->ver >= 7) 3108 return false; 3109 3110 const fs_live_variables &live = live_analysis.require(); 3111 3112 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) { 3113 int ip = next_ip; 3114 next_ip++; 3115 3116 if (inst->opcode != BRW_OPCODE_MOV || 3117 inst->is_partial_write() || 3118 inst->dst.file != MRF || inst->src[0].file != VGRF || 3119 inst->dst.type != inst->src[0].type || 3120 inst->src[0].abs || inst->src[0].negate || 3121 !inst->src[0].is_contiguous() || 3122 inst->src[0].offset % REG_SIZE != 0) 3123 continue; 3124 3125 /* Can't compute-to-MRF this GRF if someone else was going to 3126 * read it later. 3127 */ 3128 if (live.vgrf_end[inst->src[0].nr] > ip) 3129 continue; 3130 3131 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the 3132 * things that computed the value of all GRFs of the source region. The 3133 * regs_left bitset keeps track of the registers we haven't yet found a 3134 * generating instruction for. 3135 */ 3136 unsigned regs_left = (1 << regs_read(inst, 0)) - 1; 3137 3138 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) { 3139 if (regions_overlap(scan_inst->dst, scan_inst->size_written, 3140 inst->src[0], inst->size_read(0))) { 3141 /* Found the last thing to write our reg we want to turn 3142 * into a compute-to-MRF. 3143 */ 3144 3145 /* If this one instruction didn't populate all the 3146 * channels, bail. We might be able to rewrite everything 3147 * that writes that reg, but it would require smarter 3148 * tracking. 3149 */ 3150 if (scan_inst->is_partial_write()) 3151 break; 3152 3153 /* Handling things not fully contained in the source of the copy 3154 * would need us to understand coalescing out more than one MOV at 3155 * a time. 3156 */ 3157 if (!region_contained_in(scan_inst->dst, scan_inst->size_written, 3158 inst->src[0], inst->size_read(0))) 3159 break; 3160 3161 /* SEND instructions can't have MRF as a destination. */ 3162 if (scan_inst->mlen) 3163 break; 3164 3165 if (devinfo->ver == 6) { 3166 /* gfx6 math instructions must have the destination be 3167 * GRF, so no compute-to-MRF for them. 3168 */ 3169 if (scan_inst->is_math()) { 3170 break; 3171 } 3172 } 3173 3174 /* Clear the bits for any registers this instruction overwrites. */ 3175 regs_left &= ~mask_relative_to( 3176 inst->src[0], scan_inst->dst, scan_inst->size_written); 3177 if (!regs_left) 3178 break; 3179 } 3180 3181 /* We don't handle control flow here. Most computation of 3182 * values that end up in MRFs are shortly before the MRF 3183 * write anyway. 3184 */ 3185 if (block->start() == scan_inst) 3186 break; 3187 3188 /* You can't read from an MRF, so if someone else reads our 3189 * MRF's source GRF that we wanted to rewrite, that stops us. 3190 */ 3191 bool interfered = false; 3192 for (int i = 0; i < scan_inst->sources; i++) { 3193 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i), 3194 inst->src[0], inst->size_read(0))) { 3195 interfered = true; 3196 } 3197 } 3198 if (interfered) 3199 break; 3200 3201 if (regions_overlap(scan_inst->dst, scan_inst->size_written, 3202 inst->dst, inst->size_written)) { 3203 /* If somebody else writes our MRF here, we can't 3204 * compute-to-MRF before that. 3205 */ 3206 break; 3207 } 3208 3209 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 && 3210 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE, 3211 inst->dst, inst->size_written)) { 3212 /* Found a SEND instruction, which means that there are 3213 * live values in MRFs from base_mrf to base_mrf + 3214 * scan_inst->mlen - 1. Don't go pushing our MRF write up 3215 * above it. 3216 */ 3217 break; 3218 } 3219 } 3220 3221 if (regs_left) 3222 continue; 3223 3224 /* Found all generating instructions of our MRF's source value, so it 3225 * should be safe to rewrite them to point to the MRF directly. 3226 */ 3227 regs_left = (1 << regs_read(inst, 0)) - 1; 3228 3229 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) { 3230 if (regions_overlap(scan_inst->dst, scan_inst->size_written, 3231 inst->src[0], inst->size_read(0))) { 3232 /* Clear the bits for any registers this instruction overwrites. */ 3233 regs_left &= ~mask_relative_to( 3234 inst->src[0], scan_inst->dst, scan_inst->size_written); 3235 3236 const unsigned rel_offset = reg_offset(scan_inst->dst) - 3237 reg_offset(inst->src[0]); 3238 3239 if (inst->dst.nr & BRW_MRF_COMPR4) { 3240 /* Apply the same address transformation done by the hardware 3241 * for COMPR4 MRF writes. 3242 */ 3243 assert(rel_offset < 2 * REG_SIZE); 3244 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4; 3245 3246 /* Clear the COMPR4 bit if the generating instruction is not 3247 * compressed. 3248 */ 3249 if (scan_inst->size_written < 2 * REG_SIZE) 3250 scan_inst->dst.nr &= ~BRW_MRF_COMPR4; 3251 3252 } else { 3253 /* Calculate the MRF number the result of this instruction is 3254 * ultimately written to. 3255 */ 3256 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE; 3257 } 3258 3259 scan_inst->dst.file = MRF; 3260 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE; 3261 scan_inst->saturate |= inst->saturate; 3262 if (!regs_left) 3263 break; 3264 } 3265 } 3266 3267 assert(!regs_left); 3268 inst->remove(block); 3269 progress = true; 3270 } 3271 3272 if (progress) 3273 invalidate_analysis(DEPENDENCY_INSTRUCTIONS); 3274 3275 return progress; 3276} 3277 3278/** 3279 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control 3280 * flow. We could probably do better here with some form of divergence 3281 * analysis. 3282 */ 3283bool 3284fs_visitor::eliminate_find_live_channel() 3285{ 3286 bool progress = false; 3287 unsigned depth = 0; 3288 3289 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) { 3290 /* The optimization below assumes that channel zero is live on thread 3291 * dispatch, which may not be the case if the fixed function dispatches 3292 * threads sparsely. 3293 */ 3294 return false; 3295 } 3296 3297 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) { 3298 switch (inst->opcode) { 3299 case BRW_OPCODE_IF: 3300 case BRW_OPCODE_DO: 3301 depth++; 3302 break; 3303 3304 case BRW_OPCODE_ENDIF: 3305 case BRW_OPCODE_WHILE: 3306 depth--; 3307 break; 3308 3309 case BRW_OPCODE_HALT: 3310 /* This can potentially make control flow non-uniform until the end 3311 * of the program. 3312 */ 3313 goto out; 3314 3315 case SHADER_OPCODE_FIND_LIVE_CHANNEL: 3316 if (depth == 0) { 3317 inst->opcode = BRW_OPCODE_MOV; 3318 inst->src[0] = brw_imm_ud(0u); 3319 inst->sources = 1; 3320 inst->force_writemask_all = true; 3321 progress = true; 3322 } 3323 break; 3324 3325 default: 3326 break; 3327 } 3328 } 3329 3330out: 3331 if (progress) 3332 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL); 3333 3334 return progress; 3335} 3336 3337/** 3338 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE 3339 * instructions to FS_OPCODE_REP_FB_WRITE. 3340 */ 3341void 3342fs_visitor::emit_repclear_shader() 3343{ 3344 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key; 3345 int base_mrf = 0; 3346 int color_mrf = base_mrf + 2; 3347 fs_inst *mov; 3348 3349 if (uniforms > 0) { 3350 mov = bld.exec_all().group(4, 0) 3351 .MOV(brw_message_reg(color_mrf), 3352 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F)); 3353 } else { 3354 struct brw_reg reg = 3355 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_UD, 3356 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4, 3357 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW); 3358 3359 mov = bld.exec_all().group(4, 0) 3360 .MOV(brw_uvec_mrf(4, color_mrf, 0), fs_reg(reg)); 3361 } 3362 3363 fs_inst *write = NULL; 3364 if (key->nr_color_regions == 1) { 3365 write = bld.emit(FS_OPCODE_REP_FB_WRITE); 3366 write->saturate = key->clamp_fragment_color; 3367 write->base_mrf = color_mrf; 3368 write->target = 0; 3369 write->header_size = 0; 3370 write->mlen = 1; 3371 } else { 3372 assume(key->nr_color_regions > 0); 3373 3374 struct brw_reg header = 3375 retype(brw_message_reg(base_mrf), BRW_REGISTER_TYPE_UD); 3376 bld.exec_all().group(16, 0) 3377 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)); 3378 3379 for (int i = 0; i < key->nr_color_regions; ++i) { 3380 if (i > 0) { 3381 bld.exec_all().group(1, 0) 3382 .MOV(component(header, 2), brw_imm_ud(i)); 3383 } 3384 3385 write = bld.emit(FS_OPCODE_REP_FB_WRITE); 3386 write->saturate = key->clamp_fragment_color; 3387 write->base_mrf = base_mrf; 3388 write->target = i; 3389 write->header_size = 2; 3390 write->mlen = 3; 3391 } 3392 } 3393 write->eot = true; 3394 write->last_rt = true; 3395 3396 calculate_cfg(); 3397 3398 assign_constant_locations(); 3399 assign_curb_setup(); 3400 3401 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */ 3402 if (uniforms > 0) { 3403 assert(mov->src[0].file == FIXED_GRF); 3404 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0); 3405 } 3406 3407 lower_scoreboard(); 3408} 3409 3410/** 3411 * Walks through basic blocks, looking for repeated MRF writes and 3412 * removing the later ones. 3413 */ 3414bool 3415fs_visitor::remove_duplicate_mrf_writes() 3416{ 3417 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->ver)]; 3418 bool progress = false; 3419 3420 /* Need to update the MRF tracking for compressed instructions. */ 3421 if (dispatch_width >= 16) 3422 return false; 3423 3424 memset(last_mrf_move, 0, sizeof(last_mrf_move)); 3425 3426 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) { 3427 if (inst->is_control_flow()) { 3428 memset(last_mrf_move, 0, sizeof(last_mrf_move)); 3429 } 3430 3431 if (inst->opcode == BRW_OPCODE_MOV && 3432 inst->dst.file == MRF) { 3433 fs_inst *prev_inst = last_mrf_move[inst->dst.nr]; 3434 if (prev_inst && prev_inst->opcode == BRW_OPCODE_MOV && 3435 inst->dst.equals(prev_inst->dst) && 3436 inst->src[0].equals(prev_inst->src[0]) && 3437 inst->saturate == prev_inst->saturate && 3438 inst->predicate == prev_inst->predicate && 3439 inst->conditional_mod == prev_inst->conditional_mod && 3440 inst->exec_size == prev_inst->exec_size) { 3441 inst->remove(block); 3442 progress = true; 3443 continue; 3444 } 3445 } 3446 3447 /* Clear out the last-write records for MRFs that were overwritten. */ 3448 if (inst->dst.file == MRF) { 3449 last_mrf_move[inst->dst.nr] = NULL; 3450 } 3451 3452 if (inst->mlen > 0 && inst->base_mrf != -1) { 3453 /* Found a SEND instruction, which will include two or fewer 3454 * implied MRF writes. We could do better here. 3455 */ 3456 for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) { 3457 last_mrf_move[inst->base_mrf + i] = NULL; 3458 } 3459 } 3460 3461 /* Clear out any MRF move records whose sources got overwritten. */ 3462 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) { 3463 if (last_mrf_move[i] && 3464 regions_overlap(inst->dst, inst->size_written, 3465 last_mrf_move[i]->src[0], 3466 last_mrf_move[i]->size_read(0))) { 3467 last_mrf_move[i] = NULL; 3468 } 3469 } 3470 3471 if (inst->opcode == BRW_OPCODE_MOV && 3472 inst->dst.file == MRF && 3473 inst->src[0].file != ARF && 3474 !inst->is_partial_write()) { 3475 last_mrf_move[inst->dst.nr] = inst; 3476 } 3477 } 3478 3479 if (progress) 3480 invalidate_analysis(DEPENDENCY_INSTRUCTIONS); 3481 3482 return progress; 3483} 3484 3485/** 3486 * Rounding modes for conversion instructions are included for each 3487 * conversion, but right now it is a state. So once it is set, 3488 * we don't need to call it again for subsequent calls. 3489 * 3490 * This is useful for vector/matrices conversions, as setting the 3491 * mode once is enough for the full vector/matrix 3492 */ 3493bool 3494fs_visitor::remove_extra_rounding_modes() 3495{ 3496 bool progress = false; 3497 unsigned execution_mode = this->nir->info.float_controls_execution_mode; 3498 3499 brw_rnd_mode base_mode = BRW_RND_MODE_UNSPECIFIED; 3500 if ((FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | 3501 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32 | 3502 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64) & 3503 execution_mode) 3504 base_mode = BRW_RND_MODE_RTNE; 3505 if ((FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | 3506 FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | 3507 FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64) & 3508 execution_mode) 3509 base_mode = BRW_RND_MODE_RTZ; 3510 3511 foreach_block (block, cfg) { 3512 brw_rnd_mode prev_mode = base_mode; 3513 3514 foreach_inst_in_block_safe (fs_inst, inst, block) { 3515 if (inst->opcode == SHADER_OPCODE_RND_MODE) { 3516 assert(inst->src[0].file == BRW_IMMEDIATE_VALUE); 3517 const brw_rnd_mode mode = (brw_rnd_mode) inst->src[0].d; 3518 if (mode == prev_mode) { 3519 inst->remove(block); 3520 progress = true; 3521 } else { 3522 prev_mode = mode; 3523 } 3524 } 3525 } 3526 } 3527 3528 if (progress) 3529 invalidate_analysis(DEPENDENCY_INSTRUCTIONS); 3530 3531 return progress; 3532} 3533 3534static void 3535clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len) 3536{ 3537 /* Clear the flag for registers that actually got read (as expected). */ 3538 for (int i = 0; i < inst->sources; i++) { 3539 int grf; 3540 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) { 3541 grf = inst->src[i].nr; 3542 } else { 3543 continue; 3544 } 3545 3546 if (grf >= first_grf && 3547 grf < first_grf + grf_len) { 3548 deps[grf - first_grf] = false; 3549 if (inst->exec_size == 16) 3550 deps[grf - first_grf + 1] = false; 3551 } 3552 } 3553} 3554 3555/** 3556 * Implements this workaround for the original 965: 3557 * 3558 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not 3559 * check for post destination dependencies on this instruction, software 3560 * must ensure that there is no destination hazard for the case of ‘write 3561 * followed by a posted write’ shown in the following example. 3562 * 3563 * 1. mov r3 0 3564 * 2. send r3.xy <rest of send instruction> 3565 * 3. mov r2 r3 3566 * 3567 * Due to no post-destination dependency check on the ‘send’, the above 3568 * code sequence could have two instructions (1 and 2) in flight at the 3569 * same time that both consider ‘r3’ as the target of their final writes. 3570 */ 3571void 3572fs_visitor::insert_gfx4_pre_send_dependency_workarounds(bblock_t *block, 3573 fs_inst *inst) 3574{ 3575 int write_len = regs_written(inst); 3576 int first_write_grf = inst->dst.nr; 3577 bool needs_dep[BRW_MAX_MRF(devinfo->ver)]; 3578 assert(write_len < (int)sizeof(needs_dep) - 1); 3579 3580 memset(needs_dep, false, sizeof(needs_dep)); 3581 memset(needs_dep, true, write_len); 3582 3583 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len); 3584 3585 /* Walk backwards looking for writes to registers we're writing which 3586 * aren't read since being written. If we hit the start of the program, 3587 * we assume that there are no outstanding dependencies on entry to the 3588 * program. 3589 */ 3590 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) { 3591 /* If we hit control flow, assume that there *are* outstanding 3592 * dependencies, and force their cleanup before our instruction. 3593 */ 3594 if (block->start() == scan_inst && block->num != 0) { 3595 for (int i = 0; i < write_len; i++) { 3596 if (needs_dep[i]) 3597 DEP_RESOLVE_MOV(fs_builder(this, block, inst), 3598 first_write_grf + i); 3599 } 3600 return; 3601 } 3602 3603 /* We insert our reads as late as possible on the assumption that any 3604 * instruction but a MOV that might have left us an outstanding 3605 * dependency has more latency than a MOV. 3606 */ 3607 if (scan_inst->dst.file == VGRF) { 3608 for (unsigned i = 0; i < regs_written(scan_inst); i++) { 3609 int reg = scan_inst->dst.nr + i; 3610 3611 if (reg >= first_write_grf && 3612 reg < first_write_grf + write_len && 3613 needs_dep[reg - first_write_grf]) { 3614 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg); 3615 needs_dep[reg - first_write_grf] = false; 3616 if (scan_inst->exec_size == 16) 3617 needs_dep[reg - first_write_grf + 1] = false; 3618 } 3619 } 3620 } 3621 3622 /* Clear the flag for registers that actually got read (as expected). */ 3623 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len); 3624 3625 /* Continue the loop only if we haven't resolved all the dependencies */ 3626 int i; 3627 for (i = 0; i < write_len; i++) { 3628 if (needs_dep[i]) 3629 break; 3630 } 3631 if (i == write_len) 3632 return; 3633 } 3634} 3635 3636/** 3637 * Implements this workaround for the original 965: 3638 * 3639 * "[DevBW, DevCL] Errata: A destination register from a send can not be 3640 * used as a destination register until after it has been sourced by an 3641 * instruction with a different destination register. 3642 */ 3643void 3644fs_visitor::insert_gfx4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst) 3645{ 3646 int write_len = regs_written(inst); 3647 unsigned first_write_grf = inst->dst.nr; 3648 bool needs_dep[BRW_MAX_MRF(devinfo->ver)]; 3649 assert(write_len < (int)sizeof(needs_dep) - 1); 3650 3651 memset(needs_dep, false, sizeof(needs_dep)); 3652 memset(needs_dep, true, write_len); 3653 /* Walk forwards looking for writes to registers we're writing which aren't 3654 * read before being written. 3655 */ 3656 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) { 3657 /* If we hit control flow, force resolve all remaining dependencies. */ 3658 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) { 3659 for (int i = 0; i < write_len; i++) { 3660 if (needs_dep[i]) 3661 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst), 3662 first_write_grf + i); 3663 } 3664 return; 3665 } 3666 3667 /* Clear the flag for registers that actually got read (as expected). */ 3668 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len); 3669 3670 /* We insert our reads as late as possible since they're reading the 3671 * result of a SEND, which has massive latency. 3672 */ 3673 if (scan_inst->dst.file == VGRF && 3674 scan_inst->dst.nr >= first_write_grf && 3675 scan_inst->dst.nr < first_write_grf + write_len && 3676 needs_dep[scan_inst->dst.nr - first_write_grf]) { 3677 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst), 3678 scan_inst->dst.nr); 3679 needs_dep[scan_inst->dst.nr - first_write_grf] = false; 3680 } 3681 3682 /* Continue the loop only if we haven't resolved all the dependencies */ 3683 int i; 3684 for (i = 0; i < write_len; i++) { 3685 if (needs_dep[i]) 3686 break; 3687 } 3688 if (i == write_len) 3689 return; 3690 } 3691} 3692 3693void 3694fs_visitor::insert_gfx4_send_dependency_workarounds() 3695{ 3696 if (devinfo->ver != 4 || devinfo->platform == INTEL_PLATFORM_G4X) 3697 return; 3698 3699 bool progress = false; 3700 3701 foreach_block_and_inst(block, fs_inst, inst, cfg) { 3702 if (inst->mlen != 0 && inst->dst.file == VGRF) { 3703 insert_gfx4_pre_send_dependency_workarounds(block, inst); 3704 insert_gfx4_post_send_dependency_workarounds(block, inst); 3705 progress = true; 3706 } 3707 } 3708 3709 if (progress) 3710 invalidate_analysis(DEPENDENCY_INSTRUCTIONS); 3711} 3712 3713/** 3714 * Turns the generic expression-style uniform pull constant load instruction 3715 * into a hardware-specific series of instructions for loading a pull 3716 * constant. 3717 * 3718 * The expression style allows the CSE pass before this to optimize out 3719 * repeated loads from the same offset, and gives the pre-register-allocation 3720 * scheduling full flexibility, while the conversion to native instructions 3721 * allows the post-register-allocation scheduler the best information 3722 * possible. 3723 * 3724 * Note that execution masking for setting up pull constant loads is special: 3725 * the channels that need to be written are unrelated to the current execution 3726 * mask, since a later instruction will use one of the result channels as a 3727 * source operand for all 8 or 16 of its channels. 3728 */ 3729void 3730fs_visitor::lower_uniform_pull_constant_loads() 3731{ 3732 foreach_block_and_inst (block, fs_inst, inst, cfg) { 3733 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD) 3734 continue; 3735 3736 const fs_reg& surface = inst->src[0]; 3737 const fs_reg& offset_B = inst->src[1]; 3738 assert(offset_B.file == IMM); 3739 3740 if (devinfo->has_lsc) { 3741 const fs_builder ubld = 3742 fs_builder(this, block, inst).group(8, 0).exec_all(); 3743 3744 const fs_reg payload = ubld.vgrf(BRW_REGISTER_TYPE_UD); 3745 ubld.MOV(payload, offset_B); 3746 3747 inst->sfid = GFX12_SFID_UGM; 3748 inst->desc = lsc_msg_desc(devinfo, LSC_OP_LOAD, 3749 1 /* simd_size */, 3750 LSC_ADDR_SURFTYPE_BTI, 3751 LSC_ADDR_SIZE_A32, 3752 1 /* num_coordinates */, 3753 LSC_DATA_SIZE_D32, 3754 inst->size_written / 4, 3755 true /* transpose */, 3756 LSC_CACHE_LOAD_L1STATE_L3MOCS, 3757 true /* has_dest */); 3758 3759 fs_reg ex_desc; 3760 if (surface.file == IMM) { 3761 ex_desc = brw_imm_ud(lsc_bti_ex_desc(devinfo, surface.ud)); 3762 } else { 3763 /* We only need the first component for the payload so we can use 3764 * one of the other components for the extended descriptor 3765 */ 3766 ex_desc = component(payload, 1); 3767 ubld.group(1, 0).SHL(ex_desc, surface, brw_imm_ud(24)); 3768 } 3769 3770 /* Update the original instruction. */ 3771 inst->opcode = SHADER_OPCODE_SEND; 3772 inst->mlen = lsc_msg_desc_src0_len(devinfo, inst->desc); 3773 inst->ex_mlen = 0; 3774 inst->header_size = 0; 3775 inst->send_has_side_effects = false; 3776 inst->send_is_volatile = true; 3777 inst->exec_size = 1; 3778 3779 /* Finally, the payload */ 3780 inst->resize_sources(3); 3781 inst->src[0] = brw_imm_ud(0); /* desc */ 3782 inst->src[1] = ex_desc; 3783 inst->src[2] = payload; 3784 3785 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES); 3786 } else if (devinfo->ver >= 7) { 3787 const fs_builder ubld = fs_builder(this, block, inst).exec_all(); 3788 const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD); 3789 3790 ubld.group(8, 0).MOV(payload, 3791 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)); 3792 ubld.group(1, 0).MOV(component(payload, 2), 3793 brw_imm_ud(offset_B.ud / 16)); 3794 3795 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GFX7; 3796 inst->src[1] = payload; 3797 inst->header_size = 1; 3798 inst->mlen = 1; 3799 3800 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES); 3801 } else { 3802 /* Before register allocation, we didn't tell the scheduler about the 3803 * MRF we use. We know it's safe to use this MRF because nothing 3804 * else does except for register spill/unspill, which generates and 3805 * uses its MRF within a single IR instruction. 