1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24/** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31#include "main/macros.h"
32#include "brw_eu.h"
33#include "brw_fs.h"
34#include "brw_fs_live_variables.h"
35#include "brw_nir.h"
36#include "brw_vec4_gs_visitor.h"
37#include "brw_cfg.h"
38#include "brw_dead_control_flow.h"
39#include "brw_private.h"
40#include "dev/intel_debug.h"
41#include "compiler/glsl_types.h"
42#include "compiler/nir/nir_builder.h"
43#include "program/prog_parameter.h"
44#include "util/u_math.h"
45
46using namespace brw;
47
48static unsigned get_lowered_simd_width(const struct brw_compiler *compiler,
49                                       const fs_inst *inst);
50
51void
52fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
53              const fs_reg *src, unsigned sources)
54{
55   memset((void*)this, 0, sizeof(*this));
56
57   this->src = new fs_reg[MAX2(sources, 3)];
58   for (unsigned i = 0; i < sources; i++)
59      this->src[i] = src[i];
60
61   this->opcode = opcode;
62   this->dst = dst;
63   this->sources = sources;
64   this->exec_size = exec_size;
65   this->base_mrf = -1;
66
67   assert(dst.file != IMM && dst.file != UNIFORM);
68
69   assert(this->exec_size != 0);
70
71   this->conditional_mod = BRW_CONDITIONAL_NONE;
72
73   /* This will be the case for almost all instructions. */
74   switch (dst.file) {
75   case VGRF:
76   case ARF:
77   case FIXED_GRF:
78   case MRF:
79   case ATTR:
80      this->size_written = dst.component_size(exec_size);
81      break;
82   case BAD_FILE:
83      this->size_written = 0;
84      break;
85   case IMM:
86   case UNIFORM:
87      unreachable("Invalid destination register file");
88   }
89
90   this->writes_accumulator = false;
91}
92
93fs_inst::fs_inst()
94{
95   init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
96}
97
98fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
99{
100   init(opcode, exec_size, reg_undef, NULL, 0);
101}
102
103fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
104{
105   init(opcode, exec_size, dst, NULL, 0);
106}
107
108fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
109                 const fs_reg &src0)
110{
111   const fs_reg src[1] = { src0 };
112   init(opcode, exec_size, dst, src, 1);
113}
114
115fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
116                 const fs_reg &src0, const fs_reg &src1)
117{
118   const fs_reg src[2] = { src0, src1 };
119   init(opcode, exec_size, dst, src, 2);
120}
121
122fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
123                 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
124{
125   const fs_reg src[3] = { src0, src1, src2 };
126   init(opcode, exec_size, dst, src, 3);
127}
128
129fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
130                 const fs_reg src[], unsigned sources)
131{
132   init(opcode, exec_width, dst, src, sources);
133}
134
135fs_inst::fs_inst(const fs_inst &that)
136{
137   memcpy((void*)this, &that, sizeof(that));
138
139   this->src = new fs_reg[MAX2(that.sources, 3)];
140
141   for (unsigned i = 0; i < that.sources; i++)
142      this->src[i] = that.src[i];
143}
144
145fs_inst::~fs_inst()
146{
147   delete[] this->src;
148}
149
150void
151fs_inst::resize_sources(uint8_t num_sources)
152{
153   if (this->sources != num_sources) {
154      fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
155
156      for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
157         src[i] = this->src[i];
158
159      delete[] this->src;
160      this->src = src;
161      this->sources = num_sources;
162   }
163}
164
165void
166fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
167                                       const fs_reg &dst,
168                                       const fs_reg &surf_index,
169                                       const fs_reg &varying_offset,
170                                       uint32_t const_offset,
171                                       uint8_t alignment)
172{
173   /* We have our constant surface use a pitch of 4 bytes, so our index can
174    * be any component of a vector, and then we load 4 contiguous
175    * components starting from that.
176    *
177    * We break down the const_offset to a portion added to the variable offset
178    * and a portion done using fs_reg::offset, which means that if you have
179    * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
180    * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
181    * later notice that those loads are all the same and eliminate the
182    * redundant ones.
183    */
184   fs_reg vec4_offset = vgrf(glsl_type::uint_type);
185   bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
186
187   /* The pull load message will load a vec4 (16 bytes). If we are loading
188    * a double this means we are only loading 2 elements worth of data.
189    * We also want to use a 32-bit data type for the dst of the load operation
190    * so other parts of the driver don't get confused about the size of the
191    * result.
192    */
193   fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
194   fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
195                            vec4_result, surf_index, vec4_offset,
196                            brw_imm_ud(alignment));
197   inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
198
199   shuffle_from_32bit_read(bld, dst, vec4_result,
200                           (const_offset & 0xf) / type_sz(dst.type), 1);
201}
202
203/**
204 * A helper for MOV generation for fixing up broken hardware SEND dependency
205 * handling.
206 */
207void
208fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
209{
210   /* The caller always wants uncompressed to emit the minimal extra
211    * dependencies, and to avoid having to deal with aligning its regs to 2.
212    */
213   const fs_builder ubld = bld.annotate("send dependency resolve")
214                              .quarter(0);
215
216   ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
217}
218
219bool
220fs_inst::is_send_from_grf() const
221{
222   switch (opcode) {
223   case SHADER_OPCODE_SEND:
224   case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
225   case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
226   case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
227   case SHADER_OPCODE_INTERLOCK:
228   case SHADER_OPCODE_MEMORY_FENCE:
229   case SHADER_OPCODE_BARRIER:
230      return true;
231   case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
232      return src[1].file == VGRF;
233   case FS_OPCODE_FB_WRITE:
234   case FS_OPCODE_FB_READ:
235      return src[0].file == VGRF;
236   default:
237      if (is_tex())
238         return src[0].file == VGRF;
239
240      return false;
241   }
242}
243
244bool
245fs_inst::is_control_source(unsigned arg) const
246{
247   switch (opcode) {
248   case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
249   case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GFX7:
250   case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GFX4:
251      return arg == 0;
252
253   case SHADER_OPCODE_BROADCAST:
254   case SHADER_OPCODE_SHUFFLE:
255   case SHADER_OPCODE_QUAD_SWIZZLE:
256   case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
257   case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
258   case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
259   case SHADER_OPCODE_GET_BUFFER_SIZE:
260      return arg == 1;
261
262   case SHADER_OPCODE_MOV_INDIRECT:
263   case SHADER_OPCODE_CLUSTER_BROADCAST:
264   case SHADER_OPCODE_TEX:
265   case FS_OPCODE_TXB:
266   case SHADER_OPCODE_TXD:
267   case SHADER_OPCODE_TXF:
268   case SHADER_OPCODE_TXF_LZ:
269   case SHADER_OPCODE_TXF_CMS:
270   case SHADER_OPCODE_TXF_CMS_W:
271   case SHADER_OPCODE_TXF_UMS:
272   case SHADER_OPCODE_TXF_MCS:
273   case SHADER_OPCODE_TXL:
274   case SHADER_OPCODE_TXL_LZ:
275   case SHADER_OPCODE_TXS:
276   case SHADER_OPCODE_LOD:
277   case SHADER_OPCODE_TG4:
278   case SHADER_OPCODE_TG4_OFFSET:
279   case SHADER_OPCODE_SAMPLEINFO:
280      return arg == 1 || arg == 2;
281
282   case SHADER_OPCODE_SEND:
283      return arg == 0 || arg == 1;
284
285   default:
286      return false;
287   }
288}
289
290bool
291fs_inst::is_payload(unsigned arg) const
292{
293   switch (opcode) {
294   case FS_OPCODE_FB_WRITE:
295   case FS_OPCODE_FB_READ:
296   case VEC4_OPCODE_UNTYPED_ATOMIC:
297   case VEC4_OPCODE_UNTYPED_SURFACE_READ:
298   case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
299   case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
300   case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
301   case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
302   case SHADER_OPCODE_INTERLOCK:
303   case SHADER_OPCODE_MEMORY_FENCE:
304   case SHADER_OPCODE_BARRIER:
305      return arg == 0;
306
307   case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GFX7:
308      return arg == 1;
309
310   case SHADER_OPCODE_SEND:
311      return arg == 2 || arg == 3;
312
313   default:
314      if (is_tex())
315         return arg == 0;
316      else
317         return false;
318   }
319}
320
321/**
322 * Returns true if this instruction's sources and destinations cannot
323 * safely be the same register.
324 *
325 * In most cases, a register can be written over safely by the same
326 * instruction that is its last use.  For a single instruction, the
327 * sources are dereferenced before writing of the destination starts
328 * (naturally).
329 *
330 * However, there are a few cases where this can be problematic:
331 *
332 * - Virtual opcodes that translate to multiple instructions in the
333 *   code generator: if src == dst and one instruction writes the
334 *   destination before a later instruction reads the source, then
335 *   src will have been clobbered.
336 *
337 * - SIMD16 compressed instructions with certain regioning (see below).
338 *
339 * The register allocator uses this information to set up conflicts between
340 * GRF sources and the destination.
341 */
342bool
343fs_inst::has_source_and_destination_hazard() const
344{
345   switch (opcode) {
346   case FS_OPCODE_PACK_HALF_2x16_SPLIT:
347      /* Multiple partial writes to the destination */
348      return true;
349   case SHADER_OPCODE_SHUFFLE:
350      /* This instruction returns an arbitrary channel from the source and
351       * gets split into smaller instructions in the generator.  It's possible
352       * that one of the instructions will read from a channel corresponding
353       * to an earlier instruction.
354       */
355   case SHADER_OPCODE_SEL_EXEC:
356      /* This is implemented as
357       *
358       * mov(16)      g4<1>D      0D            { align1 WE_all 1H };
359       * mov(16)      g4<1>D      g5<8,8,1>D    { align1 1H }
360       *
361       * Because the source is only read in the second instruction, the first
362       * may stomp all over it.
363       */
364      return true;
365   case SHADER_OPCODE_QUAD_SWIZZLE:
366      switch (src[1].ud) {
367      case BRW_SWIZZLE_XXXX:
368      case BRW_SWIZZLE_YYYY:
369      case BRW_SWIZZLE_ZZZZ:
370      case BRW_SWIZZLE_WWWW:
371      case BRW_SWIZZLE_XXZZ:
372      case BRW_SWIZZLE_YYWW:
373      case BRW_SWIZZLE_XYXY:
374      case BRW_SWIZZLE_ZWZW:
375         /* These can be implemented as a single Align1 region on all
376          * platforms, so there's never a hazard between source and
377          * destination.  C.f. fs_generator::generate_quad_swizzle().
378          */
379         return false;
380      default:
381         return !is_uniform(src[0]);
382      }
383   default:
384      /* The SIMD16 compressed instruction
385       *
386       * add(16)      g4<1>F      g4<8,8,1>F   g6<8,8,1>F
387       *
388       * is actually decoded in hardware as:
389       *
390       * add(8)       g4<1>F      g4<8,8,1>F   g6<8,8,1>F
391       * add(8)       g5<1>F      g5<8,8,1>F   g7<8,8,1>F
392       *
393       * Which is safe.  However, if we have uniform accesses
394       * happening, we get into trouble:
395       *
396       * add(8)       g4<1>F      g4<0,1,0>F   g6<8,8,1>F
397       * add(8)       g5<1>F      g4<0,1,0>F   g7<8,8,1>F
398       *
399       * Now our destination for the first instruction overwrote the
400       * second instruction's src0, and we get garbage for those 8
401       * pixels.  There's a similar issue for the pre-gfx6
402       * pixel_x/pixel_y, which are registers of 16-bit values and thus
403       * would get stomped by the first decode as well.
404       */
405      if (exec_size == 16) {
406         for (int i = 0; i < sources; i++) {
407            if (src[i].file == VGRF && (src[i].stride == 0 ||
408                                        src[i].type == BRW_REGISTER_TYPE_UW ||
409                                        src[i].type == BRW_REGISTER_TYPE_W ||
410                                        src[i].type == BRW_REGISTER_TYPE_UB ||
411                                        src[i].type == BRW_REGISTER_TYPE_B)) {
412               return true;
413            }
414         }
415      }
416      return false;
417   }
418}
419
420bool
421fs_inst::can_do_source_mods(const struct intel_device_info *devinfo) const
422{
423   if (devinfo->ver == 6 && is_math())
424      return false;
425
426   if (is_send_from_grf())
427      return false;
428
429   /* From Wa_1604601757:
430    *
431    * "When multiplying a DW and any lower precision integer, source modifier
432    *  is not supported."
433    */
434   if (devinfo->ver >= 12 && (opcode == BRW_OPCODE_MUL ||
435                              opcode == BRW_OPCODE_MAD)) {
436      const brw_reg_type exec_type = get_exec_type(this);
437      const unsigned min_type_sz = opcode == BRW_OPCODE_MAD ?
438         MIN2(type_sz(src[1].type), type_sz(src[2].type)) :
439         MIN2(type_sz(src[0].type), type_sz(src[1].type));
440
441      if (brw_reg_type_is_integer(exec_type) &&
442          type_sz(exec_type) >= 4 &&
443          type_sz(exec_type) != min_type_sz)
444         return false;
445   }
446
447   if (!backend_instruction::can_do_source_mods())
448      return false;
449
450   return true;
451}
452
453bool
454fs_inst::can_do_cmod()
455{
456   if (!backend_instruction::can_do_cmod())
457      return false;
458
459   /* The accumulator result appears to get used for the conditional modifier
460    * generation.  When negating a UD value, there is a 33rd bit generated for
461    * the sign in the accumulator value, so now you can't check, for example,
462    * equality with a 32-bit value.  See piglit fs-op-neg-uvec4.
463    */
464   for (unsigned i = 0; i < sources; i++) {
465      if (brw_reg_type_is_unsigned_integer(src[i].type) && src[i].negate)
466         return false;
467   }
468
469   return true;
470}
471
472bool
473fs_inst::can_change_types() const
474{
475   return dst.type == src[0].type &&
476          !src[0].abs && !src[0].negate && !saturate &&
477          (opcode == BRW_OPCODE_MOV ||
478           (opcode == BRW_OPCODE_SEL &&
479            dst.type == src[1].type &&
480            predicate != BRW_PREDICATE_NONE &&
481            !src[1].abs && !src[1].negate));
482}
483
484void
485fs_reg::init()
486{
487   memset((void*)this, 0, sizeof(*this));
488   type = BRW_REGISTER_TYPE_UD;
489   stride = 1;
490}
491
492/** Generic unset register constructor. */
493fs_reg::fs_reg()
494{
495   init();
496   this->file = BAD_FILE;
497}
498
499fs_reg::fs_reg(struct ::brw_reg reg) :
500   backend_reg(reg)
501{
502   this->offset = 0;
503   this->stride = 1;
504   if (this->file == IMM &&
505       (this->type != BRW_REGISTER_TYPE_V &&
506        this->type != BRW_REGISTER_TYPE_UV &&
507        this->type != BRW_REGISTER_TYPE_VF)) {
508      this->stride = 0;
509   }
510}
511
512bool
513fs_reg::equals(const fs_reg &r) const
514{
515   return (this->backend_reg::equals(r) &&
516           stride == r.stride);
517}
518
519bool
520fs_reg::negative_equals(const fs_reg &r) const
521{
522   return (this->backend_reg::negative_equals(r) &&
523           stride == r.stride);
524}
525
526bool
527fs_reg::is_contiguous() const
528{
529   switch (file) {
530   case ARF:
531   case FIXED_GRF:
532      return hstride == BRW_HORIZONTAL_STRIDE_1 &&
533             vstride == width + hstride;
534   case MRF:
535   case VGRF:
536   case ATTR:
537      return stride == 1;
538   case UNIFORM:
539   case IMM:
540   case BAD_FILE:
541      return true;
542   }
543
544   unreachable("Invalid register file");
545}
546
547unsigned
548fs_reg::component_size(unsigned width) const
549{
550   const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
551                            hstride == 0 ? 0 :
552                            1 << (hstride - 1));
553   return MAX2(width * stride, 1) * type_sz(type);
554}
555
556/**
557 * Create a MOV to read the timestamp register.
558 */
559fs_reg
560fs_visitor::get_timestamp(const fs_builder &bld)
561{
562   assert(devinfo->ver >= 7);
563
564   fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
565                                          BRW_ARF_TIMESTAMP,
566                                          0),
567                             BRW_REGISTER_TYPE_UD));
568
569   fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
570
571   /* We want to read the 3 fields we care about even if it's not enabled in
572    * the dispatch.
573    */
574   bld.group(4, 0).exec_all().MOV(dst, ts);
575
576   return dst;
577}
578
579void
580fs_visitor::vfail(const char *format, va_list va)
581{
582   char *msg;
583
584   if (failed)
585      return;
586
587   failed = true;
588
589   msg = ralloc_vasprintf(mem_ctx, format, va);
590   msg = ralloc_asprintf(mem_ctx, "SIMD%d %s compile failed: %s\n",
591         dispatch_width, stage_abbrev, msg);
592
593   this->fail_msg = msg;
594
595   if (unlikely(debug_enabled)) {
596      fprintf(stderr, "%s",  msg);
597   }
598}
599
600void
601fs_visitor::fail(const char *format, ...)
602{
603   va_list va;
604
605   va_start(va, format);
606   vfail(format, va);
607   va_end(va);
608}
609
610/**
611 * Mark this program as impossible to compile with dispatch width greater
612 * than n.
613 *
614 * During the SIMD8 compile (which happens first), we can detect and flag
615 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
616 * SIMD16+ compile altogether.
617 *
618 * During a compile of dispatch width greater than n (if one happens anyway),
619 * this just calls fail().
620 */
621void
622fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
623{
624   if (dispatch_width > n) {
625      fail("%s", msg);
626   } else {
627      max_dispatch_width = MIN2(max_dispatch_width, n);
628      brw_shader_perf_log(compiler, log_data,
629                          "Shader dispatch width limited to SIMD%d: %s\n",
630                          n, msg);
631   }
632}
633
634/**
635 * Returns true if the instruction has a flag that means it won't
636 * update an entire destination register.
637 *
638 * For example, dead code elimination and live variable analysis want to know
639 * when a write to a variable screens off any preceding values that were in
640 * it.
641 */
642bool
643fs_inst::is_partial_write() const
644{
645   return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
646           (this->exec_size * type_sz(this->dst.type)) < 32 ||
647           !this->dst.is_contiguous() ||
648           this->dst.offset % REG_SIZE != 0);
649}
650
651unsigned
652fs_inst::components_read(unsigned i) const
653{
654   /* Return zero if the source is not present. */
655   if (src[i].file == BAD_FILE)
656      return 0;
657
658   switch (opcode) {
659   case FS_OPCODE_LINTERP:
660      if (i == 0)
661         return 2;
662      else
663         return 1;
664
665   case FS_OPCODE_PIXEL_X:
666   case FS_OPCODE_PIXEL_Y:
667      assert(i < 2);
668      if (i == 0)
669         return 2;
670      else
671         return 1;
672
673   case FS_OPCODE_FB_WRITE_LOGICAL:
674      assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
675      /* First/second FB write color. */
676      if (i < 2)
677         return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
678      else
679         return 1;
680
681   case SHADER_OPCODE_TEX_LOGICAL:
682   case SHADER_OPCODE_TXD_LOGICAL:
683   case SHADER_OPCODE_TXF_LOGICAL:
684   case SHADER_OPCODE_TXL_LOGICAL:
685   case SHADER_OPCODE_TXS_LOGICAL:
686   case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
687   case FS_OPCODE_TXB_LOGICAL:
688   case SHADER_OPCODE_TXF_CMS_LOGICAL:
689   case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
690   case SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL:
691   case SHADER_OPCODE_TXF_UMS_LOGICAL:
692   case SHADER_OPCODE_TXF_MCS_LOGICAL:
693   case SHADER_OPCODE_LOD_LOGICAL:
694   case SHADER_OPCODE_TG4_LOGICAL:
695   case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
696   case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
697      assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
698             src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
699      /* Texture coordinates. */
700      if (i == TEX_LOGICAL_SRC_COORDINATE)
701         return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
702      /* Texture derivatives. */
703      else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
704               opcode == SHADER_OPCODE_TXD_LOGICAL)
705         return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
706      /* Texture offset. */
707      else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
708         return 2;
709      /* MCS */
710      else if (i == TEX_LOGICAL_SRC_MCS) {
711         if (opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
712            return 2;
713         else if (opcode == SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL)
714            return 4;
715         else
716            return 1;
717      } else
718         return 1;
719
720   case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
721   case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
722      assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM);
723      /* Surface coordinates. */
724      if (i == SURFACE_LOGICAL_SRC_ADDRESS)
725         return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
726      /* Surface operation source (ignored for reads). */
727      else if (i == SURFACE_LOGICAL_SRC_DATA)
728         return 0;
729      else
730         return 1;
731
732   case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
733   case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
734      assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
735             src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
736      /* Surface coordinates. */
737      if (i == SURFACE_LOGICAL_SRC_ADDRESS)
738         return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
739      /* Surface operation source. */
740      else if (i == SURFACE_LOGICAL_SRC_DATA)
741         return src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
742      else
743         return 1;
744
745   case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
746   case SHADER_OPCODE_A64_OWORD_BLOCK_READ_LOGICAL:
747   case SHADER_OPCODE_A64_UNALIGNED_OWORD_BLOCK_READ_LOGICAL:
748      assert(src[2].file == IMM);
749      return 1;
750
751   case SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL:
752      assert(src[2].file == IMM);
753      if (i == 1) { /* data to write */
754         const unsigned comps = src[2].ud / exec_size;
755         assert(comps > 0);
756         return comps;
757      } else {
758         return 1;
759      }
760
761   case SHADER_OPCODE_OWORD_BLOCK_READ_LOGICAL:
762   case SHADER_OPCODE_UNALIGNED_OWORD_BLOCK_READ_LOGICAL:
763      assert(src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
764      return 1;
765
766   case SHADER_OPCODE_OWORD_BLOCK_WRITE_LOGICAL:
767      assert(src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
768      if (i == SURFACE_LOGICAL_SRC_DATA) {
769         const unsigned comps = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud / exec_size;
770         assert(comps > 0);
771         return comps;
772      } else {
773         return 1;
774      }
775
776   case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
777      assert(src[2].file == IMM);
778      return i == 1 ? src[2].ud : 1;
779
780   case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
781   case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT16_LOGICAL:
782   case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
783      assert(src[2].file == IMM);
784      if (i == 1) {
785         /* Data source */
786         const unsigned op = src[2].ud;
787         switch (op) {
788         case BRW_AOP_INC:
789         case BRW_AOP_DEC:
790         case BRW_AOP_PREDEC:
791            return 0;
792         case BRW_AOP_CMPWR:
793            return 2;
794         default:
795            return 1;
796         }
797      } else {
798         return 1;
799      }
800
801   case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT16_LOGICAL:
802   case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT32_LOGICAL:
803   case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT64_LOGICAL:
804      assert(src[2].file == IMM);
805      if (i == 1) {
806         /* Data source */
807         const unsigned op = src[2].ud;
808         return op == BRW_AOP_FCMPWR ? 2 : 1;
809      } else {
810         return 1;
811      }
812
813   case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
814   case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
815      /* Scattered logical opcodes use the following params:
816       * src[0] Surface coordinates
817       * src[1] Surface operation source (ignored for reads)
818       * src[2] Surface
819       * src[3] IMM with always 1 dimension.
820       * src[4] IMM with arg bitsize for scattered read/write 8, 16, 32
821       */
822      assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
823             src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
824      return i == SURFACE_LOGICAL_SRC_DATA ? 0 : 1;
825
826   case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
827   case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
828      assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
829             src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
830      return 1;
831
832   case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
833   case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
834      assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
835             src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
836      const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
837      /* Surface coordinates. */
838      if (i == SURFACE_LOGICAL_SRC_ADDRESS)
839         return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
840      /* Surface operation source. */
841      else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_CMPWR)
842         return 2;
843      else if (i == SURFACE_LOGICAL_SRC_DATA &&
844               (op == BRW_AOP_INC || op == BRW_AOP_DEC || op == BRW_AOP_PREDEC))
845         return 0;
846      else
847         return 1;
848   }
849   case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
850      return (i == 0 ? 2 : 1);
851
852   case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL: {
853      assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
854             src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
855      const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
856      /* Surface coordinates. */
857      if (i == SURFACE_LOGICAL_SRC_ADDRESS)
858         return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
859      /* Surface operation source. */
860      else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_FCMPWR)
861         return 2;
862      else
863         return 1;
864   }
865
866   case SHADER_OPCODE_URB_WRITE_LOGICAL:
867      if (i == URB_LOGICAL_SRC_DATA)
868         return mlen - 1 -
869            unsigned(src[URB_LOGICAL_SRC_PER_SLOT_OFFSETS].file != BAD_FILE) -
870            unsigned(src[URB_LOGICAL_SRC_CHANNEL_MASK].file != BAD_FILE);
871      else
872         return 1;
873
874   default:
875      return 1;
876   }
877}
878
879unsigned
880fs_inst::size_read(int arg) const
881{
882   switch (opcode) {
883   case SHADER_OPCODE_SEND:
884      if (arg == 2) {
885         return mlen * REG_SIZE;
886      } else if (arg == 3) {
887         return ex_mlen * REG_SIZE;
888      }
889      break;
890
891   case FS_OPCODE_FB_WRITE:
892   case FS_OPCODE_REP_FB_WRITE:
893      if (arg == 0) {
894         if (base_mrf >= 0)
895            return src[0].file == BAD_FILE ? 0 : 2 * REG_SIZE;
896         else
897            return mlen * REG_SIZE;
898      }
899      break;
900
901   case FS_OPCODE_FB_READ:
902   case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
903   case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
904      if (arg == 0)
905         return mlen * REG_SIZE;
906      break;
907
908   case FS_OPCODE_SET_SAMPLE_ID:
909      if (arg == 1)
910         return 1;
911      break;
912
913   case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GFX7:
914      /* The payload is actually stored in src1 */
915      if (arg == 1)
916         return mlen * REG_SIZE;
917      break;
918
919   case FS_OPCODE_LINTERP:
920      if (arg == 1)
921         return 16;
922      break;
923
924   case SHADER_OPCODE_LOAD_PAYLOAD:
925      if (arg < this->header_size)
926         return REG_SIZE;
927      break;
928
929   case CS_OPCODE_CS_TERMINATE:
930   case SHADER_OPCODE_BARRIER:
931      return REG_SIZE;
932
933   case SHADER_OPCODE_MOV_INDIRECT:
934      if (arg == 0) {
935         assert(src[2].file == IMM);
936         return src[2].ud;
937      }
938      break;
939
940   default:
941      if (is_tex() && arg == 0 && src[0].file == VGRF)
942         return mlen * REG_SIZE;
943      break;
944   }
945
946   switch (src[arg].file) {
947   case UNIFORM:
948   case IMM:
949      return components_read(arg) * type_sz(src[arg].type);
950   case BAD_FILE:
951   case ARF:
952   case FIXED_GRF:
953   case VGRF:
954   case ATTR:
955      return components_read(arg) * src[arg].component_size(exec_size);
956   case MRF:
957      unreachable("MRF registers are not allowed as sources");
958   }
959   return 0;
960}
961
962namespace {
963   unsigned
964   predicate_width(brw_predicate predicate)
965   {
966      switch (predicate) {
967      case BRW_PREDICATE_NONE:            return 1;
968      case BRW_PREDICATE_NORMAL:          return 1;
969      case BRW_PREDICATE_ALIGN1_ANY2H:    return 2;
970      case BRW_PREDICATE_ALIGN1_ALL2H:    return 2;
971      case BRW_PREDICATE_ALIGN1_ANY4H:    return 4;
972      case BRW_PREDICATE_ALIGN1_ALL4H:    return 4;
973      case BRW_PREDICATE_ALIGN1_ANY8H:    return 8;
974      case BRW_PREDICATE_ALIGN1_ALL8H:    return 8;
975      case BRW_PREDICATE_ALIGN1_ANY16H:   return 16;
976      case BRW_PREDICATE_ALIGN1_ALL16H:   return 16;
977      case BRW_PREDICATE_ALIGN1_ANY32H:   return 32;
978      case BRW_PREDICATE_ALIGN1_ALL32H:   return 32;
979      default: unreachable("Unsupported predicate");
980      }
981   }
982
983   /* Return the subset of flag registers that an instruction could
984    * potentially read or write based on the execution controls and flag
985    * subregister number of the instruction.
986    */
987   unsigned
988   flag_mask(const fs_inst *inst, unsigned width)
989   {
990      assert(util_is_power_of_two_nonzero(width));
991      const unsigned start = (inst->flag_subreg * 16 + inst->group) &
992                             ~(width - 1);
993      const unsigned end = start + ALIGN(inst->exec_size, width);
994      return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
995   }
996
997   unsigned
998   bit_mask(unsigned n)
999   {
1000      return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1);
1001   }
1002
1003   unsigned
1004   flag_mask(const fs_reg &r, unsigned sz)
1005   {
1006      if (r.file == ARF) {
1007         const unsigned start = (r.nr - BRW_ARF_FLAG) * 4 + r.subnr;
1008         const unsigned end = start + sz;
1009         return bit_mask(end) & ~bit_mask(start);
1010      } else {
1011         return 0;
1012      }
1013   }
1014}
1015
1016unsigned
1017fs_inst::flags_read(const intel_device_info *devinfo) const
1018{
1019   if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
1020       predicate == BRW_PREDICATE_ALIGN1_ALLV) {
1021      /* The vertical predication modes combine corresponding bits from
1022       * f0.0 and f1.0 on Gfx7+, and f0.0 and f0.1 on older hardware.
1023       */
1024      const unsigned shift = devinfo->ver >= 7 ? 4 : 2;
1025      return flag_mask(this, 1) << shift | flag_mask(this, 1);
1026   } else if (predicate) {
1027      return flag_mask(this, predicate_width(predicate));
1028   } else {
1029      unsigned mask = 0;
1030      for (int i = 0; i < sources; i++) {
1031         mask |= flag_mask(src[i], size_read(i));
1032      }
1033      return mask;
1034   }
1035}
1036
1037unsigned
1038fs_inst::flags_written(const intel_device_info *devinfo) const
1039{
1040   /* On Gfx4 and Gfx5, sel.l (for min) and sel.ge (for max) are implemented
1041    * using a separate cmpn and sel instruction.  This lowering occurs in
1042    * fs_vistor::lower_minmax which is called very, very late.
1043    */
1044   if ((conditional_mod && ((opcode != BRW_OPCODE_SEL || devinfo->ver <= 5) &&
1045                            opcode != BRW_OPCODE_CSEL &&
1046                            opcode != BRW_OPCODE_IF &&
1047                            opcode != BRW_OPCODE_WHILE)) ||
1048       opcode == FS_OPCODE_FB_WRITE) {
1049      return flag_mask(this, 1);
1050   } else if (opcode == SHADER_OPCODE_FIND_LIVE_CHANNEL ||
1051              opcode == SHADER_OPCODE_FIND_LAST_LIVE_CHANNEL ||
1052              opcode == FS_OPCODE_LOAD_LIVE_CHANNELS) {
1053      return flag_mask(this, 32);
1054   } else {
1055      return flag_mask(dst, size_written);
1056   }
1057}
1058
1059/**
1060 * Returns how many MRFs an FS opcode will write over.
1061 *
1062 * Note that this is not the 0 or 1 implied writes in an actual gen
1063 * instruction -- the FS opcodes often generate MOVs in addition.
1064 */
1065unsigned
1066fs_inst::implied_mrf_writes() const
1067{
1068   if (mlen == 0)
1069      return 0;
1070
1071   if (base_mrf == -1)
1072      return 0;
1073
1074   switch (opcode) {
1075   case SHADER_OPCODE_RCP:
1076   case SHADER_OPCODE_RSQ:
1077   case SHADER_OPCODE_SQRT:
1078   case SHADER_OPCODE_EXP2:
1079   case SHADER_OPCODE_LOG2:
1080   case SHADER_OPCODE_SIN:
1081   case SHADER_OPCODE_COS:
1082      return 1 * exec_size / 8;
1083   case SHADER_OPCODE_POW:
1084   case SHADER_OPCODE_INT_QUOTIENT:
1085   case SHADER_OPCODE_INT_REMAINDER:
1086      return 2 * exec_size / 8;
1087   case SHADER_OPCODE_TEX:
1088   case FS_OPCODE_TXB:
1089   case SHADER_OPCODE_TXD:
1090   case SHADER_OPCODE_TXF:
1091   case SHADER_OPCODE_TXF_CMS:
1092   case SHADER_OPCODE_TXF_MCS:
1093   case SHADER_OPCODE_TG4:
1094   case SHADER_OPCODE_TG4_OFFSET:
1095   case SHADER_OPCODE_TXL:
1096   case SHADER_OPCODE_TXS:
1097   case SHADER_OPCODE_LOD:
1098   case SHADER_OPCODE_SAMPLEINFO:
1099      return 1;
1100   case FS_OPCODE_FB_WRITE:
1101   case FS_OPCODE_REP_FB_WRITE:
1102      return src[0].file == BAD_FILE ? 0 : 2;
1103   case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
1104   case SHADER_OPCODE_GFX4_SCRATCH_READ:
1105      return 1;
1106   case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GFX4:
1107      return mlen;
1108   case SHADER_OPCODE_GFX4_SCRATCH_WRITE:
1109      return mlen;
1110   default:
1111      unreachable("not reached");
1112   }
1113}
1114
1115fs_reg
1116fs_visitor::vgrf(const glsl_type *const type)
1117{
1118   int reg_width = dispatch_width / 8;
1119   return fs_reg(VGRF,
1120                 alloc.allocate(glsl_count_dword_slots(type, false) * reg_width),
1121                 brw_type_for_base_type(type));
1122}
1123
1124fs_reg::fs_reg(enum brw_reg_file file, int nr)
1125{
1126   init();
1127   this->file = file;
1128   this->nr = nr;
1129   this->type = BRW_REGISTER_TYPE_F;
1130   this->stride = (file == UNIFORM ? 0 : 1);
1131}
1132
1133fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1134{
1135   init();
1136   this->file = file;
1137   this->nr = nr;
1138   this->type = type;
1139   this->stride = (file == UNIFORM ? 0 : 1);
1140}
1141
1142/* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1143 * This brings in those uniform definitions
1144 */
1145void
1146fs_visitor::import_uniforms(fs_visitor *v)
1147{
1148   this->push_constant_loc = v->push_constant_loc;
1149   this->uniforms = v->uniforms;
1150   this->subgroup_id = v->subgroup_id;
1151   for (unsigned i = 0; i < ARRAY_SIZE(this->group_size); i++)
1152      this->group_size[i] = v->group_size[i];
1153}
1154
1155void
1156fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1157{
1158   assert(stage == MESA_SHADER_FRAGMENT);
1159
1160   /* gl_FragCoord.x */
1161   bld.MOV(wpos, this->pixel_x);
1162   wpos = offset(wpos, bld, 1);
1163
1164   /* gl_FragCoord.y */
1165   bld.MOV(wpos, this->pixel_y);
1166   wpos = offset(wpos, bld, 1);
1167
1168   /* gl_FragCoord.z */
1169   if (devinfo->ver >= 6) {
1170      bld.MOV(wpos, this->pixel_z);
1171   } else {
1172      bld.emit(FS_OPCODE_LINTERP, wpos,
1173               this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1174               component(interp_reg(VARYING_SLOT_POS, 2), 0));
1175   }
1176   wpos = offset(wpos, bld, 1);
1177
1178   /* gl_FragCoord.w: Already set up in emit_interpolation */
1179   bld.MOV(wpos, this->wpos_w);
1180}
1181
1182enum brw_barycentric_mode
1183brw_barycentric_mode(nir_intrinsic_instr *intr)
1184{
1185   const glsl_interp_mode mode =
1186      (enum glsl_interp_mode) nir_intrinsic_interp_mode(intr);
1187
1188   /* Barycentric modes don't make sense for flat inputs. */
1189   assert(mode != INTERP_MODE_FLAT);
1190
1191   unsigned bary;
1192   switch (intr->intrinsic) {
1193   case nir_intrinsic_load_barycentric_pixel:
1194   case nir_intrinsic_load_barycentric_at_offset:
1195      bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1196      break;
1197   case nir_intrinsic_load_barycentric_centroid:
1198      bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1199      break;
1200   case nir_intrinsic_load_barycentric_sample:
1201   case nir_intrinsic_load_barycentric_at_sample:
1202      bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1203      break;
1204   default:
1205      unreachable("invalid intrinsic");
1206   }
1207
1208   if (mode == INTERP_MODE_NOPERSPECTIVE)
1209      bary += 3;
1210
1211   return (enum brw_barycentric_mode) bary;
1212}
1213
1214/**
1215 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1216 */
1217static enum brw_barycentric_mode
1218centroid_to_pixel(enum brw_barycentric_mode bary)
1219{
1220   assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1221          bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1222   return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1223}
1224
1225fs_reg
1226fs_visitor::emit_frontfacing_interpolation()
1227{
1228   fs_reg ff = bld.vgrf(BRW_REGISTER_TYPE_D);
1229
1230   if (devinfo->ver >= 12) {
1231      fs_reg g1 = fs_reg(retype(brw_vec1_grf(1, 1), BRW_REGISTER_TYPE_W));
1232
1233      fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_W);
1234      bld.ASR(tmp, g1, brw_imm_d(15));
1235      bld.NOT(ff, tmp);
1236   } else if (devinfo->ver >= 6) {
1237      /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1238       * a boolean result from this (~0/true or 0/false).
