1/*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#ifndef BRW_COMPILER_H
25#define BRW_COMPILER_H
26
27#include <stdio.h>
28#include "c11/threads.h"
29#include "dev/intel_device_info.h"
30#include "util/macros.h"
31#include "util/ralloc.h"
32#include "util/u_math.h"
33#include "brw_isa_info.h"
34
35#ifdef __cplusplus
36extern "C" {
37#endif
38
39struct ra_regs;
40struct nir_shader;
41struct brw_program;
42struct shader_info;
43
44struct nir_shader_compiler_options;
45typedef struct nir_shader nir_shader;
46
47struct brw_compiler {
48   const struct intel_device_info *devinfo;
49
50   /* This lock must be taken if the compiler is to be modified in any way,
51    * including adding something to the ralloc child list.
52    */
53   mtx_t mutex;
54
55   struct brw_isa_info isa;
56
57   struct {
58      struct ra_regs *regs;
59
60      /**
61       * Array of the ra classes for the unaligned contiguous register
62       * block sizes used.
63       */
64      struct ra_class **classes;
65   } vec4_reg_set;
66
67   struct {
68      struct ra_regs *regs;
69
70      /**
71       * Array of the ra classes for the unaligned contiguous register
72       * block sizes used, indexed by register size.
73       */
74      struct ra_class *classes[16];
75
76      /**
77       * ra class for the aligned barycentrics we use for PLN, which doesn't
78       * appear in *classes.
79       */
80      struct ra_class *aligned_bary_class;
81   } fs_reg_sets[3];
82
83   void (*shader_debug_log)(void *, unsigned *id, const char *str, ...) PRINTFLIKE(3, 4);
84   void (*shader_perf_log)(void *, unsigned *id, const char *str, ...) PRINTFLIKE(3, 4);
85
86   bool scalar_stage[MESA_ALL_SHADER_STAGES];
87   bool use_tcs_8_patch;
88   struct nir_shader_compiler_options *nir_options[MESA_ALL_SHADER_STAGES];
89
90   /**
91    * Apply workarounds for SIN and COS output range problems.
92    * This can negatively impact performance.
93    */
94   bool precise_trig;
95
96   /**
97    * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
98    * Base Address?  (If not, it's a normal GPU address.)
99    */
100   bool constant_buffer_0_is_relative;
101
102   /**
103    * Whether or not the driver supports NIR shader constants.  This controls
104    * whether nir_opt_large_constants will be run.
105    */
106   bool supports_shader_constants;
107
108   /**
109    * Whether or not the driver wants variable group size to be lowered by the
110    * back-end compiler.
111    */
112   bool lower_variable_group_size;
113
114   /**
115    * Whether indirect UBO loads should use the sampler or go through the
116    * data/constant cache.  For the sampler, UBO surface states have to be set
117    * up with VK_FORMAT_R32G32B32A32_FLOAT whereas if it's going through the
118    * constant or data cache, UBOs must use VK_FORMAT_RAW.
119    */
120   bool indirect_ubos_use_sampler;
121
122   struct nir_shader *clc_shader;
123};
124
125#define brw_shader_debug_log(compiler, data, fmt, ... ) do {    \
126   static unsigned id = 0;                                      \
127   compiler->shader_debug_log(data, &id, fmt, ##__VA_ARGS__);   \
128} while (0)
129
130#define brw_shader_perf_log(compiler, data, fmt, ... ) do {     \
131   static unsigned id = 0;                                      \
132   compiler->shader_perf_log(data, &id, fmt, ##__VA_ARGS__);    \
133} while (0)
134
135/**
136 * We use a constant subgroup size of 32.  It really only needs to be a
137 * maximum and, since we do SIMD32 for compute shaders in some cases, it
138 * needs to be at least 32.  SIMD8 and SIMD16 shaders will still claim a
139 * subgroup size of 32 but will act as if 16 or 24 of those channels are
140 * disabled.
141 */
142#define BRW_SUBGROUP_SIZE 32
143
144static inline bool
145brw_shader_stage_is_bindless(gl_shader_stage stage)
146{
147   return stage >= MESA_SHADER_RAYGEN &&
148          stage <= MESA_SHADER_CALLABLE;
149}
150
151static inline bool
152brw_shader_stage_requires_bindless_resources(gl_shader_stage stage)
153{
154   return brw_shader_stage_is_bindless(stage) || gl_shader_stage_is_mesh(stage);
155}
156
157/**
158 * Program key structures.