3806 */ 3807 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->ver) + 1; 3808 inst->mlen = 1; 3809 } 3810 } 3811} 3812 3813bool 3814fs_visitor::lower_load_payload() 3815{ 3816 bool progress = false; 3817 3818 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) { 3819 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD) 3820 continue; 3821 3822 assert(inst->dst.file == MRF || inst->dst.file == VGRF); 3823 assert(inst->saturate == false); 3824 fs_reg dst = inst->dst; 3825 3826 /* Get rid of COMPR4. We'll add it back in if we need it */ 3827 if (dst.file == MRF) 3828 dst.nr = dst.nr & ~BRW_MRF_COMPR4; 3829 3830 const fs_builder ibld(this, block, inst); 3831 const fs_builder ubld = ibld.exec_all(); 3832 3833 for (uint8_t i = 0; i < inst->header_size;) { 3834 /* Number of header GRFs to initialize at once with a single MOV 3835 * instruction. 3836 */ 3837 const unsigned n = 3838 (i + 1 < inst->header_size && inst->src[i].stride == 1 && 3839 inst->src[i + 1].equals(byte_offset(inst->src[i], REG_SIZE))) ? 3840 2 : 1; 3841 3842 if (inst->src[i].file != BAD_FILE) 3843 ubld.group(8 * n, 0).MOV(retype(dst, BRW_REGISTER_TYPE_UD), 3844 retype(inst->src[i], BRW_REGISTER_TYPE_UD)); 3845 3846 dst = byte_offset(dst, n * REG_SIZE); 3847 i += n; 3848 } 3849 3850 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) && 3851 inst->exec_size > 8) { 3852 /* In this case, the payload portion of the LOAD_PAYLOAD isn't 3853 * a straightforward copy. Instead, the result of the 3854 * LOAD_PAYLOAD is treated as interleaved and the first four 3855 * non-header sources are unpacked as: 3856 * 3857 * m + 0: r0 3858 * m + 1: g0 3859 * m + 2: b0 3860 * m + 3: a0 3861 * m + 4: r1 3862 * m + 5: g1 3863 * m + 6: b1 3864 * m + 7: a1 3865 * 3866 * This is used for gen <= 5 fb writes. 3867 */ 3868 assert(inst->exec_size == 16); 3869 assert(inst->header_size + 4 <= inst->sources); 3870 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) { 3871 if (inst->src[i].file != BAD_FILE) { 3872 if (devinfo->has_compr4) { 3873 fs_reg compr4_dst = retype(dst, inst->src[i].type); 3874 compr4_dst.nr |= BRW_MRF_COMPR4; 3875 ibld.MOV(compr4_dst, inst->src[i]); 3876 } else { 3877 /* Platform doesn't have COMPR4. We have to fake it */ 3878 fs_reg mov_dst = retype(dst, inst->src[i].type); 3879 ibld.quarter(0).MOV(mov_dst, quarter(inst->src[i], 0)); 3880 mov_dst.nr += 4; 3881 ibld.quarter(1).MOV(mov_dst, quarter(inst->src[i], 1)); 3882 } 3883 } 3884 3885 dst.nr++; 3886 } 3887 3888 /* The loop above only ever incremented us through the first set 3889 * of 4 registers. However, thanks to the magic of COMPR4, we 3890 * actually wrote to the first 8 registers, so we need to take 3891 * that into account now. 3892 */ 3893 dst.nr += 4; 3894 3895 /* The COMPR4 code took care of the first 4 sources. We'll let 3896 * the regular path handle any remaining sources. Yes, we are 3897 * modifying the instruction but we're about to delete it so 3898 * this really doesn't hurt anything. 3899 */ 3900 inst->header_size += 4; 3901 } 3902 3903 for (uint8_t i = inst->header_size; i < inst->sources; i++) { 3904 dst.type = inst->src[i].type; 3905 if (inst->src[i].file != BAD_FILE) { 3906 ibld.MOV(dst, inst->src[i]); 3907 } 3908 dst = offset(dst, ibld, 1); 3909 } 3910 3911 inst->remove(block); 3912 progress = true; 3913 } 3914 3915 if (progress) 3916 invalidate_analysis(DEPENDENCY_INSTRUCTIONS); 3917 3918 return progress; 3919} 3920 3921void 3922fs_visitor::lower_mul_dword_inst(fs_inst *inst, bblock_t *block) 3923{ 3924 const fs_builder ibld(this, block, inst); 3925 3926 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD); 3927 if (inst->src[1].file == IMM && 3928 (( ud && inst->src[1].ud <= UINT16_MAX) || 3929 (!ud && inst->src[1].d <= INT16_MAX && inst->src[1].d >= INT16_MIN))) { 3930 /* The MUL instruction isn't commutative. On Gen <= 6, only the low 3931 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of 3932 * src1 are used. 3933 * 3934 * If multiplying by an immediate value that fits in 16-bits, do a 3935 * single MUL instruction with that value in the proper location. 3936 */ 3937 if (devinfo->ver < 7) { 3938 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8), inst->dst.type); 3939 ibld.MOV(imm, inst->src[1]); 3940 ibld.MUL(inst->dst, imm, inst->src[0]); 3941 } else { 3942 ibld.MUL(inst->dst, inst->src[0], 3943 ud ? brw_imm_uw(inst->src[1].ud) 3944 : brw_imm_w(inst->src[1].d)); 3945 } 3946 } else { 3947 /* Gen < 8 (and some Gfx8+ low-power parts like Cherryview) cannot 3948 * do 32-bit integer multiplication in one instruction, but instead 3949 * must do a sequence (which actually calculates a 64-bit result): 3950 * 3951 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D 3952 * mach(8) null g3<8,8,1>D g4<8,8,1>D 3953 * mov(8) g2<1>D acc0<8,8,1>D 3954 * 3955 * But on Gen > 6, the ability to use second accumulator register 3956 * (acc1) for non-float data types was removed, preventing a simple 3957 * implementation in SIMD16. A 16-channel result can be calculated by 3958 * executing the three instructions twice in SIMD8, once with quarter 3959 * control of 1Q for the first eight channels and again with 2Q for 3960 * the second eight channels. 3961 * 3962 * Which accumulator register is implicitly accessed (by AccWrEnable 3963 * for instance) is determined by the quarter control. Unfortunately 3964 * Ivybridge (and presumably Baytrail) has a hardware bug in which an 3965 * implicit accumulator access by an instruction with 2Q will access 3966 * acc1 regardless of whether the data type is usable in acc1. 3967 * 3968 * Specifically, the 2Q mach(8) writes acc1 which does not exist for 3969 * integer data types. 3970 * 3971 * Since we only want the low 32-bits of the result, we can do two 3972 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and 3973 * adjust the high result and add them (like the mach is doing): 3974 * 3975 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW 3976 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW 3977 * shl(8) g9<1>D g8<8,8,1>D 16D 3978 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D 3979 * 3980 * We avoid the shl instruction by realizing that we only want to add 3981 * the low 16-bits of the "high" result to the high 16-bits of the 3982 * "low" result and using proper regioning on the add: 3983 * 3984 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW 3985 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW 3986 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW 3987 * 3988 * Since it does not use the (single) accumulator register, we can 3989 * schedule multi-component multiplications much better. 3990 */ 3991 3992 bool needs_mov = false; 3993 fs_reg orig_dst = inst->dst; 3994 3995 /* Get a new VGRF for the "low" 32x16-bit multiplication result if 3996 * reusing the original destination is impossible due to hardware 3997 * restrictions, source/destination overlap, or it being the null 3998 * register. 3999 */ 4000 fs_reg low = inst->dst; 4001 if (orig_dst.is_null() || orig_dst.file == MRF || 4002 regions_overlap(inst->dst, inst->size_written, 4003 inst->src[0], inst->size_read(0)) || 4004 regions_overlap(inst->dst, inst->size_written, 4005 inst->src[1], inst->size_read(1)) || 4006 inst->dst.stride >= 4) { 4007 needs_mov = true; 4008 low = fs_reg(VGRF, alloc.allocate(regs_written(inst)), 4009 inst->dst.type); 4010 } 4011 4012 /* Get a new VGRF but keep the same stride as inst->dst */ 4013 fs_reg high(VGRF, alloc.allocate(regs_written(inst)), inst->dst.type); 4014 high.stride = inst->dst.stride; 4015 high.offset = inst->dst.offset % REG_SIZE; 4016 4017 if (devinfo->ver >= 7) { 4018 /* From Wa_1604601757: 4019 * 4020 * "When multiplying a DW and any lower precision integer, source modifier 4021 * is not supported." 4022 * 4023 * An unsupported negate modifier on src[1] would ordinarily be 4024 * lowered by the subsequent lower_regioning pass. In this case that 4025 * pass would spawn another dword multiply. Instead, lower the 4026 * modifier first. 4027 */ 4028 const bool source_mods_unsupported = (devinfo->ver >= 12); 4029 4030 if (inst->src[1].abs || (inst->src[1].negate && 4031 source_mods_unsupported)) 4032 lower_src_modifiers(this, block, inst, 1); 4033 4034 if (inst->src[1].file == IMM) { 4035 ibld.MUL(low, inst->src[0], 4036 brw_imm_uw(inst->src[1].ud & 0xffff)); 4037 ibld.MUL(high, inst->src[0], 4038 brw_imm_uw(inst->src[1].ud >> 16)); 4039 } else { 4040 ibld.MUL(low, inst->src[0], 4041 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0)); 4042 ibld.MUL(high, inst->src[0], 4043 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1)); 4044 } 4045 } else { 4046 if (inst->src[0].abs) 4047 lower_src_modifiers(this, block, inst, 0); 4048 4049 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0), 4050 inst->src[1]); 4051 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1), 4052 inst->src[1]); 4053 } 4054 4055 ibld.ADD(subscript(low, BRW_REGISTER_TYPE_UW, 1), 4056 subscript(low, BRW_REGISTER_TYPE_UW, 1), 4057 subscript(high, BRW_REGISTER_TYPE_UW, 0)); 4058 4059 if (needs_mov || inst->conditional_mod) 4060 set_condmod(inst->conditional_mod, ibld.MOV(orig_dst, low)); 4061 } 4062} 4063 4064void 4065fs_visitor::lower_mul_qword_inst(fs_inst *inst, bblock_t *block) 4066{ 4067 const fs_builder ibld(this, block, inst); 4068 4069 /* Considering two 64-bit integers ab and cd where each letter ab 4070 * corresponds to 32 bits, we get a 128-bit result WXYZ. We * cd 4071 * only need to provide the YZ part of the result. ------- 4072 * BD 4073 * Only BD needs to be 64 bits. For AD and BC we only care + AD 4074 * about the lower 32 bits (since they are part of the upper + BC 4075 * 32 bits of our result). AC is not needed since it starts + AC 4076 * on the 65th bit of the result. ------- 4077 * WXYZ 4078 */ 4079 unsigned int q_regs = regs_written(inst); 4080 unsigned int d_regs = (q_regs + 1) / 2; 4081 4082 fs_reg bd(VGRF, alloc.allocate(q_regs), BRW_REGISTER_TYPE_UQ); 4083 fs_reg ad(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD); 4084 fs_reg bc(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD); 4085 4086 /* Here we need the full 64 bit result for 32b * 32b. */ 4087 if (devinfo->has_integer_dword_mul) { 4088 ibld.MUL(bd, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0), 4089 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0)); 4090 } else { 4091 fs_reg bd_high(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD); 4092 fs_reg bd_low(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD); 4093 fs_reg acc = retype(brw_acc_reg(inst->exec_size), BRW_REGISTER_TYPE_UD); 4094 4095 fs_inst *mul = ibld.MUL(acc, 4096 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0), 4097 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0)); 4098 mul->writes_accumulator = true; 4099 4100 ibld.MACH(bd_high, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0), 4101 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0)); 4102 ibld.MOV(bd_low, acc); 4103 4104 ibld.MOV(subscript(bd, BRW_REGISTER_TYPE_UD, 0), bd_low); 4105 ibld.MOV(subscript(bd, BRW_REGISTER_TYPE_UD, 1), bd_high); 4106 } 4107 4108 ibld.MUL(ad, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1), 4109 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0)); 4110 ibld.MUL(bc, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0), 4111 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 1)); 4112 4113 ibld.ADD(ad, ad, bc); 4114 ibld.ADD(subscript(bd, BRW_REGISTER_TYPE_UD, 1), 4115 subscript(bd, BRW_REGISTER_TYPE_UD, 1), ad); 4116 4117 if (devinfo->has_64bit_int) { 4118 ibld.MOV(inst->dst, bd); 4119 } else { 4120 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0), 4121 subscript(bd, BRW_REGISTER_TYPE_UD, 0)); 4122 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1), 4123 subscript(bd, BRW_REGISTER_TYPE_UD, 1)); 4124 } 4125} 4126 4127void 4128fs_visitor::lower_mulh_inst(fs_inst *inst, bblock_t *block) 4129{ 4130 const fs_builder ibld(this, block, inst); 4131 4132 /* According to the BDW+ BSpec page for the "Multiply Accumulate 4133 * High" instruction: 4134 * 4135 * "An added preliminary mov is required for source modification on 4136 * src1: 4137 * mov (8) r3.0<1>:d -r3<8;8,1>:d 4138 * mul (8) acc0:d r2.0<8;8,1>:d r3.0<16;8,2>:uw 4139 * mach (8) r5.0<1>:d r2.0<8;8,1>:d r3.0<8;8,1>:d" 4140 */ 4141 if (devinfo->ver >= 8 && (inst->src[1].negate || inst->src[1].abs)) 4142 lower_src_modifiers(this, block, inst, 1); 4143 4144 /* Should have been lowered to 8-wide. */ 4145 assert(inst->exec_size <= get_lowered_simd_width(compiler, inst)); 4146 const fs_reg acc = retype(brw_acc_reg(inst->exec_size), inst->dst.type); 4147 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]); 4148 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]); 4149 4150 if (devinfo->ver >= 8) { 4151 /* Until Gfx8, integer multiplies read 32-bits from one source, 4152 * and 16-bits from the other, and relying on the MACH instruction 4153 * to generate the high bits of the result. 4154 * 4155 * On Gfx8, the multiply instruction does a full 32x32-bit 4156 * multiply, but in order to do a 64-bit multiply we can simulate 4157 * the previous behavior and then use a MACH instruction. 4158 */ 4159 assert(mul->src[1].type == BRW_REGISTER_TYPE_D || 4160 mul->src[1].type == BRW_REGISTER_TYPE_UD); 4161 mul->src[1].type = BRW_REGISTER_TYPE_UW; 4162 mul->src[1].stride *= 2; 4163 4164 if (mul->src[1].file == IMM) { 4165 mul->src[1] = brw_imm_uw(mul->src[1].ud); 4166 } 4167 } else if (devinfo->verx10 == 70 && 4168 inst->group > 0) { 4169 /* Among other things the quarter control bits influence which 4170 * accumulator register is used by the hardware for instructions 4171 * that access the accumulator implicitly (e.g. MACH). A 4172 * second-half instruction would normally map to acc1, which 4173 * doesn't exist on Gfx7 and up (the hardware does emulate it for 4174 * floating-point instructions *only* by taking advantage of the 4175 * extra precision of acc0 not normally used for floating point 4176 * arithmetic). 4177 * 4178 * HSW and up are careful enough not to try to access an 4179 * accumulator register that doesn't exist, but on earlier Gfx7 4180 * hardware we need to make sure that the quarter control bits are 4181 * zero to avoid non-deterministic behaviour and emit an extra MOV 4182 * to get the result masked correctly according to the current 4183 * channel enables. 4184 */ 4185 mach->group = 0; 4186 mach->force_writemask_all = true; 4187 mach->dst = ibld.vgrf(inst->dst.type); 4188 ibld.MOV(inst->dst, mach->dst); 4189 } 4190} 4191 4192bool 4193fs_visitor::lower_integer_multiplication() 4194{ 4195 bool progress = false; 4196 4197 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) { 4198 if (inst->opcode == BRW_OPCODE_MUL) { 4199 /* If the instruction is already in a form that does not need lowering, 4200 * return early. 4201 */ 4202 if (devinfo->ver >= 7) { 4203 if (type_sz(inst->src[1].type) < 4 && type_sz(inst->src[0].type) <= 4) 4204 continue; 4205 } else { 4206 if (type_sz(inst->src[0].type) < 4 && type_sz(inst->src[1].type) <= 4) 4207 continue; 4208 } 4209 4210 if ((inst->dst.type == BRW_REGISTER_TYPE_Q || 4211 inst->dst.type == BRW_REGISTER_TYPE_UQ) && 4212 (inst->src[0].type == BRW_REGISTER_TYPE_Q || 4213 inst->src[0].type == BRW_REGISTER_TYPE_UQ) && 4214 (inst->src[1].type == BRW_REGISTER_TYPE_Q || 4215 inst->src[1].type == BRW_REGISTER_TYPE_UQ)) { 4216 lower_mul_qword_inst(inst, block); 4217 inst->remove(block); 4218 progress = true; 4219 } else if (!inst->dst.is_accumulator() && 4220 (inst->dst.type == BRW_REGISTER_TYPE_D || 4221 inst->dst.type == BRW_REGISTER_TYPE_UD) && 4222 (!devinfo->has_integer_dword_mul || 4223 devinfo->verx10 >= 125)) { 4224 lower_mul_dword_inst(inst, block); 4225 inst->remove(block); 4226 progress = true; 4227 } 4228 } else if (inst->opcode == SHADER_OPCODE_MULH) { 4229 lower_mulh_inst(inst, block); 4230 inst->remove(block); 4231 progress = true; 4232 } 4233 4234 } 4235 4236 if (progress) 4237 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES); 4238 4239 return progress; 4240} 4241 4242bool 4243fs_visitor::lower_minmax() 4244{ 4245 assert(devinfo->ver < 6); 4246 4247 bool progress = false; 4248 4249 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) { 4250 const fs_builder ibld(this, block, inst); 4251 4252 if (inst->opcode == BRW_OPCODE_SEL && 4253 inst->predicate == BRW_PREDICATE_NONE) { 4254 /* If src1 is an immediate value that is not NaN, then it can't be 4255 * NaN. In that case, emit CMP because it is much better for cmod 4256 * propagation. Likewise if src1 is not float. Gfx4 and Gfx5 don't 4257 * support HF or DF, so it is not necessary to check for those. 4258 */ 4259 if (inst->src[1].type != BRW_REGISTER_TYPE_F || 4260 (inst->src[1].file == IMM && !isnan(inst->src[1].f))) { 4261 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1], 4262 inst->conditional_mod); 4263 } else { 4264 ibld.CMPN(ibld.null_reg_d(), inst->src[0], inst->src[1], 4265 inst->conditional_mod); 4266 } 4267 inst->predicate = BRW_PREDICATE_NORMAL; 4268 inst->conditional_mod = BRW_CONDITIONAL_NONE; 4269 4270 progress = true; 4271 } 4272 } 4273 4274 if (progress) 4275 invalidate_analysis(DEPENDENCY_INSTRUCTIONS); 4276 4277 return progress; 4278} 4279 4280bool 4281fs_visitor::lower_sub_sat() 4282{ 4283 bool progress = false; 4284 4285 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) { 4286 const fs_builder ibld(this, block, inst); 4287 4288 if (inst->opcode == SHADER_OPCODE_USUB_SAT || 4289 inst->opcode == SHADER_OPCODE_ISUB_SAT) { 4290 /* The fundamental problem is the hardware performs source negation 4291 * at the bit width of the source. If the source is 0x80000000D, the 4292 * negation is 0x80000000D. As a result, subtractSaturate(0, 4293 * 0x80000000) will produce 0x80000000 instead of 0x7fffffff. There 4294 * are at least three ways to resolve this: 4295 * 4296 * 1. Use the accumulator for the negated source. The accumulator is 4297 * 33 bits, so our source 0x80000000 is sign-extended to 4298 * 0x1800000000. The negation of which is 0x080000000. This 4299 * doesn't help for 64-bit integers (which are already bigger than 4300 * 33 bits). There are also only 8 accumulators, so SIMD16 or 4301 * SIMD32 instructions would have to be split into multiple SIMD8 4302 * instructions. 4303 * 4304 * 2. Use slightly different math. For any n-bit value x, we know (x 4305 * >> 1) != -(x >> 1). We can use this fact to only do 4306 * subtractions involving (x >> 1). subtractSaturate(a, b) == 4307 * subtractSaturate(subtractSaturate(a, (b >> 1)), b - (b >> 1)). 4308 * 4309 * 3. For unsigned sources, it is sufficient to replace the 4310 * subtractSaturate with (a > b) ? a - b : 0. 4311 * 4312 * It may also be possible to use the SUBB instruction. This 4313 * implicitly writes the accumulator, so it could only be used in the 4314 * same situations as #1 above. It is further limited by only 4315 * allowing UD sources. 4316 */ 4317 if (inst->exec_size == 8 && inst->src[0].type != BRW_REGISTER_TYPE_Q && 4318 inst->src[0].type != BRW_REGISTER_TYPE_UQ) { 4319 fs_reg acc(ARF, BRW_ARF_ACCUMULATOR, inst->src[1].type); 4320 4321 ibld.MOV(acc, inst->src[1]); 4322 fs_inst *add = ibld.ADD(inst->dst, acc, inst->src[0]); 4323 add->saturate = true; 4324 add->src[0].negate = true; 4325 } else if (inst->opcode == SHADER_OPCODE_ISUB_SAT) { 4326 /* tmp = src1 >> 1; 4327 * dst = add.sat(add.sat(src0, -tmp), -(src1 - tmp)); 4328 */ 4329 fs_reg tmp1 = ibld.vgrf(inst->src[0].type); 4330 fs_reg tmp2 = ibld.vgrf(inst->src[0].type); 4331 fs_reg tmp3 = ibld.vgrf(inst->src[0].type); 4332 fs_inst *add; 4333 4334 ibld.SHR(tmp1, inst->src[1], brw_imm_d(1)); 4335 4336 add = ibld.ADD(tmp2, inst->src[1], tmp1); 4337 add->src[1].negate = true; 4338 4339 add = ibld.ADD(tmp3, inst->src[0], tmp1); 4340 add->src[1].negate = true; 4341 add->saturate = true; 4342 4343 add = ibld.ADD(inst->dst, tmp3, tmp2); 4344 add->src[1].negate = true; 4345 add->saturate = true; 4346 } else { 4347 /* a > b ? a - b : 0 */ 4348 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1], 4349 BRW_CONDITIONAL_G); 4350 4351 fs_inst *add = ibld.ADD(inst->dst, inst->src[0], inst->src[1]); 4352 add->src[1].negate = !add->src[1].negate; 4353 4354 ibld.SEL(inst->dst, inst->dst, brw_imm_ud(0)) 4355 ->predicate = BRW_PREDICATE_NORMAL; 4356 } 4357 4358 inst->remove(block); 4359 progress = true; 4360 } 4361 } 4362 4363 if (progress) 4364 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES); 4365 4366 return progress; 4367} 4368 4369/** 4370 * Get the mask of SIMD channels enabled during dispatch and not yet disabled 4371 * by discard. Due to the layout of the sample mask in the fragment shader 4372 * thread payload, \p bld is required to have a dispatch_width() not greater 4373 * than 16 for fragment shaders. 