1239       *
1240       * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1241       * this task in only one instruction:
1242       *    - a negation source modifier will flip the bit; and
1243       *    - a W -> D type conversion will sign extend the bit into the high
1244       *      word of the destination.
1245       *
1246       * An ASR 15 fills the low word of the destination.
1247       */
1248      fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1249      g0.negate = true;
1250
1251      bld.ASR(ff, g0, brw_imm_d(15));
1252   } else {
1253      /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1254       * a boolean result from this (1/true or 0/false).
1255       *
1256       * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1257       * the negation source modifier to flip it. Unfortunately the SHR
1258       * instruction only operates on UD (or D with an abs source modifier)
1259       * sources without negation.
1260       *
1261       * Instead, use ASR (which will give ~0/true or 0/false).
1262       */
1263      fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1264      g1_6.negate = true;
1265
1266      bld.ASR(ff, g1_6, brw_imm_d(31));
1267   }
1268
1269   return ff;
1270}
1271
1272fs_reg
1273fs_visitor::emit_samplepos_setup()
1274{
1275   assert(stage == MESA_SHADER_FRAGMENT);
1276   struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1277   assert(devinfo->ver >= 6);
1278
1279   const fs_builder abld = bld.annotate("compute sample position");
1280   fs_reg pos = abld.vgrf(BRW_REGISTER_TYPE_F, 2);
1281
1282   if (!wm_prog_data->persample_dispatch) {
1283      /* From ARB_sample_shading specification:
1284       * "When rendering to a non-multisample buffer, or if multisample
1285       *  rasterization is disabled, gl_SamplePosition will always be
1286       *  (0.5, 0.5).
1287       */
1288      bld.MOV(offset(pos, bld, 0), brw_imm_f(0.5f));
1289      bld.MOV(offset(pos, bld, 1), brw_imm_f(0.5f));
1290      return pos;
1291   }
1292
1293   /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1294    * mode will be enabled.
1295    *
1296    * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1297    * R31.1:0         Position Offset X/Y for Slot[3:0]
1298    * R31.3:2         Position Offset X/Y for Slot[7:4]
1299    * .....
1300    *
1301    * The X, Y sample positions come in as bytes in  thread payload. So, read
1302    * the positions using vstride=16, width=8, hstride=2.
1303    */
1304   const fs_reg sample_pos_reg =
1305      fetch_payload_reg(abld, payload.sample_pos_reg, BRW_REGISTER_TYPE_W);
1306
1307   for (unsigned i = 0; i < 2; i++) {
1308      fs_reg tmp_d = bld.vgrf(BRW_REGISTER_TYPE_D);
1309      abld.MOV(tmp_d, subscript(sample_pos_reg, BRW_REGISTER_TYPE_B, i));
1310      /* Convert int_sample_pos to floating point */
1311      fs_reg tmp_f = bld.vgrf(BRW_REGISTER_TYPE_F);
1312      abld.MOV(tmp_f, tmp_d);
1313      /* Scale to the range [0, 1] */
1314      abld.MUL(offset(pos, abld, i), tmp_f, brw_imm_f(1 / 16.0f));
1315   }
1316
1317   return pos;
1318}
1319
1320fs_reg
1321fs_visitor::emit_sampleid_setup()
1322{
1323   assert(stage == MESA_SHADER_FRAGMENT);
1324   brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1325   assert(devinfo->ver >= 6);
1326
1327   const fs_builder abld = bld.annotate("compute sample id");
1328   fs_reg sample_id = abld.vgrf(BRW_REGISTER_TYPE_UD);
1329
1330   assert(key->multisample_fbo);
1331
1332   if (devinfo->ver >= 8) {
1333      /* Sample ID comes in as 4-bit numbers in g1.0:
1334       *
1335       *    15:12 Slot 3 SampleID (only used in SIMD16)
1336       *     11:8 Slot 2 SampleID (only used in SIMD16)
1337       *      7:4 Slot 1 SampleID
1338       *      3:0 Slot 0 SampleID
1339       *
1340       * Each slot corresponds to four channels, so we want to replicate each
1341       * half-byte value to 4 channels in a row:
1342       *
1343       *    dst+0:    .7    .6    .5    .4    .3    .2    .1    .0
1344       *             7:4   7:4   7:4   7:4   3:0   3:0   3:0   3:0
1345       *
1346       *    dst+1:    .7    .6    .5    .4    .3    .2    .1    .0  (if SIMD16)
1347       *           15:12 15:12 15:12 15:12  11:8  11:8  11:8  11:8
1348       *
1349       * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1350       * channels to read the first byte (7:0), and the second group of 8
1351       * channels to read the second byte (15:8).  Then, we shift right by
1352       * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1353       * values into place.  Finally, we AND with 0xf to keep the low nibble.
1354       *
1355       *    shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1356       *    and(16) dst<1>D tmp<8,8,1>W  0xf:W
1357       *
1358       * TODO: These payload bits exist on Gfx7 too, but they appear to always
1359       *       be zero, so this code fails to work.  We should find out why.
1360       */
1361      const fs_reg tmp = abld.vgrf(BRW_REGISTER_TYPE_UW);
1362
1363      for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
1364         const fs_builder hbld = abld.group(MIN2(16, dispatch_width), i);
1365         hbld.SHR(offset(tmp, hbld, i),
1366                  stride(retype(brw_vec1_grf(1 + i, 0), BRW_REGISTER_TYPE_UB),
1367                         1, 8, 0),
1368                  brw_imm_v(0x44440000));
1369      }
1370
1371      abld.AND(sample_id, tmp, brw_imm_w(0xf));
1372   } else {
1373      const fs_reg t1 = component(abld.vgrf(BRW_REGISTER_TYPE_UD), 0);
1374      const fs_reg t2 = abld.vgrf(BRW_REGISTER_TYPE_UW);
1375
1376      /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1377       * 8x multisampling, subspan 0 will represent sample N (where N
1378       * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1379       * 7. We can find the value of N by looking at R0.0 bits 7:6
1380       * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1381       * (since samples are always delivered in pairs). That is, we
1382       * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1383       * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1384       * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1385       * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1386       * populating a temporary variable with the sequence (0, 1, 2, 3),
1387       * and then reading from it using vstride=1, width=4, hstride=0.
1388       * These computations hold good for 4x multisampling as well.
1389       *
1390       * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1391       * the first four slots are sample 0 of subspan 0; the next four
1392       * are sample 1 of subspan 0; the third group is sample 0 of
1393       * subspan 1, and finally sample 1 of subspan 1.
1394       */
1395
1396      /* SKL+ has an extra bit for the Starting Sample Pair Index to
1397       * accommodate 16x MSAA.
1398       */
1399      abld.exec_all().group(1, 0)
1400          .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
1401               brw_imm_ud(0xc0));
1402      abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1403
1404      /* This works for SIMD8-SIMD16.  It also works for SIMD32 but only if we
1405       * can assume 4x MSAA.  Disallow it on IVB+
1406       *
1407       * FINISHME: One day, we could come up with a way to do this that
1408       * actually works on gfx7.
1409       */
1410      if (devinfo->ver >= 7)
1411         limit_dispatch_width(16, "gl_SampleId is unsupported in SIMD32 on gfx7");
1412      abld.exec_all().group(8, 0).MOV(t2, brw_imm_v(0x32103210));
1413
1414      /* This special instruction takes care of setting vstride=1,
1415       * width=4, hstride=0 of t2 during an ADD instruction.
1416       */
1417      abld.emit(FS_OPCODE_SET_SAMPLE_ID, sample_id, t1, t2);
1418   }
1419
1420   return sample_id;
1421}
1422
1423fs_reg
1424fs_visitor::emit_samplemaskin_setup()
1425{
1426   assert(stage == MESA_SHADER_FRAGMENT);
1427   struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1428   assert(devinfo->ver >= 6);
1429
1430   fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_D);
1431
1432   /* The HW doesn't provide us with expected values. */
1433   assert(!wm_prog_data->per_coarse_pixel_dispatch);
1434
1435   fs_reg coverage_mask =
1436      fetch_payload_reg(bld, payload.sample_mask_in_reg, BRW_REGISTER_TYPE_D);
1437
1438   if (wm_prog_data->persample_dispatch) {
1439      /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1440       * and a mask representing which sample is being processed by the
1441       * current shader invocation.
1442       *
1443       * From the OES_sample_variables specification:
1444       * "When per-sample shading is active due to the use of a fragment input
1445       *  qualified by "sample" or due to the use of the gl_SampleID or
1446       *  gl_SamplePosition variables, only the bit for the current sample is
1447       *  set in gl_SampleMaskIn."
1448       */
1449      const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1450
1451      if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1452         nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = emit_sampleid_setup();
1453
1454      fs_reg one = vgrf(glsl_type::int_type);
1455      fs_reg enabled_mask = vgrf(glsl_type::int_type);
1456      abld.MOV(one, brw_imm_d(1));
1457      abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1458      abld.AND(mask, enabled_mask, coverage_mask);
1459   } else {
1460      /* In per-pixel mode, the coverage mask is sufficient. */
1461      mask = coverage_mask;
1462   }
1463   return mask;
1464}
1465
1466fs_reg
1467fs_visitor::emit_shading_rate_setup()
1468{
1469   assert(devinfo->ver >= 11);
1470
1471   const fs_builder abld = bld.annotate("compute fragment shading rate");
1472   fs_reg rate = abld.vgrf(BRW_REGISTER_TYPE_UD);
1473
1474   struct brw_wm_prog_data *wm_prog_data =
1475      brw_wm_prog_data(bld.shader->stage_prog_data);
1476
1477   /* Coarse pixel shading size fields overlap with other fields of not in
1478    * coarse pixel dispatch mode, so report 0 when that's not the case.
1479    */
1480   if (wm_prog_data->per_coarse_pixel_dispatch) {
1481      /* The shading rates provided in the shader are the actual 2D shading
1482       * rate while the SPIR-V built-in is the enum value that has the shading
1483       * rate encoded as a bitfield.  Fortunately, the bitfield value is just
1484       * the shading rate divided by two and shifted.
1485       */
1486
1487      /* r1.0 - 0:7 ActualCoarsePixelShadingSize.X */
1488      fs_reg actual_x = fs_reg(retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UB));
1489      /* r1.0 - 15:8 ActualCoarsePixelShadingSize.Y */
1490      fs_reg actual_y = byte_offset(actual_x, 1);
1491
1492      fs_reg int_rate_x = bld.vgrf(BRW_REGISTER_TYPE_UD);
1493      fs_reg int_rate_y = bld.vgrf(BRW_REGISTER_TYPE_UD);
1494
1495      abld.SHR(int_rate_y, actual_y, brw_imm_ud(1));
1496      abld.SHR(int_rate_x, actual_x, brw_imm_ud(1));
1497      abld.SHL(int_rate_x, int_rate_x, brw_imm_ud(2));
1498      abld.OR(rate, int_rate_x, int_rate_y);
1499   } else {
1500      abld.MOV(rate, brw_imm_ud(0));
1501   }
1502
1503   return rate;
1504}
1505
1506fs_reg
1507fs_visitor::resolve_source_modifiers(const fs_reg &src)
1508{
1509   if (!src.abs && !src.negate)
1510      return src;
1511
1512   fs_reg temp = bld.vgrf(src.type);
1513   bld.MOV(temp, src);
1514
1515   return temp;
1516}
1517
1518void
1519fs_visitor::emit_gs_thread_end()
1520{
1521   assert(stage == MESA_SHADER_GEOMETRY);
1522
1523   struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1524
1525   if (gs_compile->control_data_header_size_bits > 0) {
1526      emit_gs_control_data_bits(this->final_gs_vertex_count);
1527   }
1528
1529   const fs_builder abld = bld.annotate("thread end");
1530   fs_inst *inst;
1531
1532   if (gs_prog_data->static_vertex_count != -1) {
1533      foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1534         if (prev->opcode == SHADER_OPCODE_URB_WRITE_LOGICAL) {
1535            prev->eot = true;
1536
1537            /* Delete now dead instructions. */
1538            foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1539               if (dead == prev)
1540                  break;
1541               dead->remove();
1542            }
1543            return;
1544         } else if (prev->is_control_flow() || prev->has_side_effects()) {
1545            break;
1546         }
1547      }
1548      fs_reg srcs[URB_LOGICAL_NUM_SRCS];
1549      srcs[URB_LOGICAL_SRC_HANDLE] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1550      inst = abld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef,
1551                       srcs, ARRAY_SIZE(srcs));
1552      inst->mlen = 1;
1553   } else {
1554      fs_reg srcs[URB_LOGICAL_NUM_SRCS];
1555      srcs[URB_LOGICAL_SRC_HANDLE] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1556      srcs[URB_LOGICAL_SRC_DATA] = this->final_gs_vertex_count;
1557      inst = abld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef,
1558                       srcs, ARRAY_SIZE(srcs));
1559      inst->mlen = 2;
1560   }
1561   inst->eot = true;
1562   inst->offset = 0;
1563}
1564
1565void
1566fs_visitor::assign_curb_setup()
1567{
1568   unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
1569
1570   unsigned ubo_push_length = 0;
1571   unsigned ubo_push_start[4];
1572   for (int i = 0; i < 4; i++) {
1573      ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length);
1574      ubo_push_length += stage_prog_data->ubo_ranges[i].length;
1575   }
1576
1577   prog_data->curb_read_length = uniform_push_length + ubo_push_length;
1578
1579   uint64_t used = 0;
1580   bool is_compute = gl_shader_stage_is_compute(stage);
1581
1582   if (is_compute && brw_cs_prog_data(prog_data)->uses_inline_data) {
1583      /* With COMPUTE_WALKER, we can push up to one register worth of data via
1584       * the inline data parameter in the COMPUTE_WALKER command itself.
1585       *
1586       * TODO: Support inline data and push at the same time.
1587       */
1588      assert(devinfo->verx10 >= 125);
1589      assert(uniform_push_length <= 1);
1590   } else if (is_compute && devinfo->verx10 >= 125) {
1591      fs_builder ubld = bld.exec_all().group(8, 0).at(
1592         cfg->first_block(), cfg->first_block()->start());
1593
1594      /* The base address for our push data is passed in as R0.0[31:6].  We
1595       * have to mask off the bottom 6 bits.
1596       */
1597      fs_reg base_addr = ubld.vgrf(BRW_REGISTER_TYPE_UD);
1598      ubld.group(1, 0).AND(base_addr,
1599                           retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
1600                           brw_imm_ud(INTEL_MASK(31, 6)));
1601
1602      fs_reg header0 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
1603      ubld.MOV(header0, brw_imm_ud(0));
1604      ubld.group(1, 0).SHR(component(header0, 2), base_addr, brw_imm_ud(4));
1605
1606      /* On Gfx12-HP we load constants at the start of the program using A32
1607       * stateless messages.
1608       */
1609      for (unsigned i = 0; i < uniform_push_length;) {
1610         /* Limit ourselves to HW limit of 8 Owords (8 * 16bytes = 128 bytes
1611          * or 4 registers).
1612          */
1613         unsigned num_regs = MIN2(uniform_push_length - i, 4);
1614         assert(num_regs > 0);
1615         num_regs = 1 << util_logbase2(num_regs);
1616
1617         fs_reg header;
1618         if (i == 0) {
1619            header = header0;
1620         } else {
1621            header = ubld.vgrf(BRW_REGISTER_TYPE_UD);
1622            ubld.MOV(header, brw_imm_ud(0));
1623            ubld.group(1, 0).ADD(component(header, 2),
1624                                 component(header0, 2),
1625                                 brw_imm_ud(i * 2));
1626         }
1627
1628         fs_reg srcs[4] = {
1629            brw_imm_ud(0), /* desc */
1630            brw_imm_ud(0), /* ex_desc */
1631            header, /* payload */
1632            fs_reg(), /* payload2 */
1633         };
1634
1635         fs_reg dest = retype(brw_vec8_grf(payload.num_regs + i, 0),
1636                              BRW_REGISTER_TYPE_UD);
1637
1638         /* This instruction has to be run SIMD16 if we're filling more than a
1639          * single register.
1640          */
1641         unsigned send_width = MIN2(16, num_regs * 8);
1642
1643         fs_inst *send = ubld.group(send_width, 0).emit(SHADER_OPCODE_SEND,
1644                                                        dest, srcs, 4);
1645         send->sfid = GFX7_SFID_DATAPORT_DATA_CACHE;
1646         send->desc = brw_dp_desc(devinfo, GFX8_BTI_STATELESS_NON_COHERENT,
1647                                  GFX7_DATAPORT_DC_OWORD_BLOCK_READ,
1648                                  BRW_DATAPORT_OWORD_BLOCK_OWORDS(num_regs * 2));
1649         send->header_size = 1;
1650         send->mlen = 1;
1651         send->size_written = num_regs * REG_SIZE;
1652         send->send_is_volatile = true;
1653
1654         i += num_regs;
1655      }
1656
1657      invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
1658   }
1659
1660   /* Map the offsets in the UNIFORM file to fixed HW regs. */
1661   foreach_block_and_inst(block, fs_inst, inst, cfg) {
1662      for (unsigned int i = 0; i < inst->sources; i++) {
1663	 if (inst->src[i].file == UNIFORM) {
1664            int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1665            int constant_nr;
1666            if (inst->src[i].nr >= UBO_START) {
1667               /* constant_nr is in 32-bit units, the rest are in bytes */
1668               constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] +
1669                             inst->src[i].offset / 4;
1670            } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1671               constant_nr = push_constant_loc[uniform_nr];
1672            } else {
1673               /* Section 5.11 of the OpenGL 4.1 spec says:
1674                * "Out-of-bounds reads return undefined values, which include
1675                *  values from other variables of the active program or zero."
1676                * Just return the first push constant.
1677                */
1678               constant_nr = 0;
1679            }
1680
1681            assert(constant_nr / 8 < 64);
1682            used |= BITFIELD64_BIT(constant_nr / 8);
1683
1684	    struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1685						  constant_nr / 8,
1686						  constant_nr % 8);
1687            brw_reg.abs = inst->src[i].abs;
1688            brw_reg.negate = inst->src[i].negate;
1689
1690            assert(inst->src[i].stride == 0);
1691            inst->src[i] = byte_offset(
1692               retype(brw_reg, inst->src[i].type),
1693               inst->src[i].offset % 4);
1694	 }
1695      }
1696   }
1697
1698   uint64_t want_zero = used & stage_prog_data->zero_push_reg;
1699   if (want_zero) {
1700      fs_builder ubld = bld.exec_all().group(8, 0).at(
1701         cfg->first_block(), cfg->first_block()->start());
1702
1703      /* push_reg_mask_param is in 32-bit units */
1704      unsigned mask_param = stage_prog_data->push_reg_mask_param;
1705      struct brw_reg mask = brw_vec1_grf(payload.num_regs + mask_param / 8,
1706                                                            mask_param % 8);
1707
1708      fs_reg b32;
1709      for (unsigned i = 0; i < 64; i++) {
1710         if (i % 16 == 0 && (want_zero & BITFIELD64_RANGE(i, 16))) {
1711            fs_reg shifted = ubld.vgrf(BRW_REGISTER_TYPE_W, 2);
1712            ubld.SHL(horiz_offset(shifted, 8),
1713                     byte_offset(retype(mask, BRW_REGISTER_TYPE_W), i / 8),
1714                     brw_imm_v(0x01234567));
1715            ubld.SHL(shifted, horiz_offset(shifted, 8), brw_imm_w(8));
1716
1717            fs_builder ubld16 = ubld.group(16, 0);
1718            b32 = ubld16.vgrf(BRW_REGISTER_TYPE_D);
1719            ubld16.group(16, 0).ASR(b32, shifted, brw_imm_w(15));
1720         }
1721
1722         if (want_zero & BITFIELD64_BIT(i)) {
1723            assert(i < prog_data->curb_read_length);
1724            struct brw_reg push_reg =
1725               retype(brw_vec8_grf(payload.num_regs + i, 0),
1726                      BRW_REGISTER_TYPE_D);
1727
1728            ubld.AND(push_reg, push_reg, component(b32, i % 16));
1729         }
1730      }
1731
1732      invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
1733   }
1734
1735   /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1736   this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1737}
1738
1739/*
1740 * Build up an array of indices into the urb_setup array that
1741 * references the active entries of the urb_setup array.
1742 * Used to accelerate walking the active entries of the urb_setup array
1743 * on each upload.
1744 */
1745void
1746brw_compute_urb_setup_index(struct brw_wm_prog_data *wm_prog_data)
1747{
1748   /* TODO(mesh): Review usage of this in the context of Mesh, we may want to
1749    * skip per-primitive attributes here.
1750    */
1751
1752   /* Make sure uint8_t is sufficient */
1753   STATIC_ASSERT(VARYING_SLOT_MAX <= 0xff);
1754   uint8_t index = 0;
1755   for (uint8_t attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1756      if (wm_prog_data->urb_setup[attr] >= 0) {
1757         wm_prog_data->urb_setup_attribs[index++] = attr;
1758      }
1759   }
1760   wm_prog_data->urb_setup_attribs_count = index;
1761}
1762
1763static void
1764calculate_urb_setup(const struct intel_device_info *devinfo,
1765                    const struct brw_wm_prog_key *key,
1766                    struct brw_wm_prog_data *prog_data,
1767                    const nir_shader *nir,
1768                    const struct brw_mue_map *mue_map)
1769{
1770   memset(prog_data->urb_setup, -1,
1771          sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1772
1773   int urb_next = 0;
1774
1775   const uint64_t inputs_read =
1776      nir->info.inputs_read & ~nir->info.per_primitive_inputs;
1777
1778   /* Figure out where each of the incoming setup attributes lands. */
1779   if (mue_map) {
1780      /* Per-Primitive Attributes are laid out by Hardware before the regular
1781       * attributes, so order them like this to make easy later to map setup
1782       * into real HW registers.
1783       */
1784      if (nir->info.per_primitive_inputs) {
1785         uint64_t per_prim_inputs_read =
1786               nir->info.inputs_read & nir->info.per_primitive_inputs;
1787
1788         /* In Mesh, PRIMITIVE_SHADING_RATE, VIEWPORT and LAYER slots
1789          * are always at the beginning, because they come from MUE
1790          * Primitive Header, not Per-Primitive Attributes.
1791          */
1792         const uint64_t primitive_header_bits = VARYING_BIT_VIEWPORT |
1793                                                VARYING_BIT_LAYER |
1794                                                VARYING_BIT_PRIMITIVE_SHADING_RATE;
1795
1796         if (per_prim_inputs_read & primitive_header_bits) {
1797            /* Primitive Shading Rate, Layer and Viewport live in the same
1798             * 4-dwords slot (psr is dword 0, layer is dword 1, and viewport
1799             * is dword 2).
1800             */
1801            if (per_prim_inputs_read & VARYING_BIT_PRIMITIVE_SHADING_RATE)
1802               prog_data->urb_setup[VARYING_SLOT_PRIMITIVE_SHADING_RATE] = 0;
1803
1804            if (per_prim_inputs_read & VARYING_BIT_LAYER)
1805               prog_data->urb_setup[VARYING_SLOT_LAYER] = 0;
1806
1807            if (per_prim_inputs_read & VARYING_BIT_VIEWPORT)
1808               prog_data->urb_setup[VARYING_SLOT_VIEWPORT] = 0;
1809
1810            /* 3DSTATE_SBE_MESH.Per[Primitive|Vertex]URBEntryOutputRead[Offset|Length]
1811             * are in full GRFs (8 dwords) and MUE Primitive Header is 8 dwords,
1812             * so next per-primitive attribute must be placed in slot 2 (each slot
1813             * is 4 dwords long).
1814             */
1815            urb_next = 2;
1816            per_prim_inputs_read &= ~primitive_header_bits;
1817         }
1818
1819         for (unsigned i = 0; i < VARYING_SLOT_MAX; i++) {
1820            if (per_prim_inputs_read & BITFIELD64_BIT(i)) {
1821               prog_data->urb_setup[i] = urb_next++;
1822            }
1823         }
1824
1825         /* The actual setup attributes later must be aligned to a full GRF. */
1826         urb_next = ALIGN(urb_next, 2);
1827
1828         prog_data->num_per_primitive_inputs = urb_next;
1829      }
1830
1831      const uint64_t clip_dist_bits = VARYING_BIT_CLIP_DIST0 |
1832                                      VARYING_BIT_CLIP_DIST1;
1833
1834      uint64_t unique_fs_attrs = inputs_read & BRW_FS_VARYING_INPUT_MASK;
1835
1836      if (inputs_read & clip_dist_bits) {
1837         assert(mue_map->per_vertex_header_size_dw > 8);
1838         unique_fs_attrs &= ~clip_dist_bits;
1839      }
1840
1841      /* In Mesh, CLIP_DIST slots are always at the beginning, because
1842       * they come from MUE Vertex Header, not Per-Vertex Attributes.
1843       */
1844      if (inputs_read & clip_dist_bits) {
1845         prog_data->urb_setup[VARYING_SLOT_CLIP_DIST0] = urb_next++;
1846         prog_data->urb_setup[VARYING_SLOT_CLIP_DIST1] = urb_next++;
1847      }
1848
1849      /* Per-Vertex attributes are laid out ordered.  Because we always link
1850       * Mesh and Fragment shaders, the which slots are written and read by
1851       * each of them will match. */
1852      for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1853         if (unique_fs_attrs & BITFIELD64_BIT(i))
1854            prog_data->urb_setup[i] = urb_next++;
1855      }
1856   } else if (devinfo->ver >= 6) {
1857      uint64_t vue_header_bits =
1858         VARYING_BIT_PSIZ | VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT;
1859
1860      uint64_t unique_fs_attrs = inputs_read & BRW_FS_VARYING_INPUT_MASK;
1861
1862      /* VUE header fields all live in the same URB slot, so we pass them
1863       * as a single FS input attribute.  We want to only count them once.
1864       */
1865      if (inputs_read & vue_header_bits) {
1866         unique_fs_attrs &= ~vue_header_bits;
1867         unique_fs_attrs |= VARYING_BIT_PSIZ;
1868      }
1869
1870      if (util_bitcount64(unique_fs_attrs) <= 16) {
1871         /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1872          * first 16 varying inputs, so we can put them wherever we want.
1873          * Just put them in order.
1874          *
1875          * This is useful because it means that (a) inputs not used by the
1876          * fragment shader won't take up valuable register space, and (b) we
1877          * won't have to recompile the fragment shader if it gets paired with
1878          * a different vertex (or geometry) shader.
1879          *
1880          * VUE header fields share the same FS input attribute.
1881          */
1882         if (inputs_read & vue_header_bits) {
1883            if (inputs_read & VARYING_BIT_PSIZ)
1884               prog_data->urb_setup[VARYING_SLOT_PSIZ] = urb_next;
1885            if (inputs_read & VARYING_BIT_LAYER)
1886               prog_data->urb_setup[VARYING_SLOT_LAYER] = urb_next;
1887            if (inputs_read & VARYING_BIT_VIEWPORT)
1888               prog_data->urb_setup[VARYING_SLOT_VIEWPORT] = urb_next;
1889
1890            urb_next++;
1891         }
1892
1893         for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1894            if (inputs_read & BRW_FS_VARYING_INPUT_MASK & ~vue_header_bits &
1895                BITFIELD64_BIT(i)) {
1896               prog_data->urb_setup[i] = urb_next++;
1897            }
1898         }
1899      } else {
1900         /* We have enough input varyings that the SF/SBE pipeline stage can't
1901          * arbitrarily rearrange them to suit our whim; we have to put them
1902          * in an order that matches the output of the previous pipeline stage
1903          * (geometry or vertex shader).
1904          */
1905
1906         /* Re-compute the VUE map here in the case that the one coming from
1907          * geometry has more than one position slot (used for Primitive
1908          * Replication).
1909          */
1910         struct brw_vue_map prev_stage_vue_map;
1911         brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1912                             key->input_slots_valid,
1913                             nir->info.separate_shader, 1);
1914
1915         int first_slot =
1916            brw_compute_first_urb_slot_required(inputs_read,
1917                                                &prev_stage_vue_map);
1918
1919         assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1920         for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1921              slot++) {
1922            int varying = prev_stage_vue_map.slot_to_varying[slot];
1923            if (varying != BRW_VARYING_SLOT_PAD &&
1924                (inputs_read & BRW_FS_VARYING_INPUT_MASK &
1925                 BITFIELD64_BIT(varying))) {
1926               prog_data->urb_setup[varying] = slot - first_slot;
1927            }
1928         }
1929         urb_next = prev_stage_vue_map.num_slots - first_slot;
1930      }
1931   } else {
1932      /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1933      for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1934         /* Point size is packed into the header, not as a general attribute */
1935         if (i == VARYING_SLOT_PSIZ)
1936            continue;
1937
1938	 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1939	    /* The back color slot is skipped when the front color is
1940	     * also written to.  In addition, some slots can be
1941	     * written in the vertex shader and not read in the
1942	     * fragment shader.  So the register number must always be
1943	     * incremented, mapped or not.
1944	     */
1945	    if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1946	       prog_data->urb_setup[i] = urb_next;
1947            urb_next++;
1948	 }
1949      }
1950
1951      /*
1952       * It's a FS only attribute, and we did interpolation for this attribute
1953       * in SF thread. So, count it here, too.
1954       *
1955       * See compile_sf_prog() for more info.
1956       */
1957      if (inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1958         prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1959   }
1960
1961   prog_data->num_varying_inputs = urb_next - prog_data->num_per_primitive_inputs;
1962   prog_data->inputs = inputs_read;
1963
1964   brw_compute_urb_setup_index(prog_data);
1965}
1966
1967void
1968fs_visitor::assign_urb_setup()
1969{
1970   assert(stage == MESA_SHADER_FRAGMENT);
1971   struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1972
1973   int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1974
1975   /* Offset all the urb_setup[] index by the actual position of the
1976    * setup regs, now that the location of the constants has been chosen.
1977    */
1978   foreach_block_and_inst(block, fs_inst, inst, cfg) {
1979      for (int i = 0; i < inst->sources; i++) {
1980         if (inst->src[i].file == ATTR) {
1981            /* ATTR regs in the FS are in units of logical scalar inputs each
1982             * of which consumes half of a GRF register.
1983             */
1984            assert(inst->src[i].offset < REG_SIZE / 2);
1985            const unsigned grf = urb_start + inst->src[i].nr / 2;
1986            const unsigned offset = (inst->src[i].nr % 2) * (REG_SIZE / 2) +
1987                                    inst->src[i].offset;
1988            const unsigned width = inst->src[i].stride == 0 ?
1989                                   1 : MIN2(inst->exec_size, 8);
1990            struct brw_reg reg = stride(
1991               byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1992                           offset),
1993               width * inst->src[i].stride,
1994               width, inst->src[i].stride);
1995            reg.abs = inst->src[i].abs;
1996            reg.negate = inst->src[i].negate;
1997            inst->src[i] = reg;
1998         }
1999      }
2000   }
2001
2002   /* Each attribute is 4 setup channels, each of which is half a reg. */
2003   this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
2004
2005   /* Unlike regular attributes, per-primitive attributes have all 4 channels
2006    * in the same slot, so each GRF can store two slots.
2007    */
2008   assert(prog_data->num_per_primitive_inputs % 2 == 0);
2009   this->first_non_payload_grf += prog_data->num_per_primitive_inputs / 2;
2010}
2011
2012void
2013fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
2014{
2015   for (int i = 0; i < inst->sources; i++) {
2016      if (inst->src[i].file == ATTR) {
2017         int grf = payload.num_regs +
2018                   prog_data->curb_read_length +
2019                   inst->src[i].nr +
2020                   inst->src[i].offset / REG_SIZE;
2021
2022         /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
2023          *
2024          * VertStride must be used to cross GRF register boundaries. This
2025          * rule implies that elements within a 'Width' cannot cross GRF
2026          * boundaries.
2027          *
2028          * So, for registers that are large enough, we have to split the exec
2029          * size in two and trust the compression state to sort it out.
2030          */
2031         unsigned total_size = inst->exec_size *
2032                               inst->src[i].stride *
2033                               type_sz(inst->src[i].type);
2034
2035         assert(total_size <= 2 * REG_SIZE);
2036         const unsigned exec_size =
2037            (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
2038
2039         unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
2040         struct brw_reg reg =
2041            stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
2042                               inst->src[i].offset % REG_SIZE),
2043                   exec_size * inst->src[i].stride,
2044                   width, inst->src[i].stride);
2045         reg.abs = inst->src[i].abs;
2046         reg.negate = inst->src[i].negate;
2047
2048         inst->src[i] = reg;
2049      }
2050   }
2051}
2052
2053void
2054fs_visitor::assign_vs_urb_setup()
2055{
2056   struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
2057
2058   assert(stage == MESA_SHADER_VERTEX);
2059
2060   /* Each attribute is 4 regs. */
2061   this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
2062
2063   assert(vs_prog_data->base.urb_read_length <= 15);
2064
2065   /* Rewrite all ATTR file references to the hw grf that they land in. */
2066   foreach_block_and_inst(block, fs_inst, inst, cfg) {
2067      convert_attr_sources_to_hw_regs(inst);
2068   }
2069}
2070
2071void
2072fs_visitor::assign_tcs_urb_setup()
2073{
2074   assert(stage == MESA_SHADER_TESS_CTRL);
2075
2076   /* Rewrite all ATTR file references to HW_REGs. */
2077   foreach_block_and_inst(block, fs_inst, inst, cfg) {
2078      convert_attr_sources_to_hw_regs(inst);
2079   }
2080}
2081
2082void
2083fs_visitor::assign_tes_urb_setup()
2084{
2085   assert(stage == MESA_SHADER_TESS_EVAL);
2086
2087   struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
2088
2089   first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
2090
2091   /* Rewrite all ATTR file references to HW_REGs. */
2092   foreach_block_and_inst(block, fs_inst, inst, cfg) {
2093      convert_attr_sources_to_hw_regs(inst);
2094   }
2095}
2096
2097void
2098fs_visitor::assign_gs_urb_setup()
2099{
2100   assert(stage == MESA_SHADER_GEOMETRY);
2101
2102   struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
2103
2104   first_non_payload_grf +=
2105      8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
2106
2107   foreach_block_and_inst(block, fs_inst, inst, cfg) {
2108      /* Rewrite all ATTR file references to GRFs. */
2109      convert_attr_sources_to_hw_regs(inst);
2110   }
2111}
2112
2113
2114/**
2115 * Split large virtual GRFs into separate components if we can.
2116 *
2117 * This pass aggressively splits VGRFs into as small a chunks as possible,
2118 * down to single registers if it can.  If no VGRFs can be split, we return
2119 * false so this pass can safely be used inside an optimization loop.  We
2120 * want to split, because virtual GRFs are what we register allocate and
2121 * spill (due to contiguousness requirements for some instructions), and
2122 * they're what we naturally generate in the codegen process, but most
2123 * virtual GRFs don't actually need to be contiguous sets of GRFs.  If we
2124 * split, we'll end up with reduced live intervals and better dead code
2125 * elimination and coalescing.
2126 */
2127bool
2128fs_visitor::split_virtual_grfs()
2129{
2130   /* Compact the register file so we eliminate dead vgrfs.  This
2131    * only defines split points for live registers, so if we have
2132    * too large dead registers they will hit assertions later.