159 *
160 * When drawing, we look for the currently bound shaders in the program
161 * cache.  This is essentially a hash table lookup, and these are the keys.
162 *
163 * Sometimes OpenGL features specified as state need to be simulated via
164 * shader code, due to a mismatch between the API and the hardware.  This
165 * is often referred to as "non-orthagonal state" or "NOS".  We store NOS
166 * in the program key so it's considered when searching for a program.  If
167 * we haven't seen a particular combination before, we have to recompile a
168 * new specialized version.
169 *
170 * Shader compilation should not look up state in gl_context directly, but
171 * instead use the copy in the program key.  This guarantees recompiles will
172 * happen correctly.
173 *
174 *  @{
175 */
176
177enum PACKED gfx6_gather_sampler_wa {
178   WA_SIGN = 1,      /* whether we need to sign extend */
179   WA_8BIT = 2,      /* if we have an 8bit format needing wa */
180   WA_16BIT = 4,     /* if we have a 16bit format needing wa */
181};
182
183#define BRW_MAX_SAMPLERS 32
184
185/* Provide explicit padding for each member, to ensure that the compiler
186 * initializes every bit in the shader cache keys.  The keys will be compared
187 * with memcmp.
188 */
189PRAGMA_DIAGNOSTIC_PUSH
190PRAGMA_DIAGNOSTIC_ERROR(-Wpadded)
191
192/**
193 * Sampler information needed by VS, WM, and GS program cache keys.
194 */
195struct brw_sampler_prog_key_data {
196   /**
197    * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
198    */
199   uint16_t swizzles[BRW_MAX_SAMPLERS];
200
201   uint32_t gl_clamp_mask[3];
202
203   /**
204    * For RG32F, gather4's channel select is broken.
205    */
206   uint32_t gather_channel_quirk_mask;
207
208   /**
209    * Whether this sampler uses the compressed multisample surface layout.
210    */
211   uint32_t compressed_multisample_layout_mask;
212
213   /**
214    * Whether this sampler is using 16x multisampling. If so fetching from
215    * this sampler will be handled with a different instruction, ld2dms_w
216    * instead of ld2dms.
217    */
218   uint32_t msaa_16;
219
220   /**
221    * For Sandybridge, which shader w/a we need for gather quirks.
222    */
223   enum gfx6_gather_sampler_wa gfx6_gather_wa[BRW_MAX_SAMPLERS];
224
225   /**
226    * Texture units that have a YUV image bound.
227    */
228   uint32_t y_u_v_image_mask;
229   uint32_t y_uv_image_mask;
230   uint32_t yx_xuxv_image_mask;
231   uint32_t xy_uxvx_image_mask;
232   uint32_t ayuv_image_mask;
233   uint32_t xyuv_image_mask;
234   uint32_t bt709_mask;
235   uint32_t bt2020_mask;
236
237   /* Scale factor for each texture. */
238   float scale_factors[BRW_MAX_SAMPLERS];
239};
240
241struct brw_base_prog_key {
242   unsigned program_string_id;
243
244   bool robust_buffer_access;
245
246   /**
247    * Apply workarounds for SIN and COS input range problems.
248    * This limits input range for SIN and COS to [-2p : 2p] to
249    * avoid precision issues.
250    */
251   bool limit_trig_input_range;
252   unsigned padding:16;
253
254   struct brw_sampler_prog_key_data tex;
255};
256
257/**
258 * The VF can't natively handle certain types of attributes, such as GL_FIXED
259 * or most 10_10_10_2 types.  These flags enable various VS workarounds to
260 * "fix" attributes at the beginning of shaders.
261 */
262#define BRW_ATTRIB_WA_COMPONENT_MASK    7  /* mask for GL_FIXED scale channel count */
263#define BRW_ATTRIB_WA_NORMALIZE     8   /* normalize in shader */
264#define BRW_ATTRIB_WA_BGRA          16  /* swap r/b channels in shader */
265#define BRW_ATTRIB_WA_SIGN          32  /* interpret as signed in shader */
266#define BRW_ATTRIB_WA_SCALE         64  /* interpret as scaled in shader */
267
268/**
269 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
270 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
271 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
272 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
273 */
274#define MAX_GL_VERT_ATTRIB     VERT_ATTRIB_MAX
275#define MAX_VK_VERT_ATTRIB     (VERT_ATTRIB_GENERIC0 + 28)
276
277/**
278 * Max number of binding table entries used for stream output.