4374 */ 4375fs_reg 4376brw_sample_mask_reg(const fs_builder &bld) 4377{ 4378 const fs_visitor *v = static_cast<const fs_visitor *>(bld.shader); 4379 4380 if (v->stage != MESA_SHADER_FRAGMENT) { 4381 return brw_imm_ud(0xffffffff); 4382 } else if (brw_wm_prog_data(v->stage_prog_data)->uses_kill) { 4383 assert(bld.dispatch_width() <= 16); 4384 return brw_flag_subreg(sample_mask_flag_subreg(v) + bld.group() / 16); 4385 } else { 4386 assert(v->devinfo->ver >= 6 && bld.dispatch_width() <= 16); 4387 return retype(brw_vec1_grf((bld.group() >= 16 ? 2 : 1), 7), 4388 BRW_REGISTER_TYPE_UW); 4389 } 4390} 4391 4392uint32_t 4393brw_fb_write_msg_control(const fs_inst *inst, 4394 const struct brw_wm_prog_data *prog_data) 4395{ 4396 uint32_t mctl; 4397 4398 if (inst->opcode == FS_OPCODE_REP_FB_WRITE) { 4399 assert(inst->group == 0 && inst->exec_size == 16); 4400 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED; 4401 } else if (prog_data->dual_src_blend) { 4402 assert(inst->exec_size == 8); 4403 4404 if (inst->group % 16 == 0) 4405 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01; 4406 else if (inst->group % 16 == 8) 4407 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23; 4408 else 4409 unreachable("Invalid dual-source FB write instruction group"); 4410 } else { 4411 assert(inst->group == 0 || (inst->group == 16 && inst->exec_size == 16)); 4412 4413 if (inst->exec_size == 16) 4414 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE; 4415 else if (inst->exec_size == 8) 4416 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01; 4417 else 4418 unreachable("Invalid FB write execution size"); 4419 } 4420 4421 return mctl; 4422} 4423 4424 /** 4425 * Predicate the specified instruction on the sample mask. 4426 */ 4427void 4428brw_emit_predicate_on_sample_mask(const fs_builder &bld, fs_inst *inst) 4429{ 4430 assert(bld.shader->stage == MESA_SHADER_FRAGMENT && 4431 bld.group() == inst->group && 4432 bld.dispatch_width() == inst->exec_size); 4433 4434 const fs_visitor *v = static_cast<const fs_visitor *>(bld.shader); 4435 const fs_reg sample_mask = brw_sample_mask_reg(bld); 4436 const unsigned subreg = sample_mask_flag_subreg(v); 4437 4438 if (brw_wm_prog_data(v->stage_prog_data)->uses_kill) { 4439 assert(sample_mask.file == ARF && 4440 sample_mask.nr == brw_flag_subreg(subreg).nr && 4441 sample_mask.subnr == brw_flag_subreg( 4442 subreg + inst->group / 16).subnr); 4443 } else { 4444 bld.group(1, 0).exec_all() 4445 .MOV(brw_flag_subreg(subreg + inst->group / 16), sample_mask); 4446 } 4447 4448 if (inst->predicate) { 4449 assert(inst->predicate == BRW_PREDICATE_NORMAL); 4450 assert(!inst->predicate_inverse); 4451 assert(inst->flag_subreg == 0); 4452 /* Combine the sample mask with the existing predicate by using a 4453 * vertical predication mode. 4454 */ 4455 inst->predicate = BRW_PREDICATE_ALIGN1_ALLV; 4456 } else { 4457 inst->flag_subreg = subreg; 4458 inst->predicate = BRW_PREDICATE_NORMAL; 4459 inst->predicate_inverse = false; 4460 } 4461} 4462 4463void 4464fs_visitor::emit_is_helper_invocation(fs_reg result) 4465{ 4466 /* Unlike the regular gl_HelperInvocation, that is defined at dispatch, 4467 * the helperInvocationEXT() (aka SpvOpIsHelperInvocationEXT) takes into 4468 * consideration demoted invocations. 4469 */ 4470 result.type = BRW_REGISTER_TYPE_UD; 4471 4472 bld.MOV(result, brw_imm_ud(0)); 4473 4474 /* See brw_sample_mask_reg() for why we split SIMD32 into SIMD16 here. */ 4475 unsigned width = bld.dispatch_width(); 4476 for (unsigned i = 0; i < DIV_ROUND_UP(width, 16); i++) { 4477 const fs_builder b = bld.group(MIN2(width, 16), i); 4478 4479 fs_inst *mov = b.MOV(offset(result, b, i), brw_imm_ud(~0)); 4480 4481 /* The at() ensures that any code emitted to get the predicate happens 4482 * before the mov right above. This is not an issue elsewhere because 4483 * lowering code already set up the builder this way. 4484 */ 4485 brw_emit_predicate_on_sample_mask(b.at(NULL, mov), mov); 4486 mov->predicate_inverse = true; 4487 } 4488} 4489 4490static bool 4491is_mixed_float_with_fp32_dst(const fs_inst *inst) 4492{ 4493 /* This opcode sometimes uses :W type on the source even if the operand is 4494 * a :HF, because in gfx7 there is no support for :HF, and thus it uses :W. 4495 */ 4496 if (inst->opcode == BRW_OPCODE_F16TO32) 4497 return true; 4498 4499 if (inst->dst.type != BRW_REGISTER_TYPE_F) 4500 return false; 4501 4502 for (int i = 0; i < inst->sources; i++) { 4503 if (inst->src[i].type == BRW_REGISTER_TYPE_HF) 4504 return true; 4505 } 4506 4507 return false; 4508} 4509 4510static bool 4511is_mixed_float_with_packed_fp16_dst(const fs_inst *inst) 4512{ 4513 /* This opcode sometimes uses :W type on the destination even if the 4514 * destination is a :HF, because in gfx7 there is no support for :HF, and 4515 * thus it uses :W. 4516 */ 4517 if (inst->opcode == BRW_OPCODE_F32TO16 && 4518 inst->dst.stride == 1) 4519 return true; 4520 4521 if (inst->dst.type != BRW_REGISTER_TYPE_HF || 4522 inst->dst.stride != 1) 4523 return false; 4524 4525 for (int i = 0; i < inst->sources; i++) { 4526 if (inst->src[i].type == BRW_REGISTER_TYPE_F) 4527 return true; 4528 } 4529 4530 return false; 4531} 4532 4533/** 4534 * Get the closest allowed SIMD width for instruction \p inst accounting for 4535 * some common regioning and execution control restrictions that apply to FPU 4536 * instructions. These restrictions don't necessarily have any relevance to 4537 * instructions not executed by the FPU pipeline like extended math, control 4538 * flow or send message instructions. 4539 * 4540 * For virtual opcodes it's really up to the instruction -- In some cases 4541 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU 4542 * instructions) it may simplify virtual instruction lowering if we can 4543 * enforce FPU-like regioning restrictions already on the virtual instruction, 4544 * in other cases (e.g. virtual send-like instructions) this may be 4545 * excessively restrictive. 4546 */ 4547static unsigned 4548get_fpu_lowered_simd_width(const struct brw_compiler *compiler, 4549 const fs_inst *inst) 4550{ 4551 const struct intel_device_info *devinfo = compiler->devinfo; 4552 4553 /* Maximum execution size representable in the instruction controls. */ 4554 unsigned max_width = MIN2(32, inst->exec_size); 4555 4556 /* According to the PRMs: 4557 * "A. In Direct Addressing mode, a source cannot span more than 2 4558 * adjacent GRF registers. 4559 * B. A destination cannot span more than 2 adjacent GRF registers." 4560 * 4561 * Look for the source or destination with the largest register region 4562 * which is the one that is going to limit the overall execution size of 4563 * the instruction due to this rule. 4564 */ 4565 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE); 4566 4567 for (unsigned i = 0; i < inst->sources; i++) 4568 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE)); 4569 4570 /* Calculate the maximum execution size of the instruction based on the 4571 * factor by which it goes over the hardware limit of 2 GRFs. 4572 */ 4573 if (reg_count > 2) 4574 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2)); 4575 4576 /* According to the IVB PRMs: 4577 * "When destination spans two registers, the source MUST span two 4578 * registers. The exception to the above rule: 4579 * 4580 * - When source is scalar, the source registers are not incremented. 4581 * - When source is packed integer Word and destination is packed 4582 * integer DWord, the source register is not incremented but the 4583 * source sub register is incremented." 4584 * 4585 * The hardware specs from Gfx4 to Gfx7.5 mention similar regioning 4586 * restrictions. The code below intentionally doesn't check whether the 4587 * destination type is integer because empirically the hardware doesn't 4588 * seem to care what the actual type is as long as it's dword-aligned. 4589 */ 4590 if (devinfo->ver < 8) { 4591 for (unsigned i = 0; i < inst->sources; i++) { 4592 /* IVB implements DF scalars as <0;2,1> regions. */ 4593 const bool is_scalar_exception = is_uniform(inst->src[i]) && 4594 (devinfo->platform == INTEL_PLATFORM_HSW || type_sz(inst->src[i].type) != 8); 4595 const bool is_packed_word_exception = 4596 type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 && 4597 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1; 4598 4599 /* We check size_read(i) against size_written instead of REG_SIZE 4600 * because we want to properly handle SIMD32. In SIMD32, you can end 4601 * up with writes to 4 registers and a source that reads 2 registers 4602 * and we may still need to lower all the way to SIMD8 in that case. 4603 */ 4604 if (inst->size_written > REG_SIZE && 4605 inst->size_read(i) != 0 && 4606 inst->size_read(i) < inst->size_written && 4607 !is_scalar_exception && !is_packed_word_exception) { 4608 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE); 4609 max_width = MIN2(max_width, inst->exec_size / reg_count); 4610 } 4611 } 4612 } 4613 4614 if (devinfo->ver < 6) { 4615 /* From the G45 PRM, Volume 4 Page 361: 4616 * 4617 * "Operand Alignment Rule: With the exceptions listed below, a 4618 * source/destination operand in general should be aligned to even 4619 * 256-bit physical register with a region size equal to two 256-bit 4620 * physical registers." 4621 * 4622 * Normally we enforce this by allocating virtual registers to the 4623 * even-aligned class. But we need to handle payload registers. 4624 */ 4625 for (unsigned i = 0; i < inst->sources; i++) { 4626 if (inst->src[i].file == FIXED_GRF && (inst->src[i].nr & 1) && 4627 inst->size_read(i) > REG_SIZE) { 4628 max_width = MIN2(max_width, 8); 4629 } 4630 } 4631 } 4632 4633 /* From the IVB PRMs: 4634 * "When an instruction is SIMD32, the low 16 bits of the execution mask 4635 * are applied for both halves of the SIMD32 instruction. If different 4636 * execution mask channels are required, split the instruction into two 4637 * SIMD16 instructions." 4638 * 4639 * There is similar text in the HSW PRMs. Gfx4-6 don't even implement 4640 * 32-wide control flow support in hardware and will behave similarly. 4641 */ 4642 if (devinfo->ver < 8 && !inst->force_writemask_all) 4643 max_width = MIN2(max_width, 16); 4644 4645 /* From the IVB PRMs (applies to HSW too): 4646 * "Instructions with condition modifiers must not use SIMD32." 4647 * 4648 * From the BDW PRMs (applies to later hardware too): 4649 * "Ternary instruction with condition modifiers must not use SIMD32." 4650 */ 4651 if (inst->conditional_mod && (devinfo->ver < 8 || inst->is_3src(compiler))) 4652 max_width = MIN2(max_width, 16); 4653 4654 /* From the IVB PRMs (applies to other devices that don't have the 4655 * intel_device_info::supports_simd16_3src flag set): 4656 * "In Align16 access mode, SIMD16 is not allowed for DW operations and 4657 * SIMD8 is not allowed for DF operations." 4658 */ 4659 if (inst->is_3src(compiler) && !devinfo->supports_simd16_3src) 4660 max_width = MIN2(max_width, inst->exec_size / reg_count); 4661 4662 /* Pre-Gfx8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is 4663 * the 8-bit quarter of the execution mask signals specified in the 4664 * instruction control fields) for the second compressed half of any 4665 * single-precision instruction (for double-precision instructions 4666 * it's hardwired to use NibCtrl+1, at least on HSW), which means that 4667 * the EU will apply the wrong execution controls for the second 4668 * sequential GRF write if the number of channels per GRF is not exactly 4669 * eight in single-precision mode (or four in double-float mode). 4670 * 4671 * In this situation we calculate the maximum size of the split 4672 * instructions so they only ever write to a single register. 4673 */ 4674 if (devinfo->ver < 8 && inst->size_written > REG_SIZE && 4675 !inst->force_writemask_all) { 4676 const unsigned channels_per_grf = inst->exec_size / 4677 DIV_ROUND_UP(inst->size_written, REG_SIZE); 4678 const unsigned exec_type_size = get_exec_type_size(inst); 4679 assert(exec_type_size); 4680 4681 /* The hardware shifts exactly 8 channels per compressed half of the 4682 * instruction in single-precision mode and exactly 4 in double-precision. 4683 */ 4684 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8)) 4685 max_width = MIN2(max_width, channels_per_grf); 4686 4687 /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT 4688 * because HW applies the same channel enable signals to both halves of 4689 * the compressed instruction which will be just wrong under 4690 * non-uniform control flow. 4691 */ 4692 if (devinfo->verx10 == 70 && 4693 (exec_type_size == 8 || type_sz(inst->dst.type) == 8)) 4694 max_width = MIN2(max_width, 4); 4695 } 4696 4697 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode 4698 * Float Operations: 4699 * 4700 * "No SIMD16 in mixed mode when destination is f32. Instruction 4701 * execution size must be no more than 8." 4702 * 4703 * FIXME: the simulator doesn't seem to complain if we don't do this and 4704 * empirical testing with existing CTS tests show that they pass just fine 4705 * without implementing this, however, since our interpretation of the PRM 4706 * is that conversion MOVs between HF and F are still mixed-float 4707 * instructions (and therefore subject to this restriction) we decided to 4708 * split them to be safe. Might be useful to do additional investigation to 4709 * lift the restriction if we can ensure that it is safe though, since these 4710 * conversions are common when half-float types are involved since many 4711 * instructions do not support HF types and conversions from/to F are 4712 * required. 4713 */ 4714 if (is_mixed_float_with_fp32_dst(inst)) 4715 max_width = MIN2(max_width, 8); 4716 4717 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode 4718 * Float Operations: 4719 * 4720 * "No SIMD16 in mixed mode when destination is packed f16 for both 4721 * Align1 and Align16." 4722 */ 4723 if (is_mixed_float_with_packed_fp16_dst(inst)) 4724 max_width = MIN2(max_width, 8); 4725 4726 /* Only power-of-two execution sizes are representable in the instruction 4727 * control fields. 4728 */ 4729 return 1 << util_logbase2(max_width); 4730} 4731 4732/** 4733 * Get the maximum allowed SIMD width for instruction \p inst accounting for 4734 * various payload size restrictions that apply to sampler message 4735 * instructions. 4736 * 4737 * This is only intended to provide a maximum theoretical bound for the 4738 * execution size of the message based on the number of argument components 4739 * alone, which in most cases will determine whether the SIMD8 or SIMD16 4740 * variant of the message can be used, though some messages may have 4741 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses 4742 * the message length to determine the exact SIMD width and argument count, 4743 * which makes a number of sampler message combinations impossible to 4744 * represent). 4745 */ 4746static unsigned 4747get_sampler_lowered_simd_width(const struct intel_device_info *devinfo, 4748 const fs_inst *inst) 4749{ 4750 /* If we have a min_lod parameter on anything other than a simple sample 4751 * message, it will push it over 5 arguments and we have to fall back to 4752 * SIMD8. 4753 */ 4754 if (inst->opcode != SHADER_OPCODE_TEX && 4755 inst->components_read(TEX_LOGICAL_SRC_MIN_LOD)) 4756 return 8; 4757 4758 /* Calculate the number of coordinate components that have to be present 4759 * assuming that additional arguments follow the texel coordinates in the 4760 * message payload. On IVB+ there is no need for padding, on ILK-SNB we 4761 * need to pad to four or three components depending on the message, 4762 * pre-ILK we need to pad to at most three components. 4763 */ 4764 const unsigned req_coord_components = 4765 (devinfo->ver >= 7 || 4766 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 : 4767 (devinfo->ver >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL && 4768 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 : 4769 3; 4770 4771 /* On Gfx9+ the LOD argument is for free if we're able to use the LZ 4772 * variant of the TXL or TXF message. 4773 */ 4774 const bool implicit_lod = devinfo->ver >= 9 && 4775 (inst->opcode == SHADER_OPCODE_TXL || 4776 inst->opcode == SHADER_OPCODE_TXF) && 4777 inst->src[TEX_LOGICAL_SRC_LOD].is_zero(); 4778 4779 /* Calculate the total number of argument components that need to be passed 4780 * to the sampler unit. 4781 */ 4782 const unsigned num_payload_components = 4783 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE), 4784 req_coord_components) + 4785 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) + 4786 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) + 4787 inst->components_read(TEX_LOGICAL_SRC_LOD2) + 4788 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) + 4789 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ? 4790 inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) + 4791 inst->components_read(TEX_LOGICAL_SRC_MCS); 4792 4793 /* SIMD16 messages with more than five arguments exceed the maximum message 4794 * size supported by the sampler, regardless of whether a header is 4795 * provided or not. 4796 */ 4797 return MIN2(inst->exec_size, 4798 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16); 4799} 4800 4801/** 4802 * Get the closest native SIMD width supported by the hardware for instruction 4803 * \p inst. The instruction will be left untouched by 4804 * fs_visitor::lower_simd_width() if the returned value is equal to the 4805 * original execution size. 4806 */ 4807static unsigned 4808get_lowered_simd_width(const struct brw_compiler *compiler, 4809 const fs_inst *inst) 4810{ 4811 const struct intel_device_info *devinfo = compiler->devinfo; 4812 4813 switch (inst->opcode) { 4814 case BRW_OPCODE_MOV: 4815 case BRW_OPCODE_SEL: 4816 case BRW_OPCODE_NOT: 4817 case BRW_OPCODE_AND: 4818 case BRW_OPCODE_OR: 4819 case BRW_OPCODE_XOR: 4820 case BRW_OPCODE_SHR: 4821 case BRW_OPCODE_SHL: 4822 case BRW_OPCODE_ASR: 4823 case BRW_OPCODE_ROR: 4824 case BRW_OPCODE_ROL: 4825 case BRW_OPCODE_CMPN: 4826 case BRW_OPCODE_CSEL: 4827 case BRW_OPCODE_F32TO16: 4828 case BRW_OPCODE_F16TO32: 4829 case BRW_OPCODE_BFREV: 4830 case BRW_OPCODE_BFE: 4831 case BRW_OPCODE_ADD: 4832 case BRW_OPCODE_MUL: 4833 case BRW_OPCODE_AVG: 4834 case BRW_OPCODE_FRC: 4835 case BRW_OPCODE_RNDU: 4836 case BRW_OPCODE_RNDD: 4837 case BRW_OPCODE_RNDE: 4838 case BRW_OPCODE_RNDZ: 4839 case BRW_OPCODE_LZD: 4840 case BRW_OPCODE_FBH: 4841 case BRW_OPCODE_FBL: 4842 case BRW_OPCODE_CBIT: 4843 case BRW_OPCODE_SAD2: 4844 case BRW_OPCODE_MAD: 4845 case BRW_OPCODE_LRP: 4846 case BRW_OPCODE_ADD3: 4847 case FS_OPCODE_PACK: 4848 case SHADER_OPCODE_SEL_EXEC: 4849 case SHADER_OPCODE_CLUSTER_BROADCAST: 4850 case SHADER_OPCODE_MOV_RELOC_IMM: 4851 return get_fpu_lowered_simd_width(compiler, inst); 4852 4853 case BRW_OPCODE_CMP: { 4854 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that 4855 * when the destination is a GRF the dependency-clear bit on the flag 4856 * register is cleared early. 4857 * 4858 * Suggested workarounds are to disable coissuing CMP instructions 4859 * or to split CMP(16) instructions into two CMP(8) instructions. 4860 * 4861 * We choose to split into CMP(8) instructions since disabling 4862 * coissuing would affect CMP instructions not otherwise affected by 4863 * the errata. 4864 */ 4865 const unsigned max_width = (devinfo->verx10 == 70 && 4866 !inst->dst.is_null() ? 8 : ~0); 4867 return MIN2(max_width, get_fpu_lowered_simd_width(compiler, inst)); 4868 } 4869 case BRW_OPCODE_BFI1: 4870 case BRW_OPCODE_BFI2: 4871 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we 4872 * should 4873 * "Force BFI instructions to be executed always in SIMD8." 4874 */ 4875 return MIN2(devinfo->platform == INTEL_PLATFORM_HSW ? 8 : ~0u, 4876 get_fpu_lowered_simd_width(compiler, inst)); 4877 4878 case BRW_OPCODE_IF: 4879 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16); 4880 return inst->exec_size; 4881 4882 case SHADER_OPCODE_RCP: 4883 case SHADER_OPCODE_RSQ: 4884 case SHADER_OPCODE_SQRT: 4885 case SHADER_OPCODE_EXP2: 4886 case SHADER_OPCODE_LOG2: 4887 case SHADER_OPCODE_SIN: 4888 case SHADER_OPCODE_COS: { 4889 /* Unary extended math instructions are limited to SIMD8 on Gfx4 and 4890 * Gfx6. Extended Math Function is limited to SIMD8 with half-float. 