2133    */
2134   compact_virtual_grfs();
2135
2136   int num_vars = this->alloc.count;
2137
2138   /* Count the total number of registers */
2139   int reg_count = 0;
2140   int vgrf_to_reg[num_vars];
2141   for (int i = 0; i < num_vars; i++) {
2142      vgrf_to_reg[i] = reg_count;
2143      reg_count += alloc.sizes[i];
2144   }
2145
2146   /* An array of "split points".  For each register slot, this indicates
2147    * if this slot can be separated from the previous slot.  Every time an
2148    * instruction uses multiple elements of a register (as a source or
2149    * destination), we mark the used slots as inseparable.  Then we go
2150    * through and split the registers into the smallest pieces we can.
2151    */
2152   bool *split_points = new bool[reg_count];
2153   memset(split_points, 0, reg_count * sizeof(*split_points));
2154
2155   /* Mark all used registers as fully splittable */
2156   foreach_block_and_inst(block, fs_inst, inst, cfg) {
2157      if (inst->dst.file == VGRF) {
2158         int reg = vgrf_to_reg[inst->dst.nr];
2159         for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
2160            split_points[reg + j] = true;
2161      }
2162
2163      for (int i = 0; i < inst->sources; i++) {
2164         if (inst->src[i].file == VGRF) {
2165            int reg = vgrf_to_reg[inst->src[i].nr];
2166            for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
2167               split_points[reg + j] = true;
2168         }
2169      }
2170   }
2171
2172   foreach_block_and_inst(block, fs_inst, inst, cfg) {
2173      /* We fix up undef instructions later */
2174      if (inst->opcode == SHADER_OPCODE_UNDEF) {
2175         /* UNDEF instructions are currently only used to undef entire
2176          * registers.  We need this invariant later when we split them.
2177          */
2178         assert(inst->dst.file == VGRF);
2179         assert(inst->dst.offset == 0);
2180         assert(inst->size_written == alloc.sizes[inst->dst.nr] * REG_SIZE);
2181         continue;
2182      }
2183
2184      if (inst->dst.file == VGRF) {
2185         int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
2186         for (unsigned j = 1; j < regs_written(inst); j++)
2187            split_points[reg + j] = false;
2188      }
2189      for (int i = 0; i < inst->sources; i++) {
2190         if (inst->src[i].file == VGRF) {
2191            int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
2192            for (unsigned j = 1; j < regs_read(inst, i); j++)
2193               split_points[reg + j] = false;
2194         }
2195      }
2196   }
2197
2198   /* Bitset of which registers have been split */
2199   bool *vgrf_has_split = new bool[num_vars];
2200   memset(vgrf_has_split, 0, num_vars * sizeof(*vgrf_has_split));
2201
2202   int *new_virtual_grf = new int[reg_count];
2203   int *new_reg_offset = new int[reg_count];
2204
2205   int reg = 0;
2206   bool has_splits = false;
2207   for (int i = 0; i < num_vars; i++) {
2208      /* The first one should always be 0 as a quick sanity check. */
2209      assert(split_points[reg] == false);
2210
2211      /* j = 0 case */
2212      new_reg_offset[reg] = 0;
2213      reg++;
2214      int offset = 1;
2215
2216      /* j > 0 case */
2217      for (unsigned j = 1; j < alloc.sizes[i]; j++) {
2218         /* If this is a split point, reset the offset to 0 and allocate a
2219          * new virtual GRF for the previous offset many registers
2220          */
2221         if (split_points[reg]) {
2222            has_splits = true;
2223            vgrf_has_split[i] = true;
2224            assert(offset <= MAX_VGRF_SIZE);
2225            int grf = alloc.allocate(offset);
2226            for (int k = reg - offset; k < reg; k++)
2227               new_virtual_grf[k] = grf;
2228            offset = 0;
2229         }
2230         new_reg_offset[reg] = offset;
2231         offset++;
2232         reg++;
2233      }
2234
2235      /* The last one gets the original register number */
2236      assert(offset <= MAX_VGRF_SIZE);
2237      alloc.sizes[i] = offset;
2238      for (int k = reg - offset; k < reg; k++)
2239         new_virtual_grf[k] = i;
2240   }
2241   assert(reg == reg_count);
2242
2243   bool progress;
2244   if (!has_splits) {
2245      progress = false;
2246      goto cleanup;
2247   }
2248
2249   foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2250      if (inst->opcode == SHADER_OPCODE_UNDEF) {
2251         assert(inst->dst.file == VGRF);
2252         if (vgrf_has_split[inst->dst.nr]) {
2253            const fs_builder ibld(this, block, inst);
2254            assert(inst->size_written % REG_SIZE == 0);
2255            unsigned reg_offset = 0;
2256            while (reg_offset < inst->size_written / REG_SIZE) {
2257               reg = vgrf_to_reg[inst->dst.nr] + reg_offset;
2258               ibld.UNDEF(fs_reg(VGRF, new_virtual_grf[reg], inst->dst.type));
2259               reg_offset += alloc.sizes[new_virtual_grf[reg]];
2260            }
2261            inst->remove(block);
2262         } else {
2263            reg = vgrf_to_reg[inst->dst.nr];
2264            assert(new_reg_offset[reg] == 0);
2265            assert(new_virtual_grf[reg] == (int)inst->dst.nr);
2266         }
2267         continue;
2268      }
2269
2270      if (inst->dst.file == VGRF) {
2271         reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
2272         if (vgrf_has_split[inst->dst.nr]) {
2273            inst->dst.nr = new_virtual_grf[reg];
2274            inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
2275                               inst->dst.offset % REG_SIZE;
2276            assert((unsigned)new_reg_offset[reg] <
2277                   alloc.sizes[new_virtual_grf[reg]]);
2278         } else {
2279            assert(new_reg_offset[reg] == inst->dst.offset / REG_SIZE);
2280            assert(new_virtual_grf[reg] == (int)inst->dst.nr);
2281         }
2282      }
2283      for (int i = 0; i < inst->sources; i++) {
2284	 if (inst->src[i].file != VGRF)
2285            continue;
2286
2287         reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
2288         if (vgrf_has_split[inst->src[i].nr]) {
2289            inst->src[i].nr = new_virtual_grf[reg];
2290            inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
2291                                  inst->src[i].offset % REG_SIZE;
2292            assert((unsigned)new_reg_offset[reg] <
2293                   alloc.sizes[new_virtual_grf[reg]]);
2294         } else {
2295            assert(new_reg_offset[reg] == inst->src[i].offset / REG_SIZE);
2296            assert(new_virtual_grf[reg] == (int)inst->src[i].nr);
2297         }
2298      }
2299   }
2300   invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES);
2301
2302   progress = true;
2303
2304cleanup:
2305   delete[] split_points;
2306   delete[] vgrf_has_split;
2307   delete[] new_virtual_grf;
2308   delete[] new_reg_offset;
2309
2310   return progress;
2311}
2312
2313/**
2314 * Remove unused virtual GRFs and compact the vgrf_* arrays.
2315 *
2316 * During code generation, we create tons of temporary variables, many of
2317 * which get immediately killed and are never used again.  Yet, in later
2318 * optimization and analysis passes, such as compute_live_intervals, we need
2319 * to loop over all the virtual GRFs.  Compacting them can save a lot of
2320 * overhead.
2321 */
2322bool
2323fs_visitor::compact_virtual_grfs()
2324{
2325   bool progress = false;
2326   int *remap_table = new int[this->alloc.count];
2327   memset(remap_table, -1, this->alloc.count * sizeof(int));
2328
2329   /* Mark which virtual GRFs are used. */
2330   foreach_block_and_inst(block, const fs_inst, inst, cfg) {
2331      if (inst->dst.file == VGRF)
2332         remap_table[inst->dst.nr] = 0;
2333
2334      for (int i = 0; i < inst->sources; i++) {
2335         if (inst->src[i].file == VGRF)
2336            remap_table[inst->src[i].nr] = 0;
2337      }
2338   }
2339
2340   /* Compact the GRF arrays. */
2341   int new_index = 0;
2342   for (unsigned i = 0; i < this->alloc.count; i++) {
2343      if (remap_table[i] == -1) {
2344         /* We just found an unused register.  This means that we are
2345          * actually going to compact something.
2346          */
2347         progress = true;
2348      } else {
2349         remap_table[i] = new_index;
2350         alloc.sizes[new_index] = alloc.sizes[i];
2351         invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES);
2352         ++new_index;
2353      }
2354   }
2355
2356   this->alloc.count = new_index;
2357
2358   /* Patch all the instructions to use the newly renumbered registers */
2359   foreach_block_and_inst(block, fs_inst, inst, cfg) {
2360      if (inst->dst.file == VGRF)
2361         inst->dst.nr = remap_table[inst->dst.nr];
2362
2363      for (int i = 0; i < inst->sources; i++) {
2364         if (inst->src[i].file == VGRF)
2365            inst->src[i].nr = remap_table[inst->src[i].nr];
2366      }
2367   }
2368
2369   /* Patch all the references to delta_xy, since they're used in register
2370    * allocation.  If they're unused, switch them to BAD_FILE so we don't
2371    * think some random VGRF is delta_xy.
2372    */
2373   for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2374      if (delta_xy[i].file == VGRF) {
2375         if (remap_table[delta_xy[i].nr] != -1) {
2376            delta_xy[i].nr = remap_table[delta_xy[i].nr];
2377         } else {
2378            delta_xy[i].file = BAD_FILE;
2379         }
2380      }
2381   }
2382
2383   delete[] remap_table;
2384
2385   return progress;
2386}
2387
2388static int
2389get_subgroup_id_param_index(const intel_device_info *devinfo,
2390                            const brw_stage_prog_data *prog_data)
2391{
2392   if (prog_data->nr_params == 0)
2393      return -1;
2394
2395   if (devinfo->verx10 >= 125)
2396      return -1;
2397
2398   /* The local thread id is always the last parameter in the list */
2399   uint32_t last_param = prog_data->param[prog_data->nr_params - 1];
2400   if (last_param == BRW_PARAM_BUILTIN_SUBGROUP_ID)
2401      return prog_data->nr_params - 1;
2402
2403   return -1;
2404}
2405
2406/**
2407 * Assign UNIFORM file registers to either push constants or pull constants.
2408 *
2409 * We allow a fragment shader to have more than the specified minimum
2410 * maximum number of fragment shader uniform components (64).  If
2411 * there are too many of these, they'd fill up all of register space.
2412 * So, this will push some of them out to the pull constant buffer and
2413 * update the program to load them.
2414 */
2415void
2416fs_visitor::assign_constant_locations()
2417{
2418   /* Only the first compile gets to decide on locations. */
2419   if (push_constant_loc)
2420      return;
2421
2422   push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2423   for (unsigned u = 0; u < uniforms; u++)
2424      push_constant_loc[u] = u;
2425
2426   /* Now that we know how many regular uniforms we'll push, reduce the
2427    * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits.
2428    */
2429   /* For gen4/5:
2430    * Only allow 16 registers (128 uniform components) as push constants.
2431    *
2432    * If changing this value, note the limitation about total_regs in
2433    * brw_curbe.c/crocus_state.c
2434    */
2435   const unsigned max_push_length = compiler->devinfo->ver < 6 ? 16 : 64;
2436   unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
2437   for (int i = 0; i < 4; i++) {
2438      struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2439
2440      if (push_length + range->length > max_push_length)
2441         range->length = max_push_length - push_length;
2442
2443      push_length += range->length;
2444   }
2445   assert(push_length <= max_push_length);
2446}
2447
2448bool
2449fs_visitor::get_pull_locs(const fs_reg &src,
2450                          unsigned *out_surf_index,
2451                          unsigned *out_pull_index)
2452{
2453   assert(src.file == UNIFORM);
2454
2455   if (src.nr < UBO_START)
2456      return false;
2457
2458   const struct brw_ubo_range *range =
2459      &prog_data->ubo_ranges[src.nr - UBO_START];
2460
2461   /* If this access is in our (reduced) range, use the push data. */
2462   if (src.offset / 32 < range->length)
2463      return false;
2464
2465   *out_surf_index = range->block;
2466   *out_pull_index = (32 * range->start + src.offset) / 4;
2467
2468   prog_data->has_ubo_pull = true;
2469
2470   return true;
2471}
2472
2473/**
2474 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2475 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2476 */
2477void
2478fs_visitor::lower_constant_loads()
2479{
2480   unsigned index, pull_index;
2481
2482   foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2483      /* Set up the annotation tracking for new generated instructions. */
2484      const fs_builder ibld(this, block, inst);
2485
2486      for (int i = 0; i < inst->sources; i++) {
2487	 if (inst->src[i].file != UNIFORM)
2488	    continue;
2489
2490         /* We'll handle this case later */
2491         if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2492            continue;
2493
2494         if (!get_pull_locs(inst->src[i], &index, &pull_index))
2495	    continue;
2496
2497         assert(inst->src[i].stride == 0);
2498
2499         const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2500         const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2501         const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2502         const unsigned base = pull_index * 4;
2503
2504         ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2505                   dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2506
2507         /* Rewrite the instruction to use the temporary VGRF. */
2508         inst->src[i].file = VGRF;
2509         inst->src[i].nr = dst.nr;
2510         inst->src[i].offset = (base & (block_sz - 1)) +
2511                               inst->src[i].offset % 4;
2512      }
2513
2514      if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2515          inst->src[0].file == UNIFORM) {
2516
2517         if (!get_pull_locs(inst->src[0], &index, &pull_index))
2518            continue;
2519
2520         VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2521                                    brw_imm_ud(index),
2522                                    inst->src[1],
2523                                    pull_index * 4, 4);
2524         inst->remove(block);
2525      }
2526   }
2527   invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
2528}
2529
2530bool
2531fs_visitor::opt_algebraic()
2532{
2533   bool progress = false;
2534
2535   foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2536      switch (inst->opcode) {
2537      case BRW_OPCODE_MOV:
2538         if (!devinfo->has_64bit_float &&
2539             inst->dst.type == BRW_REGISTER_TYPE_DF) {
2540            assert(inst->dst.type == inst->src[0].type);
2541            assert(!inst->saturate);
2542            assert(!inst->src[0].abs);
2543            assert(!inst->src[0].negate);
2544            const brw::fs_builder ibld(this, block, inst);
2545
2546            ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_F, 1),
2547                     subscript(inst->src[0], BRW_REGISTER_TYPE_F, 1));
2548            ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_F, 0),
2549                     subscript(inst->src[0], BRW_REGISTER_TYPE_F, 0));
2550
2551            inst->remove(block);
2552            progress = true;
2553         }
2554
2555         if (!devinfo->has_64bit_int &&
2556             (inst->dst.type == BRW_REGISTER_TYPE_UQ ||
2557              inst->dst.type == BRW_REGISTER_TYPE_Q)) {
2558            assert(inst->dst.type == inst->src[0].type);
2559            assert(!inst->saturate);
2560            assert(!inst->src[0].abs);
2561            assert(!inst->src[0].negate);
2562            const brw::fs_builder ibld(this, block, inst);
2563
2564            ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2565                     subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1));
2566            ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2567                     subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0));
2568
2569            inst->remove(block);
2570            progress = true;
2571         }
2572
2573         if ((inst->conditional_mod == BRW_CONDITIONAL_Z ||
2574              inst->conditional_mod == BRW_CONDITIONAL_NZ) &&
2575             inst->dst.is_null() &&
2576             (inst->src[0].abs || inst->src[0].negate)) {
2577            inst->src[0].abs = false;
2578            inst->src[0].negate = false;
2579            progress = true;
2580            break;
2581         }
2582
2583         if (inst->src[0].file != IMM)
2584            break;
2585
2586         if (inst->saturate) {
2587            /* Full mixed-type saturates don't happen.  However, we can end up
2588             * with things like:
2589             *
2590             *    mov.sat(8) g21<1>DF       -1F
2591             *
2592             * Other mixed-size-but-same-base-type cases may also be possible.
2593             */
2594            if (inst->dst.type != inst->src[0].type &&
2595                inst->dst.type != BRW_REGISTER_TYPE_DF &&
2596                inst->src[0].type != BRW_REGISTER_TYPE_F)
2597               assert(!"unimplemented: saturate mixed types");
2598
2599            if (brw_saturate_immediate(inst->src[0].type,
2600                                       &inst->src[0].as_brw_reg())) {
2601               inst->saturate = false;
2602               progress = true;
2603            }
2604         }
2605         break;
2606
2607      case BRW_OPCODE_MUL:
2608         if (inst->src[1].file != IMM)
2609            continue;
2610
2611         if (brw_reg_type_is_floating_point(inst->src[1].type))
2612            break;
2613
2614         /* a * 1.0 = a */
2615         if (inst->src[1].is_one()) {
2616            inst->opcode = BRW_OPCODE_MOV;
2617            inst->src[1] = reg_undef;
2618            progress = true;
2619            break;
2620         }
2621
2622         /* a * -1.0 = -a */
2623         if (inst->src[1].is_negative_one()) {
2624            inst->opcode = BRW_OPCODE_MOV;
2625            inst->src[0].negate = !inst->src[0].negate;
2626            inst->src[1] = reg_undef;
2627            progress = true;
2628            break;
2629         }
2630
2631         break;
2632      case BRW_OPCODE_ADD:
2633         if (inst->src[1].file != IMM)
2634            continue;
2635
2636         if (brw_reg_type_is_integer(inst->src[1].type) &&
2637             inst->src[1].is_zero()) {
2638            inst->opcode = BRW_OPCODE_MOV;
2639            inst->src[1] = reg_undef;
2640            progress = true;
2641            break;
2642         }
2643
2644         if (inst->src[0].file == IMM) {
2645            assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2646            inst->opcode = BRW_OPCODE_MOV;
2647            inst->src[0].f += inst->src[1].f;
2648            inst->src[1] = reg_undef;
2649            progress = true;
2650            break;
2651         }
2652         break;
2653      case BRW_OPCODE_OR:
2654         if (inst->src[0].equals(inst->src[1]) ||
2655             inst->src[1].is_zero()) {
2656            /* On Gfx8+, the OR instruction can have a source modifier that
2657             * performs logical not on the operand.  Cases of 'OR r0, ~r1, 0'
2658             * or 'OR r0, ~r1, ~r1' should become a NOT instead of a MOV.
2659             */
2660            if (inst->src[0].negate) {
2661               inst->opcode = BRW_OPCODE_NOT;
2662               inst->src[0].negate = false;
2663            } else {
2664               inst->opcode = BRW_OPCODE_MOV;
2665            }
2666            inst->src[1] = reg_undef;
2667            progress = true;
2668            break;
2669         }
2670         break;
2671      case BRW_OPCODE_CMP:
2672         if ((inst->conditional_mod == BRW_CONDITIONAL_Z ||
2673              inst->conditional_mod == BRW_CONDITIONAL_NZ) &&
2674             inst->src[1].is_zero() &&
2675             (inst->src[0].abs || inst->src[0].negate)) {
2676            inst->src[0].abs = false;
2677            inst->src[0].negate = false;
2678            progress = true;
2679            break;
2680         }
2681         break;
2682      case BRW_OPCODE_SEL:
2683         if (!devinfo->has_64bit_float &&
2684             !devinfo->has_64bit_int &&
2685             (inst->dst.type == BRW_REGISTER_TYPE_DF ||
2686              inst->dst.type == BRW_REGISTER_TYPE_UQ ||
2687              inst->dst.type == BRW_REGISTER_TYPE_Q)) {
2688            assert(inst->dst.type == inst->src[0].type);
2689            assert(!inst->saturate);
2690            assert(!inst->src[0].abs && !inst->src[0].negate);
2691            assert(!inst->src[1].abs && !inst->src[1].negate);
2692            const brw::fs_builder ibld(this, block, inst);
2693
2694            set_predicate(inst->predicate,
2695                          ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2696                                   subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
2697                                   subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0)));
2698            set_predicate(inst->predicate,
2699                          ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2700                                   subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1),
2701                                   subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 1)));
2702
2703            inst->remove(block);
2704            progress = true;
2705         }
2706         if (inst->src[0].equals(inst->src[1])) {
2707            inst->opcode = BRW_OPCODE_MOV;
2708            inst->src[1] = reg_undef;
2709            inst->predicate = BRW_PREDICATE_NONE;
2710            inst->predicate_inverse = false;
2711            progress = true;
2712         } else if (inst->saturate && inst->src[1].file == IMM) {
2713            switch (inst->conditional_mod) {
2714            case BRW_CONDITIONAL_LE:
2715            case BRW_CONDITIONAL_L:
2716               switch (inst->src[1].type) {
2717               case BRW_REGISTER_TYPE_F:
2718                  if (inst->src[1].f >= 1.0f) {
2719                     inst->opcode = BRW_OPCODE_MOV;
2720                     inst->src[1] = reg_undef;
2721                     inst->conditional_mod = BRW_CONDITIONAL_NONE;
2722                     progress = true;
2723                  }
2724                  break;
2725               default:
2726                  break;
2727               }
2728               break;
2729            case BRW_CONDITIONAL_GE:
2730            case BRW_CONDITIONAL_G:
2731               switch (inst->src[1].type) {
2732               case BRW_REGISTER_TYPE_F:
2733                  if (inst->src[1].f <= 0.0f) {
2734                     inst->opcode = BRW_OPCODE_MOV;
2735                     inst->src[1] = reg_undef;
2736                     inst->conditional_mod = BRW_CONDITIONAL_NONE;
2737                     progress = true;
2738                  }
2739                  break;
2740               default:
2741                  break;
2742               }
2743            default:
2744               break;
2745            }
2746         }
2747         break;
2748      case BRW_OPCODE_MAD:
2749         if (inst->src[0].type != BRW_REGISTER_TYPE_F ||
2750             inst->src[1].type != BRW_REGISTER_TYPE_F ||
2751             inst->src[2].type != BRW_REGISTER_TYPE_F)
2752            break;
2753         if (inst->src[1].is_one()) {
2754            inst->opcode = BRW_OPCODE_ADD;
2755            inst->src[1] = inst->src[2];
2756            inst->src[2] = reg_undef;
2757            progress = true;
2758         } else if (inst->src[2].is_one()) {
2759            inst->opcode = BRW_OPCODE_ADD;
2760            inst->src[2] = reg_undef;
2761            progress = true;
2762         }
2763         break;
2764      case SHADER_OPCODE_BROADCAST:
2765         if (is_uniform(inst->src[0])) {
2766            inst->opcode = BRW_OPCODE_MOV;
2767            inst->sources = 1;
2768            inst->force_writemask_all = true;
2769            progress = true;
2770         } else if (inst->src[1].file == IMM) {
2771            inst->opcode = BRW_OPCODE_MOV;
2772            /* It's possible that the selected component will be too large and
2773             * overflow the register.  This can happen if someone does a
2774             * readInvocation() from GLSL or SPIR-V and provides an OOB
2775             * invocationIndex.  If this happens and we some how manage
2776             * to constant fold it in and get here, then component() may cause
2777             * us to start reading outside of the VGRF which will lead to an
2778             * assert later.  Instead, just let it wrap around if it goes over
2779             * exec_size.
2780             */
2781            const unsigned comp = inst->src[1].ud & (inst->exec_size - 1);
2782            inst->src[0] = component(inst->src[0], comp);
2783            inst->sources = 1;
2784            inst->force_writemask_all = true;
2785            progress = true;
2786         }
2787         break;
2788
2789      case SHADER_OPCODE_SHUFFLE:
2790         if (is_uniform(inst->src[0])) {
2791            inst->opcode = BRW_OPCODE_MOV;
2792            inst->sources = 1;
2793            progress = true;
2794         } else if (inst->src[1].file == IMM) {
2795            inst->opcode = BRW_OPCODE_MOV;
2796            inst->src[0] = component(inst->src[0],
2797                                     inst->src[1].ud);
2798            inst->sources = 1;
2799            progress = true;
2800         }
2801         break;
2802
2803      default:
2804	 break;
2805      }
2806
2807      /* Swap if src[0] is immediate. */
2808      if (progress && inst->is_commutative()) {
2809         if (inst->src[0].file == IMM) {
2810            fs_reg tmp = inst->src[1];
2811            inst->src[1] = inst->src[0];
2812            inst->src[0] = tmp;
2813         }
2814      }
2815   }
2816
2817   if (progress)
2818      invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW |
2819                          DEPENDENCY_INSTRUCTION_DETAIL);
2820
2821   return progress;
2822}
2823
2824/**
2825 * Optimize sample messages that have constant zero values for the trailing
2826 * texture coordinates. We can just reduce the message length for these
2827 * instructions instead of reserving a register for it. Trailing parameters
2828 * that aren't sent default to zero anyway. This will cause the dead code
2829 * eliminator to remove the MOV instruction that would otherwise be emitted to
2830 * set up the zero value.
2831 */
2832bool
2833fs_visitor::opt_zero_samples()
2834{
2835   /* Gfx4 infers the texturing opcode based on the message length so we can't
2836    * change it.  Gfx12.5 has restrictions on the number of coordinate
2837    * parameters that have to be provided for some texture types
2838    * (Wa_14013363432).
2839    */
2840   if (devinfo->ver < 5 || devinfo->verx10 == 125)
2841      return false;
2842
2843   bool progress = false;
2844
2845   foreach_block_and_inst(block, fs_inst, inst, cfg) {
2846      if (!inst->is_tex())
2847         continue;
2848
2849      fs_inst *load_payload = (fs_inst *) inst->prev;
2850
2851      if (load_payload->is_head_sentinel() ||
2852          load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2853         continue;
2854
2855      /* We don't want to remove the message header or the first parameter.
2856       * Removing the first parameter is not allowed, see the Haswell PRM
2857       * volume 7, page 149:
2858       *
2859       *     "Parameter 0 is required except for the sampleinfo message, which
2860       *      has no parameter 0"
2861       */
2862      while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2863             load_payload->src[(inst->mlen - inst->header_size) /
2864                               (inst->exec_size / 8) +
2865                               inst->header_size - 1].is_zero()) {
2866         inst->mlen -= inst->exec_size / 8;
2867         progress = true;
2868      }
2869   }
2870
2871   if (progress)
2872      invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
2873
2874   return progress;
2875}
2876
2877/**
2878 * Opportunistically split SEND message payloads.
2879 *
2880 * Gfx9+ supports "split" SEND messages, which take two payloads that are
2881 * implicitly concatenated.  If we find a SEND message with a single payload,
2882 * we can split that payload in two.  This results in smaller contiguous
2883 * register blocks for us to allocate.  But it can help beyond that, too.
2884 *
2885 * We try and split a LOAD_PAYLOAD between sources which change registers.
2886 * For example, a sampler message often contains a x/y/z coordinate that may
2887 * already be in a contiguous VGRF, combined with an LOD, shadow comparitor,
2888 * or array index, which comes from elsewhere.  In this case, the first few
2889 * sources will be different offsets of the same VGRF, then a later source
2890 * will be a different VGRF.  So we split there, possibly eliminating the
2891 * payload concatenation altogether.
2892 */
2893bool
2894fs_visitor::opt_split_sends()
2895{
2896   if (devinfo->ver < 9)
2897      return false;
2898
2899   bool progress = false;
2900
2901   const fs_live_variables &live = live_analysis.require();
2902
2903   int next_ip = 0;
2904
2905   foreach_block_and_inst_safe(block, fs_inst, send, cfg) {
2906      int ip = next_ip;
2907      next_ip++;
2908
2909      if (send->opcode != SHADER_OPCODE_SEND ||
2910          send->mlen == 1 || send->ex_mlen > 0)
2911         continue;
2912
2913      /* Don't split payloads which are also read later. */
2914      assert(send->src[2].file == VGRF);
2915      if (live.vgrf_end[send->src[2].nr] > ip)
2916         continue;
2917
2918      fs_inst *lp = (fs_inst *) send->prev;
2919
2920      if (lp->is_head_sentinel() || lp->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2921         continue;
2922
2923      if (lp->dst.file != send->src[2].file || lp->dst.nr != send->src[2].nr)
2924         continue;
2925
2926      /* Split either after the header (if present), or when consecutive
2927       * sources switch from one VGRF to a different one.
2928       */
2929      unsigned i = lp->header_size;
2930      if (lp->header_size == 0) {
2931         for (i = 1; i < lp->sources; i++) {
2932            if (lp->src[i].file == BAD_FILE)
2933               continue;
2934
2935            if (lp->src[0].file != lp->src[i].file ||
2936                lp->src[0].nr != lp->src[i].nr)
2937               break;
2938         }
2939      }
2940
2941      if (i != lp->sources) {
2942         const fs_builder ibld(this, block, lp);
2943         fs_inst *lp2 =
2944            ibld.LOAD_PAYLOAD(lp->dst, &lp->src[i], lp->sources - i, 0);
2945
2946         lp->resize_sources(i);
2947         lp->size_written -= lp2->size_written;
2948
2949         lp->dst = fs_reg(VGRF, alloc.allocate(lp->size_written / REG_SIZE), lp->dst.type);
2950         lp2->dst = fs_reg(VGRF, alloc.allocate(lp2->size_written / REG_SIZE), lp2->dst.type);
2951
2952         send->resize_sources(4);
2953         send->src[2] = lp->dst;
2954         send->src[3] = lp2->dst;
2955         send->ex_mlen = lp2->size_written / REG_SIZE;
2956         send->mlen -= send->ex_mlen;
2957
2958         progress = true;
2959      }
2960   }
2961
2962   if (progress)
2963      invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
2964
2965   return progress;
2966}
2967
2968
2969bool
2970fs_visitor::opt_register_renaming()
2971{
2972   bool progress = false;
2973   int depth = 0;
2974
2975   unsigned remap[alloc.count];
2976   memset(remap, ~0u, sizeof(unsigned) * alloc.count);
2977
2978   foreach_block_and_inst(block, fs_inst, inst, cfg) {
2979      if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2980         depth++;
2981      } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2982                 inst->opcode == BRW_OPCODE_WHILE) {
2983         depth--;
2984      }
2985
2986      /* Rewrite instruction sources. */
2987      for (int i = 0; i < inst->sources; i++) {
2988         if (inst->src[i].file == VGRF &&
2989             remap[inst->src[i].nr] != ~0u &&
2990             remap[inst->src[i].nr] != inst->src[i].nr) {
2991            inst->src[i].nr = remap[inst->src[i].nr];
2992            progress = true;
2993         }
2994      }
2995
2996      const unsigned dst = inst->dst.nr;
2997
2998      if (depth == 0 &&
2999          inst->dst.file == VGRF &&
3000          alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
3001          !inst->is_partial_write()) {
3002         if (remap[dst] == ~0u) {
3003            remap[dst] = dst;
3004         } else {
3005            remap[dst] = alloc.allocate(regs_written(inst));
3006            inst->dst.nr = remap[dst];
3007            progress = true;
3008         }
3009      } else if (inst->dst.file == VGRF &&
3010                 remap[dst] != ~0u &&
3011                 remap[dst] != dst) {
3012         inst->dst.nr = remap[dst];
3013         progress = true;
3014      }
3015   }
3016
3017   if (progress) {
3018      invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL |
3019                          DEPENDENCY_VARIABLES);
3020
3021      for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
3022         if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != ~0u) {
3023            delta_xy[i].nr = remap[delta_xy[i].nr];
3024         }
3025      }
3026   }
3027
3028   return progress;
3029}
3030
3031/**
3032 * Remove redundant or useless halts.
3033 *
3034 * For example, we can eliminate halts in the following sequence:
3035 *
3036 * halt        (redundant with the next halt)
3037 * halt        (useless; jumps to the next instruction)
3038 * halt-target
3039 */
3040bool
3041fs_visitor::opt_redundant_halt()
3042{
3043   bool progress = false;
3044
3045   unsigned halt_count = 0;
3046   fs_inst *halt_target = NULL;
3047   bblock_t *halt_target_block = NULL;
3048   foreach_block_and_inst(block, fs_inst, inst, cfg) {
3049      if (inst->opcode == BRW_OPCODE_HALT)
3050         halt_count++;
3051
3052      if (inst->opcode == SHADER_OPCODE_HALT_TARGET) {
3053         halt_target = inst;
3054         halt_target_block = block;
3055         break;
3056      }
3057   }
3058
3059   if (!halt_target) {
3060      assert(halt_count == 0);
3061      return false;
3062   }
3063
3064   /* Delete any HALTs immediately before the halt target. */
3065   for (fs_inst *prev = (fs_inst *) halt_target->prev;
3066        !prev->is_head_sentinel() && prev->opcode == BRW_OPCODE_HALT;
3067        prev = (fs_inst *) halt_target->prev) {
3068      prev->remove(halt_target_block);
3069      halt_count--;
3070      progress = true;
3071   }
3072
3073   if (halt_count == 0) {
3074      halt_target->remove(halt_target_block);
3075      progress = true;
3076   }
3077
3078   if (progress)
3079      invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3080
3081   return progress;
3082}
3083
3084/**
3085 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
3086 * from \p r.offset which overlaps the region starting at \p s.offset and
3087 * spanning \p ds bytes.
3088 */
3089static inline unsigned
3090mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
3091{
3092   const int rel_offset = reg_offset(s) - reg_offset(r);
3093   const int shift = rel_offset / REG_SIZE;
3094   const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
3095   assert(reg_space(r) == reg_space(s) &&
3096          shift >= 0 && shift < int(8 * sizeof(unsigned)));
3097   return ((1 << n) - 1) << shift;
3098}
3099
3100bool
3101fs_visitor::compute_to_mrf()
3102{
3103   bool progress = false;
3104   int next_ip = 0;
3105
3106   /* No MRFs on Gen >= 7. */
3107   if (devinfo->ver >= 7)
3108      return false;
3109
3110   const fs_live_variables &live = live_analysis.require();
3111
3112   foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3113      int ip = next_ip;
3114      next_ip++;
3115
3116      if (inst->opcode != BRW_OPCODE_MOV ||
3117	  inst->is_partial_write() ||
3118	  inst->dst.file != MRF || inst->src[0].file != VGRF ||
3119	  inst->dst.type != inst->src[0].type ||
3120	  inst->src[0].abs || inst->src[0].negate ||
3121          !inst->src[0].is_contiguous() ||
3122          inst->src[0].offset % REG_SIZE != 0)
3123	 continue;
3124
3125      /* Can't compute-to-MRF this GRF if someone else was going to
3126       * read it later.
3127       */
3128      if (live.vgrf_end[inst->src[0].nr] > ip)
3129	 continue;
3130
3131      /* Found a move of a GRF to a MRF.  Let's see if we can go rewrite the
3132       * things that computed the value of all GRFs of the source region.  The
3133       * regs_left bitset keeps track of the registers we haven't yet found a
3134       * generating instruction for.
3135       */
3136      unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
3137
3138      foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3139         if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3140                             inst->src[0], inst->size_read(0))) {
3141	    /* Found the last thing to write our reg we want to turn
3142	     * into a compute-to-MRF.
3143	     */
3144
3145	    /* If this one instruction didn't populate all the
3146	     * channels, bail.  We might be able to rewrite everything
3147	     * that writes that reg, but it would require smarter
3148	     * tracking.
3149	     */
3150	    if (scan_inst->is_partial_write())
3151	       break;
3152
3153            /* Handling things not fully contained in the source of the copy
3154             * would need us to understand coalescing out more than one MOV at
3155             * a time.
3156             */
3157            if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
3158                                     inst->src[0], inst->size_read(0)))
3159               break;
3160
3161	    /* SEND instructions can't have MRF as a destination. */
3162	    if (scan_inst->mlen)
3163	       break;
3164
3165	    if (devinfo->ver == 6) {
3166	       /* gfx6 math instructions must have the destination be
3167		* GRF, so no compute-to-MRF for them.
3168		*/
3169	       if (scan_inst->is_math()) {
3170		  break;
3171	       }
3172	    }
3173
3174            /* Clear the bits for any registers this instruction overwrites. */
3175            regs_left &= ~mask_relative_to(
3176               inst->src[0], scan_inst->dst, scan_inst->size_written);
3177            if (!regs_left)
3178               break;
3179	 }
3180
3181	 /* We don't handle control flow here.  Most computation of
3182	  * values that end up in MRFs are shortly before the MRF
3183	  * write anyway.
3184	  */
3185	 if (block->start() == scan_inst)
3186	    break;
3187
3188	 /* You can't read from an MRF, so if someone else reads our
3189	  * MRF's source GRF that we wanted to rewrite, that stops us.