279 *
280 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
281 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
282 *
283 * On Gfx6, the size of transform feedback data is limited not by the number
284 * of components but by the number of binding table entries we set aside.  We
285 * use one binding table entry for a float, one entry for a vector, and one
286 * entry per matrix column.  Since the only way we can communicate our
287 * transform feedback capabilities to the client is via
288 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
289 * worst case, in which all the varyings are floats, so we use up one binding
290 * table entry per component.  Therefore we need to set aside at least 64
291 * binding table entries for use by transform feedback.
292 *
293 * Note: since we don't currently pack varyings, it is currently impossible
294 * for the client to actually use up all of these binding table entries--if
295 * all of their varyings were floats, they would run out of varying slots and
296 * fail to link.  But that's a bug, so it seems prudent to go ahead and
297 * allocate the number of binding table entries we will need once the bug is
298 * fixed.
299 */
300#define BRW_MAX_SOL_BINDINGS 64
301
302/** The program key for Vertex Shaders. */
303struct brw_vs_prog_key {
304   struct brw_base_prog_key base;
305
306   /**
307    * Per-attribute workaround flags
308    *
309    * For each attribute, a combination of BRW_ATTRIB_WA_*.
310    *
311    * For OpenGL, where we expose a maximum of 16 user input attributes
312    * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
313    * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
314    * expose up to 28 user input vertex attributes that are mapped to slots
315    * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
316    * enough to hold this many slots.
317    */
318   uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
319
320   /**
321    * For pre-Gfx6 hardware, a bitfield indicating which texture coordinates
322    * are going to be replaced with point coordinates (as a consequence of a
323    * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)).  Because
324    * our SF thread requires exact matching between VS outputs and FS inputs,
325    * these texture coordinates will need to be unconditionally included in
326    * the VUE, even if they aren't written by the vertex shader.
327    */
328   uint8_t point_coord_replace;
329   unsigned clamp_pointsize:1;
330
331   bool copy_edgeflag:1;
332
333   bool clamp_vertex_color:1;
334
335   /**
336    * How many user clipping planes are being uploaded to the vertex shader as
337    * push constants.
338    *
339    * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
340    * clip distances.
341    */
342   unsigned nr_userclip_plane_consts:4;
343
344   uint32_t padding: 25;
345};
346
347/** The program key for Tessellation Control Shaders. */
348struct brw_tcs_prog_key
349{
350   struct brw_base_prog_key base;
351
352   /** A bitfield of per-vertex outputs written. */
353   uint64_t outputs_written;
354
355   enum tess_primitive_mode _tes_primitive_mode;
356
357   unsigned input_vertices;
358
359   /** A bitfield of per-patch outputs written. */
360   uint32_t patch_outputs_written;
361
362   bool quads_workaround;
363   uint32_t padding:24;
364};
365
366/** The program key for Tessellation Evaluation Shaders. */
367struct brw_tes_prog_key
368{
369   struct brw_base_prog_key base;
370
371   /** A bitfield of per-vertex inputs read. */
372   uint64_t inputs_read;
373
374   /** A bitfield of per-patch inputs read. */
375   uint32_t patch_inputs_read;
376
377   /**
378    * How many user clipping planes are being uploaded to the tessellation
379    * evaluation shader as push constants.
380    *
381    * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
382    * clip distances.
383    */
384   unsigned nr_userclip_plane_consts:4;
385   unsigned clamp_pointsize:1;
386   uint32_t padding:27;
387};
388
389/** The program key for Geometry Shaders. */
390struct brw_gs_prog_key
391{
392   struct brw_base_prog_key base;
393
394   /**
395    * How many user clipping planes are being uploaded to the geometry shader
396    * as push constants.
397    *
398    * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
399    * clip distances.