4891 */ 4892 if (devinfo->ver == 6 || devinfo->verx10 == 40) 4893 return MIN2(8, inst->exec_size); 4894 if (inst->dst.type == BRW_REGISTER_TYPE_HF) 4895 return MIN2(8, inst->exec_size); 4896 return MIN2(16, inst->exec_size); 4897 } 4898 4899 case SHADER_OPCODE_POW: { 4900 /* SIMD16 is only allowed on Gfx7+. Extended Math Function is limited 4901 * to SIMD8 with half-float 4902 */ 4903 if (devinfo->ver < 7) 4904 return MIN2(8, inst->exec_size); 4905 if (inst->dst.type == BRW_REGISTER_TYPE_HF) 4906 return MIN2(8, inst->exec_size); 4907 return MIN2(16, inst->exec_size); 4908 } 4909 4910 case SHADER_OPCODE_USUB_SAT: 4911 case SHADER_OPCODE_ISUB_SAT: 4912 return get_fpu_lowered_simd_width(compiler, inst); 4913 4914 case SHADER_OPCODE_INT_QUOTIENT: 4915 case SHADER_OPCODE_INT_REMAINDER: 4916 /* Integer division is limited to SIMD8 on all generations. */ 4917 return MIN2(8, inst->exec_size); 4918 4919 case FS_OPCODE_LINTERP: 4920 case SHADER_OPCODE_GET_BUFFER_SIZE: 4921 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD: 4922 case FS_OPCODE_PACK_HALF_2x16_SPLIT: 4923 case FS_OPCODE_INTERPOLATE_AT_SAMPLE: 4924 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET: 4925 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: 4926 return MIN2(16, inst->exec_size); 4927 4928 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL: 4929 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch 4930 * message used to implement varying pull constant loads, so expand it 4931 * to SIMD16. An alternative with longer message payload length but 4932 * shorter return payload would be to use the SIMD8 sampler message that 4933 * takes (header, u, v, r) as parameters instead of (header, u). 4934 */ 4935 return (devinfo->ver == 4 ? 16 : MIN2(16, inst->exec_size)); 4936 4937 case FS_OPCODE_DDX_COARSE: 4938 case FS_OPCODE_DDX_FINE: 4939 case FS_OPCODE_DDY_COARSE: 4940 case FS_OPCODE_DDY_FINE: 4941 /* The implementation of this virtual opcode may require emitting 4942 * compressed Align16 instructions, which are severely limited on some 4943 * generations. 4944 * 4945 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register 4946 * Region Restrictions): 4947 * 4948 * "In Align16 access mode, SIMD16 is not allowed for DW operations 4949 * and SIMD8 is not allowed for DF operations." 4950 * 4951 * In this context, "DW operations" means "operations acting on 32-bit 4952 * values", so it includes operations on floats. 4953 * 4954 * Gfx4 has a similar restriction. From the i965 PRM, section 11.5.3 4955 * (Instruction Compression -> Rules and Restrictions): 4956 * 4957 * "A compressed instruction must be in Align1 access mode. Align16 4958 * mode instructions cannot be compressed." 4959 * 4960 * Similar text exists in the g45 PRM. 4961 * 4962 * Empirically, compressed align16 instructions using odd register 4963 * numbers don't appear to work on Sandybridge either. 4964 */ 4965 return (devinfo->ver == 4 || devinfo->ver == 6 || 4966 (devinfo->verx10 == 70) ? 4967 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size)); 4968 4969 case SHADER_OPCODE_MULH: 4970 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which 4971 * is 8-wide on Gfx7+. 4972 */ 4973 return (devinfo->ver >= 7 ? 8 : 4974 get_fpu_lowered_simd_width(compiler, inst)); 4975 4976 case FS_OPCODE_FB_WRITE_LOGICAL: 4977 /* Gfx6 doesn't support SIMD16 depth writes but we cannot handle them 4978 * here. 4979 */ 4980 assert(devinfo->ver != 6 || 4981 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE || 4982 inst->exec_size == 8); 4983 /* Dual-source FB writes are unsupported in SIMD16 mode. */ 4984 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ? 4985 8 : MIN2(16, inst->exec_size)); 4986 4987 case FS_OPCODE_FB_READ_LOGICAL: 4988 return MIN2(16, inst->exec_size); 4989 4990 case SHADER_OPCODE_TEX_LOGICAL: 4991 case SHADER_OPCODE_TXF_CMS_LOGICAL: 4992 case SHADER_OPCODE_TXF_UMS_LOGICAL: 4993 case SHADER_OPCODE_TXF_MCS_LOGICAL: 4994 case SHADER_OPCODE_LOD_LOGICAL: 4995 case SHADER_OPCODE_TG4_LOGICAL: 4996 case SHADER_OPCODE_SAMPLEINFO_LOGICAL: 4997 case SHADER_OPCODE_TXF_CMS_W_LOGICAL: 4998 case SHADER_OPCODE_TG4_OFFSET_LOGICAL: 4999 return get_sampler_lowered_simd_width(devinfo, inst); 5000 5001 /* On gfx12 parameters are fixed to 16-bit values and therefore they all 5002 * always fit regardless of the execution size. 5003 */ 5004 case SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL: 5005 return MIN2(16, inst->exec_size); 5006 5007 case SHADER_OPCODE_TXD_LOGICAL: 5008 /* TXD is unsupported in SIMD16 mode. */ 5009 return 8; 5010 5011 case SHADER_OPCODE_TXL_LOGICAL: 5012 case FS_OPCODE_TXB_LOGICAL: 5013 /* Only one execution size is representable pre-ILK depending on whether 5014 * the shadow reference argument is present. 5015 */ 5016 if (devinfo->ver == 4) 5017 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8; 5018 else 5019 return get_sampler_lowered_simd_width(devinfo, inst); 5020 5021 case SHADER_OPCODE_TXF_LOGICAL: 5022 case SHADER_OPCODE_TXS_LOGICAL: 5023 /* Gfx4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD 5024 * messages. Use SIMD16 instead. 5025 */ 5026 if (devinfo->ver == 4) 5027 return 16; 5028 else 5029 return get_sampler_lowered_simd_width(devinfo, inst); 5030 5031 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: 5032 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL: 5033 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL: 5034 return 8; 5035 5036 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL: 5037 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL: 5038 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL: 5039 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL: 5040 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL: 5041 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL: 5042 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL: 5043 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL: 5044 return MIN2(16, inst->exec_size); 5045 5046 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL: 5047 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL: 5048 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL: 5049 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL: 5050 return devinfo->ver <= 8 ? 8 : MIN2(16, inst->exec_size); 5051 5052 case SHADER_OPCODE_A64_OWORD_BLOCK_READ_LOGICAL: 5053 case SHADER_OPCODE_A64_UNALIGNED_OWORD_BLOCK_READ_LOGICAL: 5054 case SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL: 5055 assert(inst->exec_size <= 16); 5056 return inst->exec_size; 5057 5058 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL: 5059 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT16_LOGICAL: 5060 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL: 5061 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT16_LOGICAL: 5062 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT32_LOGICAL: 5063 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT64_LOGICAL: 5064 return 8; 5065 5066 case SHADER_OPCODE_URB_READ_LOGICAL: 5067 case SHADER_OPCODE_URB_WRITE_LOGICAL: 5068 return MIN2(8, inst->exec_size); 5069 5070 case SHADER_OPCODE_QUAD_SWIZZLE: { 5071 const unsigned swiz = inst->src[1].ud; 5072 return (is_uniform(inst->src[0]) ? 5073 get_fpu_lowered_simd_width(compiler, inst) : 5074 devinfo->ver < 11 && type_sz(inst->src[0].type) == 4 ? 8 : 5075 swiz == BRW_SWIZZLE_XYXY || swiz == BRW_SWIZZLE_ZWZW ? 4 : 5076 get_fpu_lowered_simd_width(compiler, inst)); 5077 } 5078 case SHADER_OPCODE_MOV_INDIRECT: { 5079 /* From IVB and HSW PRMs: 5080 * 5081 * "2.When the destination requires two registers and the sources are 5082 * indirect, the sources must use 1x1 regioning mode. 5083 * 5084 * In case of DF instructions in HSW/IVB, the exec_size is limited by 5085 * the EU decompression logic not handling VxH indirect addressing 5086 * correctly. 5087 */ 5088 const unsigned max_size = (devinfo->ver >= 8 ? 2 : 1) * REG_SIZE; 5089 /* Prior to Broadwell, we only have 8 address subregisters. */ 5090 return MIN3(devinfo->ver >= 8 ? 16 : 8, 5091 max_size / (inst->dst.stride * type_sz(inst->dst.type)), 5092 inst->exec_size); 5093 } 5094 5095 case SHADER_OPCODE_LOAD_PAYLOAD: { 5096 const unsigned reg_count = 5097 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE); 5098 5099 if (reg_count > 2) { 5100 /* Only LOAD_PAYLOAD instructions with per-channel destination region 5101 * can be easily lowered (which excludes headers and heterogeneous 5102 * types). 5103 */ 5104 assert(!inst->header_size); 5105 for (unsigned i = 0; i < inst->sources; i++) 5106 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) || 5107 inst->src[i].file == BAD_FILE); 5108 5109 return inst->exec_size / DIV_ROUND_UP(reg_count, 2); 5110 } else { 5111 return inst->exec_size; 5112 } 5113 } 5114 default: 5115 return inst->exec_size; 5116 } 5117} 5118 5119/** 5120 * Return true if splitting out the group of channels of instruction \p inst 5121 * given by lbld.group() requires allocating a temporary for the i-th source 5122 * of the lowered instruction. 5123 */ 5124static inline bool 5125needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i) 5126{ 5127 return !(is_periodic(inst->src[i], lbld.dispatch_width()) || 5128 (inst->components_read(i) == 1 && 5129 lbld.dispatch_width() <= inst->exec_size)) || 5130 (inst->flags_written(lbld.shader->devinfo) & 5131 flag_mask(inst->src[i], type_sz(inst->src[i].type))); 5132} 5133 5134/** 5135 * Extract the data that would be consumed by the channel group given by 5136 * lbld.group() from the i-th source region of instruction \p inst and return 5137 * it as result in packed form. 5138 */ 5139static fs_reg 5140emit_unzip(const fs_builder &lbld, fs_inst *inst, unsigned i) 5141{ 5142 assert(lbld.group() >= inst->group); 5143 5144 /* Specified channel group from the source region. */ 5145 const fs_reg src = horiz_offset(inst->src[i], lbld.group() - inst->group); 5146 5147 if (needs_src_copy(lbld, inst, i)) { 5148 /* Builder of the right width to perform the copy avoiding uninitialized 5149 * data if the lowered execution size is greater than the original 5150 * execution size of the instruction. 5151 */ 5152 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(), 5153 inst->exec_size), 0); 5154 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i)); 5155 5156 for (unsigned k = 0; k < inst->components_read(i); ++k) 5157 cbld.MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k)); 5158 5159 return tmp; 5160 5161 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) { 5162 /* The source is invariant for all dispatch_width-wide groups of the 5163 * original region. 5164 */ 5165 return inst->src[i]; 5166 5167 } else { 5168 /* We can just point the lowered instruction at the right channel group 5169 * from the original region. 5170 */ 5171 return src; 5172 } 5173} 5174 5175/** 5176 * Return true if splitting out the group of channels of instruction \p inst 5177 * given by lbld.group() requires allocating a temporary for the destination 5178 * of the lowered instruction and copying the data back to the original 5179 * destination region. 5180 */ 5181static inline bool 5182needs_dst_copy(const fs_builder &lbld, const fs_inst *inst) 5183{ 5184 /* If the instruction writes more than one component we'll have to shuffle 5185 * the results of multiple lowered instructions in order to make sure that 5186 * they end up arranged correctly in the original destination region. 5187 */ 5188 if (inst->size_written > inst->dst.component_size(inst->exec_size)) 5189 return true; 5190 5191 /* If the lowered execution size is larger than the original the result of 5192 * the instruction won't fit in the original destination, so we'll have to 5193 * allocate a temporary in any case. 5194 */ 5195 if (lbld.dispatch_width() > inst->exec_size) 5196 return true; 5197 5198 for (unsigned i = 0; i < inst->sources; i++) { 5199 /* If we already made a copy of the source for other reasons there won't 5200 * be any overlap with the destination. 5201 */ 5202 if (needs_src_copy(lbld, inst, i)) 5203 continue; 5204 5205 /* In order to keep the logic simple we emit a copy whenever the 5206 * destination region doesn't exactly match an overlapping source, which 5207 * may point at the source and destination not being aligned group by 5208 * group which could cause one of the lowered instructions to overwrite 5209 * the data read from the same source by other lowered instructions. 5210 */ 5211 if (regions_overlap(inst->dst, inst->size_written, 5212 inst->src[i], inst->size_read(i)) && 5213 !inst->dst.equals(inst->src[i])) 5214 return true; 5215 } 5216 5217 return false; 5218} 5219 5220/** 5221 * Insert data from a packed temporary into the channel group given by 5222 * lbld.group() of the destination region of instruction \p inst and return 5223 * the temporary as result. Any copy instructions that are required for 5224 * unzipping the previous value (in the case of partial writes) will be 5225 * inserted using \p lbld_before and any copy instructions required for 5226 * zipping up the destination of \p inst will be inserted using \p lbld_after. 5227 */ 5228static fs_reg 5229emit_zip(const fs_builder &lbld_before, const fs_builder &lbld_after, 5230 fs_inst *inst) 5231{ 5232 assert(lbld_before.dispatch_width() == lbld_after.dispatch_width()); 5233 assert(lbld_before.group() == lbld_after.group()); 5234 assert(lbld_after.group() >= inst->group); 5235 5236 /* Specified channel group from the destination region. */ 5237 const fs_reg dst = horiz_offset(inst->dst, lbld_after.group() - inst->group); 5238 const unsigned dst_size = inst->size_written / 5239 inst->dst.component_size(inst->exec_size); 5240 5241 if (needs_dst_copy(lbld_after, inst)) { 5242 const fs_reg tmp = lbld_after.vgrf(inst->dst.type, dst_size); 5243 5244 if (inst->predicate) { 5245 /* Handle predication by copying the original contents of 5246 * the destination into the temporary before emitting the 5247 * lowered instruction. 5248 */ 5249 const fs_builder gbld_before = 5250 lbld_before.group(MIN2(lbld_before.dispatch_width(), 5251 inst->exec_size), 0); 5252 for (unsigned k = 0; k < dst_size; ++k) { 5253 gbld_before.MOV(offset(tmp, lbld_before, k), 5254 offset(dst, inst->exec_size, k)); 5255 } 5256 } 5257 5258 const fs_builder gbld_after = 5259 lbld_after.group(MIN2(lbld_after.dispatch_width(), 5260 inst->exec_size), 0); 5261 for (unsigned k = 0; k < dst_size; ++k) { 5262 /* Use a builder of the right width to perform the copy avoiding 5263 * uninitialized data if the lowered execution size is greater than 5264 * the original execution size of the instruction. 5265 */ 5266 gbld_after.MOV(offset(dst, inst->exec_size, k), 5267 offset(tmp, lbld_after, k)); 5268 } 5269 5270 return tmp; 5271 5272 } else { 5273 /* No need to allocate a temporary for the lowered instruction, just 5274 * take the right group of channels from the original region. 5275 */ 5276 return dst; 5277 } 5278} 5279 5280bool 5281fs_visitor::lower_simd_width() 5282{ 5283 bool progress = false; 5284 5285 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) { 5286 const unsigned lower_width = get_lowered_simd_width(compiler, inst); 5287 5288 if (lower_width != inst->exec_size) { 5289 /* Builder matching the original instruction. We may also need to 5290 * emit an instruction of width larger than the original, set the 5291 * execution size of the builder to the highest of both for now so 5292 * we're sure that both cases can be handled. 5293 */ 5294 const unsigned max_width = MAX2(inst->exec_size, lower_width); 5295 const fs_builder ibld = bld.at(block, inst) 5296 .exec_all(inst->force_writemask_all) 5297 .group(max_width, inst->group / max_width); 5298 5299 /* Split the copies in chunks of the execution width of either the 5300 * original or the lowered instruction, whichever is lower. 5301 */ 5302 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width); 5303 const unsigned dst_size = inst->size_written / 5304 inst->dst.component_size(inst->exec_size); 5305 5306 assert(!inst->writes_accumulator && !inst->mlen); 5307 5308 /* Inserting the zip, unzip, and duplicated instructions in all of 5309 * the right spots is somewhat tricky. All of the unzip and any 5310 * instructions from the zip which unzip the destination prior to 5311 * writing need to happen before all of the per-group instructions 5312 * and the zip instructions need to happen after. In order to sort 5313 * this all out, we insert the unzip instructions before \p inst, 5314 * insert the per-group instructions after \p inst (i.e. before 5315 * inst->next), and insert the zip instructions before the 5316 * instruction after \p inst. Since we are inserting instructions 5317 * after \p inst, inst->next is a moving target and we need to save 5318 * it off here so that we insert the zip instructions in the right 5319 * place. 5320 * 5321 * Since we're inserting split instructions after after_inst, the 5322 * instructions will end up in the reverse order that we insert them. 5323 * However, certain render target writes require that the low group 5324 * instructions come before the high group. From the Ivy Bridge PRM 5325 * Vol. 4, Pt. 1, Section 3.9.11: 5326 * 5327 * "If multiple SIMD8 Dual Source messages are delivered by the 5328 * pixel shader thread, each SIMD8_DUALSRC_LO message must be 5329 * issued before the SIMD8_DUALSRC_HI message with the same Slot 5330 * Group Select setting." 5331 * 5332 * And, from Section 3.9.11.1 of the same PRM: 5333 * 5334 * "When SIMD32 or SIMD16 PS threads send render target writes 5335 * with multiple SIMD8 and SIMD16 messages, the following must 5336 * hold: 5337 * 5338 * All the slots (as described above) must have a corresponding 5339 * render target write irrespective of the slot's validity. A slot 5340 * is considered valid when at least one sample is enabled. For 5341 * example, a SIMD16 PS thread must send two SIMD8 render target 5342 * writes to cover all the slots. 5343 * 5344 * PS thread must send SIMD render target write messages with 5345 * increasing slot numbers. For example, SIMD16 thread has 5346 * Slot[15:0] and if two SIMD8 render target writes are used, the 5347 * first SIMD8 render target write must send Slot[7:0] and the 5348 * next one must send Slot[15:8]." 5349 * 5350 * In order to make low group instructions come before high group 5351 * instructions (this is required for some render target writes), we 5352 * split from the highest group to lowest. 5353 */ 5354 exec_node *const after_inst = inst->next; 5355 for (int i = n - 1; i >= 0; i--) { 5356 /* Emit a copy of the original instruction with the lowered width. 5357 * If the EOT flag was set throw it away except for the last 5358 * instruction to avoid killing the thread prematurely. 5359 */ 5360 fs_inst split_inst = *inst; 5361 split_inst.exec_size = lower_width; 5362 split_inst.eot = inst->eot && i == int(n - 1); 5363 5364 /* Select the correct channel enables for the i-th group, then 5365 * transform the sources and destination and emit the lowered 5366 * instruction. 5367 */ 5368 const fs_builder lbld = ibld.group(lower_width, i); 5369 5370 for (unsigned j = 0; j < inst->sources; j++) 5371 split_inst.src[j] = emit_unzip(lbld.at(block, inst), inst, j); 5372 5373 split_inst.dst = emit_zip(lbld.at(block, inst), 5374 lbld.at(block, after_inst), inst); 5375 split_inst.size_written = 5376 split_inst.dst.component_size(lower_width) * dst_size; 5377 5378 lbld.at(block, inst->next).emit(split_inst); 5379 } 5380 5381 inst->remove(block); 5382 progress = true; 5383 } 5384 } 5385 5386 if (progress) 5387 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES); 5388 5389 return progress; 5390} 5391 5392/** 5393 * Transform barycentric vectors into the interleaved form expected by the PLN 5394 * instruction and returned by the Gfx7+ PI shared function. 5395 * 5396 * For channels 0-15 in SIMD16 mode they are expected to be laid out as 5397 * follows in the register file: 5398 * 5399 * rN+0: X[0-7] 5400 * rN+1: Y[0-7] 5401 * rN+2: X[8-15] 5402 * rN+3: Y[8-15] 5403 * 5404 * There is no need to handle SIMD32 here -- This is expected to be run after 5405 * SIMD lowering, since SIMD lowering relies on vectors having the standard 5406 * component layout. 