3190	  */
3191	 bool interfered = false;
3192	 for (int i = 0; i < scan_inst->sources; i++) {
3193            if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
3194                                inst->src[0], inst->size_read(0))) {
3195	       interfered = true;
3196	    }
3197	 }
3198	 if (interfered)
3199	    break;
3200
3201         if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3202                             inst->dst, inst->size_written)) {
3203	    /* If somebody else writes our MRF here, we can't
3204	     * compute-to-MRF before that.
3205	     */
3206            break;
3207         }
3208
3209         if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
3210             regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
3211                             inst->dst, inst->size_written)) {
3212	    /* Found a SEND instruction, which means that there are
3213	     * live values in MRFs from base_mrf to base_mrf +
3214	     * scan_inst->mlen - 1.  Don't go pushing our MRF write up
3215	     * above it.
3216	     */
3217            break;
3218         }
3219      }
3220
3221      if (regs_left)
3222         continue;
3223
3224      /* Found all generating instructions of our MRF's source value, so it
3225       * should be safe to rewrite them to point to the MRF directly.
3226       */
3227      regs_left = (1 << regs_read(inst, 0)) - 1;
3228
3229      foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3230         if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3231                             inst->src[0], inst->size_read(0))) {
3232            /* Clear the bits for any registers this instruction overwrites. */
3233            regs_left &= ~mask_relative_to(
3234               inst->src[0], scan_inst->dst, scan_inst->size_written);
3235
3236            const unsigned rel_offset = reg_offset(scan_inst->dst) -
3237                                        reg_offset(inst->src[0]);
3238
3239            if (inst->dst.nr & BRW_MRF_COMPR4) {
3240               /* Apply the same address transformation done by the hardware
3241                * for COMPR4 MRF writes.
3242                */
3243               assert(rel_offset < 2 * REG_SIZE);
3244               scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
3245
3246               /* Clear the COMPR4 bit if the generating instruction is not
3247                * compressed.
3248                */
3249               if (scan_inst->size_written < 2 * REG_SIZE)
3250                  scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
3251
3252            } else {
3253               /* Calculate the MRF number the result of this instruction is
3254                * ultimately written to.
3255                */
3256               scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
3257            }
3258
3259            scan_inst->dst.file = MRF;
3260            scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
3261            scan_inst->saturate |= inst->saturate;
3262            if (!regs_left)
3263               break;
3264         }
3265      }
3266
3267      assert(!regs_left);
3268      inst->remove(block);
3269      progress = true;
3270   }
3271
3272   if (progress)
3273      invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3274
3275   return progress;
3276}
3277
3278/**
3279 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
3280 * flow.  We could probably do better here with some form of divergence
3281 * analysis.
3282 */
3283bool
3284fs_visitor::eliminate_find_live_channel()
3285{
3286   bool progress = false;
3287   unsigned depth = 0;
3288
3289   if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
3290      /* The optimization below assumes that channel zero is live on thread
3291       * dispatch, which may not be the case if the fixed function dispatches
3292       * threads sparsely.
3293       */
3294      return false;
3295   }
3296
3297   foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3298      switch (inst->opcode) {
3299      case BRW_OPCODE_IF:
3300      case BRW_OPCODE_DO:
3301         depth++;
3302         break;
3303
3304      case BRW_OPCODE_ENDIF:
3305      case BRW_OPCODE_WHILE:
3306         depth--;
3307         break;
3308
3309      case BRW_OPCODE_HALT:
3310         /* This can potentially make control flow non-uniform until the end
3311          * of the program.
3312          */
3313         goto out;
3314
3315      case SHADER_OPCODE_FIND_LIVE_CHANNEL:
3316         if (depth == 0) {
3317            inst->opcode = BRW_OPCODE_MOV;
3318            inst->src[0] = brw_imm_ud(0u);
3319            inst->sources = 1;
3320            inst->force_writemask_all = true;
3321            progress = true;
3322         }
3323         break;
3324
3325      default:
3326         break;
3327      }
3328   }
3329
3330out:
3331   if (progress)
3332      invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
3333
3334   return progress;
3335}
3336
3337/**
3338 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
3339 * instructions to FS_OPCODE_REP_FB_WRITE.
3340 */
3341void
3342fs_visitor::emit_repclear_shader()
3343{
3344   brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3345   int base_mrf = 0;
3346   int color_mrf = base_mrf + 2;
3347   fs_inst *mov;
3348
3349   if (uniforms > 0) {
3350      mov = bld.exec_all().group(4, 0)
3351               .MOV(brw_message_reg(color_mrf),
3352                    fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
3353   } else {
3354      struct brw_reg reg =
3355         brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_UD,
3356                 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
3357                 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
3358
3359      mov = bld.exec_all().group(4, 0)
3360               .MOV(brw_uvec_mrf(4, color_mrf, 0), fs_reg(reg));
3361   }
3362
3363   fs_inst *write = NULL;
3364   if (key->nr_color_regions == 1) {
3365      write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3366      write->saturate = key->clamp_fragment_color;
3367      write->base_mrf = color_mrf;
3368      write->target = 0;
3369      write->header_size = 0;
3370      write->mlen = 1;
3371   } else {
3372      assume(key->nr_color_regions > 0);
3373
3374      struct brw_reg header =
3375         retype(brw_message_reg(base_mrf), BRW_REGISTER_TYPE_UD);
3376      bld.exec_all().group(16, 0)
3377         .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3378
3379      for (int i = 0; i < key->nr_color_regions; ++i) {
3380         if (i > 0) {
3381            bld.exec_all().group(1, 0)
3382               .MOV(component(header, 2), brw_imm_ud(i));
3383         }
3384
3385         write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3386         write->saturate = key->clamp_fragment_color;
3387         write->base_mrf = base_mrf;
3388         write->target = i;
3389         write->header_size = 2;
3390         write->mlen = 3;
3391      }
3392   }
3393   write->eot = true;
3394   write->last_rt = true;
3395
3396   calculate_cfg();
3397
3398   assign_constant_locations();
3399   assign_curb_setup();
3400
3401   /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
3402   if (uniforms > 0) {
3403      assert(mov->src[0].file == FIXED_GRF);
3404      mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
3405   }
3406
3407   lower_scoreboard();
3408}
3409
3410/**
3411 * Walks through basic blocks, looking for repeated MRF writes and
3412 * removing the later ones.
3413 */
3414bool
3415fs_visitor::remove_duplicate_mrf_writes()
3416{
3417   fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->ver)];
3418   bool progress = false;
3419
3420   /* Need to update the MRF tracking for compressed instructions. */
3421   if (dispatch_width >= 16)
3422      return false;
3423
3424   memset(last_mrf_move, 0, sizeof(last_mrf_move));
3425
3426   foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3427      if (inst->is_control_flow()) {
3428	 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3429      }
3430
3431      if (inst->opcode == BRW_OPCODE_MOV &&
3432	  inst->dst.file == MRF) {
3433         fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
3434	 if (prev_inst && prev_inst->opcode == BRW_OPCODE_MOV &&
3435             inst->dst.equals(prev_inst->dst) &&
3436             inst->src[0].equals(prev_inst->src[0]) &&
3437             inst->saturate == prev_inst->saturate &&
3438             inst->predicate == prev_inst->predicate &&
3439             inst->conditional_mod == prev_inst->conditional_mod &&
3440             inst->exec_size == prev_inst->exec_size) {
3441	    inst->remove(block);
3442	    progress = true;
3443	    continue;
3444	 }
3445      }
3446
3447      /* Clear out the last-write records for MRFs that were overwritten. */
3448      if (inst->dst.file == MRF) {
3449         last_mrf_move[inst->dst.nr] = NULL;
3450      }
3451
3452      if (inst->mlen > 0 && inst->base_mrf != -1) {
3453	 /* Found a SEND instruction, which will include two or fewer
3454	  * implied MRF writes.  We could do better here.
3455	  */
3456	 for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
3457	    last_mrf_move[inst->base_mrf + i] = NULL;
3458	 }
3459      }
3460
3461      /* Clear out any MRF move records whose sources got overwritten. */
3462      for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
3463         if (last_mrf_move[i] &&
3464             regions_overlap(inst->dst, inst->size_written,
3465                             last_mrf_move[i]->src[0],
3466                             last_mrf_move[i]->size_read(0))) {
3467            last_mrf_move[i] = NULL;
3468         }
3469      }
3470
3471      if (inst->opcode == BRW_OPCODE_MOV &&
3472	  inst->dst.file == MRF &&
3473	  inst->src[0].file != ARF &&
3474	  !inst->is_partial_write()) {
3475         last_mrf_move[inst->dst.nr] = inst;
3476      }
3477   }
3478
3479   if (progress)
3480      invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3481
3482   return progress;
3483}
3484
3485/**
3486 * Rounding modes for conversion instructions are included for each
3487 * conversion, but right now it is a state. So once it is set,
3488 * we don't need to call it again for subsequent calls.
3489 *
3490 * This is useful for vector/matrices conversions, as setting the
3491 * mode once is enough for the full vector/matrix
3492 */
3493bool
3494fs_visitor::remove_extra_rounding_modes()
3495{
3496   bool progress = false;
3497   unsigned execution_mode = this->nir->info.float_controls_execution_mode;
3498
3499   brw_rnd_mode base_mode = BRW_RND_MODE_UNSPECIFIED;
3500   if ((FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 |
3501        FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32 |
3502        FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64) &
3503       execution_mode)
3504      base_mode = BRW_RND_MODE_RTNE;
3505   if ((FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 |
3506        FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 |
3507        FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64) &
3508       execution_mode)
3509      base_mode = BRW_RND_MODE_RTZ;
3510
3511   foreach_block (block, cfg) {
3512      brw_rnd_mode prev_mode = base_mode;
3513
3514      foreach_inst_in_block_safe (fs_inst, inst, block) {
3515         if (inst->opcode == SHADER_OPCODE_RND_MODE) {
3516            assert(inst->src[0].file == BRW_IMMEDIATE_VALUE);
3517            const brw_rnd_mode mode = (brw_rnd_mode) inst->src[0].d;
3518            if (mode == prev_mode) {
3519               inst->remove(block);
3520               progress = true;
3521            } else {
3522               prev_mode = mode;
3523            }
3524         }
3525      }
3526   }
3527
3528   if (progress)
3529      invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3530
3531   return progress;
3532}
3533
3534static void
3535clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3536{
3537   /* Clear the flag for registers that actually got read (as expected). */
3538   for (int i = 0; i < inst->sources; i++) {
3539      int grf;
3540      if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3541         grf = inst->src[i].nr;
3542      } else {
3543         continue;
3544      }
3545
3546      if (grf >= first_grf &&
3547          grf < first_grf + grf_len) {
3548         deps[grf - first_grf] = false;
3549         if (inst->exec_size == 16)
3550            deps[grf - first_grf + 1] = false;
3551      }
3552   }
3553}
3554
3555/**
3556 * Implements this workaround for the original 965:
3557 *
3558 *     "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3559 *      check for post destination dependencies on this instruction, software
3560 *      must ensure that there is no destination hazard for the case of ‘write
3561 *      followed by a posted write’ shown in the following example.
3562 *
3563 *      1. mov r3 0
3564 *      2. send r3.xy <rest of send instruction>
3565 *      3. mov r2 r3
3566 *
3567 *      Due to no post-destination dependency check on the ‘send’, the above
3568 *      code sequence could have two instructions (1 and 2) in flight at the
3569 *      same time that both consider ‘r3’ as the target of their final writes.
3570 */
3571void
3572fs_visitor::insert_gfx4_pre_send_dependency_workarounds(bblock_t *block,
3573                                                        fs_inst *inst)
3574{
3575   int write_len = regs_written(inst);
3576   int first_write_grf = inst->dst.nr;
3577   bool needs_dep[BRW_MAX_MRF(devinfo->ver)];
3578   assert(write_len < (int)sizeof(needs_dep) - 1);
3579
3580   memset(needs_dep, false, sizeof(needs_dep));
3581   memset(needs_dep, true, write_len);
3582
3583   clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3584
3585   /* Walk backwards looking for writes to registers we're writing which
3586    * aren't read since being written.  If we hit the start of the program,
3587    * we assume that there are no outstanding dependencies on entry to the
3588    * program.
3589    */
3590   foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3591      /* If we hit control flow, assume that there *are* outstanding
3592       * dependencies, and force their cleanup before our instruction.
3593       */
3594      if (block->start() == scan_inst && block->num != 0) {
3595         for (int i = 0; i < write_len; i++) {
3596            if (needs_dep[i])
3597               DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3598                               first_write_grf + i);
3599         }
3600         return;
3601      }
3602
3603      /* We insert our reads as late as possible on the assumption that any
3604       * instruction but a MOV that might have left us an outstanding
3605       * dependency has more latency than a MOV.
3606       */
3607      if (scan_inst->dst.file == VGRF) {
3608         for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3609            int reg = scan_inst->dst.nr + i;
3610
3611            if (reg >= first_write_grf &&
3612                reg < first_write_grf + write_len &&
3613                needs_dep[reg - first_write_grf]) {
3614               DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3615               needs_dep[reg - first_write_grf] = false;
3616               if (scan_inst->exec_size == 16)
3617                  needs_dep[reg - first_write_grf + 1] = false;
3618            }
3619         }
3620      }
3621
3622      /* Clear the flag for registers that actually got read (as expected). */
3623      clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3624
3625      /* Continue the loop only if we haven't resolved all the dependencies */
3626      int i;
3627      for (i = 0; i < write_len; i++) {
3628         if (needs_dep[i])
3629            break;
3630      }
3631      if (i == write_len)
3632         return;
3633   }
3634}
3635
3636/**
3637 * Implements this workaround for the original 965:
3638 *
3639 *     "[DevBW, DevCL] Errata: A destination register from a send can not be
3640 *      used as a destination register until after it has been sourced by an
3641 *      instruction with a different destination register.
3642 */
3643void
3644fs_visitor::insert_gfx4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3645{
3646   int write_len = regs_written(inst);
3647   unsigned first_write_grf = inst->dst.nr;
3648   bool needs_dep[BRW_MAX_MRF(devinfo->ver)];
3649   assert(write_len < (int)sizeof(needs_dep) - 1);
3650
3651   memset(needs_dep, false, sizeof(needs_dep));
3652   memset(needs_dep, true, write_len);
3653   /* Walk forwards looking for writes to registers we're writing which aren't
3654    * read before being written.
3655    */
3656   foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3657      /* If we hit control flow, force resolve all remaining dependencies. */
3658      if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3659         for (int i = 0; i < write_len; i++) {
3660            if (needs_dep[i])
3661               DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3662                               first_write_grf + i);
3663         }
3664         return;
3665      }
3666
3667      /* Clear the flag for registers that actually got read (as expected). */
3668      clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3669
3670      /* We insert our reads as late as possible since they're reading the
3671       * result of a SEND, which has massive latency.
3672       */
3673      if (scan_inst->dst.file == VGRF &&
3674          scan_inst->dst.nr >= first_write_grf &&
3675          scan_inst->dst.nr < first_write_grf + write_len &&
3676          needs_dep[scan_inst->dst.nr - first_write_grf]) {
3677         DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3678                         scan_inst->dst.nr);
3679         needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3680      }
3681
3682      /* Continue the loop only if we haven't resolved all the dependencies */
3683      int i;
3684      for (i = 0; i < write_len; i++) {
3685         if (needs_dep[i])
3686            break;
3687      }
3688      if (i == write_len)
3689         return;
3690   }
3691}
3692
3693void
3694fs_visitor::insert_gfx4_send_dependency_workarounds()
3695{
3696   if (devinfo->ver != 4 || devinfo->platform == INTEL_PLATFORM_G4X)
3697      return;
3698
3699   bool progress = false;
3700
3701   foreach_block_and_inst(block, fs_inst, inst, cfg) {
3702      if (inst->mlen != 0 && inst->dst.file == VGRF) {
3703         insert_gfx4_pre_send_dependency_workarounds(block, inst);
3704         insert_gfx4_post_send_dependency_workarounds(block, inst);
3705         progress = true;
3706      }
3707   }
3708
3709   if (progress)
3710      invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3711}
3712
3713/**
3714 * Turns the generic expression-style uniform pull constant load instruction
3715 * into a hardware-specific series of instructions for loading a pull
3716 * constant.
3717 *
3718 * The expression style allows the CSE pass before this to optimize out
3719 * repeated loads from the same offset, and gives the pre-register-allocation
3720 * scheduling full flexibility, while the conversion to native instructions
3721 * allows the post-register-allocation scheduler the best information
3722 * possible.
3723 *
3724 * Note that execution masking for setting up pull constant loads is special:
3725 * the channels that need to be written are unrelated to the current execution
3726 * mask, since a later instruction will use one of the result channels as a
3727 * source operand for all 8 or 16 of its channels.
3728 */
3729void
3730fs_visitor::lower_uniform_pull_constant_loads()
3731{
3732   foreach_block_and_inst (block, fs_inst, inst, cfg) {
3733      if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3734         continue;
3735
3736      const fs_reg& surface = inst->src[0];
3737      const fs_reg& offset_B = inst->src[1];
3738      assert(offset_B.file == IMM);
3739
3740      if (devinfo->has_lsc) {
3741         const fs_builder ubld =
3742            fs_builder(this, block, inst).group(8, 0).exec_all();
3743
3744         const fs_reg payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
3745         ubld.MOV(payload, offset_B);
3746
3747         inst->sfid = GFX12_SFID_UGM;
3748         inst->desc = lsc_msg_desc(devinfo, LSC_OP_LOAD,
3749                                   1 /* simd_size */,
3750                                   LSC_ADDR_SURFTYPE_BTI,
3751                                   LSC_ADDR_SIZE_A32,
3752                                   1 /* num_coordinates */,
3753                                   LSC_DATA_SIZE_D32,
3754                                   inst->size_written / 4,
3755                                   true /* transpose */,
3756                                   LSC_CACHE_LOAD_L1STATE_L3MOCS,
3757                                   true /* has_dest */);
3758
3759         fs_reg ex_desc;
3760         if (surface.file == IMM) {
3761            ex_desc = brw_imm_ud(lsc_bti_ex_desc(devinfo, surface.ud));
3762         } else {
3763            /* We only need the first component for the payload so we can use
3764             * one of the other components for the extended descriptor
3765             */
3766            ex_desc = component(payload, 1);
3767            ubld.group(1, 0).SHL(ex_desc, surface, brw_imm_ud(24));
3768         }
3769
3770         /* Update the original instruction. */
3771         inst->opcode = SHADER_OPCODE_SEND;
3772         inst->mlen = lsc_msg_desc_src0_len(devinfo, inst->desc);
3773         inst->ex_mlen = 0;
3774         inst->header_size = 0;
3775         inst->send_has_side_effects = false;
3776         inst->send_is_volatile = true;
3777         inst->exec_size = 1;
3778
3779         /* Finally, the payload */
3780         inst->resize_sources(3);
3781         inst->src[0] = brw_imm_ud(0); /* desc */
3782         inst->src[1] = ex_desc;
3783         inst->src[2] = payload;
3784
3785         invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
3786      } else if (devinfo->ver >= 7) {
3787         const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3788         const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3789
3790         ubld.group(8, 0).MOV(payload,
3791                              retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3792         ubld.group(1, 0).MOV(component(payload, 2),
3793                              brw_imm_ud(offset_B.ud / 16));
3794
3795         inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GFX7;
3796         inst->src[1] = payload;
3797         inst->header_size = 1;
3798         inst->mlen = 1;
3799
3800         invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
3801      } else {
3802         /* Before register allocation, we didn't tell the scheduler about the
3803          * MRF we use.  We know it's safe to use this MRF because nothing
3804          * else does except for register spill/unspill, which generates and
3805          * uses its MRF within a single IR instruction.
3806          */
3807         inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->ver) + 1;
3808         inst->mlen = 1;
3809      }
3810   }
3811}
3812
3813bool
3814fs_visitor::lower_load_payload()
3815{
3816   bool progress = false;
3817
3818   foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3819      if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3820         continue;
3821
3822      assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3823      assert(inst->saturate == false);
3824      fs_reg dst = inst->dst;
3825
3826      /* Get rid of COMPR4.  We'll add it back in if we need it */
3827      if (dst.file == MRF)
3828         dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3829
3830      const fs_builder ibld(this, block, inst);
3831      const fs_builder ubld = ibld.exec_all();
3832
3833      for (uint8_t i = 0; i < inst->header_size;) {
3834         /* Number of header GRFs to initialize at once with a single MOV
3835          * instruction.
3836          */
3837         const unsigned n =
3838            (i + 1 < inst->header_size && inst->src[i].stride == 1 &&
3839             inst->src[i + 1].equals(byte_offset(inst->src[i], REG_SIZE))) ?
3840            2 : 1;
3841
3842         if (inst->src[i].file != BAD_FILE)
3843            ubld.group(8 * n, 0).MOV(retype(dst, BRW_REGISTER_TYPE_UD),
3844                                     retype(inst->src[i], BRW_REGISTER_TYPE_UD));
3845
3846         dst = byte_offset(dst, n * REG_SIZE);
3847         i += n;
3848      }
3849
3850      if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3851          inst->exec_size > 8) {
3852         /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3853          * a straightforward copy.  Instead, the result of the
3854          * LOAD_PAYLOAD is treated as interleaved and the first four
3855          * non-header sources are unpacked as:
3856          *
3857          * m + 0: r0
3858          * m + 1: g0
3859          * m + 2: b0
3860          * m + 3: a0
3861          * m + 4: r1
3862          * m + 5: g1
3863          * m + 6: b1
3864          * m + 7: a1
3865          *
3866          * This is used for gen <= 5 fb writes.
3867          */
3868         assert(inst->exec_size == 16);
3869         assert(inst->header_size + 4 <= inst->sources);
3870         for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3871            if (inst->src[i].file != BAD_FILE) {
3872               if (devinfo->has_compr4) {
3873                  fs_reg compr4_dst = retype(dst, inst->src[i].type);
3874                  compr4_dst.nr |= BRW_MRF_COMPR4;
3875                  ibld.MOV(compr4_dst, inst->src[i]);
3876               } else {
3877                  /* Platform doesn't have COMPR4.  We have to fake it */
3878                  fs_reg mov_dst = retype(dst, inst->src[i].type);
3879                  ibld.quarter(0).MOV(mov_dst, quarter(inst->src[i], 0));
3880                  mov_dst.nr += 4;
3881                  ibld.quarter(1).MOV(mov_dst, quarter(inst->src[i], 1));
3882               }
3883            }
3884
3885            dst.nr++;
3886         }
3887
3888         /* The loop above only ever incremented us through the first set
3889          * of 4 registers.  However, thanks to the magic of COMPR4, we
3890          * actually wrote to the first 8 registers, so we need to take
3891          * that into account now.
3892          */
3893         dst.nr += 4;
3894
3895         /* The COMPR4 code took care of the first 4 sources.  We'll let
3896          * the regular path handle any remaining sources.  Yes, we are
3897          * modifying the instruction but we're about to delete it so
3898          * this really doesn't hurt anything.
3899          */
3900         inst->header_size += 4;
3901      }
3902
3903      for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3904         dst.type = inst->src[i].type;
3905         if (inst->src[i].file != BAD_FILE) {
3906            ibld.MOV(dst, inst->src[i]);
3907         }
3908         dst = offset(dst, ibld, 1);
3909      }
3910
3911      inst->remove(block);
3912      progress = true;
3913   }
3914
3915   if (progress)
3916      invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3917
3918   return progress;
3919}
3920
3921void
3922fs_visitor::lower_mul_dword_inst(fs_inst *inst, bblock_t *block)
3923{
3924   const fs_builder ibld(this, block, inst);
3925
3926   const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3927   if (inst->src[1].file == IMM &&
3928       (( ud && inst->src[1].ud <= UINT16_MAX) ||
3929        (!ud && inst->src[1].d <= INT16_MAX && inst->src[1].d >= INT16_MIN))) {
3930      /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3931       * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3932       * src1 are used.
3933       *
3934       * If multiplying by an immediate value that fits in 16-bits, do a
3935       * single MUL instruction with that value in the proper location.
3936       */
3937      if (devinfo->ver < 7) {
3938         fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8), inst->dst.type);
3939         ibld.MOV(imm, inst->src[1]);
3940         ibld.MUL(inst->dst, imm, inst->src[0]);
3941      } else {
3942         ibld.MUL(inst->dst, inst->src[0],
3943                  ud ? brw_imm_uw(inst->src[1].ud)
3944                     : brw_imm_w(inst->src[1].d));
3945      }
3946   } else {
3947      /* Gen < 8 (and some Gfx8+ low-power parts like Cherryview) cannot
3948       * do 32-bit integer multiplication in one instruction, but instead
3949       * must do a sequence (which actually calculates a 64-bit result):
3950       *
3951       *    mul(8)  acc0<1>D   g3<8,8,1>D      g4<8,8,1>D
3952       *    mach(8) null       g3<8,8,1>D      g4<8,8,1>D
3953       *    mov(8)  g2<1>D     acc0<8,8,1>D
3954       *
3955       * But on Gen > 6, the ability to use second accumulator register
3956       * (acc1) for non-float data types was removed, preventing a simple
3957       * implementation in SIMD16. A 16-channel result can be calculated by
3958       * executing the three instructions twice in SIMD8, once with quarter
3959       * control of 1Q for the first eight channels and again with 2Q for
3960       * the second eight channels.
3961       *
3962       * Which accumulator register is implicitly accessed (by AccWrEnable
3963       * for instance) is determined by the quarter control. Unfortunately
3964       * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3965       * implicit accumulator access by an instruction with 2Q will access
3966       * acc1 regardless of whether the data type is usable in acc1.
3967       *
3968       * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3969       * integer data types.
3970       *
3971       * Since we only want the low 32-bits of the result, we can do two
3972       * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3973       * adjust the high result and add them (like the mach is doing):
3974       *
3975       *    mul(8)  g7<1>D     g3<8,8,1>D      g4.0<8,8,1>UW
3976       *    mul(8)  g8<1>D     g3<8,8,1>D      g4.1<8,8,1>UW
3977       *    shl(8)  g9<1>D     g8<8,8,1>D      16D
3978       *    add(8)  g2<1>D     g7<8,8,1>D      g8<8,8,1>D
3979       *
3980       * We avoid the shl instruction by realizing that we only want to add
3981       * the low 16-bits of the "high" result to the high 16-bits of the
3982       * "low" result and using proper regioning on the add:
3983       *
3984       *    mul(8)  g7<1>D     g3<8,8,1>D      g4.0<16,8,2>UW
3985       *    mul(8)  g8<1>D     g3<8,8,1>D      g4.1<16,8,2>UW
3986       *    add(8)  g7.1<2>UW  g7.1<16,8,2>UW  g8<16,8,2>UW
3987       *
3988       * Since it does not use the (single) accumulator register, we can
3989       * schedule multi-component multiplications much better.
3990       */
3991
3992      bool needs_mov = false;
3993      fs_reg orig_dst = inst->dst;
3994
3995      /* Get a new VGRF for the "low" 32x16-bit multiplication result if
3996       * reusing the original destination is impossible due to hardware
3997       * restrictions, source/destination overlap, or it being the null
3998       * register.
3999       */
4000      fs_reg low = inst->dst;
4001      if (orig_dst.is_null() || orig_dst.file == MRF ||
4002          regions_overlap(inst->dst, inst->size_written,
4003                          inst->src[0], inst->size_read(0)) ||
4004          regions_overlap(inst->dst, inst->size_written,
4005                          inst->src[1], inst->size_read(1)) ||
4006          inst->dst.stride >= 4) {
4007         needs_mov = true;
4008         low = fs_reg(VGRF, alloc.allocate(regs_written(inst)),
4009                      inst->dst.type);
4010      }
4011
4012      /* Get a new VGRF but keep the same stride as inst->dst */
4013      fs_reg high(VGRF, alloc.allocate(regs_written(inst)), inst->dst.type);
4014      high.stride = inst->dst.stride;
4015      high.offset = inst->dst.offset % REG_SIZE;
4016
4017      if (devinfo->ver >= 7) {
4018         /* From Wa_1604601757:
4019          *
4020          * "When multiplying a DW and any lower precision integer, source modifier
4021          *  is not supported."
4022          *
4023          * An unsupported negate modifier on src[1] would ordinarily be
4024          * lowered by the subsequent lower_regioning pass.  In this case that
4025          * pass would spawn another dword multiply.  Instead, lower the
4026          * modifier first.
4027          */
4028         const bool source_mods_unsupported = (devinfo->ver >= 12);
4029
4030         if (inst->src[1].abs || (inst->src[1].negate &&
4031                                  source_mods_unsupported))
4032            lower_src_modifiers(this, block, inst, 1);
4033
4034         if (inst->src[1].file == IMM) {
4035            ibld.MUL(low, inst->src[0],
4036                     brw_imm_uw(inst->src[1].ud & 0xffff));
4037            ibld.MUL(high, inst->src[0],
4038                     brw_imm_uw(inst->src[1].ud >> 16));
4039         } else {
4040            ibld.MUL(low, inst->src[0],
4041                     subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
4042            ibld.MUL(high, inst->src[0],
4043                     subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
4044         }
4045      } else {
4046         if (inst->src[0].abs)
4047            lower_src_modifiers(this, block, inst, 0);
4048
4049         ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
4050                  inst->src[1]);
4051         ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
4052                  inst->src[1]);
4053      }
4054
4055      ibld.ADD(subscript(low, BRW_REGISTER_TYPE_UW, 1),
4056               subscript(low, BRW_REGISTER_TYPE_UW, 1),
4057               subscript(high, BRW_REGISTER_TYPE_UW, 0));
4058
4059      if (needs_mov || inst->conditional_mod)
4060         set_condmod(inst->conditional_mod, ibld.MOV(orig_dst, low));
4061   }
4062}
4063
4064void
4065fs_visitor::lower_mul_qword_inst(fs_inst *inst, bblock_t *block)
4066{
4067   const fs_builder ibld(this, block, inst);
4068
4069   /* Considering two 64-bit integers ab and cd where each letter        ab
4070    * corresponds to 32 bits, we get a 128-bit result WXYZ. We         * cd
4071    * only need to provide the YZ part of the result.               -------
4072    *                                                                    BD
4073    *  Only BD needs to be 64 bits. For AD and BC we only care       +  AD
4074    *  about the lower 32 bits (since they are part of the upper     +  BC
4075    *  32 bits of our result). AC is not needed since it starts      + AC
4076    *  on the 65th bit of the result.                               -------
4077    *                                                                  WXYZ
4078    */
4079   unsigned int q_regs = regs_written(inst);
4080   unsigned int d_regs = (q_regs + 1) / 2;
4081
4082   fs_reg bd(VGRF, alloc.allocate(q_regs), BRW_REGISTER_TYPE_UQ);
4083   fs_reg ad(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4084   fs_reg bc(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4085
4086   /* Here we need the full 64 bit result for 32b * 32b. */
4087   if (devinfo->has_integer_dword_mul) {
4088      ibld.MUL(bd, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4089               subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4090   } else {
4091      fs_reg bd_high(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4092      fs_reg bd_low(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4093      fs_reg acc = retype(brw_acc_reg(inst->exec_size), BRW_REGISTER_TYPE_UD);
4094
4095      fs_inst *mul = ibld.MUL(acc,
4096                            subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4097                            subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
4098      mul->writes_accumulator = true;
4099
4100      ibld.MACH(bd_high, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4101                subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4102      ibld.MOV(bd_low, acc);
4103
4104      ibld.MOV(subscript(bd, BRW_REGISTER_TYPE_UD, 0), bd_low);
4105      ibld.MOV(subscript(bd, BRW_REGISTER_TYPE_UD, 1), bd_high);
4106   }
4107
4108   ibld.MUL(ad, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1),
4109            subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4110   ibld.MUL(bc, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4111            subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 1));
4112
4113   ibld.ADD(ad, ad, bc);
4114   ibld.ADD(subscript(bd, BRW_REGISTER_TYPE_UD, 1),
4115            subscript(bd, BRW_REGISTER_TYPE_UD, 1), ad);
4116
4117   if (devinfo->has_64bit_int) {
4118      ibld.MOV(inst->dst, bd);
4119   } else {
4120      ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
4121               subscript(bd, BRW_REGISTER_TYPE_UD, 0));
4122      ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
4123               subscript(bd, BRW_REGISTER_TYPE_UD, 1));
4124   }
4125}
4126
4127void
4128fs_visitor::lower_mulh_inst(fs_inst *inst, bblock_t *block)
4129{
4130   const fs_builder ibld(this, block, inst);
4131
4132   /* According to the BDW+ BSpec page for the "Multiply Accumulate
4133    * High" instruction:
4134    *
4135    *  "An added preliminary mov is required for source modification on
4136    *   src1:
4137    *      mov (8) r3.0<1>:d -r3<8;8,1>:d
4138    *      mul (8) acc0:d r2.0<8;8,1>:d r3.0<16;8,2>:uw
4139    *      mach (8) r5.0<1>:d r2.0<8;8,1>:d r3.0<8;8,1>:d"
4140    */
4141   if (devinfo->ver >= 8 && (inst->src[1].negate || inst->src[1].abs))
4142      lower_src_modifiers(this, block, inst, 1);
4143
4144   /* Should have been lowered to 8-wide. */
4145   assert(inst->exec_size <= get_lowered_simd_width(compiler, inst));
4146   const fs_reg acc = retype(brw_acc_reg(inst->exec_size), inst->dst.type);
4147   fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
4148   fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
4149
4150   if (devinfo->ver >= 8) {
4151      /* Until Gfx8, integer multiplies read 32-bits from one source,
4152       * and 16-bits from the other, and relying on the MACH instruction
4153       * to generate the high bits of the result.
4154       *
4155       * On Gfx8, the multiply instruction does a full 32x32-bit
4156       * multiply, but in order to do a 64-bit multiply we can simulate
4157       * the previous behavior and then use a MACH instruction.
4158       */
4159      assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
4160             mul->src[1].type == BRW_REGISTER_TYPE_UD);
4161      mul->src[1].type = BRW_REGISTER_TYPE_UW;
4162      mul->src[1].stride *= 2;
4163
4164      if (mul->src[1].file == IMM) {
4165         mul->src[1] = brw_imm_uw(mul->src[1].ud);
4166      }
4167   } else if (devinfo->verx10 == 70 &&
4168              inst->group > 0) {
4169      /* Among other things the quarter control bits influence which
4170       * accumulator register is used by the hardware for instructions
4171       * that access the accumulator implicitly (e.g. MACH).  A
4172       * second-half instruction would normally map to acc1, which
4173       * doesn't exist on Gfx7 and up (the hardware does emulate it for
4174       * floating-point instructions *only* by taking advantage of the
4175       * extra precision of acc0 not normally used for floating point
4176       * arithmetic).
4177       *
4178       * HSW and up are careful enough not to try to access an
4179       * accumulator register that doesn't exist, but on earlier Gfx7
4180       * hardware we need to make sure that the quarter control bits are
4181       * zero to avoid non-deterministic behaviour and emit an extra MOV
4182       * to get the result masked correctly according to the current
4183       * channel enables.
4184       */
4185      mach->group = 0;
4186      mach->force_writemask_all = true;
4187      mach->dst = ibld.vgrf(inst->dst.type);
4188      ibld.MOV(inst->dst, mach->dst);
4189   }
4190}
4191
4192bool
4193fs_visitor::lower_integer_multiplication()
4194{
4195   bool progress = false;
4196
4197   foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4198      if (inst->opcode == BRW_OPCODE_MUL) {
4199         /* If the instruction is already in a form that does not need lowering,
4200          * return early.