5407 */ 5408bool 5409fs_visitor::lower_barycentrics() 5410{ 5411 const bool has_interleaved_layout = devinfo->has_pln || devinfo->ver >= 7; 5412 bool progress = false; 5413 5414 if (stage != MESA_SHADER_FRAGMENT || !has_interleaved_layout) 5415 return false; 5416 5417 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) { 5418 if (inst->exec_size < 16) 5419 continue; 5420 5421 const fs_builder ibld(this, block, inst); 5422 const fs_builder ubld = ibld.exec_all().group(8, 0); 5423 5424 switch (inst->opcode) { 5425 case FS_OPCODE_LINTERP : { 5426 assert(inst->exec_size == 16); 5427 const fs_reg tmp = ibld.vgrf(inst->src[0].type, 2); 5428 fs_reg srcs[4]; 5429 5430 for (unsigned i = 0; i < ARRAY_SIZE(srcs); i++) 5431 srcs[i] = horiz_offset(offset(inst->src[0], ibld, i % 2), 5432 8 * (i / 2)); 5433 5434 ubld.LOAD_PAYLOAD(tmp, srcs, ARRAY_SIZE(srcs), ARRAY_SIZE(srcs)); 5435 5436 inst->src[0] = tmp; 5437 progress = true; 5438 break; 5439 } 5440 case FS_OPCODE_INTERPOLATE_AT_SAMPLE: 5441 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET: 5442 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: { 5443 assert(inst->exec_size == 16); 5444 const fs_reg tmp = ibld.vgrf(inst->dst.type, 2); 5445 5446 for (unsigned i = 0; i < 2; i++) { 5447 for (unsigned g = 0; g < inst->exec_size / 8; g++) { 5448 fs_inst *mov = ibld.at(block, inst->next).group(8, g) 5449 .MOV(horiz_offset(offset(inst->dst, ibld, i), 5450 8 * g), 5451 offset(tmp, ubld, 2 * g + i)); 5452 mov->predicate = inst->predicate; 5453 mov->predicate_inverse = inst->predicate_inverse; 5454 mov->flag_subreg = inst->flag_subreg; 5455 } 5456 } 5457 5458 inst->dst = tmp; 5459 progress = true; 5460 break; 5461 } 5462 default: 5463 break; 5464 } 5465 } 5466 5467 if (progress) 5468 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES); 5469 5470 return progress; 5471} 5472 5473/** 5474 * Lower a derivative instruction as the floating-point difference of two 5475 * swizzles of the source, specified as \p swz0 and \p swz1. 5476 */ 5477static bool 5478lower_derivative(fs_visitor *v, bblock_t *block, fs_inst *inst, 5479 unsigned swz0, unsigned swz1) 5480{ 5481 const fs_builder ibld(v, block, inst); 5482 const fs_reg tmp0 = ibld.vgrf(inst->src[0].type); 5483 const fs_reg tmp1 = ibld.vgrf(inst->src[0].type); 5484 5485 ibld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp0, inst->src[0], brw_imm_ud(swz0)); 5486 ibld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp1, inst->src[0], brw_imm_ud(swz1)); 5487 5488 inst->resize_sources(2); 5489 inst->src[0] = negate(tmp0); 5490 inst->src[1] = tmp1; 5491 inst->opcode = BRW_OPCODE_ADD; 5492 5493 return true; 5494} 5495 5496/** 5497 * Lower derivative instructions on platforms where codegen cannot implement 5498 * them efficiently (i.e. XeHP). 5499 */ 5500bool 5501fs_visitor::lower_derivatives() 5502{ 5503 bool progress = false; 5504 5505 if (devinfo->verx10 < 125) 5506 return false; 5507 5508 foreach_block_and_inst(block, fs_inst, inst, cfg) { 5509 if (inst->opcode == FS_OPCODE_DDX_COARSE) 5510 progress |= lower_derivative(this, block, inst, 5511 BRW_SWIZZLE_XXXX, BRW_SWIZZLE_YYYY); 5512 5513 else if (inst->opcode == FS_OPCODE_DDX_FINE) 5514 progress |= lower_derivative(this, block, inst, 5515 BRW_SWIZZLE_XXZZ, BRW_SWIZZLE_YYWW); 5516 5517 else if (inst->opcode == FS_OPCODE_DDY_COARSE) 5518 progress |= lower_derivative(this, block, inst, 5519 BRW_SWIZZLE_XXXX, BRW_SWIZZLE_ZZZZ); 5520 5521 else if (inst->opcode == FS_OPCODE_DDY_FINE) 5522 progress |= lower_derivative(this, block, inst, 5523 BRW_SWIZZLE_XYXY, BRW_SWIZZLE_ZWZW); 5524 } 5525 5526 if (progress) 5527 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES); 5528 5529 return progress; 5530} 5531 5532bool 5533fs_visitor::lower_find_live_channel() 5534{ 5535 bool progress = false; 5536 5537 if (devinfo->ver < 8) 5538 return false; 5539 5540 bool packed_dispatch = 5541 brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data); 5542 bool vmask = 5543 stage == MESA_SHADER_FRAGMENT && 5544 brw_wm_prog_data(stage_prog_data)->uses_vmask; 5545 5546 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) { 5547 if (inst->opcode != SHADER_OPCODE_FIND_LIVE_CHANNEL && 5548 inst->opcode != SHADER_OPCODE_FIND_LAST_LIVE_CHANNEL) 5549 continue; 5550 5551 bool first = inst->opcode == SHADER_OPCODE_FIND_LIVE_CHANNEL; 5552 5553 /* Getting the first active channel index is easy on Gfx8: Just find 5554 * the first bit set in the execution mask. The register exists on 5555 * HSW already but it reads back as all ones when the current 5556 * instruction has execution masking disabled, so it's kind of 5557 * useless there. 5558 */ 5559 fs_reg exec_mask(retype(brw_mask_reg(0), BRW_REGISTER_TYPE_UD)); 5560 5561 const fs_builder ubld = bld.at(block, inst).exec_all().group(1, 0); 5562 5563 /* ce0 doesn't consider the thread dispatch mask (DMask or VMask), 5564 * so combine the execution and dispatch masks to obtain the true mask. 5565 * 5566 * If we're looking for the first live channel, and we have packed 5567 * dispatch, we can skip this step, as we know all dispatched channels 5568 * will appear at the front of the mask. 5569 */ 5570 if (!(first && packed_dispatch)) { 5571 fs_reg mask = ubld.vgrf(BRW_REGISTER_TYPE_UD); 5572 ubld.emit(SHADER_OPCODE_READ_SR_REG, mask, brw_imm_ud(vmask ? 3 : 2)); 5573 5574 /* Quarter control has the effect of magically shifting the value of 5575 * ce0 so you'll get the first/last active channel relative to the 5576 * specified quarter control as result. 5577 */ 5578 if (inst->group > 0) 5579 ubld.SHR(mask, mask, brw_imm_ud(ALIGN(inst->group, 8))); 5580 5581 ubld.AND(mask, exec_mask, mask); 5582 exec_mask = mask; 5583 } 5584 5585 if (first) { 5586 ubld.FBL(inst->dst, exec_mask); 5587 } else { 5588 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 1); 5589 ubld.LZD(tmp, exec_mask); 5590 ubld.ADD(inst->dst, negate(tmp), brw_imm_uw(31)); 5591 } 5592 5593 inst->remove(block); 5594 progress = true; 5595 } 5596 5597 if (progress) 5598 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES); 5599 5600 return progress; 5601} 5602 5603void 5604fs_visitor::dump_instructions() const 5605{ 5606 dump_instructions(NULL); 5607} 5608 5609void 5610fs_visitor::dump_instructions(const char *name) const 5611{ 5612 FILE *file = stderr; 5613 if (name && geteuid() != 0) { 5614 file = fopen(name, "w"); 5615 if (!file) 5616 file = stderr; 5617 } 5618 5619 if (cfg) { 5620 const register_pressure &rp = regpressure_analysis.require(); 5621 unsigned ip = 0, max_pressure = 0; 5622 foreach_block_and_inst(block, backend_instruction, inst, cfg) { 5623 max_pressure = MAX2(max_pressure, rp.regs_live_at_ip[ip]); 5624 fprintf(file, "{%3d} %4d: ", rp.regs_live_at_ip[ip], ip); 5625 dump_instruction(inst, file); 5626 ip++; 5627 } 5628 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure); 5629 } else { 5630 int ip = 0; 5631 foreach_in_list(backend_instruction, inst, &instructions) { 5632 fprintf(file, "%4d: ", ip++); 5633 dump_instruction(inst, file); 5634 } 5635 } 5636 5637 if (file != stderr) { 5638 fclose(file); 5639 } 5640} 5641 5642void 5643fs_visitor::dump_instruction(const backend_instruction *be_inst) const 5644{ 5645 dump_instruction(be_inst, stderr); 5646} 5647 5648void 5649fs_visitor::dump_instruction(const backend_instruction *be_inst, FILE *file) const 5650{ 5651 const fs_inst *inst = (const fs_inst *)be_inst; 5652 5653 if (inst->predicate) { 5654 fprintf(file, "(%cf%d.%d) ", 5655 inst->predicate_inverse ? '-' : '+', 5656 inst->flag_subreg / 2, 5657 inst->flag_subreg % 2); 5658 } 5659 5660 fprintf(file, "%s", brw_instruction_name(&compiler->isa, inst->opcode)); 5661 if (inst->saturate) 5662 fprintf(file, ".sat"); 5663 if (inst->conditional_mod) { 5664 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]); 5665 if (!inst->predicate && 5666 (devinfo->ver < 5 || (inst->opcode != BRW_OPCODE_SEL && 5667 inst->opcode != BRW_OPCODE_CSEL && 5668 inst->opcode != BRW_OPCODE_IF && 5669 inst->opcode != BRW_OPCODE_WHILE))) { 5670 fprintf(file, ".f%d.%d", inst->flag_subreg / 2, 5671 inst->flag_subreg % 2); 5672 } 5673 } 5674 fprintf(file, "(%d) ", inst->exec_size); 5675 5676 if (inst->mlen) { 5677 fprintf(file, "(mlen: %d) ", inst->mlen); 5678 } 5679 5680 if (inst->ex_mlen) { 5681 fprintf(file, "(ex_mlen: %d) ", inst->ex_mlen); 5682 } 5683 5684 if (inst->eot) { 5685 fprintf(file, "(EOT) "); 5686 } 5687 5688 switch (inst->dst.file) { 5689 case VGRF: 5690 fprintf(file, "vgrf%d", inst->dst.nr); 5691 break; 5692 case FIXED_GRF: 5693 fprintf(file, "g%d", inst->dst.nr); 5694 break; 5695 case MRF: 5696 fprintf(file, "m%d", inst->dst.nr); 5697 break; 5698 case BAD_FILE: 5699 fprintf(file, "(null)"); 5700 break; 5701 case UNIFORM: 5702 fprintf(file, "***u%d***", inst->dst.nr); 5703 break; 5704 case ATTR: 5705 fprintf(file, "***attr%d***", inst->dst.nr); 5706 break; 5707 case ARF: 5708 switch (inst->dst.nr) { 5709 case BRW_ARF_NULL: 5710 fprintf(file, "null"); 5711 break; 5712 case BRW_ARF_ADDRESS: 5713 fprintf(file, "a0.%d", inst->dst.subnr); 5714 break; 5715 case BRW_ARF_ACCUMULATOR: 5716 fprintf(file, "acc%d", inst->dst.subnr); 5717 break; 5718 case BRW_ARF_FLAG: 5719 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr); 5720 break; 5721 default: 5722 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr); 5723 break; 5724 } 5725 break; 5726 case IMM: 5727 unreachable("not reached"); 5728 } 5729 5730 if (inst->dst.offset || 5731 (inst->dst.file == VGRF && 5732 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) { 5733 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE); 5734 fprintf(file, "+%d.%d", inst->dst.offset / reg_size, 5735 inst->dst.offset % reg_size); 5736 } 5737 5738 if (inst->dst.stride != 1) 5739 fprintf(file, "<%u>", inst->dst.stride); 5740 fprintf(file, ":%s, ", brw_reg_type_to_letters(inst->dst.type)); 5741 5742 for (int i = 0; i < inst->sources; i++) { 5743 if (inst->src[i].negate) 5744 fprintf(file, "-"); 5745 if (inst->src[i].abs) 5746 fprintf(file, "|"); 5747 switch (inst->src[i].file) { 5748 case VGRF: 5749 fprintf(file, "vgrf%d", inst->src[i].nr); 5750 break; 5751 case FIXED_GRF: 5752 fprintf(file, "g%d", inst->src[i].nr); 5753 break; 5754 case MRF: 5755 fprintf(file, "***m%d***", inst->src[i].nr); 5756 break; 5757 case ATTR: 5758 fprintf(file, "attr%d", inst->src[i].nr); 5759 break; 5760 case UNIFORM: 5761 fprintf(file, "u%d", inst->src[i].nr); 5762 break; 5763 case BAD_FILE: 5764 fprintf(file, "(null)"); 5765 break; 5766 case IMM: 5767 switch (inst->src[i].type) { 5768 case BRW_REGISTER_TYPE_HF: 5769 fprintf(file, "%-ghf", _mesa_half_to_float(inst->src[i].ud & 0xffff)); 5770 break; 5771 case BRW_REGISTER_TYPE_F: 5772 fprintf(file, "%-gf", inst->src[i].f); 5773 break; 5774 case BRW_REGISTER_TYPE_DF: 5775 fprintf(file, "%fdf", inst->src[i].df); 5776 break; 5777 case BRW_REGISTER_TYPE_W: 5778 case BRW_REGISTER_TYPE_D: 5779 fprintf(file, "%dd", inst->src[i].d); 5780 break; 5781 case BRW_REGISTER_TYPE_UW: 5782 case BRW_REGISTER_TYPE_UD: 5783 fprintf(file, "%uu", inst->src[i].ud); 5784 break; 5785 case BRW_REGISTER_TYPE_Q: 5786 fprintf(file, "%" PRId64 "q", inst->src[i].d64); 5787 break; 5788 case BRW_REGISTER_TYPE_UQ: 5789 fprintf(file, "%" PRIu64 "uq", inst->src[i].u64); 5790 break; 5791 case BRW_REGISTER_TYPE_VF: 5792 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]", 5793 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff), 5794 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff), 5795 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff), 5796 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff)); 5797 break; 5798 case BRW_REGISTER_TYPE_V: 5799 case BRW_REGISTER_TYPE_UV: 5800 fprintf(file, "%08x%s", inst->src[i].ud, 5801 inst->src[i].type == BRW_REGISTER_TYPE_V ? "V" : "UV"); 5802 break; 5803 default: 5804 fprintf(file, "???"); 5805 break; 5806 } 5807 break; 5808 case ARF: 5809 switch (inst->src[i].nr) { 5810 case BRW_ARF_NULL: 5811 fprintf(file, "null"); 5812 break; 5813 case BRW_ARF_ADDRESS: 5814 fprintf(file, "a0.%d", inst->src[i].subnr); 5815 break; 5816 case BRW_ARF_ACCUMULATOR: 5817 fprintf(file, "acc%d", inst->src[i].subnr); 5818 break; 5819 case BRW_ARF_FLAG: 5820 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr); 5821 break; 5822 default: 5823 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr); 5824 break; 5825 } 5826 break; 5827 } 5828 5829 if (inst->src[i].offset || 5830 (inst->src[i].file == VGRF && 5831 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) { 5832 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE); 5833 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size, 5834 inst->src[i].offset % reg_size); 5835 } 5836 5837 if (inst->src[i].abs) 5838 fprintf(file, "|"); 5839 5840 if (inst->src[i].file != IMM) { 5841 unsigned stride; 5842 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) { 5843 unsigned hstride = inst->src[i].hstride; 5844 stride = (hstride == 0 ? 0 : (1 << (hstride - 1))); 5845 } else { 5846 stride = inst->src[i].stride; 5847 } 5848 if (stride != 1) 5849 fprintf(file, "<%u>", stride); 5850 5851 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type)); 5852 } 5853 5854 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE) 5855 fprintf(file, ", "); 5856 } 5857 5858 fprintf(file, " "); 5859 5860 if (inst->force_writemask_all) 5861 fprintf(file, "NoMask "); 5862 5863 if (inst->exec_size != dispatch_width) 5864 fprintf(file, "group%d ", inst->group); 5865 5866 fprintf(file, "\n"); 5867} 5868 5869void 5870fs_visitor::setup_fs_payload_gfx6() 5871{ 5872 assert(stage == MESA_SHADER_FRAGMENT); 5873 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data); 5874 const unsigned payload_width = MIN2(16, dispatch_width); 5875 assert(dispatch_width % payload_width == 0); 5876 assert(devinfo->ver >= 6); 5877 5878 /* R0: PS thread payload header. */ 5879 payload.num_regs++; 5880 5881 for (unsigned j = 0; j < dispatch_width / payload_width; j++) { 5882 /* R1: masks, pixel X/Y coordinates. */ 5883 payload.subspan_coord_reg[j] = payload.num_regs++; 5884 } 5885 5886 for (unsigned j = 0; j < dispatch_width / payload_width; j++) { 5887 /* R3-26: barycentric interpolation coordinates. These appear in the 5888 * same order that they appear in the brw_barycentric_mode enum. Each 5889 * set of coordinates occupies 2 registers if dispatch width == 8 and 4 5890 * registers if dispatch width == 16. Coordinates only appear if they 5891 * were enabled using the "Barycentric Interpolation Mode" bits in 5892 * WM_STATE. 5893 */ 5894 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) { 5895 if (prog_data->barycentric_interp_modes & (1 << i)) { 5896 payload.barycentric_coord_reg[i][j] = payload.num_regs; 5897 payload.num_regs += payload_width / 4; 5898 } 5899 } 5900 5901 /* R27-28: interpolated depth if uses source depth */ 5902 if (prog_data->uses_src_depth) { 5903 payload.source_depth_reg[j] = payload.num_regs; 5904 payload.num_regs += payload_width / 8; 5905 } 5906 5907 /* R29-30: interpolated W set if GFX6_WM_USES_SOURCE_W. */ 5908 if (prog_data->uses_src_w) { 5909 payload.source_w_reg[j] = payload.num_regs; 5910 payload.num_regs += payload_width / 8; 5911 } 5912 5913 /* R31: MSAA position offsets. */ 5914 if (prog_data->uses_pos_offset) { 5915 payload.sample_pos_reg[j] = payload.num_regs; 5916 payload.num_regs++; 5917 } 5918 5919 /* R32-33: MSAA input coverage mask */ 5920 if (prog_data->uses_sample_mask) { 5921 assert(devinfo->ver >= 7); 5922 payload.sample_mask_in_reg[j] = payload.num_regs; 5923 payload.num_regs += payload_width / 8; 5924 } 5925 5926 /* R66: Source Depth and/or W Attribute Vertex Deltas */ 5927 if (prog_data->uses_depth_w_coefficients) { 5928 payload.depth_w_coef_reg[j] = payload.num_regs; 5929 payload.num_regs++; 5930 } 5931 } 5932 5933 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) { 5934 source_depth_to_render_target = true; 5935 } 5936} 5937 5938void 5939fs_visitor::setup_vs_payload() 5940{ 5941 /* R0: thread header, R1: urb handles */ 5942 payload.num_regs = 2; 5943} 5944 5945void 5946fs_visitor::setup_gs_payload() 5947{ 5948 assert(stage == MESA_SHADER_GEOMETRY); 5949 5950 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data); 5951 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data); 5952 5953 /* R0: thread header, R1: output URB handles */ 5954 payload.num_regs = 2; 5955 5956 if (gs_prog_data->include_primitive_id) { 5957 /* R2: Primitive ID 0..7 */ 5958 payload.num_regs++; 5959 } 5960 5961 /* Always enable VUE handles so we can safely use pull model if needed. 5962 * 5963 * The push model for a GS uses a ton of register space even for trivial 5964 * scenarios with just a few inputs, so just make things easier and a bit 5965 * safer by always having pull model available. 5966 */ 5967 gs_prog_data->base.include_vue_handles = true; 5968 5969 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */ 5970 payload.num_regs += nir->info.gs.vertices_in; 5971 5972 /* Use a maximum of 24 registers for push-model inputs. */ 5973 const unsigned max_push_components = 24; 5974 5975 /* If pushing our inputs would take too many registers, reduce the URB read 5976 * length (which is in HWords, or 8 registers), and resort to pulling. 5977 * 5978 * Note that the GS reads <URB Read Length> HWords for every vertex - so we 5979 * have to multiply by VerticesIn to obtain the total storage requirement. 5980 */ 5981 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in > 5982 max_push_components) { 5983 vue_prog_data->urb_read_length = 5984 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8; 5985 } 5986} 5987 5988void 5989fs_visitor::setup_cs_payload() 5990{ 5991 assert(devinfo->ver >= 7); 5992 /* TODO: Fill out uses_btd_stack_ids automatically */ 5993 payload.num_regs = 1 + brw_cs_prog_data(prog_data)->uses_btd_stack_ids; 5994} 5995 5996brw::register_pressure::register_pressure(const fs_visitor *v) 5997{ 5998 const fs_live_variables &live = v->live_analysis.require(); 5999 const unsigned num_instructions = v->cfg->num_blocks ? 6000 v->cfg->blocks[v->cfg->num_blocks - 1]->end_ip + 1 : 0; 6001 6002 regs_live_at_ip = new unsigned[num_instructions](); 6003 6004 for (unsigned reg = 0; reg < v->alloc.count; reg++) { 6005 for (int ip = live.vgrf_start[reg]; ip <= live.vgrf_end[reg]; ip++) 6006 regs_live_at_ip[ip] += v->alloc.sizes[reg]; 6007 } 6008} 6009 6010brw::register_pressure::~register_pressure() 6011{ 6012 delete[] regs_live_at_ip; 6013} 6014 6015void 6016fs_visitor::invalidate_analysis(brw::analysis_dependency_class c) 6017{ 6018 backend_shader::invalidate_analysis(c); 6019 live_analysis.invalidate(c); 6020 regpressure_analysis.invalidate(c); 6021} 6022 6023void 6024fs_visitor::optimize() 6025{ 6026 /* Start by validating the shader we currently have. */ 6027 validate(); 6028 6029 /* bld is the common builder object pointing at the end of the program we 6030 * used to translate it into i965 IR. For the optimization and lowering 6031 * passes coming next, any code added after the end of the program without 6032 * having explicitly called fs_builder::at() clearly points at a mistake. 6033 * Ideally optimization passes wouldn't be part of the visitor so they 6034 * wouldn't have access to bld at all, but they do, so just in case some 6035 * pass forgets to ask for a location explicitly set it to NULL here to 6036 * make it trip. The dispatch width is initialized to a bogus value to 6037 * make sure that optimizations set the execution controls explicitly to 6038 * match the code they are manipulating instead of relying on the defaults. 6039 */ 6040 bld = fs_builder(this, 64); 6041 6042 assign_constant_locations(); 6043 lower_constant_loads(); 6044 6045 validate(); 6046 6047#define OPT(pass, args...) ({ \ 6048 pass_num++; \ 6049 bool this_progress = pass(args); \ 6050 \ 6051 if (INTEL_DEBUG(DEBUG_OPTIMIZER) && this_progress) { \ 6052 char filename[64]; \ 6053 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \ 6054 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \ 6055 \ 6056 backend_shader::dump_instructions(filename); \ 6057 } \ 6058 \ 6059 validate(); \ 6060 \ 6061 progress = progress || this_progress; \ 6062 this_progress; \ 6063 }) 6064 6065 if (INTEL_DEBUG(DEBUG_OPTIMIZER)) { 6066 char filename[64]; 6067 snprintf(filename, 64, "%s%d-%s-00-00-start", 6068 stage_abbrev, dispatch_width, nir->info.name); 6069 6070 backend_shader::dump_instructions(filename); 6071 } 6072 6073 bool progress = false; 6074 int iteration = 0; 6075 int pass_num = 0; 6076 6077 OPT(split_virtual_grfs); 6078 6079 /* Before anything else, eliminate dead code. The results of some NIR 6080 * instructions may effectively be calculated twice. Once when the 6081 * instruction is encountered, and again when the user of that result is 6082 * encountered. Wipe those away before algebraic optimizations and 6083 * especially copy propagation can mix things up. 6084 */ 6085 OPT(dead_code_eliminate); 6086 6087 OPT(remove_extra_rounding_modes); 6088 6089 do { 6090 progress = false; 6091 pass_num = 0; 6092 iteration++; 6093 6094 OPT(remove_duplicate_mrf_writes); 6095 6096 OPT(opt_algebraic); 6097 OPT(opt_cse); 6098 OPT(opt_copy_propagation); 6099 OPT(opt_predicated_break, this); 6100 OPT(opt_cmod_propagation); 6101 OPT(dead_code_eliminate); 6102 OPT(opt_peephole_sel); 6103 OPT(dead_control_flow_eliminate, this); 6104 OPT(opt_register_renaming); 6105 OPT(opt_saturate_propagation); 6106 OPT(register_coalesce); 6107 OPT(compute_to_mrf); 6108 OPT(eliminate_find_live_channel); 6109 6110 OPT(compact_virtual_grfs); 6111 } while (progress); 6112 6113 progress = false; 6114 pass_num = 0; 6115 6116 if (OPT(lower_pack)) { 6117 OPT(register_coalesce); 6118 OPT(dead_code_eliminate); 6119 } 6120 6121 OPT(lower_simd_width); 6122 OPT(lower_barycentrics); 6123 OPT(lower_logical_sends); 6124 6125 /* After logical SEND lowering. */ 6126 OPT(opt_copy_propagation); 6127 OPT(opt_split_sends); 6128 OPT(fixup_nomask_control_flow); 6129 6130 if (progress) { 6131 OPT(opt_copy_propagation); 6132 /* Only run after logical send lowering because it's easier to implement 6133 * in terms of physical sends. 