4201          */
4202         if (devinfo->ver >= 7) {
4203            if (type_sz(inst->src[1].type) < 4 && type_sz(inst->src[0].type) <= 4)
4204               continue;
4205         } else {
4206            if (type_sz(inst->src[0].type) < 4 && type_sz(inst->src[1].type) <= 4)
4207               continue;
4208         }
4209
4210         if ((inst->dst.type == BRW_REGISTER_TYPE_Q ||
4211              inst->dst.type == BRW_REGISTER_TYPE_UQ) &&
4212             (inst->src[0].type == BRW_REGISTER_TYPE_Q ||
4213              inst->src[0].type == BRW_REGISTER_TYPE_UQ) &&
4214             (inst->src[1].type == BRW_REGISTER_TYPE_Q ||
4215              inst->src[1].type == BRW_REGISTER_TYPE_UQ)) {
4216            lower_mul_qword_inst(inst, block);
4217            inst->remove(block);
4218            progress = true;
4219         } else if (!inst->dst.is_accumulator() &&
4220                    (inst->dst.type == BRW_REGISTER_TYPE_D ||
4221                     inst->dst.type == BRW_REGISTER_TYPE_UD) &&
4222                    (!devinfo->has_integer_dword_mul ||
4223                     devinfo->verx10 >= 125)) {
4224            lower_mul_dword_inst(inst, block);
4225            inst->remove(block);
4226            progress = true;
4227         }
4228      } else if (inst->opcode == SHADER_OPCODE_MULH) {
4229         lower_mulh_inst(inst, block);
4230         inst->remove(block);
4231         progress = true;
4232      }
4233
4234   }
4235
4236   if (progress)
4237      invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
4238
4239   return progress;
4240}
4241
4242bool
4243fs_visitor::lower_minmax()
4244{
4245   assert(devinfo->ver < 6);
4246
4247   bool progress = false;
4248
4249   foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4250      const fs_builder ibld(this, block, inst);
4251
4252      if (inst->opcode == BRW_OPCODE_SEL &&
4253          inst->predicate == BRW_PREDICATE_NONE) {
4254         /* If src1 is an immediate value that is not NaN, then it can't be
4255          * NaN.  In that case, emit CMP because it is much better for cmod
4256          * propagation.  Likewise if src1 is not float.  Gfx4 and Gfx5 don't
4257          * support HF or DF, so it is not necessary to check for those.
4258          */
4259         if (inst->src[1].type != BRW_REGISTER_TYPE_F ||
4260             (inst->src[1].file == IMM && !isnan(inst->src[1].f))) {
4261            ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
4262                     inst->conditional_mod);
4263         } else {
4264            ibld.CMPN(ibld.null_reg_d(), inst->src[0], inst->src[1],
4265                      inst->conditional_mod);
4266         }
4267         inst->predicate = BRW_PREDICATE_NORMAL;
4268         inst->conditional_mod = BRW_CONDITIONAL_NONE;
4269
4270         progress = true;
4271      }
4272   }
4273
4274   if (progress)
4275      invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
4276
4277   return progress;
4278}
4279
4280bool
4281fs_visitor::lower_sub_sat()
4282{
4283   bool progress = false;
4284
4285   foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4286      const fs_builder ibld(this, block, inst);
4287
4288      if (inst->opcode == SHADER_OPCODE_USUB_SAT ||
4289          inst->opcode == SHADER_OPCODE_ISUB_SAT) {
4290         /* The fundamental problem is the hardware performs source negation
4291          * at the bit width of the source.  If the source is 0x80000000D, the
4292          * negation is 0x80000000D.  As a result, subtractSaturate(0,
4293          * 0x80000000) will produce 0x80000000 instead of 0x7fffffff.  There
4294          * are at least three ways to resolve this:
4295          *
4296          * 1. Use the accumulator for the negated source.  The accumulator is
4297          *    33 bits, so our source 0x80000000 is sign-extended to
4298          *    0x1800000000.  The negation of which is 0x080000000.  This
4299          *    doesn't help for 64-bit integers (which are already bigger than
4300          *    33 bits).  There are also only 8 accumulators, so SIMD16 or
4301          *    SIMD32 instructions would have to be split into multiple SIMD8
4302          *    instructions.
4303          *
4304          * 2. Use slightly different math.  For any n-bit value x, we know (x
4305          *    >> 1) != -(x >> 1).  We can use this fact to only do
4306          *    subtractions involving (x >> 1).  subtractSaturate(a, b) ==
4307          *    subtractSaturate(subtractSaturate(a, (b >> 1)), b - (b >> 1)).
4308          *
4309          * 3. For unsigned sources, it is sufficient to replace the
4310          *    subtractSaturate with (a > b) ? a - b : 0.
4311          *
4312          * It may also be possible to use the SUBB instruction.  This
4313          * implicitly writes the accumulator, so it could only be used in the
4314          * same situations as #1 above.  It is further limited by only
4315          * allowing UD sources.
4316          */
4317         if (inst->exec_size == 8 && inst->src[0].type != BRW_REGISTER_TYPE_Q &&
4318             inst->src[0].type != BRW_REGISTER_TYPE_UQ) {
4319            fs_reg acc(ARF, BRW_ARF_ACCUMULATOR, inst->src[1].type);
4320
4321            ibld.MOV(acc, inst->src[1]);
4322            fs_inst *add = ibld.ADD(inst->dst, acc, inst->src[0]);
4323            add->saturate = true;
4324            add->src[0].negate = true;
4325         } else if (inst->opcode == SHADER_OPCODE_ISUB_SAT) {
4326            /* tmp = src1 >> 1;
4327             * dst = add.sat(add.sat(src0, -tmp), -(src1 - tmp));
4328             */
4329            fs_reg tmp1 = ibld.vgrf(inst->src[0].type);
4330            fs_reg tmp2 = ibld.vgrf(inst->src[0].type);
4331            fs_reg tmp3 = ibld.vgrf(inst->src[0].type);
4332            fs_inst *add;
4333
4334            ibld.SHR(tmp1, inst->src[1], brw_imm_d(1));
4335
4336            add = ibld.ADD(tmp2, inst->src[1], tmp1);
4337            add->src[1].negate = true;
4338
4339            add = ibld.ADD(tmp3, inst->src[0], tmp1);
4340            add->src[1].negate = true;
4341            add->saturate = true;
4342
4343            add = ibld.ADD(inst->dst, tmp3, tmp2);
4344            add->src[1].negate = true;
4345            add->saturate = true;
4346         } else {
4347            /* a > b ? a - b : 0 */
4348            ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
4349                     BRW_CONDITIONAL_G);
4350
4351            fs_inst *add = ibld.ADD(inst->dst, inst->src[0], inst->src[1]);
4352            add->src[1].negate = !add->src[1].negate;
4353
4354            ibld.SEL(inst->dst, inst->dst, brw_imm_ud(0))
4355               ->predicate = BRW_PREDICATE_NORMAL;
4356         }
4357
4358         inst->remove(block);
4359         progress = true;
4360      }
4361   }
4362
4363   if (progress)
4364      invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
4365
4366   return progress;
4367}
4368
4369/**
4370 * Get the mask of SIMD channels enabled during dispatch and not yet disabled
4371 * by discard.  Due to the layout of the sample mask in the fragment shader
4372 * thread payload, \p bld is required to have a dispatch_width() not greater
4373 * than 16 for fragment shaders.
4374 */
4375fs_reg
4376brw_sample_mask_reg(const fs_builder &bld)
4377{
4378   const fs_visitor *v = static_cast<const fs_visitor *>(bld.shader);
4379
4380   if (v->stage != MESA_SHADER_FRAGMENT) {
4381      return brw_imm_ud(0xffffffff);
4382   } else if (brw_wm_prog_data(v->stage_prog_data)->uses_kill) {
4383      assert(bld.dispatch_width() <= 16);
4384      return brw_flag_subreg(sample_mask_flag_subreg(v) + bld.group() / 16);
4385   } else {
4386      assert(v->devinfo->ver >= 6 && bld.dispatch_width() <= 16);
4387      return retype(brw_vec1_grf((bld.group() >= 16 ? 2 : 1), 7),
4388                    BRW_REGISTER_TYPE_UW);
4389   }
4390}
4391
4392uint32_t
4393brw_fb_write_msg_control(const fs_inst *inst,
4394                         const struct brw_wm_prog_data *prog_data)
4395{
4396   uint32_t mctl;
4397
4398   if (inst->opcode == FS_OPCODE_REP_FB_WRITE) {
4399      assert(inst->group == 0 && inst->exec_size == 16);
4400      mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
4401   } else if (prog_data->dual_src_blend) {
4402      assert(inst->exec_size == 8);
4403
4404      if (inst->group % 16 == 0)
4405         mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
4406      else if (inst->group % 16 == 8)
4407         mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23;
4408      else
4409         unreachable("Invalid dual-source FB write instruction group");
4410   } else {
4411      assert(inst->group == 0 || (inst->group == 16 && inst->exec_size == 16));
4412
4413      if (inst->exec_size == 16)
4414         mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
4415      else if (inst->exec_size == 8)
4416         mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
4417      else
4418         unreachable("Invalid FB write execution size");
4419   }
4420
4421   return mctl;
4422}
4423
4424 /**
4425 * Predicate the specified instruction on the sample mask.
4426 */
4427void
4428brw_emit_predicate_on_sample_mask(const fs_builder &bld, fs_inst *inst)
4429{
4430   assert(bld.shader->stage == MESA_SHADER_FRAGMENT &&
4431          bld.group() == inst->group &&
4432          bld.dispatch_width() == inst->exec_size);
4433
4434   const fs_visitor *v = static_cast<const fs_visitor *>(bld.shader);
4435   const fs_reg sample_mask = brw_sample_mask_reg(bld);
4436   const unsigned subreg = sample_mask_flag_subreg(v);
4437
4438   if (brw_wm_prog_data(v->stage_prog_data)->uses_kill) {
4439      assert(sample_mask.file == ARF &&
4440             sample_mask.nr == brw_flag_subreg(subreg).nr &&
4441             sample_mask.subnr == brw_flag_subreg(
4442                subreg + inst->group / 16).subnr);
4443   } else {
4444      bld.group(1, 0).exec_all()
4445         .MOV(brw_flag_subreg(subreg + inst->group / 16), sample_mask);
4446   }
4447
4448   if (inst->predicate) {
4449      assert(inst->predicate == BRW_PREDICATE_NORMAL);
4450      assert(!inst->predicate_inverse);
4451      assert(inst->flag_subreg == 0);
4452      /* Combine the sample mask with the existing predicate by using a
4453       * vertical predication mode.
4454       */
4455      inst->predicate = BRW_PREDICATE_ALIGN1_ALLV;
4456   } else {
4457      inst->flag_subreg = subreg;
4458      inst->predicate = BRW_PREDICATE_NORMAL;
4459      inst->predicate_inverse = false;
4460   }
4461}
4462
4463void
4464fs_visitor::emit_is_helper_invocation(fs_reg result)
4465{
4466   /* Unlike the regular gl_HelperInvocation, that is defined at dispatch,
4467    * the helperInvocationEXT() (aka SpvOpIsHelperInvocationEXT) takes into
4468    * consideration demoted invocations.
4469    */
4470   result.type = BRW_REGISTER_TYPE_UD;
4471
4472   bld.MOV(result, brw_imm_ud(0));
4473
4474   /* See brw_sample_mask_reg() for why we split SIMD32 into SIMD16 here. */
4475   unsigned width = bld.dispatch_width();
4476   for (unsigned i = 0; i < DIV_ROUND_UP(width, 16); i++) {
4477      const fs_builder b = bld.group(MIN2(width, 16), i);
4478
4479      fs_inst *mov = b.MOV(offset(result, b, i), brw_imm_ud(~0));
4480
4481      /* The at() ensures that any code emitted to get the predicate happens
4482       * before the mov right above.  This is not an issue elsewhere because
4483       * lowering code already set up the builder this way.
4484       */
4485      brw_emit_predicate_on_sample_mask(b.at(NULL, mov), mov);
4486      mov->predicate_inverse = true;
4487   }
4488}
4489
4490static bool
4491is_mixed_float_with_fp32_dst(const fs_inst *inst)
4492{
4493   /* This opcode sometimes uses :W type on the source even if the operand is
4494    * a :HF, because in gfx7 there is no support for :HF, and thus it uses :W.
4495    */
4496   if (inst->opcode == BRW_OPCODE_F16TO32)
4497      return true;
4498
4499   if (inst->dst.type != BRW_REGISTER_TYPE_F)
4500      return false;
4501
4502   for (int i = 0; i < inst->sources; i++) {
4503      if (inst->src[i].type == BRW_REGISTER_TYPE_HF)
4504         return true;
4505   }
4506
4507   return false;
4508}
4509
4510static bool
4511is_mixed_float_with_packed_fp16_dst(const fs_inst *inst)
4512{
4513   /* This opcode sometimes uses :W type on the destination even if the
4514    * destination is a :HF, because in gfx7 there is no support for :HF, and
4515    * thus it uses :W.
4516    */
4517   if (inst->opcode == BRW_OPCODE_F32TO16 &&
4518       inst->dst.stride == 1)
4519      return true;
4520
4521   if (inst->dst.type != BRW_REGISTER_TYPE_HF ||
4522       inst->dst.stride != 1)
4523      return false;
4524
4525   for (int i = 0; i < inst->sources; i++) {
4526      if (inst->src[i].type == BRW_REGISTER_TYPE_F)
4527         return true;
4528   }
4529
4530   return false;
4531}
4532
4533/**
4534 * Get the closest allowed SIMD width for instruction \p inst accounting for
4535 * some common regioning and execution control restrictions that apply to FPU
4536 * instructions.  These restrictions don't necessarily have any relevance to
4537 * instructions not executed by the FPU pipeline like extended math, control
4538 * flow or send message instructions.
4539 *
4540 * For virtual opcodes it's really up to the instruction -- In some cases
4541 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4542 * instructions) it may simplify virtual instruction lowering if we can
4543 * enforce FPU-like regioning restrictions already on the virtual instruction,
4544 * in other cases (e.g. virtual send-like instructions) this may be
4545 * excessively restrictive.
4546 */
4547static unsigned
4548get_fpu_lowered_simd_width(const struct brw_compiler *compiler,
4549                           const fs_inst *inst)
4550{
4551   const struct intel_device_info *devinfo = compiler->devinfo;
4552
4553   /* Maximum execution size representable in the instruction controls. */
4554   unsigned max_width = MIN2(32, inst->exec_size);
4555
4556   /* According to the PRMs:
4557    *  "A. In Direct Addressing mode, a source cannot span more than 2
4558    *      adjacent GRF registers.
4559    *   B. A destination cannot span more than 2 adjacent GRF registers."
4560    *
4561    * Look for the source or destination with the largest register region
4562    * which is the one that is going to limit the overall execution size of
4563    * the instruction due to this rule.
4564    */
4565   unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4566
4567   for (unsigned i = 0; i < inst->sources; i++)
4568      reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
4569
4570   /* Calculate the maximum execution size of the instruction based on the
4571    * factor by which it goes over the hardware limit of 2 GRFs.
4572    */
4573   if (reg_count > 2)
4574      max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4575
4576   /* According to the IVB PRMs:
4577    *  "When destination spans two registers, the source MUST span two
4578    *   registers. The exception to the above rule:
4579    *
4580    *    - When source is scalar, the source registers are not incremented.
4581    *    - When source is packed integer Word and destination is packed
4582    *      integer DWord, the source register is not incremented but the
4583    *      source sub register is incremented."
4584    *
4585    * The hardware specs from Gfx4 to Gfx7.5 mention similar regioning
4586    * restrictions.  The code below intentionally doesn't check whether the
4587    * destination type is integer because empirically the hardware doesn't
4588    * seem to care what the actual type is as long as it's dword-aligned.
4589    */
4590   if (devinfo->ver < 8) {
4591      for (unsigned i = 0; i < inst->sources; i++) {
4592         /* IVB implements DF scalars as <0;2,1> regions. */
4593         const bool is_scalar_exception = is_uniform(inst->src[i]) &&
4594            (devinfo->platform == INTEL_PLATFORM_HSW || type_sz(inst->src[i].type) != 8);
4595         const bool is_packed_word_exception =
4596            type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4597            type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1;
4598
4599         /* We check size_read(i) against size_written instead of REG_SIZE
4600          * because we want to properly handle SIMD32.  In SIMD32, you can end
4601          * up with writes to 4 registers and a source that reads 2 registers
4602          * and we may still need to lower all the way to SIMD8 in that case.
4603          */
4604         if (inst->size_written > REG_SIZE &&
4605             inst->size_read(i) != 0 &&
4606             inst->size_read(i) < inst->size_written &&
4607             !is_scalar_exception && !is_packed_word_exception) {
4608            const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4609            max_width = MIN2(max_width, inst->exec_size / reg_count);
4610         }
4611      }
4612   }
4613
4614   if (devinfo->ver < 6) {
4615      /* From the G45 PRM, Volume 4 Page 361:
4616       *
4617       *    "Operand Alignment Rule: With the exceptions listed below, a
4618       *     source/destination operand in general should be aligned to even
4619       *     256-bit physical register with a region size equal to two 256-bit
4620       *     physical registers."
4621       *
4622       * Normally we enforce this by allocating virtual registers to the
4623       * even-aligned class.  But we need to handle payload registers.
4624       */
4625      for (unsigned i = 0; i < inst->sources; i++) {
4626         if (inst->src[i].file == FIXED_GRF && (inst->src[i].nr & 1) &&
4627             inst->size_read(i) > REG_SIZE) {
4628            max_width = MIN2(max_width, 8);
4629         }
4630      }
4631   }
4632
4633   /* From the IVB PRMs:
4634    *  "When an instruction is SIMD32, the low 16 bits of the execution mask
4635    *   are applied for both halves of the SIMD32 instruction. If different
4636    *   execution mask channels are required, split the instruction into two
4637    *   SIMD16 instructions."
4638    *
4639    * There is similar text in the HSW PRMs.  Gfx4-6 don't even implement
4640    * 32-wide control flow support in hardware and will behave similarly.
4641    */
4642   if (devinfo->ver < 8 && !inst->force_writemask_all)
4643      max_width = MIN2(max_width, 16);
4644
4645   /* From the IVB PRMs (applies to HSW too):
4646    *  "Instructions with condition modifiers must not use SIMD32."
4647    *
4648    * From the BDW PRMs (applies to later hardware too):
4649    *  "Ternary instruction with condition modifiers must not use SIMD32."
4650    */
4651   if (inst->conditional_mod && (devinfo->ver < 8 || inst->is_3src(compiler)))
4652      max_width = MIN2(max_width, 16);
4653
4654   /* From the IVB PRMs (applies to other devices that don't have the
4655    * intel_device_info::supports_simd16_3src flag set):
4656    *  "In Align16 access mode, SIMD16 is not allowed for DW operations and
4657    *   SIMD8 is not allowed for DF operations."
4658    */
4659   if (inst->is_3src(compiler) && !devinfo->supports_simd16_3src)
4660      max_width = MIN2(max_width, inst->exec_size / reg_count);
4661
4662   /* Pre-Gfx8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4663    * the 8-bit quarter of the execution mask signals specified in the
4664    * instruction control fields) for the second compressed half of any
4665    * single-precision instruction (for double-precision instructions
4666    * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4667    * the EU will apply the wrong execution controls for the second
4668    * sequential GRF write if the number of channels per GRF is not exactly
4669    * eight in single-precision mode (or four in double-float mode).
4670    *
4671    * In this situation we calculate the maximum size of the split
4672    * instructions so they only ever write to a single register.
4673    */
4674   if (devinfo->ver < 8 && inst->size_written > REG_SIZE &&
4675       !inst->force_writemask_all) {
4676      const unsigned channels_per_grf = inst->exec_size /
4677         DIV_ROUND_UP(inst->size_written, REG_SIZE);
4678      const unsigned exec_type_size = get_exec_type_size(inst);
4679      assert(exec_type_size);
4680
4681      /* The hardware shifts exactly 8 channels per compressed half of the
4682       * instruction in single-precision mode and exactly 4 in double-precision.
4683       */
4684      if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4685         max_width = MIN2(max_width, channels_per_grf);
4686
4687      /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT
4688       * because HW applies the same channel enable signals to both halves of
4689       * the compressed instruction which will be just wrong under
4690       * non-uniform control flow.
4691       */
4692      if (devinfo->verx10 == 70 &&
4693          (exec_type_size == 8 || type_sz(inst->dst.type) == 8))
4694         max_width = MIN2(max_width, 4);
4695   }
4696
4697   /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
4698    * Float Operations:
4699    *
4700    *    "No SIMD16 in mixed mode when destination is f32. Instruction
4701    *     execution size must be no more than 8."
4702    *
4703    * FIXME: the simulator doesn't seem to complain if we don't do this and
4704    * empirical testing with existing CTS tests show that they pass just fine
4705    * without implementing this, however, since our interpretation of the PRM
4706    * is that conversion MOVs between HF and F are still mixed-float
4707    * instructions (and therefore subject to this restriction) we decided to
4708    * split them to be safe. Might be useful to do additional investigation to
4709    * lift the restriction if we can ensure that it is safe though, since these
4710    * conversions are common when half-float types are involved since many
4711    * instructions do not support HF types and conversions from/to F are
4712    * required.
4713    */
4714   if (is_mixed_float_with_fp32_dst(inst))
4715      max_width = MIN2(max_width, 8);
4716
4717   /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
4718    * Float Operations:
4719    *
4720    *    "No SIMD16 in mixed mode when destination is packed f16 for both
4721    *     Align1 and Align16."
4722    */
4723   if (is_mixed_float_with_packed_fp16_dst(inst))
4724      max_width = MIN2(max_width, 8);
4725
4726   /* Only power-of-two execution sizes are representable in the instruction
4727    * control fields.
4728    */
4729   return 1 << util_logbase2(max_width);
4730}
4731
4732/**
4733 * Get the maximum allowed SIMD width for instruction \p inst accounting for
4734 * various payload size restrictions that apply to sampler message
4735 * instructions.
4736 *
4737 * This is only intended to provide a maximum theoretical bound for the
4738 * execution size of the message based on the number of argument components
4739 * alone, which in most cases will determine whether the SIMD8 or SIMD16
4740 * variant of the message can be used, though some messages may have
4741 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
4742 * the message length to determine the exact SIMD width and argument count,
4743 * which makes a number of sampler message combinations impossible to
4744 * represent).
4745 */
4746static unsigned
4747get_sampler_lowered_simd_width(const struct intel_device_info *devinfo,
4748                               const fs_inst *inst)
4749{
4750   /* If we have a min_lod parameter on anything other than a simple sample
4751    * message, it will push it over 5 arguments and we have to fall back to
4752    * SIMD8.
4753    */
4754   if (inst->opcode != SHADER_OPCODE_TEX &&
4755       inst->components_read(TEX_LOGICAL_SRC_MIN_LOD))
4756      return 8;
4757
4758   /* Calculate the number of coordinate components that have to be present
4759    * assuming that additional arguments follow the texel coordinates in the
4760    * message payload.  On IVB+ there is no need for padding, on ILK-SNB we
4761    * need to pad to four or three components depending on the message,
4762    * pre-ILK we need to pad to at most three components.
4763    */
4764   const unsigned req_coord_components =
4765      (devinfo->ver >= 7 ||
4766       !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
4767      (devinfo->ver >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
4768                            inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
4769      3;
4770
4771   /* On Gfx9+ the LOD argument is for free if we're able to use the LZ
4772    * variant of the TXL or TXF message.
4773    */
4774   const bool implicit_lod = devinfo->ver >= 9 &&
4775                             (inst->opcode == SHADER_OPCODE_TXL ||
4776                              inst->opcode == SHADER_OPCODE_TXF) &&
4777                             inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
4778
4779   /* Calculate the total number of argument components that need to be passed
4780    * to the sampler unit.
4781    */
4782   const unsigned num_payload_components =
4783      MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
4784           req_coord_components) +
4785      inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
4786      (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
4787      inst->components_read(TEX_LOGICAL_SRC_LOD2) +
4788      inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
4789      (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
4790       inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
4791      inst->components_read(TEX_LOGICAL_SRC_MCS);
4792
4793   /* SIMD16 messages with more than five arguments exceed the maximum message
4794    * size supported by the sampler, regardless of whether a header is
4795    * provided or not.
4796    */
4797   return MIN2(inst->exec_size,
4798               num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
4799}
4800
4801/**
4802 * Get the closest native SIMD width supported by the hardware for instruction
4803 * \p inst.  The instruction will be left untouched by
4804 * fs_visitor::lower_simd_width() if the returned value is equal to the
4805 * original execution size.
4806 */
4807static unsigned
4808get_lowered_simd_width(const struct brw_compiler *compiler,
4809                       const fs_inst *inst)
4810{
4811   const struct intel_device_info *devinfo = compiler->devinfo;
4812
4813   switch (inst->opcode) {
4814   case BRW_OPCODE_MOV:
4815   case BRW_OPCODE_SEL:
4816   case BRW_OPCODE_NOT:
4817   case BRW_OPCODE_AND:
4818   case BRW_OPCODE_OR:
4819   case BRW_OPCODE_XOR:
4820   case BRW_OPCODE_SHR:
4821   case BRW_OPCODE_SHL:
4822   case BRW_OPCODE_ASR:
4823   case BRW_OPCODE_ROR:
4824   case BRW_OPCODE_ROL:
4825   case BRW_OPCODE_CMPN:
4826   case BRW_OPCODE_CSEL:
4827   case BRW_OPCODE_F32TO16:
4828   case BRW_OPCODE_F16TO32:
4829   case BRW_OPCODE_BFREV:
4830   case BRW_OPCODE_BFE:
4831   case BRW_OPCODE_ADD:
4832   case BRW_OPCODE_MUL:
4833   case BRW_OPCODE_AVG:
4834   case BRW_OPCODE_FRC:
4835   case BRW_OPCODE_RNDU:
4836   case BRW_OPCODE_RNDD:
4837   case BRW_OPCODE_RNDE:
4838   case BRW_OPCODE_RNDZ:
4839   case BRW_OPCODE_LZD:
4840   case BRW_OPCODE_FBH:
4841   case BRW_OPCODE_FBL:
4842   case BRW_OPCODE_CBIT:
4843   case BRW_OPCODE_SAD2:
4844   case BRW_OPCODE_MAD:
4845   case BRW_OPCODE_LRP:
4846   case BRW_OPCODE_ADD3:
4847   case FS_OPCODE_PACK:
4848   case SHADER_OPCODE_SEL_EXEC:
4849   case SHADER_OPCODE_CLUSTER_BROADCAST:
4850   case SHADER_OPCODE_MOV_RELOC_IMM:
4851      return get_fpu_lowered_simd_width(compiler, inst);
4852
4853   case BRW_OPCODE_CMP: {
4854      /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
4855       * when the destination is a GRF the dependency-clear bit on the flag
4856       * register is cleared early.
4857       *
4858       * Suggested workarounds are to disable coissuing CMP instructions
4859       * or to split CMP(16) instructions into two CMP(8) instructions.
4860       *
4861       * We choose to split into CMP(8) instructions since disabling
4862       * coissuing would affect CMP instructions not otherwise affected by
4863       * the errata.
4864       */
4865      const unsigned max_width = (devinfo->verx10 == 70 &&
4866                                  !inst->dst.is_null() ? 8 : ~0);
4867      return MIN2(max_width, get_fpu_lowered_simd_width(compiler, inst));
4868   }
4869   case BRW_OPCODE_BFI1:
4870   case BRW_OPCODE_BFI2:
4871      /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
4872       * should
4873       *  "Force BFI instructions to be executed always in SIMD8."
4874       */
4875      return MIN2(devinfo->platform == INTEL_PLATFORM_HSW ? 8 : ~0u,
4876                  get_fpu_lowered_simd_width(compiler, inst));
4877
4878   case BRW_OPCODE_IF:
4879      assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
4880      return inst->exec_size;
4881
4882   case SHADER_OPCODE_RCP:
4883   case SHADER_OPCODE_RSQ:
4884   case SHADER_OPCODE_SQRT:
4885   case SHADER_OPCODE_EXP2:
4886   case SHADER_OPCODE_LOG2:
4887   case SHADER_OPCODE_SIN:
4888   case SHADER_OPCODE_COS: {
4889      /* Unary extended math instructions are limited to SIMD8 on Gfx4 and
4890       * Gfx6. Extended Math Function is limited to SIMD8 with half-float.
4891       */
4892      if (devinfo->ver == 6 || devinfo->verx10 == 40)
4893         return MIN2(8, inst->exec_size);
4894      if (inst->dst.type == BRW_REGISTER_TYPE_HF)
4895         return MIN2(8, inst->exec_size);
4896      return MIN2(16, inst->exec_size);
4897   }
4898
4899   case SHADER_OPCODE_POW: {
4900      /* SIMD16 is only allowed on Gfx7+. Extended Math Function is limited
4901       * to SIMD8 with half-float
4902       */
4903      if (devinfo->ver < 7)
4904         return MIN2(8, inst->exec_size);
4905      if (inst->dst.type == BRW_REGISTER_TYPE_HF)
4906         return MIN2(8, inst->exec_size);
4907      return MIN2(16, inst->exec_size);
4908   }
4909
4910   case SHADER_OPCODE_USUB_SAT:
4911   case SHADER_OPCODE_ISUB_SAT:
4912      return get_fpu_lowered_simd_width(compiler, inst);
4913
4914   case SHADER_OPCODE_INT_QUOTIENT:
4915   case SHADER_OPCODE_INT_REMAINDER:
4916      /* Integer division is limited to SIMD8 on all generations. */
4917      return MIN2(8, inst->exec_size);
4918
4919   case FS_OPCODE_LINTERP:
4920   case SHADER_OPCODE_GET_BUFFER_SIZE:
4921   case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
4922   case FS_OPCODE_PACK_HALF_2x16_SPLIT:
4923   case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
4924   case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
4925   case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
4926      return MIN2(16, inst->exec_size);
4927
4928   case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4929      /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
4930       * message used to implement varying pull constant loads, so expand it
4931       * to SIMD16.  An alternative with longer message payload length but
4932       * shorter return payload would be to use the SIMD8 sampler message that
4933       * takes (header, u, v, r) as parameters instead of (header, u).
4934       */
4935      return (devinfo->ver == 4 ? 16 : MIN2(16, inst->exec_size));
4936
4937   case FS_OPCODE_DDX_COARSE:
4938   case FS_OPCODE_DDX_FINE:
4939   case FS_OPCODE_DDY_COARSE:
4940   case FS_OPCODE_DDY_FINE:
4941      /* The implementation of this virtual opcode may require emitting
4942       * compressed Align16 instructions, which are severely limited on some
4943       * generations.
4944       *
4945       * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
4946       * Region Restrictions):
4947       *
4948       *  "In Align16 access mode, SIMD16 is not allowed for DW operations
4949       *   and SIMD8 is not allowed for DF operations."
4950       *
4951       * In this context, "DW operations" means "operations acting on 32-bit
4952       * values", so it includes operations on floats.
4953       *
4954       * Gfx4 has a similar restriction.  From the i965 PRM, section 11.5.3
4955       * (Instruction Compression -> Rules and Restrictions):
4956       *
4957       *  "A compressed instruction must be in Align1 access mode. Align16
4958       *   mode instructions cannot be compressed."
4959       *
4960       * Similar text exists in the g45 PRM.
4961       *
4962       * Empirically, compressed align16 instructions using odd register
4963       * numbers don't appear to work on Sandybridge either.
4964       */
4965      return (devinfo->ver == 4 || devinfo->ver == 6 ||
4966              (devinfo->verx10 == 70) ?
4967              MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
4968
4969   case SHADER_OPCODE_MULH:
4970      /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4971       * is 8-wide on Gfx7+.
4972       */
4973      return (devinfo->ver >= 7 ? 8 :
4974              get_fpu_lowered_simd_width(compiler, inst));
4975
4976   case FS_OPCODE_FB_WRITE_LOGICAL:
4977      /* Gfx6 doesn't support SIMD16 depth writes but we cannot handle them
4978       * here.
4979       */
4980      assert(devinfo->ver != 6 ||
4981             inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4982             inst->exec_size == 8);
4983      /* Dual-source FB writes are unsupported in SIMD16 mode. */
4984      return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4985              8 : MIN2(16, inst->exec_size));
4986
4987   case FS_OPCODE_FB_READ_LOGICAL:
4988      return MIN2(16, inst->exec_size);
4989
4990   case SHADER_OPCODE_TEX_LOGICAL:
4991   case SHADER_OPCODE_TXF_CMS_LOGICAL:
4992   case SHADER_OPCODE_TXF_UMS_LOGICAL:
4993   case SHADER_OPCODE_TXF_MCS_LOGICAL:
4994   case SHADER_OPCODE_LOD_LOGICAL:
4995   case SHADER_OPCODE_TG4_LOGICAL:
4996   case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4997   case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4998   case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4999      return get_sampler_lowered_simd_width(devinfo, inst);
5000
5001   /* On gfx12 parameters are fixed to 16-bit values and therefore they all
5002    * always fit regardless of the execution size.
5003    */
5004   case SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL:
5005      return MIN2(16, inst->exec_size);
5006
5007   case SHADER_OPCODE_TXD_LOGICAL:
5008      /* TXD is unsupported in SIMD16 mode. */
5009      return 8;
5010
5011   case SHADER_OPCODE_TXL_LOGICAL:
5012   case FS_OPCODE_TXB_LOGICAL:
5013      /* Only one execution size is representable pre-ILK depending on whether
5014       * the shadow reference argument is present.
5015       */
5016      if (devinfo->ver == 4)
5017         return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
5018      else
5019         return get_sampler_lowered_simd_width(devinfo, inst);
5020
5021   case SHADER_OPCODE_TXF_LOGICAL:
5022   case SHADER_OPCODE_TXS_LOGICAL:
5023      /* Gfx4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
5024       * messages.  Use SIMD16 instead.
5025       */
5026      if (devinfo->ver == 4)
5027         return 16;
5028      else
5029         return get_sampler_lowered_simd_width(devinfo, inst);
5030
5031   case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5032   case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5033   case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5034      return 8;
5035
5036   case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5037   case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5038   case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5039   case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5040   case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5041   case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5042   case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
5043   case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
5044      return MIN2(16, inst->exec_size);
5045
5046   case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
5047   case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
5048   case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
5049   case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
5050      return devinfo->ver <= 8 ? 8 : MIN2(16, inst->exec_size);
5051
5052   case SHADER_OPCODE_A64_OWORD_BLOCK_READ_LOGICAL:
5053   case SHADER_OPCODE_A64_UNALIGNED_OWORD_BLOCK_READ_LOGICAL:
5054   case SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL:
5055      assert(inst->exec_size <= 16);
5056      return inst->exec_size;
5057
5058   case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
5059   case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT16_LOGICAL:
5060   case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
5061   case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT16_LOGICAL:
5062   case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT32_LOGICAL:
5063   case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT64_LOGICAL:
5064      return 8;
5065
5066   case SHADER_OPCODE_URB_READ_LOGICAL:
5067   case SHADER_OPCODE_URB_WRITE_LOGICAL:
5068      return MIN2(8, inst->exec_size);
5069
5070   case SHADER_OPCODE_QUAD_SWIZZLE: {
5071      const unsigned swiz = inst->src[1].ud;
5072      return (is_uniform(inst->src[0]) ?
5073                 get_fpu_lowered_simd_width(compiler, inst) :
5074              devinfo->ver < 11 && type_sz(inst->src[0].type) == 4 ? 8 :
5075              swiz == BRW_SWIZZLE_XYXY || swiz == BRW_SWIZZLE_ZWZW ? 4 :
5076              get_fpu_lowered_simd_width(compiler, inst));
5077   }
5078   case SHADER_OPCODE_MOV_INDIRECT: {
5079      /* From IVB and HSW PRMs:
5080       *
5081       * "2.When the destination requires two registers and the sources are
5082       *  indirect, the sources must use 1x1 regioning mode.
5083       *
5084       * In case of DF instructions in HSW/IVB, the exec_size is limited by
5085       * the EU decompression logic not handling VxH indirect addressing
5086       * correctly.
5087       */
5088      const unsigned max_size = (devinfo->ver >= 8 ? 2 : 1) * REG_SIZE;
5089      /* Prior to Broadwell, we only have 8 address subregisters. */
5090      return MIN3(devinfo->ver >= 8 ? 16 : 8,
5091                  max_size / (inst->dst.stride * type_sz(inst->dst.type)),
5092                  inst->exec_size);
5093   }
5094
5095   case SHADER_OPCODE_LOAD_PAYLOAD: {
5096      const unsigned reg_count =
5097         DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
5098
5099      if (reg_count > 2) {
5100         /* Only LOAD_PAYLOAD instructions with per-channel destination region
5101          * can be easily lowered (which excludes headers and heterogeneous
5102          * types).