6134 */ 6135 if (OPT(opt_zero_samples)) 6136 OPT(opt_copy_propagation); 6137 /* Run after logical send lowering to give it a chance to CSE the 6138 * LOAD_PAYLOAD instructions created to construct the payloads of 6139 * e.g. texturing messages in cases where it wasn't possible to CSE the 6140 * whole logical instruction. 6141 */ 6142 OPT(opt_cse); 6143 OPT(register_coalesce); 6144 OPT(compute_to_mrf); 6145 OPT(dead_code_eliminate); 6146 OPT(remove_duplicate_mrf_writes); 6147 OPT(opt_peephole_sel); 6148 } 6149 6150 OPT(opt_redundant_halt); 6151 6152 if (OPT(lower_load_payload)) { 6153 OPT(split_virtual_grfs); 6154 6155 /* Lower 64 bit MOVs generated by payload lowering. */ 6156 if (!devinfo->has_64bit_float || !devinfo->has_64bit_int) 6157 OPT(opt_algebraic); 6158 6159 OPT(register_coalesce); 6160 OPT(lower_simd_width); 6161 OPT(compute_to_mrf); 6162 OPT(dead_code_eliminate); 6163 } 6164 6165 OPT(opt_combine_constants); 6166 if (OPT(lower_integer_multiplication)) { 6167 /* If lower_integer_multiplication made progress, it may have produced 6168 * some 32x32-bit MULs in the process of lowering 64-bit MULs. Run it 6169 * one more time to clean those up if they exist. 6170 */ 6171 OPT(lower_integer_multiplication); 6172 } 6173 OPT(lower_sub_sat); 6174 6175 if (devinfo->ver <= 5 && OPT(lower_minmax)) { 6176 OPT(opt_cmod_propagation); 6177 OPT(opt_cse); 6178 OPT(opt_copy_propagation); 6179 OPT(dead_code_eliminate); 6180 } 6181 6182 progress = false; 6183 OPT(lower_derivatives); 6184 OPT(lower_regioning); 6185 if (progress) { 6186 OPT(opt_copy_propagation); 6187 OPT(dead_code_eliminate); 6188 OPT(lower_simd_width); 6189 } 6190 6191 OPT(fixup_sends_duplicate_payload); 6192 6193 lower_uniform_pull_constant_loads(); 6194 6195 lower_find_live_channel(); 6196 6197 validate(); 6198} 6199 6200/** 6201 * From the Skylake PRM Vol. 2a docs for sends: 6202 * 6203 * "It is required that the second block of GRFs does not overlap with the 6204 * first block." 6205 * 6206 * There are plenty of cases where we may accidentally violate this due to 6207 * having, for instance, both sources be the constant 0. This little pass 6208 * just adds a new vgrf for the second payload and copies it over. 6209 */ 6210bool 6211fs_visitor::fixup_sends_duplicate_payload() 6212{ 6213 bool progress = false; 6214 6215 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) { 6216 if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 && 6217 regions_overlap(inst->src[2], inst->mlen * REG_SIZE, 6218 inst->src[3], inst->ex_mlen * REG_SIZE)) { 6219 fs_reg tmp = fs_reg(VGRF, alloc.allocate(inst->ex_mlen), 6220 BRW_REGISTER_TYPE_UD); 6221 /* Sadly, we've lost all notion of channels and bit sizes at this 6222 * point. Just WE_all it. 6223 */ 6224 const fs_builder ibld = bld.at(block, inst).exec_all().group(16, 0); 6225 fs_reg copy_src = retype(inst->src[3], BRW_REGISTER_TYPE_UD); 6226 fs_reg copy_dst = tmp; 6227 for (unsigned i = 0; i < inst->ex_mlen; i += 2) { 6228 if (inst->ex_mlen == i + 1) { 6229 /* Only one register left; do SIMD8 */ 6230 ibld.group(8, 0).MOV(copy_dst, copy_src); 6231 } else { 6232 ibld.MOV(copy_dst, copy_src); 6233 } 6234 copy_src = offset(copy_src, ibld, 1); 6235 copy_dst = offset(copy_dst, ibld, 1); 6236 } 6237 inst->src[3] = tmp; 6238 progress = true; 6239 } 6240 } 6241 6242 if (progress) 6243 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES); 6244 6245 return progress; 6246} 6247 6248/** 6249 * Three source instruction must have a GRF/MRF destination register. 6250 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF. 6251 */ 6252void 6253fs_visitor::fixup_3src_null_dest() 6254{ 6255 bool progress = false; 6256 6257 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) { 6258 if (inst->is_3src(compiler) && inst->dst.is_null()) { 6259 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8), 6260 inst->dst.type); 6261 progress = true; 6262 } 6263 } 6264 6265 if (progress) 6266 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | 6267 DEPENDENCY_VARIABLES); 6268} 6269 6270static bool 6271needs_dummy_fence(const intel_device_info *devinfo, fs_inst *inst) 6272{ 6273 /* This workaround is about making sure that any instruction writing 6274 * through UGM has completed before we hit EOT. 6275 * 6276 * The workaround talks about UGM writes or atomic message but what is 6277 * important is anything that hasn't completed. Usually any SEND 6278 * instruction that has a destination register will be read by something 6279 * else so we don't need to care about those as they will be synchronized 6280 * by other parts of the shader or optimized away. What is left are 6281 * instructions that don't have a destination register. 6282 */ 6283 if (inst->sfid != GFX12_SFID_UGM) 6284 return false; 6285 6286 return inst->dst.file == BAD_FILE; 6287} 6288 6289/* Wa_22013689345 6290 * 6291 * We need to emit UGM fence message before EOT, if shader has any UGM write 6292 * or atomic message. 6293 * 6294 * TODO/FINISHME: According to Curro we could avoid the fence in some cases. 6295 * We probably need a better criteria in needs_dummy_fence(). 6296 */ 6297void 6298fs_visitor::emit_dummy_memory_fence_before_eot() 6299{ 6300 bool progress = false; 6301 bool has_ugm_write_or_atomic = false; 6302 6303 if (!intel_device_info_is_dg2(devinfo)) 6304 return; 6305 6306 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) { 6307 if (!inst->eot) { 6308 if (needs_dummy_fence(devinfo, inst)) 6309 has_ugm_write_or_atomic = true; 6310 continue; 6311 } 6312 6313 if (!has_ugm_write_or_atomic) 6314 break; 6315 6316 const fs_builder ibld(this, block, inst); 6317 const fs_builder ubld = ibld.exec_all().group(1, 0); 6318 6319 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD); 6320 fs_inst *dummy_fence = ubld.emit(SHADER_OPCODE_MEMORY_FENCE, 6321 dst, brw_vec8_grf(0, 0), 6322 /* commit enable */ brw_imm_ud(1), 6323 /* bti */ brw_imm_ud(0)); 6324 dummy_fence->sfid = GFX12_SFID_UGM; 6325 dummy_fence->desc = lsc_fence_msg_desc(devinfo, LSC_FENCE_TILE, 6326 LSC_FLUSH_TYPE_NONE_6, false); 6327 ubld.emit(FS_OPCODE_SCHEDULING_FENCE, ubld.null_reg_ud(), dst); 6328 progress = true; 6329 /* TODO: remove this break if we ever have shader with multiple EOT. */ 6330 break; 6331 } 6332 6333 if (progress) { 6334 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | 6335 DEPENDENCY_VARIABLES); 6336 } 6337} 6338 6339/** 6340 * Find the first instruction in the program that might start a region of 6341 * divergent control flow due to a HALT jump. There is no 6342 * find_halt_control_flow_region_end(), the region of divergence extends until 6343 * the only SHADER_OPCODE_HALT_TARGET in the program. 6344 */ 6345static const fs_inst * 6346find_halt_control_flow_region_start(const fs_visitor *v) 6347{ 6348 foreach_block_and_inst(block, fs_inst, inst, v->cfg) { 6349 if (inst->opcode == BRW_OPCODE_HALT || 6350 inst->opcode == SHADER_OPCODE_HALT_TARGET) 6351 return inst; 6352 } 6353 6354 return NULL; 6355} 6356 6357/** 6358 * Work around the Gfx12 hardware bug filed as Wa_1407528679. EU fusion 6359 * can cause a BB to be executed with all channels disabled, which will lead 6360 * to the execution of any NoMask instructions in it, even though any 6361 * execution-masked instructions will be correctly shot down. This may break 6362 * assumptions of some NoMask SEND messages whose descriptor depends on data 6363 * generated by live invocations of the shader. 6364 * 6365 * This avoids the problem by predicating certain instructions on an ANY 6366 * horizontal predicate that makes sure that their execution is omitted when 6367 * all channels of the program are disabled. 6368 */ 6369bool 6370fs_visitor::fixup_nomask_control_flow() 6371{ 6372 if (devinfo->ver != 12) 6373 return false; 6374 6375 const brw_predicate pred = dispatch_width > 16 ? BRW_PREDICATE_ALIGN1_ANY32H : 6376 dispatch_width > 8 ? BRW_PREDICATE_ALIGN1_ANY16H : 6377 BRW_PREDICATE_ALIGN1_ANY8H; 6378 const fs_inst *halt_start = find_halt_control_flow_region_start(this); 6379 unsigned depth = 0; 6380 bool progress = false; 6381 6382 const fs_live_variables &live_vars = live_analysis.require(); 6383 6384 /* Scan the program backwards in order to be able to easily determine 6385 * whether the flag register is live at any point. 6386 */ 6387 foreach_block_reverse_safe(block, cfg) { 6388 BITSET_WORD flag_liveout = live_vars.block_data[block->num] 6389 .flag_liveout[0]; 6390 STATIC_ASSERT(ARRAY_SIZE(live_vars.block_data[0].flag_liveout) == 1); 6391 6392 foreach_inst_in_block_reverse_safe(fs_inst, inst, block) { 6393 if (!inst->predicate && inst->exec_size >= 8) 6394 flag_liveout &= ~inst->flags_written(devinfo); 6395 6396 switch (inst->opcode) { 6397 case BRW_OPCODE_DO: 6398 case BRW_OPCODE_IF: 6399 /* Note that this doesn't handle BRW_OPCODE_HALT since only 6400 * the first one in the program closes the region of divergent 6401 * control flow due to any HALT instructions -- Instead this is 6402 * handled with the halt_start check below. 6403 */ 6404 depth--; 6405 break; 6406 6407 case BRW_OPCODE_WHILE: 6408 case BRW_OPCODE_ENDIF: 6409 case SHADER_OPCODE_HALT_TARGET: 6410 depth++; 6411 break; 6412 6413 default: 6414 /* Note that the vast majority of NoMask SEND instructions in the 6415 * program are harmless while executed in a block with all 6416 * channels disabled, since any instructions with side effects we 6417 * could hit here should be execution-masked. 6418 * 6419 * The main concern is NoMask SEND instructions where the message 6420 * descriptor or header depends on data generated by live 6421 * invocations of the shader (RESINFO and 6422 * FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD with a dynamically 6423 * computed surface index seem to be the only examples right now 6424 * where this could easily lead to GPU hangs). Unfortunately we 6425 * have no straightforward way to detect that currently, so just 6426 * predicate any NoMask SEND instructions we find under control 6427 * flow. 6428 * 6429 * If this proves to have a measurable performance impact it can 6430 * be easily extended with a whitelist of messages we know we can 6431 * safely omit the predication for. 6432 */ 6433 if (depth && inst->force_writemask_all && 6434 is_send(inst) && !inst->predicate) { 6435 /* We need to load the execution mask into the flag register by 6436 * using a builder with channel group matching the whole shader 6437 * (rather than the default which is derived from the original 6438 * instruction), in order to avoid getting a right-shifted 6439 * value. 6440 */ 6441 const fs_builder ubld = fs_builder(this, block, inst) 6442 .exec_all().group(dispatch_width, 0); 6443 const fs_reg flag = retype(brw_flag_reg(0, 0), 6444 BRW_REGISTER_TYPE_UD); 6445 6446 /* Due to the lack of flag register allocation we need to save 6447 * and restore the flag register if it's live. 6448 */ 6449 const bool save_flag = flag_liveout & 6450 flag_mask(flag, dispatch_width / 8); 6451 const fs_reg tmp = ubld.group(1, 0).vgrf(flag.type); 6452 6453 if (save_flag) 6454 ubld.group(1, 0).MOV(tmp, flag); 6455 6456 ubld.emit(FS_OPCODE_LOAD_LIVE_CHANNELS); 6457 6458 set_predicate(pred, inst); 6459 inst->flag_subreg = 0; 6460 6461 if (save_flag) 6462 ubld.group(1, 0).at(block, inst->next).MOV(flag, tmp); 6463 6464 progress = true; 6465 } 6466 break; 6467 } 6468 6469 if (inst == halt_start) 6470 depth--; 6471 6472 flag_liveout |= inst->flags_read(devinfo); 6473 } 6474 } 6475 6476 if (progress) 6477 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES); 6478 6479 return progress; 6480} 6481 6482void 6483fs_visitor::allocate_registers(bool allow_spilling) 6484{ 6485 bool allocated; 6486 6487 static const enum instruction_scheduler_mode pre_modes[] = { 6488 SCHEDULE_PRE, 6489 SCHEDULE_PRE_NON_LIFO, 6490 SCHEDULE_NONE, 6491 SCHEDULE_PRE_LIFO, 6492 }; 6493 6494 static const char *scheduler_mode_name[] = { 6495 "top-down", 6496 "non-lifo", 6497 "none", 6498 "lifo" 6499 }; 6500 6501 bool spill_all = allow_spilling && INTEL_DEBUG(DEBUG_SPILL_FS); 6502 6503 /* Before we schedule anything, stash off the instruction order as an array 6504 * of fs_inst *. This way, we can reset it between scheduling passes to 6505 * prevent dependencies between the different scheduling modes. 6506 */ 6507 int num_insts = cfg->last_block()->end_ip + 1; 6508 fs_inst **inst_arr = ralloc_array(mem_ctx, fs_inst *, num_insts); 6509 6510 int ip = 0; 6511 foreach_block_and_inst(block, fs_inst, inst, cfg) { 6512 assert(ip >= block->start_ip && ip <= block->end_ip); 6513 inst_arr[ip++] = inst; 6514 } 6515 assert(ip == num_insts); 6516 6517 /* Try each scheduling heuristic to see if it can successfully register 6518 * allocate without spilling. They should be ordered by decreasing 6519 * performance but increasing likelihood of allocating. 6520 */ 6521 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) { 6522 if (i > 0) { 6523 /* Unless we're the first pass, reset back to the original order */ 6524 ip = 0; 6525 foreach_block (block, cfg) { 6526 block->instructions.make_empty(); 6527 6528 assert(ip == block->start_ip); 6529 for (; ip <= block->end_ip; ip++) 6530 block->instructions.push_tail(inst_arr[ip]); 6531 } 6532 assert(ip == num_insts); 6533 6534 invalidate_analysis(DEPENDENCY_INSTRUCTIONS); 6535 } 6536 6537 if (pre_modes[i] != SCHEDULE_NONE) 6538 schedule_instructions(pre_modes[i]); 6539 this->shader_stats.scheduler_mode = scheduler_mode_name[i]; 6540 6541 if (0) { 6542 assign_regs_trivial(); 6543 allocated = true; 6544 break; 6545 } 6546 6547 bool can_spill = allow_spilling && 6548 (i == ARRAY_SIZE(pre_modes) - 1); 6549 6550 /* We should only spill registers on the last scheduling. */ 6551 assert(!spilled_any_registers); 6552 6553 allocated = assign_regs(can_spill, spill_all); 6554 if (allocated) 6555 break; 6556 } 6557 6558 if (!allocated) { 6559 fail("Failure to register allocate. Reduce number of " 6560 "live scalar values to avoid this."); 6561 } else if (spilled_any_registers) { 6562 brw_shader_perf_log(compiler, log_data, 6563 "%s shader triggered register spilling. " 6564 "Try reducing the number of live scalar " 6565 "values to improve performance.\n", 6566 stage_name); 6567 } 6568 6569 /* This must come after all optimization and register allocation, since 6570 * it inserts dead code that happens to have side effects, and it does 6571 * so based on the actual physical registers in use. 6572 */ 6573 insert_gfx4_send_dependency_workarounds(); 6574 6575 if (failed) 6576 return; 6577 6578 opt_bank_conflicts(); 6579 6580 schedule_instructions(SCHEDULE_POST); 6581 6582 if (last_scratch > 0) { 6583 ASSERTED unsigned max_scratch_size = 2 * 1024 * 1024; 6584 6585 /* Take the max of any previously compiled variant of the shader. In the 6586 * case of bindless shaders with return parts, this will also take the 6587 * max of all parts. 6588 */ 6589 prog_data->total_scratch = MAX2(brw_get_scratch_size(last_scratch), 6590 prog_data->total_scratch); 6591 6592 if (gl_shader_stage_is_compute(stage)) { 6593 if (devinfo->platform == INTEL_PLATFORM_HSW) { 6594 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space" 6595 * field documentation, Haswell supports a minimum of 2kB of 6596 * scratch space for compute shaders, unlike every other stage 6597 * and platform. 6598 */ 6599 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048); 6600 } else if (devinfo->ver <= 7) { 6601 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space" 6602 * field documentation, platforms prior to Haswell measure scratch 6603 * size linearly with a range of [1kB, 12kB] and 1kB granularity. 6604 */ 6605 prog_data->total_scratch = ALIGN(last_scratch, 1024); 6606 max_scratch_size = 12 * 1024; 6607 } 6608 } 6609 6610 /* We currently only support up to 2MB of scratch space. If we 6611 * need to support more eventually, the documentation suggests 6612 * that we could allocate a larger buffer, and partition it out 6613 * ourselves. We'd just have to undo the hardware's address 6614 * calculation by subtracting (FFTID * Per Thread Scratch Space) 6615 * and then add FFTID * (Larger Per Thread Scratch Space). 6616 * 6617 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline > 6618 * Thread Group Tracking > Local Memory/Scratch Space. 6619 */ 6620 assert(prog_data->total_scratch < max_scratch_size); 6621 } 6622 6623 lower_scoreboard(); 6624} 6625 6626bool 6627fs_visitor::run_vs() 6628{ 6629 assert(stage == MESA_SHADER_VERTEX); 6630 6631 setup_vs_payload(); 6632 6633 emit_nir_code(); 6634 6635 if (failed) 6636 return false; 6637 6638 emit_urb_writes(); 6639 6640 calculate_cfg(); 6641 6642 optimize(); 6643 6644 assign_curb_setup(); 6645 assign_vs_urb_setup(); 6646 6647 fixup_3src_null_dest(); 6648 emit_dummy_memory_fence_before_eot(); 6649 allocate_registers(true /* allow_spilling */); 6650 6651 return !failed; 6652} 6653 6654void 6655fs_visitor::set_tcs_invocation_id() 6656{ 6657 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data); 6658 struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base; 6659 6660 const bool dg2_plus = 6661 devinfo->ver > 12 || intel_device_info_is_dg2(devinfo); 6662 const unsigned instance_id_mask = 6663 dg2_plus ? INTEL_MASK(7, 0) : 6664 (devinfo->ver >= 11) ? INTEL_MASK(22, 16) : INTEL_MASK(23, 17); 6665 const unsigned instance_id_shift = 6666 dg2_plus ? 0 : (devinfo->ver >= 11) ? 16 : 17; 6667 6668 /* Get instance number from g0.2 bits: 6669 * * 7:0 on DG2+ 6670 * * 22:16 on gfx11+ 6671 * * 23:17 otherwise 6672 */ 6673 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD); 6674 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)), 6675 brw_imm_ud(instance_id_mask)); 6676 6677 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD); 6678 6679 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH) { 6680 /* gl_InvocationID is just the thread number */ 6681 bld.SHR(invocation_id, t, brw_imm_ud(instance_id_shift)); 6682 return; 6683 } 6684 6685 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH); 6686 6687 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW); 6688 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD); 6689 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210))); 6690 bld.MOV(channels_ud, channels_uw); 6691 6692 if (tcs_prog_data->instances == 1) { 6693 invocation_id = channels_ud; 6694 } else { 6695 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD); 6696 bld.SHR(instance_times_8, t, brw_imm_ud(instance_id_shift - 3)); 6697 bld.ADD(invocation_id, instance_times_8, channels_ud); 6698 } 6699} 6700 6701bool 6702fs_visitor::run_tcs() 6703{ 6704 assert(stage == MESA_SHADER_TESS_CTRL); 6705 6706 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data); 6707 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data); 6708 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key; 6709 6710 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH || 6711 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH); 6712 6713 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH) { 6714 /* r1-r4 contain the ICP handles. */ 6715 payload.num_regs = 5; 6716 } else { 6717 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH); 6718 assert(tcs_key->input_vertices > 0); 6719 /* r1 contains output handles, r2 may contain primitive ID, then the 6720 * ICP handles occupy the next 1-32 registers. 6721 */ 6722 payload.num_regs = 2 + tcs_prog_data->include_primitive_id + 6723 tcs_key->input_vertices; 6724 } 6725 6726 /* Initialize gl_InvocationID */ 6727 set_tcs_invocation_id(); 6728 6729 const bool fix_dispatch_mask = 6730 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH && 6731 (nir->info.tess.tcs_vertices_out % 8) != 0; 6732 6733 /* Fix the disptach mask */ 6734 if (fix_dispatch_mask) { 6735 bld.CMP(bld.null_reg_ud(), invocation_id, 6736 brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L); 6737 bld.IF(BRW_PREDICATE_NORMAL); 6738 } 6739 6740 emit_nir_code(); 6741 6742 if (fix_dispatch_mask) { 6743 bld.emit(BRW_OPCODE_ENDIF); 6744 } 6745 6746 /* Emit EOT write; set TR DS Cache bit */ 6747 fs_reg srcs[URB_LOGICAL_NUM_SRCS]; 6748 srcs[URB_LOGICAL_SRC_HANDLE] = get_tcs_output_urb_handle(); 6749 srcs[URB_LOGICAL_SRC_CHANNEL_MASK] = brw_imm_ud(WRITEMASK_X << 16); 6750 srcs[URB_LOGICAL_SRC_DATA] = brw_imm_ud(0); 6751 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, 6752 reg_undef, srcs, ARRAY_SIZE(srcs)); 6753 inst->mlen = 3; 6754 inst->eot = true; 6755 6756 if (failed) 6757 return false; 6758 6759 calculate_cfg(); 6760 6761 optimize(); 6762 6763 assign_curb_setup(); 6764 assign_tcs_urb_setup(); 6765 6766 fixup_3src_null_dest(); 6767 emit_dummy_memory_fence_before_eot(); 6768 allocate_registers(true /* allow_spilling */); 6769 6770 return !failed; 6771} 6772 6773bool 6774fs_visitor::run_tes() 6775{ 6776 assert(stage == MESA_SHADER_TESS_EVAL); 6777 6778 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */ 6779 payload.num_regs = 5; 6780 6781 emit_nir_code(); 6782 6783 if (failed) 6784 return false; 6785 6786 emit_urb_writes(); 6787 6788 calculate_cfg(); 6789 6790 optimize(); 6791 6792 assign_curb_setup(); 6793 assign_tes_urb_setup(); 6794 6795 fixup_3src_null_dest(); 6796 emit_dummy_memory_fence_before_eot(); 6797 allocate_registers(true /* allow_spilling */); 6798 6799 return !failed; 6800} 6801 6802bool 6803fs_visitor::run_gs() 6804{ 6805 assert(stage == MESA_SHADER_GEOMETRY); 6806 6807 setup_gs_payload(); 6808 6809 this->final_gs_vertex_count = vgrf(glsl_type::uint_type); 6810 6811 if (gs_compile->control_data_header_size_bits > 0) { 6812 /* Create a VGRF to store accumulated control data bits. */ 6813 this->control_data_bits = vgrf(glsl_type::uint_type); 6814 6815 /* If we're outputting more than 32 control data bits, then EmitVertex() 6816 * will set control_data_bits to 0 after emitting the first vertex. 6817 * Otherwise, we need to initialize it to 0 here. 6818 */ 6819 if (gs_compile->control_data_header_size_bits <= 32) { 6820 const fs_builder abld = bld.annotate("initialize control data bits"); 6821 abld.MOV(this->control_data_bits, brw_imm_ud(0u)); 6822 } 6823 } 6824 6825 emit_nir_code(); 6826 6827 emit_gs_thread_end(); 6828 6829 if (failed) 6830 return false; 6831 6832 calculate_cfg(); 6833 6834 optimize(); 6835 6836 assign_curb_setup(); 6837 assign_gs_urb_setup(); 6838 6839 fixup_3src_null_dest(); 6840 emit_dummy_memory_fence_before_eot(); 6841 allocate_registers(true /* allow_spilling */); 6842 6843 return !failed; 6844} 6845 6846/* From the SKL PRM, Volume 16, Workarounds: 6847 * 6848 * 0877 3D Pixel Shader Hang possible when pixel shader dispatched with 6849 * only header phases (R0-R2) 6850 * 6851 * WA: Enable a non-header phase (e.g. push constant) when dispatch would 6852 * have been header only. 6853 * 6854 * Instead of enabling push constants one can alternatively enable one of the 6855 * inputs. Here one simply chooses "layer" which shouldn't impose much 6856 * overhead. 6857 */ 6858static void 6859gfx9_ps_header_only_workaround(struct brw_wm_prog_data *wm_prog_data) 6860{ 6861 if (wm_prog_data->num_varying_inputs) 6862 return; 6863 6864 if (wm_prog_data->base.curb_read_length) 6865 return; 6866 6867 wm_prog_data->urb_setup[VARYING_SLOT_LAYER] = 0; 6868 wm_prog_data->num_varying_inputs = 1; 6869 6870 brw_compute_urb_setup_index(wm_prog_data); 6871} 6872 6873bool 6874fs_visitor::run_fs(bool allow_spilling, bool do_rep_send) 6875{ 6876 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data); 6877 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key; 6878 6879 assert(stage == MESA_SHADER_FRAGMENT); 6880 6881 if (devinfo->ver >= 6) 6882 setup_fs_payload_gfx6(); 6883 else 6884 setup_fs_payload_gfx4(); 6885 6886 if (0) { 6887 emit_dummy_fs(); 6888 } else if (do_rep_send) { 6889 assert(dispatch_width == 16); 6890 emit_repclear_shader(); 6891 } else { 6892 if (nir->info.inputs_read > 0 || 6893 BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FRAG_COORD) || 6894 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) { 6895 if (devinfo->ver < 6) 6896 emit_interpolation_setup_gfx4(); 6897 else 6898 emit_interpolation_setup_gfx6(); 6899 } 6900 6901 /* We handle discards by keeping track of the still-live pixels in f0.1. 6902 * Initialize it with the dispatched pixels. 6903 */ 6904 if (wm_prog_data->uses_kill) { 6905 const unsigned lower_width = MIN2(dispatch_width, 16); 6906 for (unsigned i = 0; i < dispatch_width / lower_width; i++) { 6907 const fs_reg dispatch_mask = 6908 devinfo->ver >= 6 ? brw_vec1_grf((i ? 2 : 1), 7) : 6909 brw_vec1_grf(0, 0); 6910 bld.exec_all().group(1, 0) 6911 .MOV(brw_sample_mask_reg(bld.group(lower_width, i)), 6912 retype(dispatch_mask, BRW_REGISTER_TYPE_UW)); 6913 } 6914 } 6915 6916 if (nir->info.writes_memory) 6917 wm_prog_data->has_side_effects = true; 6918 6919 emit_nir_code(); 6920 6921 if (failed) 6922 return false; 6923 6924 if (wm_key->emit_alpha_test) 6925 emit_alpha_test(); 6926 6927 emit_fb_writes(); 6928 6929 calculate_cfg(); 6930 6931 optimize(); 6932 6933 assign_curb_setup(); 6934 6935 if (devinfo->ver == 9) 6936 gfx9_ps_header_only_workaround(wm_prog_data); 6937 6938 assign_urb_setup(); 6939 6940 fixup_3src_null_dest(); 6941 emit_dummy_memory_fence_before_eot(); 6942 6943 allocate_registers(allow_spilling); 6944 } 6945 6946 return !failed; 6947} 6948 6949bool 6950fs_visitor::run_cs(bool allow_spilling) 6951{ 6952 assert(gl_shader_stage_is_compute(stage)); 6953 6954 setup_cs_payload(); 6955 6956 if (devinfo->platform == INTEL_PLATFORM_HSW && prog_data->total_shared > 0) { 6957 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */ 6958 const fs_builder abld = bld.exec_all().group(1, 0); 6959 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW), 6960 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1)); 6961 } 6962 6963 emit_nir_code(); 6964 6965 if (failed) 6966 return false; 6967 6968 emit_cs_terminate(); 6969 6970 calculate_cfg(); 6971 6972 optimize(); 6973 6974 assign_curb_setup(); 6975 6976 fixup_3src_null_dest(); 6977 emit_dummy_memory_fence_before_eot(); 6978 allocate_registers(allow_spilling); 6979 6980 return !failed; 6981} 6982 6983bool 6984fs_visitor::run_bs(bool allow_spilling) 6985{ 6986 assert(stage >= MESA_SHADER_RAYGEN && stage <= MESA_SHADER_CALLABLE); 6987 6988 /* R0: thread header, R1: stack IDs, R2: argument addresses */ 6989 payload.num_regs = 3; 6990 6991 emit_nir_code(); 6992 6993 if (failed) 6994 return false; 6995 6996 /* TODO(RT): Perhaps rename this? */ 6997 emit_cs_terminate(); 6998 6999 calculate_cfg(); 7000 7001 optimize(); 7002 7003 assign_curb_setup(); 7004 7005 fixup_3src_null_dest(); 7006 emit_dummy_memory_fence_before_eot(); 7007 allocate_registers(allow_spilling); 7008 7009 return !failed; 7010} 7011 7012bool 7013fs_visitor::run_task(bool allow_spilling) 7014{ 7015 assert(stage == MESA_SHADER_TASK); 7016 7017 /* Task Shader Payloads (SIMD8 and SIMD16) 7018 * 7019 * R0: Header 7020 * R1: Local_ID.X[0-7 or 0-15] 7021 * R2: Inline Parameter 7022 * 7023 * Task Shader Payloads (SIMD32) 7024 * 7025 * R0: Header 7026 * R1: Local_ID.X[0-15] 7027 * R2: Local_ID.X[16-31] 7028 * R3: Inline Parameter 7029 * 7030 * Local_ID.X values are 16 bits. 7031 * 7032 * Inline parameter is optional but always present since we use it to pass 7033 * the address to descriptors. 7034 */ 7035 payload.num_regs = dispatch_width == 32 ? 4 : 3; 7036 7037 emit_nir_code(); 7038 7039 if (failed) 7040 return false; 7041 7042 emit_urb_fence(); 7043 7044 emit_cs_terminate(); 7045 7046 calculate_cfg(); 7047 7048 optimize(); 7049 7050 assign_curb_setup(); 7051 7052 fixup_3src_null_dest(); 7053 emit_dummy_memory_fence_before_eot(); 7054 allocate_registers(allow_spilling); 7055 7056 return !failed; 7057} 7058 7059bool 7060fs_visitor::run_mesh(bool allow_spilling) 7061{ 7062 assert(stage == MESA_SHADER_MESH); 7063 7064 /* Mesh Shader Payloads (SIMD8 and SIMD16) 7065 * 7066 * R0: Header 7067 * R1: Local_ID.X[0-7 or 0-15] 7068 * R2: Inline Parameter 7069 * 7070 * Mesh Shader Payloads (SIMD32) 7071 * 7072 * R0: Header 7073 * R1: Local_ID.X[0-15] 7074 * R2: Local_ID.X[16-31] 7075 * R3: Inline Parameter 7076 * 7077 * Local_ID.X values are 16 bits. 7078 * 7079 * Inline parameter is optional but always present since we use it to pass 7080 * the address to descriptors. 7081 */ 7082 payload.num_regs = dispatch_width == 32 ? 4 : 3; 7083 7084 emit_nir_code(); 7085 7086 if (failed) 7087 return false; 7088 7089 emit_urb_fence(); 7090 7091 emit_cs_terminate(); 7092 7093 calculate_cfg(); 7094 7095 optimize(); 7096 7097 assign_curb_setup(); 7098 7099 fixup_3src_null_dest(); 7100 emit_dummy_memory_fence_before_eot(); 7101 allocate_registers(allow_spilling); 7102 7103 return !failed; 7104} 7105 7106static bool 7107is_used_in_not_interp_frag_coord(nir_ssa_def *def) 7108{ 7109 nir_foreach_use(src, def) { 7110 if (src->parent_instr->type != nir_instr_type_intrinsic) 7111 return true; 7112 7113 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(src->parent_instr); 7114 if (intrin->intrinsic != nir_intrinsic_load_frag_coord) 7115 return true; 7116 } 7117 7118 nir_foreach_if_use(src, def) 7119 return true; 7120 7121 return false; 7122} 7123 7124/** 7125 * Return a bitfield where bit n is set if barycentric interpolation mode n 7126 * (see enum brw_barycentric_mode) is needed by the fragment shader. 7127 * 7128 * We examine the load_barycentric intrinsics rather than looking at input 7129 * variables so that we catch interpolateAtCentroid() messages too, which 7130 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up. 7131 */ 7132static unsigned 7133brw_compute_barycentric_interp_modes(const struct intel_device_info *devinfo, 7134 const nir_shader *shader) 7135{ 7136 unsigned barycentric_interp_modes = 0; 7137 7138 nir_foreach_function(f, shader) { 7139 if (!f->impl) 7140 continue; 7141 7142 nir_foreach_block(block, f->impl) { 7143 nir_foreach_instr(instr, block) { 7144 if (instr->type != nir_instr_type_intrinsic) 7145 continue; 7146 7147 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); 7148 switch (intrin->intrinsic) { 7149 case nir_intrinsic_load_barycentric_pixel: 7150 case nir_intrinsic_load_barycentric_centroid: 7151 case nir_intrinsic_load_barycentric_sample: 7152 break; 7153 default: 7154 continue; 7155 } 7156 7157 /* Ignore WPOS; it doesn't require interpolation. */ 7158 assert(intrin->dest.is_ssa); 7159 if (!is_used_in_not_interp_frag_coord(&intrin->dest.ssa)) 7160 continue; 7161 7162 nir_intrinsic_op bary_op = intrin->intrinsic; 7163 enum brw_barycentric_mode bary = 7164 brw_barycentric_mode(intrin); 7165 7166 barycentric_interp_modes |= 1 << bary; 7167 7168 if (devinfo->needs_unlit_centroid_workaround && 7169 bary_op == nir_intrinsic_load_barycentric_centroid) 7170 barycentric_interp_modes |= 1 << centroid_to_pixel(bary); 7171 } 7172 } 7173 } 7174 7175 return barycentric_interp_modes; 7176} 7177 7178static void 7179brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data, 7180 const nir_shader *shader) 7181{ 7182 prog_data->flat_inputs = 0; 7183 7184 nir_foreach_shader_in_variable(var, shader) { 7185 /* flat shading */ 7186 if (var->data.interpolation != INTERP_MODE_FLAT) 7187 continue; 7188 7189 if (var->data.per_primitive) 7190 continue; 7191 7192 unsigned slots = glsl_count_attribute_slots(var->type, false); 7193 for (unsigned s = 0; s < slots; s++) { 7194 int input_index = prog_data->urb_setup[var->data.location + s]; 7195 7196 if (input_index >= 0) 7197 prog_data->flat_inputs |= 1 << input_index; 7198 } 7199 } 7200} 7201 7202static uint8_t 7203computed_depth_mode(const nir_shader *shader) 7204{ 7205 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) { 7206 switch (shader->info.fs.depth_layout) { 7207 case FRAG_DEPTH_LAYOUT_NONE: 7208 case FRAG_DEPTH_LAYOUT_ANY: 7209 return BRW_PSCDEPTH_ON; 7210 case FRAG_DEPTH_LAYOUT_GREATER: 7211 return BRW_PSCDEPTH_ON_GE; 7212 case FRAG_DEPTH_LAYOUT_LESS: 7213 return BRW_PSCDEPTH_ON_LE; 7214 case FRAG_DEPTH_LAYOUT_UNCHANGED: 7215 return BRW_PSCDEPTH_OFF; 7216 } 7217 } 7218 return BRW_PSCDEPTH_OFF; 7219} 7220 7221/** 7222 * Move load_interpolated_input with simple (payload-based) barycentric modes 7223 * to the top of the program so we don't emit multiple PLNs for the same input. 7224 * 7225 * This works around CSE not being able to handle non-dominating cases 7226 * such as: 7227 * 7228 * if (...) { 7229 * interpolate input 7230 * } else { 7231 * interpolate the same exact input 7232 * } 7233 * 7234 * This should be replaced by global value numbering someday. 7235 */ 7236bool 7237brw_nir_move_interpolation_to_top(nir_shader *nir) 7238{ 7239 bool progress = false; 7240 7241 nir_foreach_function(f, nir) { 7242 if (!f->impl) 7243 continue; 7244 7245 nir_block *top = nir_start_block(f->impl); 7246 exec_node *cursor_node = NULL; 7247 7248 nir_foreach_block(block, f->impl) { 7249 if (block == top) 7250 continue; 7251 7252 nir_foreach_instr_safe(instr, block) { 7253 if (instr->type != nir_instr_type_intrinsic) 7254 continue; 7255 7256 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); 7257 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input) 7258 continue; 7259 nir_intrinsic_instr *bary_intrinsic = 7260 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr); 7261 nir_intrinsic_op op = bary_intrinsic->intrinsic; 7262 7263 /* Leave interpolateAtSample/Offset() where they are. */ 7264 if (op == nir_intrinsic_load_barycentric_at_sample || 7265 op == nir_intrinsic_load_barycentric_at_offset) 7266 continue; 7267 7268 nir_instr *move[3] = { 7269 &bary_intrinsic->instr, 7270 intrin->src[1].ssa->parent_instr, 7271 instr 7272 }; 7273 7274 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) { 7275 if (move[i]->block != top) { 7276 move[i]->block = top; 7277 exec_node_remove(&move[i]->node); 7278 if (cursor_node) { 7279 exec_node_insert_after(cursor_node, &move[i]->node); 7280 } else { 7281 exec_list_push_head(&top->instr_list, &move[i]->node); 7282 } 7283 cursor_node = &move[i]->node; 7284 progress = true; 7285 } 7286 } 7287 } 7288 } 7289 nir_metadata_preserve(f->impl, nir_metadata_block_index | 7290 nir_metadata_dominance); 7291 } 7292 7293 return progress; 7294} 7295 7296static void 7297brw_nir_populate_wm_prog_data(const nir_shader *shader, 7298 const struct intel_device_info *devinfo, 7299 const struct brw_wm_prog_key *key, 7300 struct brw_wm_prog_data *prog_data, 7301 const struct brw_mue_map *mue_map) 7302{ 7303 /* key->alpha_test_func means simulating alpha testing via discards, 7304 * so the shader definitely kills pixels. 7305 */ 7306 prog_data->uses_kill = shader->info.fs.uses_discard || 7307 shader->info.fs.uses_demote || 7308 key->emit_alpha_test; 7309 prog_data->uses_omask = !key->ignore_sample_mask_out && 7310 (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK)); 7311 prog_data->color_outputs_written = key->color_outputs_valid; 7312 prog_data->computed_depth_mode = computed_depth_mode(shader); 7313 prog_data->computed_stencil = 7314 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL); 7315 7316 prog_data->persample_dispatch = 7317 key->multisample_fbo && 7318 (key->persample_interp || 7319 shader->info.fs.uses_sample_shading); 7320 7321 if (devinfo->ver >= 6) { 7322 prog_data->uses_sample_mask = 7323 BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_SAMPLE_MASK_IN); 7324 7325 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS: 7326 * 7327 * "MSDISPMODE_PERSAMPLE is required in order to select 7328 * POSOFFSET_SAMPLE" 7329 * 7330 * So we can only really get sample positions if we are doing real 7331 * per-sample dispatch. If we need gl_SamplePosition and we don't have 7332 * persample dispatch, we hard-code it to 0.5. 7333 */ 7334 prog_data->uses_pos_offset = prog_data->persample_dispatch && 7335 (BITSET_TEST(shader->info.system_values_read, 7336 SYSTEM_VALUE_SAMPLE_POS) || 7337 BITSET_TEST(shader->info.system_values_read, 7338 SYSTEM_VALUE_SAMPLE_POS_OR_CENTER)); 7339 } 7340 7341 prog_data->has_render_target_reads = shader->info.outputs_read != 0ull; 7342 7343 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests; 7344 prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage; 7345 prog_data->inner_coverage = shader->info.fs.inner_coverage; 7346 7347 prog_data->barycentric_interp_modes = 7348 brw_compute_barycentric_interp_modes(devinfo, shader); 7349 prog_data->uses_nonperspective_interp_modes |= 7350 (prog_data->barycentric_interp_modes & 7351 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS) != 0; 7352 7353 /* You can't be coarse and per-sample */ 7354 assert(!key->coarse_pixel || !key->persample_interp); 7355 prog_data->per_coarse_pixel_dispatch = 7356 key->coarse_pixel && 7357 !shader->info.fs.uses_sample_shading && 7358 !prog_data->uses_omask && 7359 !prog_data->uses_sample_mask && 7360 (prog_data->computed_depth_mode == BRW_PSCDEPTH_OFF) && 7361 !prog_data->computed_stencil; 7362 7363 /* We choose to always enable VMask prior to XeHP, as it would cause 7364 * us to lose out on the eliminate_find_live_channel() optimization. 7365 */ 7366 prog_data->uses_vmask = devinfo->verx10 < 125 || 7367 shader->info.fs.needs_quad_helper_invocations || 7368 shader->info.fs.needs_all_helper_invocations || 7369 prog_data->per_coarse_pixel_dispatch; 7370 7371 prog_data->uses_src_w = 7372 BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD); 7373 prog_data->uses_src_depth = 7374 BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD) && 7375 !prog_data->per_coarse_pixel_dispatch; 7376 prog_data->uses_depth_w_coefficients = 7377 BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD) && 7378 prog_data->per_coarse_pixel_dispatch; 7379 7380 calculate_urb_setup(devinfo, key, prog_data, shader, mue_map); 7381 brw_compute_flat_inputs(prog_data, shader); 7382} 7383 7384/** 7385 * Pre-gfx6, the register file of the EUs was shared between threads, 7386 * and each thread used some subset allocated on a 16-register block 7387 * granularity. The unit states wanted these block counts. 7388 */ 7389static inline int 7390brw_register_blocks(int reg_count) 7391{ 7392 return ALIGN(reg_count, 16) / 16 - 1; 7393} 7394 7395const unsigned * 7396brw_compile_fs(const struct brw_compiler *compiler, 7397 void *mem_ctx, 7398 struct brw_compile_fs_params *params) 7399{ 7400 struct nir_shader *nir = params->nir; 7401 const struct brw_wm_prog_key *key = params->key; 7402 struct brw_wm_prog_data *prog_data = params->prog_data; 7403 bool allow_spilling = params->allow_spilling; 7404 const bool debug_enabled = 7405 INTEL_DEBUG(params->debug_flag ? params->debug_flag : DEBUG_WM); 7406 7407 prog_data->base.stage = MESA_SHADER_FRAGMENT; 7408 prog_data->base.ray_queries = nir->info.ray_queries; 7409 prog_data->base.total_scratch = 0; 7410 7411 const struct intel_device_info *devinfo = compiler->devinfo; 7412 const unsigned max_subgroup_size = compiler->devinfo->ver >= 6 ? 32 : 16; 7413 7414 brw_nir_apply_key(nir, compiler, &key->base, max_subgroup_size, true); 7415 brw_nir_lower_fs_inputs(nir, devinfo, key); 7416 brw_nir_lower_fs_outputs(nir); 7417 7418 if (devinfo->ver < 6) 7419 brw_setup_vue_interpolation(params->vue_map, nir, prog_data); 7420 7421 /* From the SKL PRM, Volume 7, "Alpha Coverage": 7422 * "If Pixel Shader outputs oMask, AlphaToCoverage is disabled in 7423 * hardware, regardless of the state setting for this feature." 7424 */ 7425 if (devinfo->ver > 6 && key->alpha_to_coverage) { 7426 /* Run constant fold optimization in order to get the correct source 7427 * offset to determine render target 0 store instruction in 7428 * emit_alpha_to_coverage pass. 7429 */ 7430 NIR_PASS_V(nir, nir_opt_constant_folding); 7431 NIR_PASS_V(nir, brw_nir_lower_alpha_to_coverage); 7432 } 7433 7434 NIR_PASS_V(nir, brw_nir_move_interpolation_to_top); 7435 brw_postprocess_nir(nir, compiler, true, debug_enabled, 7436 key->base.robust_buffer_access); 7437 7438 brw_nir_populate_wm_prog_data(nir, compiler->devinfo, key, prog_data, 7439 params->mue_map); 7440 7441 fs_visitor *v8 = NULL, *v16 = NULL, *v32 = NULL; 7442 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL, *simd32_cfg = NULL; 7443 float throughput = 0; 7444 bool has_spilled = false; 7445 7446 v8 = new fs_visitor(compiler, params->log_data, mem_ctx, &key->base, 7447 &prog_data->base, nir, 8, 7448 debug_enabled); 7449 if (!v8->run_fs(allow_spilling, false /* do_rep_send */)) { 7450 params->error_str = ralloc_strdup(mem_ctx, v8->fail_msg); 7451 delete v8; 7452 return NULL; 7453 } else if (!INTEL_DEBUG(DEBUG_NO8)) { 7454 simd8_cfg = v8->cfg; 7455 prog_data->base.dispatch_grf_start_reg = v8->payload.num_regs; 7456 prog_data->reg_blocks_8 = brw_register_blocks(v8->grf_used); 7457 const performance &perf = v8->performance_analysis.require(); 7458 throughput = MAX2(throughput, perf.throughput); 7459 has_spilled = v8->spilled_any_registers; 7460 allow_spilling = false; 7461 } 7462 7463 /* Limit dispatch width to simd8 with dual source blending on gfx8. 7464 * See: https://gitlab.freedesktop.org/mesa/mesa/-/issues/1917 7465 */ 7466 if (devinfo->ver == 8 && prog_data->dual_src_blend && 7467 !INTEL_DEBUG(DEBUG_NO8)) { 7468 assert(!params->use_rep_send); 7469 v8->limit_dispatch_width(8, "gfx8 workaround: " 7470 "using SIMD8 when dual src blending.\n"); 7471 } 7472 7473 if (key->coarse_pixel) { 7474 if (prog_data->dual_src_blend) { 7475 v8->limit_dispatch_width(8, "SIMD16 coarse pixel shading cannot" 7476 " use SIMD8 messages.\n"); 7477 } 7478 v8->limit_dispatch_width(16, "SIMD32 not supported with coarse" 7479 " pixel shading.\n"); 7480 } 7481 7482 if (nir->info.ray_queries > 0) 7483 v8->limit_dispatch_width(16, "SIMD32 with ray queries.