5103          */
5104         assert(!inst->header_size);
5105         for (unsigned i = 0; i < inst->sources; i++)
5106            assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
5107                   inst->src[i].file == BAD_FILE);
5108
5109         return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
5110      } else {
5111         return inst->exec_size;
5112      }
5113   }
5114   default:
5115      return inst->exec_size;
5116   }
5117}
5118
5119/**
5120 * Return true if splitting out the group of channels of instruction \p inst
5121 * given by lbld.group() requires allocating a temporary for the i-th source
5122 * of the lowered instruction.
5123 */
5124static inline bool
5125needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
5126{
5127   return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
5128            (inst->components_read(i) == 1 &&
5129             lbld.dispatch_width() <= inst->exec_size)) ||
5130          (inst->flags_written(lbld.shader->devinfo) &
5131           flag_mask(inst->src[i], type_sz(inst->src[i].type)));
5132}
5133
5134/**
5135 * Extract the data that would be consumed by the channel group given by
5136 * lbld.group() from the i-th source region of instruction \p inst and return
5137 * it as result in packed form.
5138 */
5139static fs_reg
5140emit_unzip(const fs_builder &lbld, fs_inst *inst, unsigned i)
5141{
5142   assert(lbld.group() >= inst->group);
5143
5144   /* Specified channel group from the source region. */
5145   const fs_reg src = horiz_offset(inst->src[i], lbld.group() - inst->group);
5146
5147   if (needs_src_copy(lbld, inst, i)) {
5148      /* Builder of the right width to perform the copy avoiding uninitialized
5149       * data if the lowered execution size is greater than the original
5150       * execution size of the instruction.
5151       */
5152      const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5153                                              inst->exec_size), 0);
5154      const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
5155
5156      for (unsigned k = 0; k < inst->components_read(i); ++k)
5157         cbld.MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
5158
5159      return tmp;
5160
5161   } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
5162      /* The source is invariant for all dispatch_width-wide groups of the
5163       * original region.
5164       */
5165      return inst->src[i];
5166
5167   } else {
5168      /* We can just point the lowered instruction at the right channel group
5169       * from the original region.
5170       */
5171      return src;
5172   }
5173}
5174
5175/**
5176 * Return true if splitting out the group of channels of instruction \p inst
5177 * given by lbld.group() requires allocating a temporary for the destination
5178 * of the lowered instruction and copying the data back to the original
5179 * destination region.
5180 */
5181static inline bool
5182needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
5183{
5184   /* If the instruction writes more than one component we'll have to shuffle
5185    * the results of multiple lowered instructions in order to make sure that
5186    * they end up arranged correctly in the original destination region.
5187    */
5188   if (inst->size_written > inst->dst.component_size(inst->exec_size))
5189      return true;
5190
5191   /* If the lowered execution size is larger than the original the result of
5192    * the instruction won't fit in the original destination, so we'll have to
5193    * allocate a temporary in any case.
5194    */
5195   if (lbld.dispatch_width() > inst->exec_size)
5196      return true;
5197
5198   for (unsigned i = 0; i < inst->sources; i++) {
5199      /* If we already made a copy of the source for other reasons there won't
5200       * be any overlap with the destination.
5201       */
5202      if (needs_src_copy(lbld, inst, i))
5203         continue;
5204
5205      /* In order to keep the logic simple we emit a copy whenever the
5206       * destination region doesn't exactly match an overlapping source, which
5207       * may point at the source and destination not being aligned group by
5208       * group which could cause one of the lowered instructions to overwrite
5209       * the data read from the same source by other lowered instructions.
5210       */
5211      if (regions_overlap(inst->dst, inst->size_written,
5212                          inst->src[i], inst->size_read(i)) &&
5213          !inst->dst.equals(inst->src[i]))
5214        return true;
5215   }
5216
5217   return false;
5218}
5219
5220/**
5221 * Insert data from a packed temporary into the channel group given by
5222 * lbld.group() of the destination region of instruction \p inst and return
5223 * the temporary as result.  Any copy instructions that are required for
5224 * unzipping the previous value (in the case of partial writes) will be
5225 * inserted using \p lbld_before and any copy instructions required for
5226 * zipping up the destination of \p inst will be inserted using \p lbld_after.
5227 */
5228static fs_reg
5229emit_zip(const fs_builder &lbld_before, const fs_builder &lbld_after,
5230         fs_inst *inst)
5231{
5232   assert(lbld_before.dispatch_width() == lbld_after.dispatch_width());
5233   assert(lbld_before.group() == lbld_after.group());
5234   assert(lbld_after.group() >= inst->group);
5235
5236   /* Specified channel group from the destination region. */
5237   const fs_reg dst = horiz_offset(inst->dst, lbld_after.group() - inst->group);
5238   const unsigned dst_size = inst->size_written /
5239      inst->dst.component_size(inst->exec_size);
5240
5241   if (needs_dst_copy(lbld_after, inst)) {
5242      const fs_reg tmp = lbld_after.vgrf(inst->dst.type, dst_size);
5243
5244      if (inst->predicate) {
5245         /* Handle predication by copying the original contents of
5246          * the destination into the temporary before emitting the
5247          * lowered instruction.
5248          */
5249         const fs_builder gbld_before =
5250            lbld_before.group(MIN2(lbld_before.dispatch_width(),
5251                                   inst->exec_size), 0);
5252         for (unsigned k = 0; k < dst_size; ++k) {
5253            gbld_before.MOV(offset(tmp, lbld_before, k),
5254                            offset(dst, inst->exec_size, k));
5255         }
5256      }
5257
5258      const fs_builder gbld_after =
5259         lbld_after.group(MIN2(lbld_after.dispatch_width(),
5260                               inst->exec_size), 0);
5261      for (unsigned k = 0; k < dst_size; ++k) {
5262         /* Use a builder of the right width to perform the copy avoiding
5263          * uninitialized data if the lowered execution size is greater than
5264          * the original execution size of the instruction.
5265          */
5266         gbld_after.MOV(offset(dst, inst->exec_size, k),
5267                        offset(tmp, lbld_after, k));
5268      }
5269
5270      return tmp;
5271
5272   } else {
5273      /* No need to allocate a temporary for the lowered instruction, just
5274       * take the right group of channels from the original region.
5275       */
5276      return dst;
5277   }
5278}
5279
5280bool
5281fs_visitor::lower_simd_width()
5282{
5283   bool progress = false;
5284
5285   foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5286      const unsigned lower_width = get_lowered_simd_width(compiler, inst);
5287
5288      if (lower_width != inst->exec_size) {
5289         /* Builder matching the original instruction.  We may also need to
5290          * emit an instruction of width larger than the original, set the
5291          * execution size of the builder to the highest of both for now so
5292          * we're sure that both cases can be handled.
5293          */
5294         const unsigned max_width = MAX2(inst->exec_size, lower_width);
5295         const fs_builder ibld = bld.at(block, inst)
5296                                    .exec_all(inst->force_writemask_all)
5297                                    .group(max_width, inst->group / max_width);
5298
5299         /* Split the copies in chunks of the execution width of either the
5300          * original or the lowered instruction, whichever is lower.
5301          */
5302         const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5303         const unsigned dst_size = inst->size_written /
5304            inst->dst.component_size(inst->exec_size);
5305
5306         assert(!inst->writes_accumulator && !inst->mlen);
5307
5308         /* Inserting the zip, unzip, and duplicated instructions in all of
5309          * the right spots is somewhat tricky.  All of the unzip and any
5310          * instructions from the zip which unzip the destination prior to
5311          * writing need to happen before all of the per-group instructions
5312          * and the zip instructions need to happen after.  In order to sort
5313          * this all out, we insert the unzip instructions before \p inst,
5314          * insert the per-group instructions after \p inst (i.e. before
5315          * inst->next), and insert the zip instructions before the
5316          * instruction after \p inst.  Since we are inserting instructions
5317          * after \p inst, inst->next is a moving target and we need to save
5318          * it off here so that we insert the zip instructions in the right
5319          * place.
5320          *
5321          * Since we're inserting split instructions after after_inst, the
5322          * instructions will end up in the reverse order that we insert them.
5323          * However, certain render target writes require that the low group
5324          * instructions come before the high group.  From the Ivy Bridge PRM
5325          * Vol. 4, Pt. 1, Section 3.9.11:
5326          *
5327          *    "If multiple SIMD8 Dual Source messages are delivered by the
5328          *    pixel shader thread, each SIMD8_DUALSRC_LO message must be
5329          *    issued before the SIMD8_DUALSRC_HI message with the same Slot
5330          *    Group Select setting."
5331          *
5332          * And, from Section 3.9.11.1 of the same PRM:
5333          *
5334          *    "When SIMD32 or SIMD16 PS threads send render target writes
5335          *    with multiple SIMD8 and SIMD16 messages, the following must
5336          *    hold:
5337          *
5338          *    All the slots (as described above) must have a corresponding
5339          *    render target write irrespective of the slot's validity. A slot
5340          *    is considered valid when at least one sample is enabled. For
5341          *    example, a SIMD16 PS thread must send two SIMD8 render target
5342          *    writes to cover all the slots.
5343          *
5344          *    PS thread must send SIMD render target write messages with
5345          *    increasing slot numbers. For example, SIMD16 thread has
5346          *    Slot[15:0] and if two SIMD8 render target writes are used, the
5347          *    first SIMD8 render target write must send Slot[7:0] and the
5348          *    next one must send Slot[15:8]."
5349          *
5350          * In order to make low group instructions come before high group
5351          * instructions (this is required for some render target writes), we
5352          * split from the highest group to lowest.
5353          */
5354         exec_node *const after_inst = inst->next;
5355         for (int i = n - 1; i >= 0; i--) {
5356            /* Emit a copy of the original instruction with the lowered width.
5357             * If the EOT flag was set throw it away except for the last
5358             * instruction to avoid killing the thread prematurely.
5359             */
5360            fs_inst split_inst = *inst;
5361            split_inst.exec_size = lower_width;
5362            split_inst.eot = inst->eot && i == int(n - 1);
5363
5364            /* Select the correct channel enables for the i-th group, then
5365             * transform the sources and destination and emit the lowered
5366             * instruction.
5367             */
5368            const fs_builder lbld = ibld.group(lower_width, i);
5369
5370            for (unsigned j = 0; j < inst->sources; j++)
5371               split_inst.src[j] = emit_unzip(lbld.at(block, inst), inst, j);
5372
5373            split_inst.dst = emit_zip(lbld.at(block, inst),
5374                                      lbld.at(block, after_inst), inst);
5375            split_inst.size_written =
5376               split_inst.dst.component_size(lower_width) * dst_size;
5377
5378            lbld.at(block, inst->next).emit(split_inst);
5379         }
5380
5381         inst->remove(block);
5382         progress = true;
5383      }
5384   }
5385
5386   if (progress)
5387      invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
5388
5389   return progress;
5390}
5391
5392/**
5393 * Transform barycentric vectors into the interleaved form expected by the PLN
5394 * instruction and returned by the Gfx7+ PI shared function.
5395 *
5396 * For channels 0-15 in SIMD16 mode they are expected to be laid out as
5397 * follows in the register file:
5398 *
5399 *    rN+0: X[0-7]
5400 *    rN+1: Y[0-7]
5401 *    rN+2: X[8-15]
5402 *    rN+3: Y[8-15]
5403 *
5404 * There is no need to handle SIMD32 here -- This is expected to be run after
5405 * SIMD lowering, since SIMD lowering relies on vectors having the standard
5406 * component layout.
5407 */
5408bool
5409fs_visitor::lower_barycentrics()
5410{
5411   const bool has_interleaved_layout = devinfo->has_pln || devinfo->ver >= 7;
5412   bool progress = false;
5413
5414   if (stage != MESA_SHADER_FRAGMENT || !has_interleaved_layout)
5415      return false;
5416
5417   foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5418      if (inst->exec_size < 16)
5419         continue;
5420
5421      const fs_builder ibld(this, block, inst);
5422      const fs_builder ubld = ibld.exec_all().group(8, 0);
5423
5424      switch (inst->opcode) {
5425      case FS_OPCODE_LINTERP : {
5426         assert(inst->exec_size == 16);
5427         const fs_reg tmp = ibld.vgrf(inst->src[0].type, 2);
5428         fs_reg srcs[4];
5429
5430         for (unsigned i = 0; i < ARRAY_SIZE(srcs); i++)
5431            srcs[i] = horiz_offset(offset(inst->src[0], ibld, i % 2),
5432                                   8 * (i / 2));
5433
5434         ubld.LOAD_PAYLOAD(tmp, srcs, ARRAY_SIZE(srcs), ARRAY_SIZE(srcs));
5435
5436         inst->src[0] = tmp;
5437         progress = true;
5438         break;
5439      }
5440      case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
5441      case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
5442      case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: {
5443         assert(inst->exec_size == 16);
5444         const fs_reg tmp = ibld.vgrf(inst->dst.type, 2);
5445
5446         for (unsigned i = 0; i < 2; i++) {
5447            for (unsigned g = 0; g < inst->exec_size / 8; g++) {
5448               fs_inst *mov = ibld.at(block, inst->next).group(8, g)
5449                                  .MOV(horiz_offset(offset(inst->dst, ibld, i),
5450                                                    8 * g),
5451                                       offset(tmp, ubld, 2 * g + i));
5452               mov->predicate = inst->predicate;
5453               mov->predicate_inverse = inst->predicate_inverse;
5454               mov->flag_subreg = inst->flag_subreg;
5455            }
5456         }
5457
5458         inst->dst = tmp;
5459         progress = true;
5460         break;
5461      }
5462      default:
5463         break;
5464      }
5465   }
5466
5467   if (progress)
5468      invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
5469
5470   return progress;
5471}
5472
5473/**
5474 * Lower a derivative instruction as the floating-point difference of two
5475 * swizzles of the source, specified as \p swz0 and \p swz1.
5476 */
5477static bool
5478lower_derivative(fs_visitor *v, bblock_t *block, fs_inst *inst,
5479                 unsigned swz0, unsigned swz1)
5480{
5481   const fs_builder ibld(v, block, inst);
5482   const fs_reg tmp0 = ibld.vgrf(inst->src[0].type);
5483   const fs_reg tmp1 = ibld.vgrf(inst->src[0].type);
5484
5485   ibld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp0, inst->src[0], brw_imm_ud(swz0));
5486   ibld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp1, inst->src[0], brw_imm_ud(swz1));
5487
5488   inst->resize_sources(2);
5489   inst->src[0] = negate(tmp0);
5490   inst->src[1] = tmp1;
5491   inst->opcode = BRW_OPCODE_ADD;
5492
5493   return true;
5494}
5495
5496/**
5497 * Lower derivative instructions on platforms where codegen cannot implement
5498 * them efficiently (i.e. XeHP).
5499 */
5500bool
5501fs_visitor::lower_derivatives()
5502{
5503   bool progress = false;
5504
5505   if (devinfo->verx10 < 125)
5506      return false;
5507
5508   foreach_block_and_inst(block, fs_inst, inst, cfg) {
5509      if (inst->opcode == FS_OPCODE_DDX_COARSE)
5510         progress |= lower_derivative(this, block, inst,
5511                                      BRW_SWIZZLE_XXXX, BRW_SWIZZLE_YYYY);
5512
5513      else if (inst->opcode == FS_OPCODE_DDX_FINE)
5514         progress |= lower_derivative(this, block, inst,
5515                                      BRW_SWIZZLE_XXZZ, BRW_SWIZZLE_YYWW);
5516
5517      else if (inst->opcode == FS_OPCODE_DDY_COARSE)
5518         progress |= lower_derivative(this, block, inst,
5519                                      BRW_SWIZZLE_XXXX, BRW_SWIZZLE_ZZZZ);
5520
5521      else if (inst->opcode == FS_OPCODE_DDY_FINE)
5522         progress |= lower_derivative(this, block, inst,
5523                                      BRW_SWIZZLE_XYXY, BRW_SWIZZLE_ZWZW);
5524   }
5525
5526   if (progress)
5527      invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
5528
5529   return progress;
5530}
5531
5532bool
5533fs_visitor::lower_find_live_channel()
5534{
5535   bool progress = false;
5536
5537   if (devinfo->ver < 8)
5538      return false;
5539
5540   bool packed_dispatch =
5541      brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data);
5542   bool vmask =
5543      stage == MESA_SHADER_FRAGMENT &&
5544      brw_wm_prog_data(stage_prog_data)->uses_vmask;
5545
5546   foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5547      if (inst->opcode != SHADER_OPCODE_FIND_LIVE_CHANNEL &&
5548          inst->opcode != SHADER_OPCODE_FIND_LAST_LIVE_CHANNEL)
5549         continue;
5550
5551      bool first = inst->opcode == SHADER_OPCODE_FIND_LIVE_CHANNEL;
5552
5553      /* Getting the first active channel index is easy on Gfx8: Just find
5554       * the first bit set in the execution mask.  The register exists on
5555       * HSW already but it reads back as all ones when the current
5556       * instruction has execution masking disabled, so it's kind of
5557       * useless there.
5558       */
5559      fs_reg exec_mask(retype(brw_mask_reg(0), BRW_REGISTER_TYPE_UD));
5560
5561      const fs_builder ubld = bld.at(block, inst).exec_all().group(1, 0);
5562
5563      /* ce0 doesn't consider the thread dispatch mask (DMask or VMask),
5564       * so combine the execution and dispatch masks to obtain the true mask.
5565       *
5566       * If we're looking for the first live channel, and we have packed
5567       * dispatch, we can skip this step, as we know all dispatched channels
5568       * will appear at the front of the mask.
5569       */
5570      if (!(first && packed_dispatch)) {
5571         fs_reg mask = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5572         ubld.emit(SHADER_OPCODE_READ_SR_REG, mask, brw_imm_ud(vmask ? 3 : 2));
5573
5574         /* Quarter control has the effect of magically shifting the value of
5575          * ce0 so you'll get the first/last active channel relative to the
5576          * specified quarter control as result.
5577          */
5578         if (inst->group > 0)
5579            ubld.SHR(mask, mask, brw_imm_ud(ALIGN(inst->group, 8)));
5580
5581         ubld.AND(mask, exec_mask, mask);
5582         exec_mask = mask;
5583      }
5584
5585      if (first) {
5586         ubld.FBL(inst->dst, exec_mask);
5587      } else {
5588         fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 1);
5589         ubld.LZD(tmp, exec_mask);
5590         ubld.ADD(inst->dst, negate(tmp), brw_imm_uw(31));
5591      }
5592
5593      inst->remove(block);
5594      progress = true;
5595   }
5596
5597   if (progress)
5598      invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
5599
5600   return progress;
5601}
5602
5603void
5604fs_visitor::dump_instructions() const
5605{
5606   dump_instructions(NULL);
5607}
5608
5609void
5610fs_visitor::dump_instructions(const char *name) const
5611{
5612   FILE *file = stderr;
5613   if (name && geteuid() != 0) {
5614      file = fopen(name, "w");
5615      if (!file)
5616         file = stderr;
5617   }
5618
5619   if (cfg) {
5620      const register_pressure &rp = regpressure_analysis.require();
5621      unsigned ip = 0, max_pressure = 0;
5622      foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5623         max_pressure = MAX2(max_pressure, rp.regs_live_at_ip[ip]);
5624         fprintf(file, "{%3d} %4d: ", rp.regs_live_at_ip[ip], ip);
5625         dump_instruction(inst, file);
5626         ip++;
5627      }
5628      fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5629   } else {
5630      int ip = 0;
5631      foreach_in_list(backend_instruction, inst, &instructions) {
5632         fprintf(file, "%4d: ", ip++);
5633         dump_instruction(inst, file);
5634      }
5635   }
5636
5637   if (file != stderr) {
5638      fclose(file);
5639   }
5640}
5641
5642void
5643fs_visitor::dump_instruction(const backend_instruction *be_inst) const
5644{
5645   dump_instruction(be_inst, stderr);
5646}
5647
5648void
5649fs_visitor::dump_instruction(const backend_instruction *be_inst, FILE *file) const
5650{
5651   const fs_inst *inst = (const fs_inst *)be_inst;
5652
5653   if (inst->predicate) {
5654      fprintf(file, "(%cf%d.%d) ",
5655              inst->predicate_inverse ? '-' : '+',
5656              inst->flag_subreg / 2,
5657              inst->flag_subreg % 2);
5658   }
5659
5660   fprintf(file, "%s", brw_instruction_name(&compiler->isa, inst->opcode));
5661   if (inst->saturate)
5662      fprintf(file, ".sat");
5663   if (inst->conditional_mod) {
5664      fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5665      if (!inst->predicate &&
5666          (devinfo->ver < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5667                                inst->opcode != BRW_OPCODE_CSEL &&
5668                                inst->opcode != BRW_OPCODE_IF &&
5669                                inst->opcode != BRW_OPCODE_WHILE))) {
5670         fprintf(file, ".f%d.%d", inst->flag_subreg / 2,
5671                 inst->flag_subreg % 2);
5672      }
5673   }
5674   fprintf(file, "(%d) ", inst->exec_size);
5675
5676   if (inst->mlen) {
5677      fprintf(file, "(mlen: %d) ", inst->mlen);
5678   }
5679
5680   if (inst->ex_mlen) {
5681      fprintf(file, "(ex_mlen: %d) ", inst->ex_mlen);
5682   }
5683
5684   if (inst->eot) {
5685      fprintf(file, "(EOT) ");
5686   }
5687
5688   switch (inst->dst.file) {
5689   case VGRF:
5690      fprintf(file, "vgrf%d", inst->dst.nr);
5691      break;
5692   case FIXED_GRF:
5693      fprintf(file, "g%d", inst->dst.nr);
5694      break;
5695   case MRF:
5696      fprintf(file, "m%d", inst->dst.nr);
5697      break;
5698   case BAD_FILE:
5699      fprintf(file, "(null)");
5700      break;
5701   case UNIFORM:
5702      fprintf(file, "***u%d***", inst->dst.nr);
5703      break;
5704   case ATTR:
5705      fprintf(file, "***attr%d***", inst->dst.nr);
5706      break;
5707   case ARF:
5708      switch (inst->dst.nr) {
5709      case BRW_ARF_NULL:
5710         fprintf(file, "null");
5711         break;
5712      case BRW_ARF_ADDRESS:
5713         fprintf(file, "a0.%d", inst->dst.subnr);
5714         break;
5715      case BRW_ARF_ACCUMULATOR:
5716         fprintf(file, "acc%d", inst->dst.subnr);
5717         break;
5718      case BRW_ARF_FLAG:
5719         fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5720         break;
5721      default:
5722         fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5723         break;
5724      }
5725      break;
5726   case IMM:
5727      unreachable("not reached");
5728   }
5729
5730   if (inst->dst.offset ||
5731       (inst->dst.file == VGRF &&
5732        alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
5733      const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
5734      fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
5735              inst->dst.offset % reg_size);
5736   }
5737
5738   if (inst->dst.stride != 1)
5739      fprintf(file, "<%u>", inst->dst.stride);
5740   fprintf(file, ":%s, ", brw_reg_type_to_letters(inst->dst.type));
5741
5742   for (int i = 0; i < inst->sources; i++) {
5743      if (inst->src[i].negate)
5744         fprintf(file, "-");
5745      if (inst->src[i].abs)
5746         fprintf(file, "|");
5747      switch (inst->src[i].file) {
5748      case VGRF:
5749         fprintf(file, "vgrf%d", inst->src[i].nr);
5750         break;
5751      case FIXED_GRF:
5752         fprintf(file, "g%d", inst->src[i].nr);
5753         break;
5754      case MRF:
5755         fprintf(file, "***m%d***", inst->src[i].nr);
5756         break;
5757      case ATTR:
5758         fprintf(file, "attr%d", inst->src[i].nr);
5759         break;
5760      case UNIFORM:
5761         fprintf(file, "u%d", inst->src[i].nr);
5762         break;
5763      case BAD_FILE:
5764         fprintf(file, "(null)");
5765         break;
5766      case IMM:
5767         switch (inst->src[i].type) {
5768         case BRW_REGISTER_TYPE_HF:
5769            fprintf(file, "%-ghf", _mesa_half_to_float(inst->src[i].ud & 0xffff));
5770            break;
5771         case BRW_REGISTER_TYPE_F:
5772            fprintf(file, "%-gf", inst->src[i].f);
5773            break;
5774         case BRW_REGISTER_TYPE_DF:
5775            fprintf(file, "%fdf", inst->src[i].df);
5776            break;
5777         case BRW_REGISTER_TYPE_W:
5778         case BRW_REGISTER_TYPE_D:
5779            fprintf(file, "%dd", inst->src[i].d);
5780            break;
5781         case BRW_REGISTER_TYPE_UW:
5782         case BRW_REGISTER_TYPE_UD:
5783            fprintf(file, "%uu", inst->src[i].ud);
5784            break;
5785         case BRW_REGISTER_TYPE_Q:
5786            fprintf(file, "%" PRId64 "q", inst->src[i].d64);
5787            break;
5788         case BRW_REGISTER_TYPE_UQ:
5789            fprintf(file, "%" PRIu64 "uq", inst->src[i].u64);
5790            break;
5791         case BRW_REGISTER_TYPE_VF:
5792            fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5793                    brw_vf_to_float((inst->src[i].ud >>  0) & 0xff),
5794                    brw_vf_to_float((inst->src[i].ud >>  8) & 0xff),
5795                    brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5796                    brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5797            break;
5798         case BRW_REGISTER_TYPE_V:
5799         case BRW_REGISTER_TYPE_UV:
5800            fprintf(file, "%08x%s", inst->src[i].ud,
5801                    inst->src[i].type == BRW_REGISTER_TYPE_V ? "V" : "UV");
5802            break;
5803         default:
5804            fprintf(file, "???");
5805            break;
5806         }
5807         break;
5808      case ARF:
5809         switch (inst->src[i].nr) {
5810         case BRW_ARF_NULL:
5811            fprintf(file, "null");
5812            break;
5813         case BRW_ARF_ADDRESS:
5814            fprintf(file, "a0.%d", inst->src[i].subnr);
5815            break;
5816         case BRW_ARF_ACCUMULATOR:
5817            fprintf(file, "acc%d", inst->src[i].subnr);
5818            break;
5819         case BRW_ARF_FLAG:
5820            fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5821            break;
5822         default:
5823            fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5824            break;
5825         }
5826         break;
5827      }
5828
5829      if (inst->src[i].offset ||
5830          (inst->src[i].file == VGRF &&
5831           alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
5832         const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
5833         fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
5834                 inst->src[i].offset % reg_size);
5835      }
5836
5837      if (inst->src[i].abs)
5838         fprintf(file, "|");
5839
5840      if (inst->src[i].file != IMM) {
5841         unsigned stride;
5842         if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5843            unsigned hstride = inst->src[i].hstride;
5844            stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5845         } else {
5846            stride = inst->src[i].stride;
5847         }
5848         if (stride != 1)
5849            fprintf(file, "<%u>", stride);
5850
5851         fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
5852      }
5853
5854      if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5855         fprintf(file, ", ");
5856   }
5857
5858   fprintf(file, " ");
5859
5860   if (inst->force_writemask_all)
5861      fprintf(file, "NoMask ");
5862
5863   if (inst->exec_size != dispatch_width)
5864      fprintf(file, "group%d ", inst->group);
5865
5866   fprintf(file, "\n");
5867}
5868
5869void
5870fs_visitor::setup_fs_payload_gfx6()
5871{
5872   assert(stage == MESA_SHADER_FRAGMENT);
5873   struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
5874   const unsigned payload_width = MIN2(16, dispatch_width);
5875   assert(dispatch_width % payload_width == 0);
5876   assert(devinfo->ver >= 6);
5877
5878   /* R0: PS thread payload header. */
5879   payload.num_regs++;
5880
5881   for (unsigned j = 0; j < dispatch_width / payload_width; j++) {
5882      /* R1: masks, pixel X/Y coordinates. */
5883      payload.subspan_coord_reg[j] = payload.num_regs++;
5884   }
5885
5886   for (unsigned j = 0; j < dispatch_width / payload_width; j++) {
5887      /* R3-26: barycentric interpolation coordinates.  These appear in the
5888       * same order that they appear in the brw_barycentric_mode enum.  Each
5889       * set of coordinates occupies 2 registers if dispatch width == 8 and 4
5890       * registers if dispatch width == 16.  Coordinates only appear if they
5891       * were enabled using the "Barycentric Interpolation Mode" bits in
5892       * WM_STATE.
5893       */
5894      for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5895         if (prog_data->barycentric_interp_modes & (1 << i)) {
5896            payload.barycentric_coord_reg[i][j] = payload.num_regs;
5897            payload.num_regs += payload_width / 4;
5898         }
5899      }
5900
5901      /* R27-28: interpolated depth if uses source depth */
5902      if (prog_data->uses_src_depth) {
5903         payload.source_depth_reg[j] = payload.num_regs;
5904         payload.num_regs += payload_width / 8;
5905      }
5906
5907      /* R29-30: interpolated W set if GFX6_WM_USES_SOURCE_W. */
5908      if (prog_data->uses_src_w) {
5909         payload.source_w_reg[j] = payload.num_regs;
5910         payload.num_regs += payload_width / 8;
5911      }
5912
5913      /* R31: MSAA position offsets. */
5914      if (prog_data->uses_pos_offset) {
5915         payload.sample_pos_reg[j] = payload.num_regs;
5916         payload.num_regs++;
5917      }
5918
5919      /* R32-33: MSAA input coverage mask */
5920      if (prog_data->uses_sample_mask) {
5921         assert(devinfo->ver >= 7);
5922         payload.sample_mask_in_reg[j] = payload.num_regs;
5923         payload.num_regs += payload_width / 8;
5924      }
5925
5926      /* R66: Source Depth and/or W Attribute Vertex Deltas */
5927      if (prog_data->uses_depth_w_coefficients) {
5928         payload.depth_w_coef_reg[j] = payload.num_regs;
5929         payload.num_regs++;
5930      }
5931   }
5932
5933   if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5934      source_depth_to_render_target = true;
5935   }
5936}
5937
5938void
5939fs_visitor::setup_vs_payload()
5940{
5941   /* R0: thread header, R1: urb handles */
5942   payload.num_regs = 2;
5943}
5944
5945void
5946fs_visitor::setup_gs_payload()
5947{
5948   assert(stage == MESA_SHADER_GEOMETRY);
5949
5950   struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
5951   struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
5952
5953   /* R0: thread header, R1: output URB handles */
5954   payload.num_regs = 2;
5955
5956   if (gs_prog_data->include_primitive_id) {
5957      /* R2: Primitive ID 0..7 */
5958      payload.num_regs++;
5959   }
5960
5961   /* Always enable VUE handles so we can safely use pull model if needed.
5962    *
5963    * The push model for a GS uses a ton of register space even for trivial
5964    * scenarios with just a few inputs, so just make things easier and a bit
5965    * safer by always having pull model available.
5966    */
5967   gs_prog_data->base.include_vue_handles = true;
5968
5969   /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5970   payload.num_regs += nir->info.gs.vertices_in;
5971
5972   /* Use a maximum of 24 registers for push-model inputs. */
5973   const unsigned max_push_components = 24;
5974
5975   /* If pushing our inputs would take too many registers, reduce the URB read
5976    * length (which is in HWords, or 8 registers), and resort to pulling.
5977    *
5978    * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5979    * have to multiply by VerticesIn to obtain the total storage requirement.
5980    */
5981   if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5982       max_push_components) {
5983      vue_prog_data->urb_read_length =
5984         ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5985   }
5986}
5987
5988void
5989fs_visitor::setup_cs_payload()
5990{
5991   assert(devinfo->ver >= 7);
5992   /* TODO: Fill out uses_btd_stack_ids automatically */
5993   payload.num_regs = 1 + brw_cs_prog_data(prog_data)->uses_btd_stack_ids;
5994}
5995
5996brw::register_pressure::register_pressure(const fs_visitor *v)
5997{
5998   const fs_live_variables &live = v->live_analysis.require();
5999   const unsigned num_instructions = v->cfg->num_blocks ?
6000      v->cfg->blocks[v->cfg->num_blocks - 1]->end_ip + 1 : 0;
6001
6002   regs_live_at_ip = new unsigned[num_instructions]();
6003
6004   for (unsigned reg = 0; reg < v->alloc.count; reg++) {
6005      for (int ip = live.vgrf_start[reg]; ip <= live.vgrf_end[reg]; ip++)
6006         regs_live_at_ip[ip] += v->alloc.sizes[reg];
6007   }
6008}
6009
6010brw::register_pressure::~register_pressure()
6011{
6012   delete[] regs_live_at_ip;
6013}
6014
6015void
6016fs_visitor::invalidate_analysis(brw::analysis_dependency_class c)
6017{
6018   backend_shader::invalidate_analysis(c);
6019   live_analysis.invalidate(c);
6020   regpressure_analysis.invalidate(c);
6021}
6022
6023void
6024fs_visitor::optimize()
6025{
6026   /* Start by validating the shader we currently have. */
6027   validate();
6028
6029   /* bld is the common builder object pointing at the end of the program we
6030    * used to translate it into i965 IR.  For the optimization and lowering
6031    * passes coming next, any code added after the end of the program without
6032    * having explicitly called fs_builder::at() clearly points at a mistake.
6033    * Ideally optimization passes wouldn't be part of the visitor so they
6034    * wouldn't have access to bld at all, but they do, so just in case some
6035    * pass forgets to ask for a location explicitly set it to NULL here to
6036    * make it trip.  The dispatch width is initialized to a bogus value to
6037    * make sure that optimizations set the execution controls explicitly to
6038    * match the code they are manipulating instead of relying on the defaults.
6039    */
6040   bld = fs_builder(this, 64);
6041
6042   assign_constant_locations();
6043   lower_constant_loads();
6044
6045   validate();
6046
6047#define OPT(pass, args...) ({                                           \
6048      pass_num++;                                                       \
6049      bool this_progress = pass(args);                                  \
6050                                                                        \
6051      if (INTEL_DEBUG(DEBUG_OPTIMIZER) && this_progress) {              \
6052         char filename[64];                                             \
6053         snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass,              \
6054                  stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
6055                                                                        \
6056         backend_shader::dump_instructions(filename);                   \
6057      }                                                                 \
6058                                                                        \
6059      validate();                                                       \
6060                                                                        \
6061      progress = progress || this_progress;                             \
6062      this_progress;                                                    \
6063   })
6064
6065   if (INTEL_DEBUG(DEBUG_OPTIMIZER)) {
6066      char filename[64];
6067      snprintf(filename, 64, "%s%d-%s-00-00-start",
6068               stage_abbrev, dispatch_width, nir->info.name);
6069
6070      backend_shader::dump_instructions(filename);
6071   }
6072
6073   bool progress = false;
6074   int iteration = 0;
6075   int pass_num = 0;
6076
6077   OPT(split_virtual_grfs);
6078
6079   /* Before anything else, eliminate dead code.  The results of some NIR
6080    * instructions may effectively be calculated twice.  Once when the
6081    * instruction is encountered, and again when the user of that result is
6082    * encountered.  Wipe those away before algebraic optimizations and
6083    * especially copy propagation can mix things up.
6084    */
6085   OPT(dead_code_eliminate);
6086
6087   OPT(remove_extra_rounding_modes);
6088
6089   do {
6090      progress = false;
6091      pass_num = 0;
6092      iteration++;
6093
6094      OPT(remove_duplicate_mrf_writes);
6095
6096      OPT(opt_algebraic);
6097      OPT(opt_cse);
6098      OPT(opt_copy_propagation);
6099      OPT(opt_predicated_break, this);
6100      OPT(opt_cmod_propagation);
6101      OPT(dead_code_eliminate);
6102      OPT(opt_peephole_sel);
6103      OPT(dead_control_flow_eliminate, this);
6104      OPT(opt_register_renaming);
6105      OPT(opt_saturate_propagation);
6106      OPT(register_coalesce);
6107      OPT(compute_to_mrf);
6108      OPT(eliminate_find_live_channel);
6109
6110      OPT(compact_virtual_grfs);
6111   } while (progress);
6112
6113   progress = false;
6114   pass_num = 0;
6115
6116   if (OPT(lower_pack)) {
6117      OPT(register_coalesce);
6118      OPT(dead_code_eliminate);
6119   }
6120
6121   OPT(lower_simd_width);
6122   OPT(lower_barycentrics);
6123   OPT(lower_logical_sends);
6124
6125   /* After logical SEND lowering. */
6126   OPT(opt_copy_propagation);
6127   OPT(opt_split_sends);
6128   OPT(fixup_nomask_control_flow);
6129
6130   if (progress) {
6131      OPT(opt_copy_propagation);
6132      /* Only run after logical send lowering because it's easier to implement
6133       * in terms of physical sends.