\n"); 7484 7485 if (!has_spilled && 7486 v8->max_dispatch_width >= 16 && 7487 (!INTEL_DEBUG(DEBUG_NO16) || params->use_rep_send)) { 7488 /* Try a SIMD16 compile */ 7489 v16 = new fs_visitor(compiler, params->log_data, mem_ctx, &key->base, 7490 &prog_data->base, nir, 16, 7491 debug_enabled); 7492 v16->import_uniforms(v8); 7493 if (!v16->run_fs(allow_spilling, params->use_rep_send)) { 7494 brw_shader_perf_log(compiler, params->log_data, 7495 "SIMD16 shader failed to compile: %s\n", 7496 v16->fail_msg); 7497 } else { 7498 simd16_cfg = v16->cfg; 7499 prog_data->dispatch_grf_start_reg_16 = v16->payload.num_regs; 7500 prog_data->reg_blocks_16 = brw_register_blocks(v16->grf_used); 7501 const performance &perf = v16->performance_analysis.require(); 7502 throughput = MAX2(throughput, perf.throughput); 7503 has_spilled = v16->spilled_any_registers; 7504 allow_spilling = false; 7505 } 7506 } 7507 7508 const bool simd16_failed = v16 && !simd16_cfg; 7509 7510 /* Currently, the compiler only supports SIMD32 on SNB+ */ 7511 if (!has_spilled && 7512 v8->max_dispatch_width >= 32 && !params->use_rep_send && 7513 devinfo->ver >= 6 && !simd16_failed && 7514 !INTEL_DEBUG(DEBUG_NO32)) { 7515 /* Try a SIMD32 compile */ 7516 v32 = new fs_visitor(compiler, params->log_data, mem_ctx, &key->base, 7517 &prog_data->base, nir, 32, 7518 debug_enabled); 7519 v32->import_uniforms(v8); 7520 if (!v32->run_fs(allow_spilling, false)) { 7521 brw_shader_perf_log(compiler, params->log_data, 7522 "SIMD32 shader failed to compile: %s\n", 7523 v32->fail_msg); 7524 } else { 7525 const performance &perf = v32->performance_analysis.require(); 7526 7527 if (!INTEL_DEBUG(DEBUG_DO32) && throughput >= perf.throughput) { 7528 brw_shader_perf_log(compiler, params->log_data, 7529 "SIMD32 shader inefficient\n"); 7530 } else { 7531 simd32_cfg = v32->cfg; 7532 prog_data->dispatch_grf_start_reg_32 = v32->payload.num_regs; 7533 prog_data->reg_blocks_32 = brw_register_blocks(v32->grf_used); 7534 throughput = MAX2(throughput, perf.throughput); 7535 } 7536 } 7537 } 7538 7539 /* When the caller requests a repclear shader, they want SIMD16-only */ 7540 if (params->use_rep_send) 7541 simd8_cfg = NULL; 7542 7543 /* Prior to Iron Lake, the PS had a single shader offset with a jump table 7544 * at the top to select the shader. We've never implemented that. 7545 * Instead, we just give them exactly one shader and we pick the widest one 7546 * available. 7547 */ 7548 if (compiler->devinfo->ver < 5) { 7549 if (simd32_cfg || simd16_cfg) 7550 simd8_cfg = NULL; 7551 if (simd32_cfg) 7552 simd16_cfg = NULL; 7553 } 7554 7555 /* If computed depth is enabled SNB only allows SIMD8. */ 7556 if (compiler->devinfo->ver == 6 && 7557 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) 7558 assert(simd16_cfg == NULL && simd32_cfg == NULL); 7559 7560 if (compiler->devinfo->ver <= 5 && !simd8_cfg) { 7561 /* Iron lake and earlier only have one Dispatch GRF start field. Make 7562 * the data available in the base prog data struct for convenience. 7563 */ 7564 if (simd16_cfg) { 7565 prog_data->base.dispatch_grf_start_reg = 7566 prog_data->dispatch_grf_start_reg_16; 7567 } else if (simd32_cfg) { 7568 prog_data->base.dispatch_grf_start_reg = 7569 prog_data->dispatch_grf_start_reg_32; 7570 } 7571 } 7572 7573 if (prog_data->persample_dispatch) { 7574 /* Starting with SandyBridge (where we first get MSAA), the different 7575 * pixel dispatch combinations are grouped into classifications A 7576 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On most hardware 7577 * generations, the only configurations supporting persample dispatch 7578 * are those in which only one dispatch width is enabled. 7579 * 7580 * The Gfx12 hardware spec has a similar dispatch grouping table, but 7581 * the following conflicting restriction applies (from the page on 7582 * "Structure_3DSTATE_PS_BODY"), so we need to keep the SIMD16 shader: 7583 * 7584 * "SIMD32 may only be enabled if SIMD16 or (dual)SIMD8 is also 7585 * enabled." 7586 */ 7587 if (simd32_cfg || simd16_cfg) 7588 simd8_cfg = NULL; 7589 if (simd32_cfg && devinfo->ver < 12) 7590 simd16_cfg = NULL; 7591 } 7592 7593 fs_generator g(compiler, params->log_data, mem_ctx, &prog_data->base, 7594 v8->runtime_check_aads_emit, MESA_SHADER_FRAGMENT); 7595 7596 if (unlikely(debug_enabled)) { 7597 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s", 7598 nir->info.label ? 7599 nir->info.label : "unnamed", 7600 nir->info.name)); 7601 } 7602 7603 struct brw_compile_stats *stats = params->stats; 7604 7605 if (simd8_cfg) { 7606 prog_data->dispatch_8 = true; 7607 g.generate_code(simd8_cfg, 8, v8->shader_stats, 7608 v8->performance_analysis.require(), stats); 7609 stats = stats ? stats + 1 : NULL; 7610 } 7611 7612 if (simd16_cfg) { 7613 prog_data->dispatch_16 = true; 7614 prog_data->prog_offset_16 = g.generate_code( 7615 simd16_cfg, 16, v16->shader_stats, 7616 v16->performance_analysis.require(), stats); 7617 stats = stats ? stats + 1 : NULL; 7618 } 7619 7620 if (simd32_cfg) { 7621 prog_data->dispatch_32 = true; 7622 prog_data->prog_offset_32 = g.generate_code( 7623 simd32_cfg, 32, v32->shader_stats, 7624 v32->performance_analysis.require(), stats); 7625 stats = stats ? stats + 1 : NULL; 7626 } 7627 7628 g.add_const_data(nir->constant_data, nir->constant_data_size); 7629 7630 delete v8; 7631 delete v16; 7632 delete v32; 7633 7634 return g.get_assembly(); 7635} 7636 7637fs_reg 7638fs_visitor::emit_work_group_id_setup() 7639{ 7640 assert(gl_shader_stage_uses_workgroup(stage)); 7641 7642 fs_reg id = bld.vgrf(BRW_REGISTER_TYPE_UD, 3); 7643 7644 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD)); 7645 bld.MOV(id, r0_1); 7646 7647 if (gl_shader_stage_is_compute(stage)) { 7648 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD)); 7649 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD)); 7650 bld.MOV(offset(id, bld, 1), r0_6); 7651 bld.MOV(offset(id, bld, 2), r0_7); 7652 } else { 7653 /* Task/Mesh have a single Workgroup ID dimension in the HW. */ 7654 bld.MOV(offset(id, bld, 1), brw_imm_ud(0)); 7655 bld.MOV(offset(id, bld, 2), brw_imm_ud(0)); 7656 } 7657 7658 return id; 7659} 7660 7661unsigned 7662brw_cs_push_const_total_size(const struct brw_cs_prog_data *cs_prog_data, 7663 unsigned threads) 7664{ 7665 assert(cs_prog_data->push.per_thread.size % REG_SIZE == 0); 7666 assert(cs_prog_data->push.cross_thread.size % REG_SIZE == 0); 7667 return cs_prog_data->push.per_thread.size * threads + 7668 cs_prog_data->push.cross_thread.size; 7669} 7670 7671static void 7672fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords) 7673{ 7674 block->dwords = dwords; 7675 block->regs = DIV_ROUND_UP(dwords, 8); 7676 block->size = block->regs * 32; 7677} 7678 7679static void 7680cs_fill_push_const_info(const struct intel_device_info *devinfo, 7681 struct brw_cs_prog_data *cs_prog_data) 7682{ 7683 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base; 7684 int subgroup_id_index = get_subgroup_id_param_index(devinfo, prog_data); 7685 bool cross_thread_supported = devinfo->verx10 >= 75; 7686 7687 /* The thread ID should be stored in the last param dword */ 7688 assert(subgroup_id_index == -1 || 7689 subgroup_id_index == (int)prog_data->nr_params - 1); 7690 7691 unsigned cross_thread_dwords, per_thread_dwords; 7692 if (!cross_thread_supported) { 7693 cross_thread_dwords = 0u; 7694 per_thread_dwords = prog_data->nr_params; 7695 } else if (subgroup_id_index >= 0) { 7696 /* Fill all but the last register with cross-thread payload */ 7697 cross_thread_dwords = 8 * (subgroup_id_index / 8); 7698 per_thread_dwords = prog_data->nr_params - cross_thread_dwords; 7699 assert(per_thread_dwords > 0 && per_thread_dwords <= 8); 7700 } else { 7701 /* Fill all data using cross-thread payload */ 7702 cross_thread_dwords = prog_data->nr_params; 7703 per_thread_dwords = 0u; 7704 } 7705 7706 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords); 7707 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords); 7708 7709 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 || 7710 cs_prog_data->push.per_thread.size == 0); 7711 assert(cs_prog_data->push.cross_thread.dwords + 7712 cs_prog_data->push.per_thread.dwords == 7713 prog_data->nr_params); 7714} 7715 7716static bool 7717filter_simd(const nir_instr *instr, const void * /* options */) 7718{ 7719 if (instr->type != nir_instr_type_intrinsic) 7720 return false; 7721 7722 switch (nir_instr_as_intrinsic(instr)->intrinsic) { 7723 case nir_intrinsic_load_simd_width_intel: 7724 case nir_intrinsic_load_subgroup_id: 7725 return true; 7726 7727 default: 7728 return false; 7729 } 7730} 7731 7732static nir_ssa_def * 7733lower_simd(nir_builder *b, nir_instr *instr, void *options) 7734{ 7735 uintptr_t simd_width = (uintptr_t)options; 7736 7737 switch (nir_instr_as_intrinsic(instr)->intrinsic) { 7738 case nir_intrinsic_load_simd_width_intel: 7739 return nir_imm_int(b, simd_width); 7740 7741 case nir_intrinsic_load_subgroup_id: 7742 /* If the whole workgroup fits in one thread, we can lower subgroup_id 7743 * to a constant zero. 7744 */ 7745 if (!b->shader->info.workgroup_size_variable) { 7746 unsigned local_workgroup_size = b->shader->info.workgroup_size[0] * 7747 b->shader->info.workgroup_size[1] * 7748 b->shader->info.workgroup_size[2]; 7749 if (local_workgroup_size <= simd_width) 7750 return nir_imm_int(b, 0); 7751 } 7752 return NULL; 7753 7754 default: 7755 return NULL; 7756 } 7757} 7758 7759bool 7760brw_nir_lower_simd(nir_shader *nir, unsigned dispatch_width) 7761{ 7762 return nir_shader_lower_instructions(nir, filter_simd, lower_simd, 7763 (void *)(uintptr_t)dispatch_width); 7764} 7765 7766const unsigned * 7767brw_compile_cs(const struct brw_compiler *compiler, 7768 void *mem_ctx, 7769 struct brw_compile_cs_params *params) 7770{ 7771 const nir_shader *nir = params->nir; 7772 const struct brw_cs_prog_key *key = params->key; 7773 struct brw_cs_prog_data *prog_data = params->prog_data; 7774 7775 const bool debug_enabled = 7776 INTEL_DEBUG(params->debug_flag ? params->debug_flag : DEBUG_CS); 7777 7778 prog_data->base.stage = MESA_SHADER_COMPUTE; 7779 prog_data->base.total_shared = nir->info.shared_size; 7780 prog_data->base.ray_queries = nir->info.ray_queries; 7781 prog_data->base.total_scratch = 0; 7782 7783 if (!nir->info.workgroup_size_variable) { 7784 prog_data->local_size[0] = nir->info.workgroup_size[0]; 7785 prog_data->local_size[1] = nir->info.workgroup_size[1]; 7786 prog_data->local_size[2] = nir->info.workgroup_size[2]; 7787 } 7788 7789 const unsigned required_dispatch_width = 7790 brw_required_dispatch_width(&nir->info); 7791 7792 fs_visitor *v[3] = {0}; 7793 const char *error[3] = {0}; 7794 7795 for (unsigned simd = 0; simd < 3; simd++) { 7796 if (!brw_simd_should_compile(mem_ctx, simd, compiler->devinfo, prog_data, 7797 required_dispatch_width, &error[simd])) 7798 continue; 7799 7800 const unsigned dispatch_width = 8u << simd; 7801 7802 nir_shader *shader = nir_shader_clone(mem_ctx, nir); 7803 brw_nir_apply_key(shader, compiler, &key->base, 7804 dispatch_width, true /* is_scalar */); 7805 7806 NIR_PASS(_, shader, brw_nir_lower_simd, dispatch_width); 7807 7808 /* Clean up after the local index and ID calculations. */ 7809 NIR_PASS(_, shader, nir_opt_constant_folding); 7810 NIR_PASS(_, shader, nir_opt_dce); 7811 7812 brw_postprocess_nir(shader, compiler, true, debug_enabled, 7813 key->base.robust_buffer_access); 7814 7815 v[simd] = new fs_visitor(compiler, params->log_data, mem_ctx, &key->base, 7816 &prog_data->base, shader, dispatch_width, 7817 debug_enabled); 7818 7819 if (prog_data->prog_mask) { 7820 unsigned first = ffs(prog_data->prog_mask) - 1; 7821 v[simd]->import_uniforms(v[first]); 7822 } 7823 7824 const bool allow_spilling = !prog_data->prog_mask || 7825 nir->info.workgroup_size_variable; 7826 7827 if (v[simd]->run_cs(allow_spilling)) { 7828 /* We should always be able to do SIMD32 for compute shaders. */ 7829 assert(v[simd]->max_dispatch_width >= 32); 7830 7831 cs_fill_push_const_info(compiler->devinfo, prog_data); 7832 7833 brw_simd_mark_compiled(simd, prog_data, v[simd]->spilled_any_registers); 7834 } else { 7835 error[simd] = ralloc_strdup(mem_ctx, v[simd]->fail_msg); 7836 if (simd > 0) { 7837 brw_shader_perf_log(compiler, params->log_data, 7838 "SIMD%u shader failed to compile: %s\n", 7839 dispatch_width, v[simd]->fail_msg); 7840 } 7841 } 7842 } 7843 7844 const int selected_simd = brw_simd_select(prog_data); 7845 if (selected_simd < 0) { 7846 params->error_str = ralloc_asprintf(mem_ctx, "Can't compile shader: %s, %s and %s.\n", 7847 error[0], error[1], error[2]);; 7848 return NULL; 7849 } 7850 7851 assert(selected_simd < 3); 7852 fs_visitor *selected = v[selected_simd]; 7853 7854 if (!nir->info.workgroup_size_variable) 7855 prog_data->prog_mask = 1 << selected_simd; 7856 7857 const unsigned *ret = NULL; 7858 7859 fs_generator g(compiler, params->log_data, mem_ctx, &prog_data->base, 7860 selected->runtime_check_aads_emit, MESA_SHADER_COMPUTE); 7861 if (unlikely(debug_enabled)) { 7862 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s", 7863 nir->info.label ? 7864 nir->info.label : "unnamed", 7865 nir->info.name); 7866 g.enable_debug(name); 7867 } 7868 7869 struct brw_compile_stats *stats = params->stats; 7870 for (unsigned simd = 0; simd < 3; simd++) { 7871 if (prog_data->prog_mask & (1u << simd)) { 7872 assert(v[simd]); 7873 prog_data->prog_offset[simd] = 7874 g.generate_code(v[simd]->cfg, 8u << simd, v[simd]->shader_stats, 7875 v[simd]->performance_analysis.require(), stats); 7876 stats = stats ? stats + 1 : NULL; 7877 } 7878 } 7879 7880 g.add_const_data(nir->constant_data, nir->constant_data_size); 7881 7882 ret = g.get_assembly(); 7883 7884 delete v[0]; 7885 delete v[1]; 7886 delete v[2]; 7887 7888 return ret; 7889} 7890 7891struct brw_cs_dispatch_info 7892brw_cs_get_dispatch_info(const struct intel_device_info *devinfo, 7893 const struct brw_cs_prog_data *prog_data, 7894 const unsigned *override_local_size) 7895{ 7896 struct brw_cs_dispatch_info info = {}; 7897 7898 const unsigned *sizes = 7899 override_local_size ? override_local_size : 7900 prog_data->local_size; 7901 7902 const int simd = 7903 override_local_size ? brw_simd_select_for_workgroup_size(devinfo, prog_data, sizes) : 7904 brw_simd_select(prog_data); 7905 assert(simd >= 0 && simd < 3); 7906 7907 info.group_size = sizes[0] * sizes[1] * sizes[2]; 7908 info.simd_size = 8u << simd; 7909 info.threads = DIV_ROUND_UP(info.group_size, info.simd_size); 7910 7911 const uint32_t remainder = info.group_size & (info.simd_size - 1); 7912 if (remainder > 0) 7913 info.right_mask = ~0u >> (32 - remainder); 7914 else 7915 info.right_mask = ~0u >> (32 - info.simd_size); 7916 7917 return info; 7918} 7919 7920static uint8_t 7921compile_single_bs(const struct brw_compiler *compiler, void *log_data, 7922 void *mem_ctx, 7923 const struct brw_bs_prog_key *key, 7924 struct brw_bs_prog_data *prog_data, 7925 nir_shader *shader, 7926 fs_generator *g, 7927 struct brw_compile_stats *stats, 7928 int *prog_offset, 7929 char **error_str) 7930{ 7931 const bool debug_enabled = INTEL_DEBUG(DEBUG_RT); 7932 7933 prog_data->base.stage = shader->info.stage; 7934 prog_data->max_stack_size = MAX2(prog_data->max_stack_size, 7935 shader->scratch_size); 7936 7937 const unsigned max_dispatch_width = 16; 7938 brw_nir_apply_key(shader, compiler, &key->base, max_dispatch_width, true); 7939 brw_postprocess_nir(shader, compiler, true, debug_enabled, 7940 key->base.robust_buffer_access); 7941 7942 fs_visitor *v = NULL, *v8 = NULL, *v16 = NULL; 7943 bool has_spilled = false; 7944 7945 uint8_t simd_size = 0; 7946 if (!INTEL_DEBUG(DEBUG_NO8)) { 7947 v8 = new fs_visitor(compiler, log_data, mem_ctx, &key->base, 7948 &prog_data->base, shader, 7949 8, debug_enabled); 7950 const bool allow_spilling = true; 7951 if (!v8->run_bs(allow_spilling)) { 7952 if (error_str) 7953 *error_str = ralloc_strdup(mem_ctx, v8->fail_msg); 7954 delete v8; 7955 return 0; 7956 } else { 7957 v = v8; 7958 simd_size = 8; 7959 if (v8->spilled_any_registers) 7960 has_spilled = true; 7961 } 7962 } 7963 7964 if (!has_spilled && !INTEL_DEBUG(DEBUG_NO16)) { 7965 v16 = new fs_visitor(compiler, log_data, mem_ctx, &key->base, 7966 &prog_data->base, shader, 7967 16, debug_enabled); 7968 const bool allow_spilling = (v == NULL); 7969 if (!v16->run_bs(allow_spilling)) { 7970 brw_shader_perf_log(compiler, log_data, 7971 "SIMD16 shader failed to compile: %s\n", 7972 v16->fail_msg); 7973 if (v == NULL) { 7974 assert(v8 == NULL); 7975 if (error_str) { 7976 *error_str = ralloc_asprintf( 7977 mem_ctx, "SIMD8 disabled and couldn't generate SIMD16: %s", 7978 v16->fail_msg); 7979 } 7980 delete v16; 7981 return 0; 7982 } 7983 } else { 7984 v = v16; 7985 simd_size = 16; 7986 if (v16->spilled_any_registers) 7987 has_spilled = true; 7988 } 7989 } 7990 7991 if (unlikely(v == NULL)) { 7992 assert(INTEL_DEBUG(DEBUG_NO8 | DEBUG_NO16)); 7993 if (error_str) { 7994 *error_str = ralloc_strdup(mem_ctx, 7995 "Cannot satisfy INTEL_DEBUG flags SIMD restrictions"); 7996 } 7997 return false; 7998 } 7999 8000 assert(v); 8001 8002 int offset = g->generate_code(v->cfg, simd_size, v->shader_stats, 8003 v->performance_analysis.require(), stats); 8004 if (prog_offset) 8005 *prog_offset = offset; 8006 else 8007 assert(offset == 0); 8008 8009 delete v8; 8010 delete v16; 8011 8012 return simd_size; 8013} 8014 8015uint64_t 8016brw_bsr(const struct intel_device_info *devinfo, 8017 uint32_t offset, uint8_t simd_size, uint8_t local_arg_offset) 8018{ 8019 assert(offset % 64 == 0); 8020 assert(simd_size == 8 || simd_size == 16); 8021 assert(local_arg_offset % 8 == 0); 8022 8023 return offset | 8024 SET_BITS(simd_size == 8, 4, 4) | 8025 SET_BITS(local_arg_offset / 8, 2, 0); 8026} 8027 8028const unsigned * 8029brw_compile_bs(const struct brw_compiler *compiler, 8030 void *mem_ctx, 8031 struct brw_compile_bs_params *params) 8032{ 8033 nir_shader *shader = params->nir; 8034 struct brw_bs_prog_data *prog_data = params->prog_data; 8035 unsigned num_resume_shaders = params->num_resume_shaders; 8036 nir_shader **resume_shaders = params->resume_shaders; 8037 const bool debug_enabled = INTEL_DEBUG(DEBUG_RT); 8038 8039 prog_data->base.stage = shader->info.stage; 8040 prog_data->base.ray_queries = shader->info.ray_queries; 8041 prog_data->base.total_scratch = 0; 8042 8043 prog_data->max_stack_size = 0; 8044 8045 fs_generator g(compiler, params->log_data, mem_ctx, &prog_data->base, 8046 false, shader->info.stage); 8047 if (unlikely(debug_enabled)) { 8048 char *name = ralloc_asprintf(mem_ctx, "%s %s shader %s", 8049 shader->info.label ? 8050 shader->info.label : "unnamed", 8051 gl_shader_stage_name(shader->info.stage), 8052 shader->info.name); 8053 g.enable_debug(name); 8054 } 8055 8056 prog_data->simd_size = 8057 compile_single_bs(compiler, params->log_data, mem_ctx, 8058 params->key, prog_data, 8059 shader, &g, params->stats, NULL, ¶ms->error_str); 8060 if (prog_data->simd_size == 0) 8061 return NULL; 8062 8063 uint64_t *resume_sbt = ralloc_array(mem_ctx, uint64_t, num_resume_shaders); 8064 for (unsigned i = 0; i < num_resume_shaders; i++) { 8065 if (INTEL_DEBUG(DEBUG_RT)) { 8066 char *name = ralloc_asprintf(mem_ctx, "%s %s resume(%u) shader %s", 8067 shader->info.label ? 8068 shader->info.label : "unnamed", 8069 gl_shader_stage_name(shader->info.stage), 8070 i, shader->info.name); 8071 g.enable_debug(name); 8072 } 8073 8074 /* TODO: Figure out shader stats etc. for resume shaders */ 8075 int offset = 0; 8076 uint8_t simd_size = 8077 compile_single_bs(compiler, params->log_data, mem_ctx, params->key, 8078 prog_data, resume_shaders[i], &g, NULL, &offset, 8079 ¶ms->error_str); 8080 if (simd_size == 0) 8081 return NULL; 8082 8083 assert(offset > 0); 8084 resume_sbt[i] = brw_bsr(compiler->devinfo, offset, simd_size, 0); 8085 } 8086 8087 /* We only have one constant data so we want to make sure they're all the 8088 * same. 8089 */ 8090 for (unsigned i = 0; i < num_resume_shaders; i++) { 8091 assert(resume_shaders[i]->constant_data_size == 8092 shader->constant_data_size); 8093 assert(memcmp(resume_shaders[i]->constant_data, 8094 shader->constant_data, 8095 shader->constant_data_size) == 0); 8096 } 8097 8098 g.add_const_data(shader->constant_data, shader->constant_data_size); 8099 g.add_resume_sbt(num_resume_shaders, resume_sbt); 8100 8101 return g.get_assembly(); 8102} 8103 8104/** 8105 * Test the dispatch mask packing assumptions of 8106 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of 8107 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is 8108 * executed with an unexpected dispatch mask. 8109 */ 8110static UNUSED void 8111brw_fs_test_dispatch_packing(const fs_builder &bld) 8112{ 8113 const gl_shader_stage stage = bld.shader->stage; 8114 const bool uses_vmask = 8115 stage == MESA_SHADER_FRAGMENT && 8116 brw_wm_prog_data(bld.shader->stage_prog_data)->uses_vmask; 8117 8118 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage, 8119 bld.shader->stage_prog_data)) { 8120 const fs_builder ubld = bld.exec_all().group(1, 0); 8121 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0); 8122 const fs_reg mask = uses_vmask ? brw_vmask_reg() : brw_dmask_reg(); 8123 8124 ubld.ADD(tmp, mask, brw_imm_ud(1)); 8125 ubld.AND(tmp, mask, tmp); 8126 8127 /* This will loop forever if the dispatch mask doesn't have the expected 8128 * form '2^n-1', in which case tmp will be non-zero. 8129 */ 8130 bld.emit(BRW_OPCODE_DO); 8131 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ); 8132 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE)); 8133 } 8134} 8135 8136unsigned 8137fs_visitor::workgroup_size() const 8138{ 8139 assert(gl_shader_stage_uses_workgroup(stage)); 8140 const struct brw_cs_prog_data *cs = brw_cs_prog_data(prog_data); 8141 return cs->local_size[0] * cs->local_size[1] * cs->local_size[2]; 8142} 8143