6134       */
6135      if (OPT(opt_zero_samples))
6136         OPT(opt_copy_propagation);
6137      /* Run after logical send lowering to give it a chance to CSE the
6138       * LOAD_PAYLOAD instructions created to construct the payloads of
6139       * e.g. texturing messages in cases where it wasn't possible to CSE the
6140       * whole logical instruction.
6141       */
6142      OPT(opt_cse);
6143      OPT(register_coalesce);
6144      OPT(compute_to_mrf);
6145      OPT(dead_code_eliminate);
6146      OPT(remove_duplicate_mrf_writes);
6147      OPT(opt_peephole_sel);
6148   }
6149
6150   OPT(opt_redundant_halt);
6151
6152   if (OPT(lower_load_payload)) {
6153      OPT(split_virtual_grfs);
6154
6155      /* Lower 64 bit MOVs generated by payload lowering. */
6156      if (!devinfo->has_64bit_float || !devinfo->has_64bit_int)
6157         OPT(opt_algebraic);
6158
6159      OPT(register_coalesce);
6160      OPT(lower_simd_width);
6161      OPT(compute_to_mrf);
6162      OPT(dead_code_eliminate);
6163   }
6164
6165   OPT(opt_combine_constants);
6166   if (OPT(lower_integer_multiplication)) {
6167      /* If lower_integer_multiplication made progress, it may have produced
6168       * some 32x32-bit MULs in the process of lowering 64-bit MULs.  Run it
6169       * one more time to clean those up if they exist.
6170       */
6171      OPT(lower_integer_multiplication);
6172   }
6173   OPT(lower_sub_sat);
6174
6175   if (devinfo->ver <= 5 && OPT(lower_minmax)) {
6176      OPT(opt_cmod_propagation);
6177      OPT(opt_cse);
6178      OPT(opt_copy_propagation);
6179      OPT(dead_code_eliminate);
6180   }
6181
6182   progress = false;
6183   OPT(lower_derivatives);
6184   OPT(lower_regioning);
6185   if (progress) {
6186      OPT(opt_copy_propagation);
6187      OPT(dead_code_eliminate);
6188      OPT(lower_simd_width);
6189   }
6190
6191   OPT(fixup_sends_duplicate_payload);
6192
6193   lower_uniform_pull_constant_loads();
6194
6195   lower_find_live_channel();
6196
6197   validate();
6198}
6199
6200/**
6201 * From the Skylake PRM Vol. 2a docs for sends:
6202 *
6203 *    "It is required that the second block of GRFs does not overlap with the
6204 *    first block."
6205 *
6206 * There are plenty of cases where we may accidentally violate this due to
6207 * having, for instance, both sources be the constant 0.  This little pass
6208 * just adds a new vgrf for the second payload and copies it over.
6209 */
6210bool
6211fs_visitor::fixup_sends_duplicate_payload()
6212{
6213   bool progress = false;
6214
6215   foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
6216      if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 &&
6217          regions_overlap(inst->src[2], inst->mlen * REG_SIZE,
6218                          inst->src[3], inst->ex_mlen * REG_SIZE)) {
6219         fs_reg tmp = fs_reg(VGRF, alloc.allocate(inst->ex_mlen),
6220                             BRW_REGISTER_TYPE_UD);
6221         /* Sadly, we've lost all notion of channels and bit sizes at this
6222          * point.  Just WE_all it.
6223          */
6224         const fs_builder ibld = bld.at(block, inst).exec_all().group(16, 0);
6225         fs_reg copy_src = retype(inst->src[3], BRW_REGISTER_TYPE_UD);
6226         fs_reg copy_dst = tmp;
6227         for (unsigned i = 0; i < inst->ex_mlen; i += 2) {
6228            if (inst->ex_mlen == i + 1) {
6229               /* Only one register left; do SIMD8 */
6230               ibld.group(8, 0).MOV(copy_dst, copy_src);
6231            } else {
6232               ibld.MOV(copy_dst, copy_src);
6233            }
6234            copy_src = offset(copy_src, ibld, 1);
6235            copy_dst = offset(copy_dst, ibld, 1);
6236         }
6237         inst->src[3] = tmp;
6238         progress = true;
6239      }
6240   }
6241
6242   if (progress)
6243      invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
6244
6245   return progress;
6246}
6247
6248/**
6249 * Three source instruction must have a GRF/MRF destination register.
6250 * ARF NULL is not allowed.  Fix that up by allocating a temporary GRF.
6251 */
6252void
6253fs_visitor::fixup_3src_null_dest()
6254{
6255   bool progress = false;
6256
6257   foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
6258      if (inst->is_3src(compiler) && inst->dst.is_null()) {
6259         inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
6260                            inst->dst.type);
6261         progress = true;
6262      }
6263   }
6264
6265   if (progress)
6266      invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL |
6267                          DEPENDENCY_VARIABLES);
6268}
6269
6270static bool
6271needs_dummy_fence(const intel_device_info *devinfo, fs_inst *inst)
6272{
6273   /* This workaround is about making sure that any instruction writing
6274    * through UGM has completed before we hit EOT.
6275    *
6276    * The workaround talks about UGM writes or atomic message but what is
6277    * important is anything that hasn't completed. Usually any SEND
6278    * instruction that has a destination register will be read by something
6279    * else so we don't need to care about those as they will be synchronized
6280    * by other parts of the shader or optimized away. What is left are
6281    * instructions that don't have a destination register.
6282    */
6283   if (inst->sfid != GFX12_SFID_UGM)
6284      return false;
6285
6286   return inst->dst.file == BAD_FILE;
6287}
6288
6289/* Wa_22013689345
6290 *
6291 * We need to emit UGM fence message before EOT, if shader has any UGM write
6292 * or atomic message.
6293 *
6294 * TODO/FINISHME: According to Curro we could avoid the fence in some cases.
6295 *                We probably need a better criteria in needs_dummy_fence().
6296 */
6297void
6298fs_visitor::emit_dummy_memory_fence_before_eot()
6299{
6300   bool progress = false;
6301   bool has_ugm_write_or_atomic = false;
6302
6303   if (!intel_device_info_is_dg2(devinfo))
6304      return;
6305
6306   foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
6307      if (!inst->eot) {
6308         if (needs_dummy_fence(devinfo, inst))
6309            has_ugm_write_or_atomic = true;
6310         continue;
6311      }
6312
6313      if (!has_ugm_write_or_atomic)
6314         break;
6315
6316      const fs_builder ibld(this, block, inst);
6317      const fs_builder ubld = ibld.exec_all().group(1, 0);
6318
6319      fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
6320      fs_inst *dummy_fence = ubld.emit(SHADER_OPCODE_MEMORY_FENCE,
6321                                       dst, brw_vec8_grf(0, 0),
6322                                       /* commit enable */ brw_imm_ud(1),
6323                                       /* bti */ brw_imm_ud(0));
6324      dummy_fence->sfid = GFX12_SFID_UGM;
6325      dummy_fence->desc = lsc_fence_msg_desc(devinfo, LSC_FENCE_TILE,
6326                                             LSC_FLUSH_TYPE_NONE_6, false);
6327      ubld.emit(FS_OPCODE_SCHEDULING_FENCE, ubld.null_reg_ud(), dst);
6328      progress = true;
6329      /* TODO: remove this break if we ever have shader with multiple EOT. */
6330      break;
6331   }
6332
6333   if (progress) {
6334      invalidate_analysis(DEPENDENCY_INSTRUCTIONS |
6335                          DEPENDENCY_VARIABLES);
6336   }
6337}
6338
6339/**
6340 * Find the first instruction in the program that might start a region of
6341 * divergent control flow due to a HALT jump.  There is no
6342 * find_halt_control_flow_region_end(), the region of divergence extends until
6343 * the only SHADER_OPCODE_HALT_TARGET in the program.
6344 */
6345static const fs_inst *
6346find_halt_control_flow_region_start(const fs_visitor *v)
6347{
6348   foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
6349      if (inst->opcode == BRW_OPCODE_HALT ||
6350          inst->opcode == SHADER_OPCODE_HALT_TARGET)
6351         return inst;
6352   }
6353
6354   return NULL;
6355}
6356
6357/**
6358 * Work around the Gfx12 hardware bug filed as Wa_1407528679.  EU fusion
6359 * can cause a BB to be executed with all channels disabled, which will lead
6360 * to the execution of any NoMask instructions in it, even though any
6361 * execution-masked instructions will be correctly shot down.  This may break
6362 * assumptions of some NoMask SEND messages whose descriptor depends on data
6363 * generated by live invocations of the shader.
6364 *
6365 * This avoids the problem by predicating certain instructions on an ANY
6366 * horizontal predicate that makes sure that their execution is omitted when
6367 * all channels of the program are disabled.
6368 */
6369bool
6370fs_visitor::fixup_nomask_control_flow()
6371{
6372   if (devinfo->ver != 12)
6373      return false;
6374
6375   const brw_predicate pred = dispatch_width > 16 ? BRW_PREDICATE_ALIGN1_ANY32H :
6376                              dispatch_width > 8 ? BRW_PREDICATE_ALIGN1_ANY16H :
6377                              BRW_PREDICATE_ALIGN1_ANY8H;
6378   const fs_inst *halt_start = find_halt_control_flow_region_start(this);
6379   unsigned depth = 0;
6380   bool progress = false;
6381
6382   const fs_live_variables &live_vars = live_analysis.require();
6383
6384   /* Scan the program backwards in order to be able to easily determine
6385    * whether the flag register is live at any point.
6386    */
6387   foreach_block_reverse_safe(block, cfg) {
6388      BITSET_WORD flag_liveout = live_vars.block_data[block->num]
6389                                               .flag_liveout[0];
6390      STATIC_ASSERT(ARRAY_SIZE(live_vars.block_data[0].flag_liveout) == 1);
6391
6392      foreach_inst_in_block_reverse_safe(fs_inst, inst, block) {
6393         if (!inst->predicate && inst->exec_size >= 8)
6394            flag_liveout &= ~inst->flags_written(devinfo);
6395
6396         switch (inst->opcode) {
6397         case BRW_OPCODE_DO:
6398         case BRW_OPCODE_IF:
6399            /* Note that this doesn't handle BRW_OPCODE_HALT since only
6400             * the first one in the program closes the region of divergent
6401             * control flow due to any HALT instructions -- Instead this is
6402             * handled with the halt_start check below.
6403             */
6404            depth--;
6405            break;
6406
6407         case BRW_OPCODE_WHILE:
6408         case BRW_OPCODE_ENDIF:
6409         case SHADER_OPCODE_HALT_TARGET:
6410            depth++;
6411            break;
6412
6413         default:
6414            /* Note that the vast majority of NoMask SEND instructions in the
6415             * program are harmless while executed in a block with all
6416             * channels disabled, since any instructions with side effects we
6417             * could hit here should be execution-masked.
6418             *
6419             * The main concern is NoMask SEND instructions where the message
6420             * descriptor or header depends on data generated by live
6421             * invocations of the shader (RESINFO and
6422             * FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD with a dynamically
6423             * computed surface index seem to be the only examples right now
6424             * where this could easily lead to GPU hangs).  Unfortunately we
6425             * have no straightforward way to detect that currently, so just
6426             * predicate any NoMask SEND instructions we find under control
6427             * flow.
6428             *
6429             * If this proves to have a measurable performance impact it can
6430             * be easily extended with a whitelist of messages we know we can
6431             * safely omit the predication for.
6432             */
6433            if (depth && inst->force_writemask_all &&
6434                is_send(inst) && !inst->predicate) {
6435               /* We need to load the execution mask into the flag register by
6436                * using a builder with channel group matching the whole shader
6437                * (rather than the default which is derived from the original
6438                * instruction), in order to avoid getting a right-shifted
6439                * value.
6440                */
6441               const fs_builder ubld = fs_builder(this, block, inst)
6442                                       .exec_all().group(dispatch_width, 0);
6443               const fs_reg flag = retype(brw_flag_reg(0, 0),
6444                                          BRW_REGISTER_TYPE_UD);
6445
6446               /* Due to the lack of flag register allocation we need to save
6447                * and restore the flag register if it's live.
6448                */
6449               const bool save_flag = flag_liveout &
6450                                      flag_mask(flag, dispatch_width / 8);
6451               const fs_reg tmp = ubld.group(1, 0).vgrf(flag.type);
6452
6453               if (save_flag)
6454                  ubld.group(1, 0).MOV(tmp, flag);
6455
6456               ubld.emit(FS_OPCODE_LOAD_LIVE_CHANNELS);
6457
6458               set_predicate(pred, inst);
6459               inst->flag_subreg = 0;
6460
6461               if (save_flag)
6462                  ubld.group(1, 0).at(block, inst->next).MOV(flag, tmp);
6463
6464               progress = true;
6465            }
6466            break;
6467         }
6468
6469         if (inst == halt_start)
6470            depth--;
6471
6472         flag_liveout |= inst->flags_read(devinfo);
6473      }
6474   }
6475
6476   if (progress)
6477      invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
6478
6479   return progress;
6480}
6481
6482void
6483fs_visitor::allocate_registers(bool allow_spilling)
6484{
6485   bool allocated;
6486
6487   static const enum instruction_scheduler_mode pre_modes[] = {
6488      SCHEDULE_PRE,
6489      SCHEDULE_PRE_NON_LIFO,
6490      SCHEDULE_NONE,
6491      SCHEDULE_PRE_LIFO,
6492   };
6493
6494   static const char *scheduler_mode_name[] = {
6495      "top-down",
6496      "non-lifo",
6497      "none",
6498      "lifo"
6499   };
6500
6501   bool spill_all = allow_spilling && INTEL_DEBUG(DEBUG_SPILL_FS);
6502
6503   /* Before we schedule anything, stash off the instruction order as an array
6504    * of fs_inst *.  This way, we can reset it between scheduling passes to
6505    * prevent dependencies between the different scheduling modes.
6506    */
6507   int num_insts = cfg->last_block()->end_ip + 1;
6508   fs_inst **inst_arr = ralloc_array(mem_ctx, fs_inst *, num_insts);
6509
6510   int ip = 0;
6511   foreach_block_and_inst(block, fs_inst, inst, cfg) {
6512      assert(ip >= block->start_ip && ip <= block->end_ip);
6513      inst_arr[ip++] = inst;
6514   }
6515   assert(ip == num_insts);
6516
6517   /* Try each scheduling heuristic to see if it can successfully register
6518    * allocate without spilling.  They should be ordered by decreasing
6519    * performance but increasing likelihood of allocating.
6520    */
6521   for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
6522      if (i > 0) {
6523         /* Unless we're the first pass, reset back to the original order */
6524         ip = 0;
6525         foreach_block (block, cfg) {
6526            block->instructions.make_empty();
6527
6528            assert(ip == block->start_ip);
6529            for (; ip <= block->end_ip; ip++)
6530               block->instructions.push_tail(inst_arr[ip]);
6531         }
6532         assert(ip == num_insts);
6533
6534         invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
6535      }
6536
6537      if (pre_modes[i] != SCHEDULE_NONE)
6538         schedule_instructions(pre_modes[i]);
6539      this->shader_stats.scheduler_mode = scheduler_mode_name[i];
6540
6541      if (0) {
6542         assign_regs_trivial();
6543         allocated = true;
6544         break;
6545      }
6546
6547      bool can_spill = allow_spilling &&
6548                       (i == ARRAY_SIZE(pre_modes) - 1);
6549
6550      /* We should only spill registers on the last scheduling. */
6551      assert(!spilled_any_registers);
6552
6553      allocated = assign_regs(can_spill, spill_all);
6554      if (allocated)
6555         break;
6556   }
6557
6558   if (!allocated) {
6559      fail("Failure to register allocate.  Reduce number of "
6560           "live scalar values to avoid this.");
6561   } else if (spilled_any_registers) {
6562      brw_shader_perf_log(compiler, log_data,
6563                          "%s shader triggered register spilling.  "
6564                          "Try reducing the number of live scalar "
6565                          "values to improve performance.\n",
6566                          stage_name);
6567   }
6568
6569   /* This must come after all optimization and register allocation, since
6570    * it inserts dead code that happens to have side effects, and it does
6571    * so based on the actual physical registers in use.
6572    */
6573   insert_gfx4_send_dependency_workarounds();
6574
6575   if (failed)
6576      return;
6577
6578   opt_bank_conflicts();
6579
6580   schedule_instructions(SCHEDULE_POST);
6581
6582   if (last_scratch > 0) {
6583      ASSERTED unsigned max_scratch_size = 2 * 1024 * 1024;
6584
6585      /* Take the max of any previously compiled variant of the shader. In the
6586       * case of bindless shaders with return parts, this will also take the
6587       * max of all parts.
6588       */
6589      prog_data->total_scratch = MAX2(brw_get_scratch_size(last_scratch),
6590                                      prog_data->total_scratch);
6591
6592      if (gl_shader_stage_is_compute(stage)) {
6593         if (devinfo->platform == INTEL_PLATFORM_HSW) {
6594            /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
6595             * field documentation, Haswell supports a minimum of 2kB of
6596             * scratch space for compute shaders, unlike every other stage
6597             * and platform.
6598             */
6599            prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
6600         } else if (devinfo->ver <= 7) {
6601            /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
6602             * field documentation, platforms prior to Haswell measure scratch
6603             * size linearly with a range of [1kB, 12kB] and 1kB granularity.
6604             */
6605            prog_data->total_scratch = ALIGN(last_scratch, 1024);
6606            max_scratch_size = 12 * 1024;
6607         }
6608      }
6609
6610      /* We currently only support up to 2MB of scratch space.  If we
6611       * need to support more eventually, the documentation suggests
6612       * that we could allocate a larger buffer, and partition it out
6613       * ourselves.  We'd just have to undo the hardware's address
6614       * calculation by subtracting (FFTID * Per Thread Scratch Space)
6615       * and then add FFTID * (Larger Per Thread Scratch Space).
6616       *
6617       * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
6618       * Thread Group Tracking > Local Memory/Scratch Space.
6619       */
6620      assert(prog_data->total_scratch < max_scratch_size);
6621   }
6622
6623   lower_scoreboard();
6624}
6625
6626bool
6627fs_visitor::run_vs()
6628{
6629   assert(stage == MESA_SHADER_VERTEX);
6630
6631   setup_vs_payload();
6632
6633   emit_nir_code();
6634
6635   if (failed)
6636      return false;
6637
6638   emit_urb_writes();
6639
6640   calculate_cfg();
6641
6642   optimize();
6643
6644   assign_curb_setup();
6645   assign_vs_urb_setup();
6646
6647   fixup_3src_null_dest();
6648   emit_dummy_memory_fence_before_eot();
6649   allocate_registers(true /* allow_spilling */);
6650
6651   return !failed;
6652}
6653
6654void
6655fs_visitor::set_tcs_invocation_id()
6656{
6657   struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
6658   struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
6659
6660   const bool dg2_plus =
6661      devinfo->ver > 12 || intel_device_info_is_dg2(devinfo);
6662   const unsigned instance_id_mask =
6663      dg2_plus ? INTEL_MASK(7, 0) :
6664      (devinfo->ver >= 11) ? INTEL_MASK(22, 16) : INTEL_MASK(23, 17);
6665   const unsigned instance_id_shift =
6666      dg2_plus ? 0 : (devinfo->ver >= 11) ? 16 : 17;
6667
6668   /* Get instance number from g0.2 bits:
6669    *  * 7:0 on DG2+
6670    *  * 22:16 on gfx11+
6671    *  * 23:17 otherwise
6672    */
6673   fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
6674   bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
6675           brw_imm_ud(instance_id_mask));
6676
6677   invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
6678
6679   if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH) {
6680      /* gl_InvocationID is just the thread number */
6681      bld.SHR(invocation_id, t, brw_imm_ud(instance_id_shift));
6682      return;
6683   }
6684
6685   assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH);
6686
6687   fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
6688   fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
6689   bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
6690   bld.MOV(channels_ud, channels_uw);
6691
6692   if (tcs_prog_data->instances == 1) {
6693      invocation_id = channels_ud;
6694   } else {
6695      fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
6696      bld.SHR(instance_times_8, t, brw_imm_ud(instance_id_shift - 3));
6697      bld.ADD(invocation_id, instance_times_8, channels_ud);
6698   }
6699}
6700
6701bool
6702fs_visitor::run_tcs()
6703{
6704   assert(stage == MESA_SHADER_TESS_CTRL);
6705
6706   struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
6707   struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
6708   struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
6709
6710   assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH ||
6711          vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
6712
6713   if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH) {
6714      /* r1-r4 contain the ICP handles. */
6715      payload.num_regs = 5;
6716   } else {
6717      assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
6718      assert(tcs_key->input_vertices > 0);
6719      /* r1 contains output handles, r2 may contain primitive ID, then the
6720       * ICP handles occupy the next 1-32 registers.
6721       */
6722      payload.num_regs = 2 + tcs_prog_data->include_primitive_id +
6723                         tcs_key->input_vertices;
6724   }
6725
6726   /* Initialize gl_InvocationID */
6727   set_tcs_invocation_id();
6728
6729   const bool fix_dispatch_mask =
6730      vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH &&
6731      (nir->info.tess.tcs_vertices_out % 8) != 0;
6732
6733   /* Fix the disptach mask */
6734   if (fix_dispatch_mask) {
6735      bld.CMP(bld.null_reg_ud(), invocation_id,
6736              brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L);
6737      bld.IF(BRW_PREDICATE_NORMAL);
6738   }
6739
6740   emit_nir_code();
6741
6742   if (fix_dispatch_mask) {
6743      bld.emit(BRW_OPCODE_ENDIF);
6744   }
6745
6746   /* Emit EOT write; set TR DS Cache bit */
6747   fs_reg srcs[URB_LOGICAL_NUM_SRCS];
6748   srcs[URB_LOGICAL_SRC_HANDLE] = get_tcs_output_urb_handle();
6749   srcs[URB_LOGICAL_SRC_CHANNEL_MASK] = brw_imm_ud(WRITEMASK_X << 16);
6750   srcs[URB_LOGICAL_SRC_DATA] = brw_imm_ud(0);
6751   fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL,
6752                            reg_undef, srcs, ARRAY_SIZE(srcs));
6753   inst->mlen = 3;
6754   inst->eot = true;
6755
6756   if (failed)
6757      return false;
6758
6759   calculate_cfg();
6760
6761   optimize();
6762
6763   assign_curb_setup();
6764   assign_tcs_urb_setup();
6765
6766   fixup_3src_null_dest();
6767   emit_dummy_memory_fence_before_eot();
6768   allocate_registers(true /* allow_spilling */);
6769
6770   return !failed;
6771}
6772
6773bool
6774fs_visitor::run_tes()
6775{
6776   assert(stage == MESA_SHADER_TESS_EVAL);
6777
6778   /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
6779   payload.num_regs = 5;
6780
6781   emit_nir_code();
6782
6783   if (failed)
6784      return false;
6785
6786   emit_urb_writes();
6787
6788   calculate_cfg();
6789
6790   optimize();
6791
6792   assign_curb_setup();
6793   assign_tes_urb_setup();
6794
6795   fixup_3src_null_dest();
6796   emit_dummy_memory_fence_before_eot();
6797   allocate_registers(true /* allow_spilling */);
6798
6799   return !failed;
6800}
6801
6802bool
6803fs_visitor::run_gs()
6804{
6805   assert(stage == MESA_SHADER_GEOMETRY);
6806
6807   setup_gs_payload();
6808
6809   this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6810
6811   if (gs_compile->control_data_header_size_bits > 0) {
6812      /* Create a VGRF to store accumulated control data bits. */
6813      this->control_data_bits = vgrf(glsl_type::uint_type);
6814
6815      /* If we're outputting more than 32 control data bits, then EmitVertex()
6816       * will set control_data_bits to 0 after emitting the first vertex.
6817       * Otherwise, we need to initialize it to 0 here.
6818       */
6819      if (gs_compile->control_data_header_size_bits <= 32) {
6820         const fs_builder abld = bld.annotate("initialize control data bits");
6821         abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6822      }
6823   }
6824
6825   emit_nir_code();
6826
6827   emit_gs_thread_end();
6828
6829   if (failed)
6830      return false;
6831
6832   calculate_cfg();
6833
6834   optimize();
6835
6836   assign_curb_setup();
6837   assign_gs_urb_setup();
6838
6839   fixup_3src_null_dest();
6840   emit_dummy_memory_fence_before_eot();
6841   allocate_registers(true /* allow_spilling */);
6842
6843   return !failed;
6844}
6845
6846/* From the SKL PRM, Volume 16, Workarounds:
6847 *
6848 *   0877  3D   Pixel Shader Hang possible when pixel shader dispatched with
6849 *              only header phases (R0-R2)
6850 *
6851 *   WA: Enable a non-header phase (e.g. push constant) when dispatch would
6852 *       have been header only.
6853 *
6854 * Instead of enabling push constants one can alternatively enable one of the
6855 * inputs. Here one simply chooses "layer" which shouldn't impose much
6856 * overhead.
6857 */
6858static void
6859gfx9_ps_header_only_workaround(struct brw_wm_prog_data *wm_prog_data)
6860{
6861   if (wm_prog_data->num_varying_inputs)
6862      return;
6863
6864   if (wm_prog_data->base.curb_read_length)
6865      return;
6866
6867   wm_prog_data->urb_setup[VARYING_SLOT_LAYER] = 0;
6868   wm_prog_data->num_varying_inputs = 1;
6869
6870   brw_compute_urb_setup_index(wm_prog_data);
6871}
6872
6873bool
6874fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6875{
6876   struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
6877   brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6878
6879   assert(stage == MESA_SHADER_FRAGMENT);
6880
6881   if (devinfo->ver >= 6)
6882      setup_fs_payload_gfx6();
6883   else
6884      setup_fs_payload_gfx4();
6885
6886   if (0) {
6887      emit_dummy_fs();
6888   } else if (do_rep_send) {
6889      assert(dispatch_width == 16);
6890      emit_repclear_shader();
6891   } else {
6892      if (nir->info.inputs_read > 0 ||
6893          BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FRAG_COORD) ||
6894          (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
6895         if (devinfo->ver < 6)
6896            emit_interpolation_setup_gfx4();
6897         else
6898            emit_interpolation_setup_gfx6();
6899      }
6900
6901      /* We handle discards by keeping track of the still-live pixels in f0.1.
6902       * Initialize it with the dispatched pixels.
6903       */
6904      if (wm_prog_data->uses_kill) {
6905         const unsigned lower_width = MIN2(dispatch_width, 16);
6906         for (unsigned i = 0; i < dispatch_width / lower_width; i++) {
6907            const fs_reg dispatch_mask =
6908               devinfo->ver >= 6 ? brw_vec1_grf((i ? 2 : 1), 7) :
6909               brw_vec1_grf(0, 0);
6910            bld.exec_all().group(1, 0)
6911               .MOV(brw_sample_mask_reg(bld.group(lower_width, i)),
6912                    retype(dispatch_mask, BRW_REGISTER_TYPE_UW));
6913         }
6914      }
6915
6916      if (nir->info.writes_memory)
6917         wm_prog_data->has_side_effects = true;
6918
6919      emit_nir_code();
6920
6921      if (failed)
6922	 return false;
6923
6924      if (wm_key->emit_alpha_test)
6925         emit_alpha_test();
6926
6927      emit_fb_writes();
6928
6929      calculate_cfg();
6930
6931      optimize();
6932
6933      assign_curb_setup();
6934
6935      if (devinfo->ver == 9)
6936         gfx9_ps_header_only_workaround(wm_prog_data);
6937
6938      assign_urb_setup();
6939
6940      fixup_3src_null_dest();
6941      emit_dummy_memory_fence_before_eot();
6942
6943      allocate_registers(allow_spilling);
6944   }
6945
6946   return !failed;
6947}
6948
6949bool
6950fs_visitor::run_cs(bool allow_spilling)
6951{
6952   assert(gl_shader_stage_is_compute(stage));
6953
6954   setup_cs_payload();
6955
6956   if (devinfo->platform == INTEL_PLATFORM_HSW && prog_data->total_shared > 0) {
6957      /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6958      const fs_builder abld = bld.exec_all().group(1, 0);
6959      abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
6960               suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6961   }
6962
6963   emit_nir_code();
6964
6965   if (failed)
6966      return false;
6967
6968   emit_cs_terminate();
6969
6970   calculate_cfg();
6971
6972   optimize();
6973
6974   assign_curb_setup();
6975
6976   fixup_3src_null_dest();
6977   emit_dummy_memory_fence_before_eot();
6978   allocate_registers(allow_spilling);
6979
6980   return !failed;
6981}
6982
6983bool
6984fs_visitor::run_bs(bool allow_spilling)
6985{
6986   assert(stage >= MESA_SHADER_RAYGEN && stage <= MESA_SHADER_CALLABLE);
6987
6988   /* R0: thread header, R1: stack IDs, R2: argument addresses */
6989   payload.num_regs = 3;
6990
6991   emit_nir_code();
6992
6993   if (failed)
6994      return false;
6995
6996   /* TODO(RT): Perhaps rename this? */
6997   emit_cs_terminate();
6998
6999   calculate_cfg();
7000
7001   optimize();
7002
7003   assign_curb_setup();
7004
7005   fixup_3src_null_dest();
7006   emit_dummy_memory_fence_before_eot();
7007   allocate_registers(allow_spilling);
7008
7009   return !failed;
7010}
7011
7012bool
7013fs_visitor::run_task(bool allow_spilling)
7014{
7015   assert(stage == MESA_SHADER_TASK);
7016
7017   /* Task Shader Payloads (SIMD8 and SIMD16)
7018    *
7019    *  R0: Header
7020    *  R1: Local_ID.X[0-7 or 0-15]
7021    *  R2: Inline Parameter
7022    *
7023    * Task Shader Payloads (SIMD32)
7024    *
7025    *  R0: Header
7026    *  R1: Local_ID.X[0-15]
7027    *  R2: Local_ID.X[16-31]
7028    *  R3: Inline Parameter
7029    *
7030    * Local_ID.X values are 16 bits.
7031    *
7032    * Inline parameter is optional but always present since we use it to pass
7033    * the address to descriptors.
7034    */
7035   payload.num_regs = dispatch_width == 32 ? 4 : 3;
7036
7037   emit_nir_code();
7038
7039   if (failed)
7040      return false;
7041
7042   emit_urb_fence();
7043
7044   emit_cs_terminate();
7045
7046   calculate_cfg();
7047
7048   optimize();
7049
7050   assign_curb_setup();
7051
7052   fixup_3src_null_dest();
7053   emit_dummy_memory_fence_before_eot();
7054   allocate_registers(allow_spilling);
7055
7056   return !failed;
7057}
7058
7059bool
7060fs_visitor::run_mesh(bool allow_spilling)
7061{
7062   assert(stage == MESA_SHADER_MESH);
7063
7064   /* Mesh Shader Payloads (SIMD8 and SIMD16)
7065    *
7066    *  R0: Header
7067    *  R1: Local_ID.X[0-7 or 0-15]
7068    *  R2: Inline Parameter
7069    *
7070    * Mesh Shader Payloads (SIMD32)
7071    *
7072    *  R0: Header
7073    *  R1: Local_ID.X[0-15]
7074    *  R2: Local_ID.X[16-31]
7075    *  R3: Inline Parameter
7076    *
7077    * Local_ID.X values are 16 bits.
7078    *
7079    * Inline parameter is optional but always present since we use it to pass
7080    * the address to descriptors.
7081    */
7082   payload.num_regs = dispatch_width == 32 ? 4 : 3;
7083
7084   emit_nir_code();
7085
7086   if (failed)
7087      return false;
7088
7089   emit_urb_fence();
7090
7091   emit_cs_terminate();
7092
7093   calculate_cfg();
7094
7095   optimize();
7096
7097   assign_curb_setup();
7098
7099   fixup_3src_null_dest();
7100   emit_dummy_memory_fence_before_eot();
7101   allocate_registers(allow_spilling);
7102
7103   return !failed;
7104}
7105
7106static bool
7107is_used_in_not_interp_frag_coord(nir_ssa_def *def)
7108{
7109   nir_foreach_use(src, def) {
7110      if (src->parent_instr->type != nir_instr_type_intrinsic)
7111         return true;
7112
7113      nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(src->parent_instr);
7114      if (intrin->intrinsic != nir_intrinsic_load_frag_coord)
7115         return true;
7116   }
7117
7118   nir_foreach_if_use(src, def)
7119      return true;
7120
7121   return false;
7122}
7123
7124/**
7125 * Return a bitfield where bit n is set if barycentric interpolation mode n
7126 * (see enum brw_barycentric_mode) is needed by the fragment shader.
7127 *
7128 * We examine the load_barycentric intrinsics rather than looking at input
7129 * variables so that we catch interpolateAtCentroid() messages too, which
7130 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
7131 */
7132static unsigned
7133brw_compute_barycentric_interp_modes(const struct intel_device_info *devinfo,
7134                                     const nir_shader *shader)
7135{
7136   unsigned barycentric_interp_modes = 0;
7137
7138   nir_foreach_function(f, shader) {
7139      if (!f->impl)
7140         continue;
7141
7142      nir_foreach_block(block, f->impl) {
7143         nir_foreach_instr(instr, block) {
7144            if (instr->type != nir_instr_type_intrinsic)
7145               continue;
7146
7147            nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
7148            switch (intrin->intrinsic) {
7149            case nir_intrinsic_load_barycentric_pixel:
7150            case nir_intrinsic_load_barycentric_centroid:
7151            case nir_intrinsic_load_barycentric_sample:
7152               break;
7153            default:
7154               continue;
7155            }
7156
7157            /* Ignore WPOS; it doesn't require interpolation. */
7158            assert(intrin->dest.is_ssa);
7159            if (!is_used_in_not_interp_frag_coord(&intrin->dest.ssa))
7160               continue;
7161
7162            nir_intrinsic_op bary_op = intrin->intrinsic;
7163            enum brw_barycentric_mode bary =
7164               brw_barycentric_mode(intrin);
7165
7166            barycentric_interp_modes |= 1 << bary;
7167
7168            if (devinfo->needs_unlit_centroid_workaround &&
7169                bary_op == nir_intrinsic_load_barycentric_centroid)
7170               barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
7171         }
7172      }
7173   }
7174
7175   return barycentric_interp_modes;
7176}
7177
7178static void
7179brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
7180                        const nir_shader *shader)
7181{
7182   prog_data->flat_inputs = 0;
7183
7184   nir_foreach_shader_in_variable(var, shader) {
7185      /* flat shading */
7186      if (var->data.interpolation != INTERP_MODE_FLAT)
7187         continue;
7188
7189      if (var->data.per_primitive)
7190         continue;
7191
7192      unsigned slots = glsl_count_attribute_slots(var->type, false);
7193      for (unsigned s = 0; s < slots; s++) {
7194         int input_index = prog_data->urb_setup[var->data.location + s];
7195
7196         if (input_index >= 0)
7197            prog_data->flat_inputs |= 1 << input_index;
7198      }
7199   }
7200}
7201
7202static uint8_t
7203computed_depth_mode(const nir_shader *shader)
7204{
7205   if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
7206      switch (shader->info.fs.depth_layout) {
7207      case FRAG_DEPTH_LAYOUT_NONE:
7208      case FRAG_DEPTH_LAYOUT_ANY:
7209         return BRW_PSCDEPTH_ON;
7210      case FRAG_DEPTH_LAYOUT_GREATER:
7211         return BRW_PSCDEPTH_ON_GE;
7212      case FRAG_DEPTH_LAYOUT_LESS:
7213         return BRW_PSCDEPTH_ON_LE;
7214      case FRAG_DEPTH_LAYOUT_UNCHANGED:
7215         return BRW_PSCDEPTH_OFF;
7216      }
7217   }
7218   return BRW_PSCDEPTH_OFF;
7219}
7220
7221/**
7222 * Move load_interpolated_input with simple (payload-based) barycentric modes
7223 * to the top of the program so we don't emit multiple PLNs for the same input.
7224 *
7225 * This works around CSE not being able to handle non-dominating cases
7226 * such as:
7227 *
7228 *    if (...) {
7229 *       interpolate input
7230 *    } else {
7231 *       interpolate the same exact input
7232 *    }
7233 *
7234 * This should be replaced by global value numbering someday.
7235 */
7236bool
7237brw_nir_move_interpolation_to_top(nir_shader *nir)
7238{
7239   bool progress = false;
7240
7241   nir_foreach_function(f, nir) {
7242      if (!f->impl)
7243         continue;
7244
7245      nir_block *top = nir_start_block(f->impl);
7246      exec_node *cursor_node = NULL;
7247
7248      nir_foreach_block(block, f->impl) {
7249         if (block == top)
7250            continue;
7251
7252         nir_foreach_instr_safe(instr, block) {
7253            if (instr->type != nir_instr_type_intrinsic)
7254               continue;
7255
7256            nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
7257            if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
7258               continue;
7259            nir_intrinsic_instr *bary_intrinsic =
7260               nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
7261            nir_intrinsic_op op = bary_intrinsic->intrinsic;
7262
7263            /* Leave interpolateAtSample/Offset() where they are. */
7264            if (op == nir_intrinsic_load_barycentric_at_sample ||
7265                op == nir_intrinsic_load_barycentric_at_offset)
7266               continue;
7267
7268            nir_instr *move[3] = {
7269               &bary_intrinsic->instr,
7270               intrin->src[1].ssa->parent_instr,
7271               instr
7272            };
7273
7274            for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
7275               if (move[i]->block != top) {
7276                  move[i]->block = top;
7277                  exec_node_remove(&move[i]->node);
7278                  if (cursor_node) {
7279                     exec_node_insert_after(cursor_node, &move[i]->node);
7280                  } else {
7281                     exec_list_push_head(&top->instr_list, &move[i]->node);
7282                  }
7283                  cursor_node = &move[i]->node;
7284                  progress = true;
7285               }
7286            }
7287         }
7288      }
7289      nir_metadata_preserve(f->impl, nir_metadata_block_index |
7290                                     nir_metadata_dominance);
7291   }
7292
7293   return progress;
7294}
7295
7296static void
7297brw_nir_populate_wm_prog_data(const nir_shader *shader,
7298                              const struct intel_device_info *devinfo,
7299                              const struct brw_wm_prog_key *key,
7300                              struct brw_wm_prog_data *prog_data,
7301                              const struct brw_mue_map *mue_map)
7302{
7303   /* key->alpha_test_func means simulating alpha testing via discards,
7304    * so the shader definitely kills pixels.
7305    */
7306   prog_data->uses_kill = shader->info.fs.uses_discard ||
7307                          shader->info.fs.uses_demote ||
7308                          key->emit_alpha_test;
7309   prog_data->uses_omask = !key->ignore_sample_mask_out &&
7310      (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK));
7311   prog_data->color_outputs_written = key->color_outputs_valid;
7312   prog_data->computed_depth_mode = computed_depth_mode(shader);
7313   prog_data->computed_stencil =
7314      shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
7315
7316   prog_data->persample_dispatch =
7317      key->multisample_fbo &&
7318      (key->persample_interp ||
7319       shader->info.fs.uses_sample_shading);
7320
7321   if (devinfo->ver >= 6) {
7322      prog_data->uses_sample_mask =
7323         BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_SAMPLE_MASK_IN);
7324
7325      /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
7326       *
7327       *    "MSDISPMODE_PERSAMPLE is required in order to select
7328       *    POSOFFSET_SAMPLE"
7329       *
7330       * So we can only really get sample positions if we are doing real
7331       * per-sample dispatch.  If we need gl_SamplePosition and we don't have
7332       * persample dispatch, we hard-code it to 0.5.
7333       */
7334      prog_data->uses_pos_offset = prog_data->persample_dispatch &&
7335         (BITSET_TEST(shader->info.system_values_read,
7336                      SYSTEM_VALUE_SAMPLE_POS) ||
7337          BITSET_TEST(shader->info.system_values_read,
7338                      SYSTEM_VALUE_SAMPLE_POS_OR_CENTER));
7339   }
7340
7341   prog_data->has_render_target_reads = shader->info.outputs_read != 0ull;
7342
7343   prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
7344   prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
7345   prog_data->inner_coverage = shader->info.fs.inner_coverage;
7346
7347   prog_data->barycentric_interp_modes =
7348      brw_compute_barycentric_interp_modes(devinfo, shader);
7349   prog_data->uses_nonperspective_interp_modes |=
7350      (prog_data->barycentric_interp_modes &
7351      BRW_BARYCENTRIC_NONPERSPECTIVE_BITS) != 0;
7352
7353   /* You can't be coarse and per-sample */
7354   assert(!key->coarse_pixel || !key->persample_interp);
7355   prog_data->per_coarse_pixel_dispatch =
7356      key->coarse_pixel &&
7357      !shader->info.fs.uses_sample_shading &&
7358      !prog_data->uses_omask &&
7359      !prog_data->uses_sample_mask &&
7360      (prog_data->computed_depth_mode == BRW_PSCDEPTH_OFF) &&
7361      !prog_data->computed_stencil;
7362
7363   /* We choose to always enable VMask prior to XeHP, as it would cause
7364    * us to lose out on the eliminate_find_live_channel() optimization.
7365    */
7366   prog_data->uses_vmask = devinfo->verx10 < 125 ||
7367                           shader->info.fs.needs_quad_helper_invocations ||
7368                           shader->info.fs.needs_all_helper_invocations ||
7369                           prog_data->per_coarse_pixel_dispatch;
7370
7371   prog_data->uses_src_w =
7372      BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD);
7373   prog_data->uses_src_depth =
7374      BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD) &&
7375      !prog_data->per_coarse_pixel_dispatch;
7376   prog_data->uses_depth_w_coefficients =
7377      BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD) &&
7378      prog_data->per_coarse_pixel_dispatch;
7379
7380   calculate_urb_setup(devinfo, key, prog_data, shader, mue_map);
7381   brw_compute_flat_inputs(prog_data, shader);
7382}
7383
7384/**
7385 * Pre-gfx6, the register file of the EUs was shared between threads,
7386 * and each thread used some subset allocated on a 16-register block
7387 * granularity.  The unit states wanted these block counts.
7388 */
7389static inline int
7390brw_register_blocks(int reg_count)
7391{
7392   return ALIGN(reg_count, 16) / 16 - 1;
7393}
7394
7395const unsigned *
7396brw_compile_fs(const struct brw_compiler *compiler,
7397               void *mem_ctx,
7398               struct brw_compile_fs_params *params)
7399{
7400   struct nir_shader *nir = params->nir;
7401   const struct brw_wm_prog_key *key = params->key;
7402   struct brw_wm_prog_data *prog_data = params->prog_data;
7403   bool allow_spilling = params->allow_spilling;
7404   const bool debug_enabled =
7405      INTEL_DEBUG(params->debug_flag ? params->debug_flag : DEBUG_WM);
7406
7407   prog_data->base.stage = MESA_SHADER_FRAGMENT;
7408   prog_data->base.ray_queries = nir->info.ray_queries;
7409   prog_data->base.total_scratch = 0;
7410
7411   const struct intel_device_info *devinfo = compiler->devinfo;
7412   const unsigned max_subgroup_size = compiler->devinfo->ver >= 6 ? 32 : 16;
7413
7414   brw_nir_apply_key(nir, compiler, &key->base, max_subgroup_size, true);
7415   brw_nir_lower_fs_inputs(nir, devinfo, key);
7416   brw_nir_lower_fs_outputs(nir);
7417
7418   if (devinfo->ver < 6)
7419      brw_setup_vue_interpolation(params->vue_map, nir, prog_data);
7420
7421   /* From the SKL PRM, Volume 7, "Alpha Coverage":
7422    *  "If Pixel Shader outputs oMask, AlphaToCoverage is disabled in
7423    *   hardware, regardless of the state setting for this feature."
7424    */
7425   if (devinfo->ver > 6 && key->alpha_to_coverage) {
7426      /* Run constant fold optimization in order to get the correct source
7427       * offset to determine render target 0 store instruction in
7428       * emit_alpha_to_coverage pass.
7429       */
7430      NIR_PASS_V(nir, nir_opt_constant_folding);
7431      NIR_PASS_V(nir, brw_nir_lower_alpha_to_coverage);
7432   }
7433
7434   NIR_PASS_V(nir, brw_nir_move_interpolation_to_top);
7435   brw_postprocess_nir(nir, compiler, true, debug_enabled,
7436                       key->base.robust_buffer_access);
7437
7438   brw_nir_populate_wm_prog_data(nir, compiler->devinfo, key, prog_data,
7439                                 params->mue_map);
7440
7441   fs_visitor *v8 = NULL, *v16 = NULL, *v32 = NULL;
7442   cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL, *simd32_cfg = NULL;
7443   float throughput = 0;
7444   bool has_spilled = false;
7445
7446   v8 = new fs_visitor(compiler, params->log_data, mem_ctx, &key->base,
7447                       &prog_data->base, nir, 8,
7448                       debug_enabled);
7449   if (!v8->run_fs(allow_spilling, false /* do_rep_send */)) {
7450      params->error_str = ralloc_strdup(mem_ctx, v8->fail_msg);
7451      delete v8;
7452      return NULL;
7453   } else if (!INTEL_DEBUG(DEBUG_NO8)) {
7454      simd8_cfg = v8->cfg;
7455      prog_data->base.dispatch_grf_start_reg = v8->payload.num_regs;
7456      prog_data->reg_blocks_8 = brw_register_blocks(v8->grf_used);
7457      const performance &perf = v8->performance_analysis.require();
7458      throughput = MAX2(throughput, perf.throughput);
7459      has_spilled = v8->spilled_any_registers;
7460      allow_spilling = false;
7461   }
7462
7463   /* Limit dispatch width to simd8 with dual source blending on gfx8.
7464    * See: https://gitlab.freedesktop.org/mesa/mesa/-/issues/1917
7465    */
7466   if (devinfo->ver == 8 && prog_data->dual_src_blend &&
7467       !INTEL_DEBUG(DEBUG_NO8)) {
7468      assert(!params->use_rep_send);
7469      v8->limit_dispatch_width(8, "gfx8 workaround: "
7470                               "using SIMD8 when dual src blending.\n");
7471   }
7472
7473   if (key->coarse_pixel) {
7474      if (prog_data->dual_src_blend) {
7475         v8->limit_dispatch_width(8, "SIMD16 coarse pixel shading cannot"
7476                                  " use SIMD8 messages.\n");
7477      }
7478      v8->limit_dispatch_width(16, "SIMD32 not supported with coarse"
7479                               " pixel shading.\n");
7480   }
7481
7482   if (nir->info.ray_queries > 0)
7483      v8->limit_dispatch_width(16, "SIMD32 with ray queries.\n");
7484
7485   if (!has_spilled &&
7486       v8->max_dispatch_width >= 16 &&
7487       (!INTEL_DEBUG(DEBUG_NO16) || params->use_rep_send)) {
7488      /* Try a SIMD16 compile */
7489      v16 = new fs_visitor(compiler, params->log_data, mem_ctx, &key->base,
7490                           &prog_data->base, nir, 16,
7491                           debug_enabled);
7492      v16->import_uniforms(v8);
7493      if (!v16->run_fs(allow_spilling, params->use_rep_send)) {
7494         brw_shader_perf_log(compiler, params->log_data,
7495                             "SIMD16 shader failed to compile: %s\n",
7496                             v16->fail_msg);
7497      } else {
7498         simd16_cfg = v16->cfg;
7499         prog_data->dispatch_grf_start_reg_16 = v16->payload.num_regs;
7500         prog_data->reg_blocks_16 = brw_register_blocks(v16->grf_used);
7501         const performance &perf = v16->performance_analysis.require();
7502         throughput = MAX2(throughput, perf.throughput);
7503         has_spilled = v16->spilled_any_registers;
7504         allow_spilling = false;
7505      }
7506   }
7507
7508   const bool simd16_failed = v16 && !simd16_cfg;
7509
7510   /* Currently, the compiler only supports SIMD32 on SNB+ */
7511   if (!has_spilled &&
7512       v8->max_dispatch_width >= 32 && !params->use_rep_send &&
7513       devinfo->ver >= 6 && !simd16_failed &&
7514       !INTEL_DEBUG(DEBUG_NO32)) {
7515      /* Try a SIMD32 compile */
7516      v32 = new fs_visitor(compiler, params->log_data, mem_ctx, &key->base,
7517                           &prog_data->base, nir, 32,
7518                           debug_enabled);
7519      v32->import_uniforms(v8);
7520      if (!v32->run_fs(allow_spilling, false)) {
7521         brw_shader_perf_log(compiler, params->log_data,
7522                             "SIMD32 shader failed to compile: %s\n",
7523                             v32->fail_msg);
7524      } else {
7525         const performance &perf = v32->performance_analysis.require();
7526
7527         if (!INTEL_DEBUG(DEBUG_DO32) && throughput >= perf.throughput) {
7528            brw_shader_perf_log(compiler, params->log_data,
7529                                "SIMD32 shader inefficient\n");
7530         } else {
7531            simd32_cfg = v32->cfg;
7532            prog_data->dispatch_grf_start_reg_32 = v32->payload.num_regs;
7533            prog_data->reg_blocks_32 = brw_register_blocks(v32->grf_used);
7534            throughput = MAX2(throughput, perf.throughput);
7535         }
7536      }
7537   }
7538
7539   /* When the caller requests a repclear shader, they want SIMD16-only */
7540   if (params->use_rep_send)
7541      simd8_cfg = NULL;
7542
7543   /* Prior to Iron Lake, the PS had a single shader offset with a jump table
7544    * at the top to select the shader.  We've never implemented that.
7545    * Instead, we just give them exactly one shader and we pick the widest one
7546    * available.
7547    */
7548   if (compiler->devinfo->ver < 5) {
7549      if (simd32_cfg || simd16_cfg)
7550         simd8_cfg = NULL;
7551      if (simd32_cfg)
7552         simd16_cfg = NULL;
7553   }
7554
7555   /* If computed depth is enabled SNB only allows SIMD8. */
7556   if (compiler->devinfo->ver == 6 &&
7557       prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF)
7558      assert(simd16_cfg == NULL && simd32_cfg == NULL);
7559
7560   if (compiler->devinfo->ver <= 5 && !simd8_cfg) {
7561      /* Iron lake and earlier only have one Dispatch GRF start field.  Make
7562       * the data available in the base prog data struct for convenience.
7563       */
7564      if (simd16_cfg) {
7565         prog_data->base.dispatch_grf_start_reg =
7566            prog_data->dispatch_grf_start_reg_16;
7567      } else if (simd32_cfg) {
7568         prog_data->base.dispatch_grf_start_reg =
7569            prog_data->dispatch_grf_start_reg_32;
7570      }
7571   }
7572
7573   if (prog_data->persample_dispatch) {
7574      /* Starting with SandyBridge (where we first get MSAA), the different
7575       * pixel dispatch combinations are grouped into classifications A
7576       * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1).  On most hardware
7577       * generations, the only configurations supporting persample dispatch
7578       * are those in which only one dispatch width is enabled.
7579       *
7580       * The Gfx12 hardware spec has a similar dispatch grouping table, but
7581       * the following conflicting restriction applies (from the page on
7582       * "Structure_3DSTATE_PS_BODY"), so we need to keep the SIMD16 shader:
7583       *
7584       *  "SIMD32 may only be enabled if SIMD16 or (dual)SIMD8 is also
7585       *   enabled."
7586       */
7587      if (simd32_cfg || simd16_cfg)
7588         simd8_cfg = NULL;
7589      if (simd32_cfg && devinfo->ver < 12)
7590         simd16_cfg = NULL;
7591   }
7592
7593   fs_generator g(compiler, params->log_data, mem_ctx, &prog_data->base,
7594                  v8->runtime_check_aads_emit, MESA_SHADER_FRAGMENT);
7595
7596   if (unlikely(debug_enabled)) {
7597      g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
7598                                     nir->info.label ?
7599                                        nir->info.label : "unnamed",
7600                                     nir->info.name));
7601   }
7602
7603   struct brw_compile_stats *stats = params->stats;
7604
7605   if (simd8_cfg) {
7606      prog_data->dispatch_8 = true;
7607      g.generate_code(simd8_cfg, 8, v8->shader_stats,
7608                      v8->performance_analysis.require(), stats);
7609      stats = stats ? stats + 1 : NULL;
7610   }
7611
7612   if (simd16_cfg) {
7613      prog_data->dispatch_16 = true;
7614      prog_data->prog_offset_16 = g.generate_code(
7615         simd16_cfg, 16, v16->shader_stats,
7616         v16->performance_analysis.require(), stats);
7617      stats = stats ? stats + 1 : NULL;
7618   }
7619
7620   if (simd32_cfg) {
7621      prog_data->dispatch_32 = true;
7622      prog_data->prog_offset_32 = g.generate_code(
7623         simd32_cfg, 32, v32->shader_stats,
7624         v32->performance_analysis.require(), stats);
7625      stats = stats ? stats + 1 : NULL;
7626   }
7627
7628   g.add_const_data(nir->constant_data, nir->constant_data_size);
7629
7630   delete v8;
7631   delete v16;
7632   delete v32;
7633
7634   return g.get_assembly();
7635}
7636
7637fs_reg
7638fs_visitor::emit_work_group_id_setup()
7639{
7640   assert(gl_shader_stage_uses_workgroup(stage));
7641
7642   fs_reg id = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
7643
7644   struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
7645   bld.MOV(id, r0_1);
7646
7647   if (gl_shader_stage_is_compute(stage)) {
7648      struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
7649      struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
7650      bld.MOV(offset(id, bld, 1), r0_6);
7651      bld.MOV(offset(id, bld, 2), r0_7);
7652   } else {
7653      /* Task/Mesh have a single Workgroup ID dimension in the HW. */
7654      bld.MOV(offset(id, bld, 1), brw_imm_ud(0));
7655      bld.MOV(offset(id, bld, 2), brw_imm_ud(0));
7656   }
7657
7658   return id;
7659}
7660
7661unsigned
7662brw_cs_push_const_total_size(const struct brw_cs_prog_data *cs_prog_data,
7663                             unsigned threads)
7664{
7665   assert(cs_prog_data->push.per_thread.size % REG_SIZE == 0);
7666   assert(cs_prog_data->push.cross_thread.size % REG_SIZE == 0);
7667   return cs_prog_data->push.per_thread.size * threads +
7668          cs_prog_data->push.cross_thread.size;
7669}
7670
7671static void
7672fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
7673{
7674   block->dwords = dwords;
7675   block->regs = DIV_ROUND_UP(dwords, 8);
7676   block->size = block->regs * 32;
7677}
7678
7679static void
7680cs_fill_push_const_info(const struct intel_device_info *devinfo,
7681                        struct brw_cs_prog_data *cs_prog_data)
7682{
7683   const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
7684   int subgroup_id_index = get_subgroup_id_param_index(devinfo, prog_data);
7685   bool cross_thread_supported = devinfo->verx10 >= 75;
7686
7687   /* The thread ID should be stored in the last param dword */
7688   assert(subgroup_id_index == -1 ||
7689          subgroup_id_index == (int)prog_data->nr_params - 1);
7690
7691   unsigned cross_thread_dwords, per_thread_dwords;
7692   if (!cross_thread_supported) {
7693      cross_thread_dwords = 0u;
7694      per_thread_dwords = prog_data->nr_params;
7695   } else if (subgroup_id_index >= 0) {
7696      /* Fill all but the last register with cross-thread payload */
7697      cross_thread_dwords = 8 * (subgroup_id_index / 8);
7698      per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
7699      assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
7700   } else {
7701      /* Fill all data using cross-thread payload */
7702      cross_thread_dwords = prog_data->nr_params;
7703      per_thread_dwords = 0u;
7704   }
7705
7706   fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
7707   fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
7708
7709   assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
7710          cs_prog_data->push.per_thread.size == 0);
7711   assert(cs_prog_data->push.cross_thread.dwords +
7712          cs_prog_data->push.per_thread.dwords ==
7713             prog_data->nr_params);
7714}
7715
7716static bool
7717filter_simd(const nir_instr *instr, const void * /* options */)
7718{
7719   if (instr->type != nir_instr_type_intrinsic)
7720      return false;
7721
7722   switch (nir_instr_as_intrinsic(instr)->intrinsic) {
7723   case nir_intrinsic_load_simd_width_intel:
7724   case nir_intrinsic_load_subgroup_id:
7725      return true;
7726
7727   default:
7728      return false;
7729   }
7730}
7731
7732static nir_ssa_def *
7733lower_simd(nir_builder *b, nir_instr *instr, void *options)
7734{
7735   uintptr_t simd_width = (uintptr_t)options;
7736
7737   switch (nir_instr_as_intrinsic(instr)->intrinsic) {
7738   case nir_intrinsic_load_simd_width_intel:
7739      return nir_imm_int(b, simd_width);
7740
7741   case nir_intrinsic_load_subgroup_id:
7742      /* If the whole workgroup fits in one thread, we can lower subgroup_id
7743       * to a constant zero.
7744       */
7745      if (!b->shader->info.workgroup_size_variable) {
7746         unsigned local_workgroup_size = b->shader->info.workgroup_size[0] *
7747                                         b->shader->info.workgroup_size[1] *
7748                                         b->shader->info.workgroup_size[2];
7749         if (local_workgroup_size <= simd_width)
7750            return nir_imm_int(b, 0);
7751      }
7752      return NULL;
7753
7754   default:
7755      return NULL;
7756   }
7757}
7758
7759bool
7760brw_nir_lower_simd(nir_shader *nir, unsigned dispatch_width)
7761{
7762   return nir_shader_lower_instructions(nir, filter_simd, lower_simd,
7763                                 (void *)(uintptr_t)dispatch_width);
7764}
7765
7766const unsigned *
7767brw_compile_cs(const struct brw_compiler *compiler,
7768               void *mem_ctx,
7769               struct brw_compile_cs_params *params)
7770{
7771   const nir_shader *nir = params->nir;
7772   const struct brw_cs_prog_key *key = params->key;
7773   struct brw_cs_prog_data *prog_data = params->prog_data;
7774
7775   const bool debug_enabled =
7776      INTEL_DEBUG(params->debug_flag ? params->debug_flag : DEBUG_CS);
7777
7778   prog_data->base.stage = MESA_SHADER_COMPUTE;
7779   prog_data->base.total_shared = nir->info.shared_size;
7780   prog_data->base.ray_queries = nir->info.ray_queries;
7781   prog_data->base.total_scratch = 0;
7782
7783   if (!nir->info.workgroup_size_variable) {
7784      prog_data->local_size[0] = nir->info.workgroup_size[0];
7785      prog_data->local_size[1] = nir->info.workgroup_size[1];
7786      prog_data->local_size[2] = nir->info.workgroup_size[2];
7787   }
7788
7789   const unsigned required_dispatch_width =
7790      brw_required_dispatch_width(&nir->info);
7791
7792   fs_visitor *v[3]     = {0};
7793   const char *error[3] = {0};
7794
7795   for (unsigned simd = 0; simd < 3; simd++) {
7796      if (!brw_simd_should_compile(mem_ctx, simd, compiler->devinfo, prog_data,
7797                                   required_dispatch_width, &error[simd]))
7798         continue;
7799
7800      const unsigned dispatch_width = 8u << simd;
7801
7802      nir_shader *shader = nir_shader_clone(mem_ctx, nir);
7803      brw_nir_apply_key(shader, compiler, &key->base,
7804                        dispatch_width, true /* is_scalar */);
7805
7806      NIR_PASS(_, shader, brw_nir_lower_simd, dispatch_width);
7807
7808      /* Clean up after the local index and ID calculations. */
7809      NIR_PASS(_, shader, nir_opt_constant_folding);
7810      NIR_PASS(_, shader, nir_opt_dce);
7811
7812      brw_postprocess_nir(shader, compiler, true, debug_enabled,
7813                          key->base.robust_buffer_access);
7814
7815      v[simd] = new fs_visitor(compiler, params->log_data, mem_ctx, &key->base,
7816                               &prog_data->base, shader, dispatch_width,
7817                               debug_enabled);
7818
7819      if (prog_data->prog_mask) {
7820         unsigned first = ffs(prog_data->prog_mask) - 1;
7821         v[simd]->import_uniforms(v[first]);
7822      }
7823
7824      const bool allow_spilling = !prog_data->prog_mask ||
7825                                  nir->info.workgroup_size_variable;
7826
7827      if (v[simd]->run_cs(allow_spilling)) {
7828         /* We should always be able to do SIMD32 for compute shaders. */
7829         assert(v[simd]->max_dispatch_width >= 32);
7830
7831         cs_fill_push_const_info(compiler->devinfo, prog_data);
7832
7833         brw_simd_mark_compiled(simd, prog_data, v[simd]->spilled_any_registers);
7834      } else {
7835         error[simd] = ralloc_strdup(mem_ctx, v[simd]->fail_msg);
7836         if (simd > 0) {
7837            brw_shader_perf_log(compiler, params->log_data,
7838                                "SIMD%u shader failed to compile: %s\n",
7839                                dispatch_width, v[simd]->fail_msg);
7840         }
7841      }
7842   }
7843
7844   const int selected_simd = brw_simd_select(prog_data);
7845   if (selected_simd < 0) {
7846      params->error_str = ralloc_asprintf(mem_ctx, "Can't compile shader: %s, %s and %s.\n",
7847                                          error[0], error[1], error[2]);;
7848      return NULL;
7849   }
7850
7851   assert(selected_simd < 3);
7852   fs_visitor *selected = v[selected_simd];
7853
7854   if (!nir->info.workgroup_size_variable)
7855      prog_data->prog_mask = 1 << selected_simd;
7856
7857   const unsigned *ret = NULL;
7858
7859   fs_generator g(compiler, params->log_data, mem_ctx, &prog_data->base,
7860                  selected->runtime_check_aads_emit, MESA_SHADER_COMPUTE);
7861   if (unlikely(debug_enabled)) {
7862      char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
7863                                   nir->info.label ?
7864                                   nir->info.label : "unnamed",
7865                                   nir->info.name);
7866      g.enable_debug(name);
7867   }
7868
7869   struct brw_compile_stats *stats = params->stats;
7870   for (unsigned simd = 0; simd < 3; simd++) {
7871      if (prog_data->prog_mask & (1u << simd)) {
7872         assert(v[simd]);
7873         prog_data->prog_offset[simd] =
7874            g.generate_code(v[simd]->cfg, 8u << simd, v[simd]->shader_stats,
7875                            v[simd]->performance_analysis.require(), stats);
7876         stats = stats ? stats + 1 : NULL;
7877      }
7878   }
7879
7880   g.add_const_data(nir->constant_data, nir->constant_data_size);
7881
7882   ret = g.get_assembly();
7883
7884   delete v[0];
7885   delete v[1];
7886   delete v[2];
7887
7888   return ret;
7889}
7890
7891struct brw_cs_dispatch_info
7892brw_cs_get_dispatch_info(const struct intel_device_info *devinfo,
7893                         const struct brw_cs_prog_data *prog_data,
7894                         const unsigned *override_local_size)
7895{
7896   struct brw_cs_dispatch_info info = {};
7897
7898   const unsigned *sizes =
7899      override_local_size ? override_local_size :
7900                            prog_data->local_size;
7901
7902   const int simd =
7903      override_local_size ? brw_simd_select_for_workgroup_size(devinfo, prog_data, sizes) :
7904                            brw_simd_select(prog_data);
7905   assert(simd >= 0 && simd < 3);
7906
7907   info.group_size = sizes[0] * sizes[1] * sizes[2];
7908   info.simd_size = 8u << simd;
7909   info.threads = DIV_ROUND_UP(info.group_size, info.simd_size);
7910
7911   const uint32_t remainder = info.group_size & (info.simd_size - 1);
7912   if (remainder > 0)
7913      info.right_mask = ~0u >> (32 - remainder);
7914   else
7915      info.right_mask = ~0u >> (32 - info.simd_size);
7916
7917   return info;
7918}
7919
7920static uint8_t
7921compile_single_bs(const struct brw_compiler *compiler, void *log_data,
7922                  void *mem_ctx,
7923                  const struct brw_bs_prog_key *key,
7924                  struct brw_bs_prog_data *prog_data,
7925                  nir_shader *shader,
7926                  fs_generator *g,
7927                  struct brw_compile_stats *stats,
7928                  int *prog_offset,
7929                  char **error_str)
7930{
7931   const bool debug_enabled = INTEL_DEBUG(DEBUG_RT);
7932
7933   prog_data->base.stage = shader->info.stage;
7934   prog_data->max_stack_size = MAX2(prog_data->max_stack_size,
7935                                    shader->scratch_size);
7936
7937   const unsigned max_dispatch_width = 16;
7938   brw_nir_apply_key(shader, compiler, &key->base, max_dispatch_width, true);
7939   brw_postprocess_nir(shader, compiler, true, debug_enabled,
7940                       key->base.robust_buffer_access);
7941
7942   fs_visitor *v = NULL, *v8 = NULL, *v16 = NULL;
7943   bool has_spilled = false;
7944
7945   uint8_t simd_size = 0;
7946   if (!INTEL_DEBUG(DEBUG_NO8)) {
7947      v8 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
7948                          &prog_data->base, shader,
7949                          8, debug_enabled);
7950      const bool allow_spilling = true;
7951      if (!v8->run_bs(allow_spilling)) {
7952         if (error_str)
7953            *error_str = ralloc_strdup(mem_ctx, v8->fail_msg);
7954         delete v8;
7955         return 0;
7956      } else {
7957         v = v8;
7958         simd_size = 8;
7959         if (v8->spilled_any_registers)
7960            has_spilled = true;
7961      }
7962   }
7963
7964   if (!has_spilled && !INTEL_DEBUG(DEBUG_NO16)) {
7965      v16 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
7966                           &prog_data->base, shader,
7967                           16, debug_enabled);
7968      const bool allow_spilling = (v == NULL);
7969      if (!v16->run_bs(allow_spilling)) {
7970         brw_shader_perf_log(compiler, log_data,
7971                             "SIMD16 shader failed to compile: %s\n",
7972                             v16->fail_msg);
7973         if (v == NULL) {
7974            assert(v8 == NULL);
7975            if (error_str) {
7976               *error_str = ralloc_asprintf(
7977                  mem_ctx, "SIMD8 disabled and couldn't generate SIMD16: %s",
7978                  v16->fail_msg);
7979            }
7980            delete v16;
7981            return 0;
7982         }
7983      } else {
7984         v = v16;
7985         simd_size = 16;
7986         if (v16->spilled_any_registers)
7987            has_spilled = true;
7988      }
7989   }
7990
7991   if (unlikely(v == NULL)) {
7992      assert(INTEL_DEBUG(DEBUG_NO8 | DEBUG_NO16));
7993      if (error_str) {
7994         *error_str = ralloc_strdup(mem_ctx,
7995            "Cannot satisfy INTEL_DEBUG flags SIMD restrictions");
7996      }
7997      return false;
7998   }
7999
8000   assert(v);
8001
8002   int offset = g->generate_code(v->cfg, simd_size, v->shader_stats,
8003                                 v->performance_analysis.require(), stats);
8004   if (prog_offset)
8005      *prog_offset = offset;
8006   else
8007      assert(offset == 0);
8008
8009   delete v8;
8010   delete v16;
8011
8012   return simd_size;
8013}
8014
8015uint64_t
8016brw_bsr(const struct intel_device_info *devinfo,
8017        uint32_t offset, uint8_t simd_size, uint8_t local_arg_offset)
8018{
8019   assert(offset % 64 == 0);
8020   assert(simd_size == 8 || simd_size == 16);
8021   assert(local_arg_offset % 8 == 0);
8022
8023   return offset |
8024          SET_BITS(simd_size == 8, 4, 4) |
8025          SET_BITS(local_arg_offset / 8, 2, 0);
8026}
8027
8028const unsigned *
8029brw_compile_bs(const struct brw_compiler *compiler,
8030               void *mem_ctx,
8031               struct brw_compile_bs_params *params)
8032{
8033   nir_shader *shader = params->nir;
8034   struct brw_bs_prog_data *prog_data = params->prog_data;
8035   unsigned num_resume_shaders = params->num_resume_shaders;
8036   nir_shader **resume_shaders = params->resume_shaders;
8037   const bool debug_enabled = INTEL_DEBUG(DEBUG_RT);
8038
8039   prog_data->base.stage = shader->info.stage;
8040   prog_data->base.ray_queries = shader->info.ray_queries;
8041   prog_data->base.total_scratch = 0;
8042
8043   prog_data->max_stack_size = 0;
8044
8045   fs_generator g(compiler, params->log_data, mem_ctx, &prog_data->base,
8046                  false, shader->info.stage);
8047   if (unlikely(debug_enabled)) {
8048      char *name = ralloc_asprintf(mem_ctx, "%s %s shader %s",
8049                                   shader->info.label ?
8050                                      shader->info.label : "unnamed",
8051                                   gl_shader_stage_name(shader->info.stage),
8052                                   shader->info.name);
8053      g.enable_debug(name);
8054   }
8055
8056   prog_data->simd_size =
8057      compile_single_bs(compiler, params->log_data, mem_ctx,
8058                        params->key, prog_data,
8059                        shader, &g, params->stats, NULL, &params->error_str);
8060   if (prog_data->simd_size == 0)
8061      return NULL;
8062
8063   uint64_t *resume_sbt = ralloc_array(mem_ctx, uint64_t, num_resume_shaders);
8064   for (unsigned i = 0; i < num_resume_shaders; i++) {
8065      if (INTEL_DEBUG(DEBUG_RT)) {
8066         char *name = ralloc_asprintf(mem_ctx, "%s %s resume(%u) shader %s",
8067                                      shader->info.label ?
8068                                         shader->info.label : "unnamed",
8069                                      gl_shader_stage_name(shader->info.stage),
8070                                      i, shader->info.name);
8071         g.enable_debug(name);
8072      }
8073
8074      /* TODO: Figure out shader stats etc. for resume shaders */
8075      int offset = 0;
8076      uint8_t simd_size =
8077         compile_single_bs(compiler, params->log_data, mem_ctx, params->key,
8078                           prog_data, resume_shaders[i], &g, NULL, &offset,
8079                           &params->error_str);
8080      if (simd_size == 0)
8081         return NULL;
8082
8083      assert(offset > 0);
8084      resume_sbt[i] = brw_bsr(compiler->devinfo, offset, simd_size, 0);
8085   }
8086
8087   /* We only have one constant data so we want to make sure they're all the
8088    * same.
8089    */
8090   for (unsigned i = 0; i < num_resume_shaders; i++) {
8091      assert(resume_shaders[i]->constant_data_size ==
8092             shader->constant_data_size);
8093      assert(memcmp(resume_shaders[i]->constant_data,
8094                    shader->constant_data,
8095                    shader->constant_data_size) == 0);
8096   }
8097
8098   g.add_const_data(shader->constant_data, shader->constant_data_size);
8099   g.add_resume_sbt(num_resume_shaders, resume_sbt);
8100
8101   return g.get_assembly();
8102}
8103
8104/**
8105 * Test the dispatch mask packing assumptions of
8106 * brw_stage_has_packed_dispatch().  Call this from e.g. the top of
8107 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
8108 * executed with an unexpected dispatch mask.
8109 */
8110static UNUSED void
8111brw_fs_test_dispatch_packing(const fs_builder &bld)
8112{
8113   const gl_shader_stage stage = bld.shader->stage;
8114   const bool uses_vmask =
8115      stage == MESA_SHADER_FRAGMENT &&
8116      brw_wm_prog_data(bld.shader->stage_prog_data)->uses_vmask;
8117
8118   if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
8119                                     bld.shader->stage_prog_data)) {
8120      const fs_builder ubld = bld.exec_all().group(1, 0);
8121      const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
8122      const fs_reg mask = uses_vmask ? brw_vmask_reg() : brw_dmask_reg();
8123
8124      ubld.ADD(tmp, mask, brw_imm_ud(1));
8125      ubld.AND(tmp, mask, tmp);
8126
8127      /* This will loop forever if the dispatch mask doesn't have the expected
8128       * form '2^n-1', in which case tmp will be non-zero.
8129       */
8130      bld.emit(BRW_OPCODE_DO);
8131      bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
8132      set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
8133   }
8134}
8135
8136unsigned
8137fs_visitor::workgroup_size() const
8138{
8139   assert(gl_shader_stage_uses_workgroup(stage));
8140   const struct brw_cs_prog_data *cs = brw_cs_prog_data(prog_data);
8141   return cs->local_size[0] * cs->local_size[1] * cs->local_size[2];
8142}
8143