400    */
401   unsigned nr_userclip_plane_consts:4;
402   unsigned clamp_pointsize:1;
403   unsigned padding:27;
404};
405
406struct brw_task_prog_key
407{
408   struct brw_base_prog_key base;
409};
410
411struct brw_mesh_prog_key
412{
413   struct brw_base_prog_key base;
414};
415
416enum brw_sf_primitive {
417   BRW_SF_PRIM_POINTS = 0,
418   BRW_SF_PRIM_LINES = 1,
419   BRW_SF_PRIM_TRIANGLES = 2,
420   BRW_SF_PRIM_UNFILLED_TRIS = 3,
421};
422
423struct brw_sf_prog_key {
424   uint64_t attrs;
425   bool contains_flat_varying;
426   unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
427   uint8_t point_sprite_coord_replace;
428   enum brw_sf_primitive primitive:2;
429   bool do_twoside_color:1;
430   bool frontface_ccw:1;
431   bool do_point_sprite:1;
432   bool do_point_coord:1;
433   bool sprite_origin_lower_left:1;
434   bool userclip_active:1;
435   unsigned padding: 32;
436};
437
438enum brw_clip_mode {
439   BRW_CLIP_MODE_NORMAL             = 0,
440   BRW_CLIP_MODE_CLIP_ALL           = 1,
441   BRW_CLIP_MODE_CLIP_NON_REJECTED  = 2,
442   BRW_CLIP_MODE_REJECT_ALL         = 3,
443   BRW_CLIP_MODE_ACCEPT_ALL         = 4,
444   BRW_CLIP_MODE_KERNEL_CLIP        = 5,
445};
446
447enum brw_clip_fill_mode {
448   BRW_CLIP_FILL_MODE_LINE = 0,
449   BRW_CLIP_FILL_MODE_POINT = 1,
450   BRW_CLIP_FILL_MODE_FILL = 2,
451   BRW_CLIP_FILL_MODE_CULL = 3,
452};
453
454/* Note that if unfilled primitives are being emitted, we have to fix
455 * up polygon offset and flatshading at this point:
456 */
457struct brw_clip_prog_key {
458   uint64_t attrs;
459   float offset_factor;
460   float offset_units;
461   float offset_clamp;
462   bool contains_flat_varying;
463   bool contains_noperspective_varying;
464   unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
465   unsigned primitive:4;
466   unsigned nr_userclip:4;
467   bool pv_first:1;
468   bool do_unfilled:1;
469   enum brw_clip_fill_mode fill_cw:2;  /* includes cull information */
470   enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
471   bool offset_cw:1;
472   bool offset_ccw:1;
473   bool copy_bfc_cw:1;
474   bool copy_bfc_ccw:1;
475   enum brw_clip_mode clip_mode:3;
476   uint64_t padding:51;
477};
478
479/* A big lookup table is used to figure out which and how many
480 * additional regs will inserted before the main payload in the WM
481 * program execution.  These mainly relate to depth and stencil
482 * processing and the early-depth-test optimization.
483 */
484enum brw_wm_iz_bits {
485   BRW_WM_IZ_PS_KILL_ALPHATEST_BIT     = 0x1,
486   BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT     = 0x2,
487   BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT    = 0x4,
488   BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT     = 0x8,
489   BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT  = 0x10,
490   BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT   = 0x20,
491   BRW_WM_IZ_BIT_MAX                   = 0x40
492};
493
494enum brw_wm_aa_enable {
495   BRW_WM_AA_NEVER,
496   BRW_WM_AA_SOMETIMES,
497   BRW_WM_AA_ALWAYS
498};
499
500/** The program key for Fragment/Pixel Shaders. */
501struct brw_wm_prog_key {
502   struct brw_base_prog_key base;
503
504   uint64_t input_slots_valid;
505   float alpha_test_ref;
506   uint8_t color_outputs_valid;
507
508   /* Some collection of BRW_WM_IZ_* */
509   uint8_t iz_lookup;
510   bool stats_wm:1;
511   bool flat_shade:1;
512   unsigned nr_color_regions:5;
513   bool emit_alpha_test:1;
514   enum compare_func alpha_test_func:3; /* < For Gfx4/5 MRT alpha test */
515   bool alpha_test_replicate_alpha:1;
516   bool alpha_to_coverage:1;
517   bool clamp_fragment_color:1;
518   bool persample_interp:1;
519   bool multisample_fbo:1;
520   enum brw_wm_aa_enable line_aa:2;
521   bool force_dual_color_blend:1;
522   bool coherent_fb_fetch:1;
523   bool ignore_sample_mask_out:1;
524   bool coarse_pixel:1;
525
526   uint64_t padding:58;
527};
528
529struct brw_cs_prog_key {
530   struct brw_base_prog_key base;
531};
532
533struct brw_bs_prog_key {
534   struct brw_base_prog_key base;
535};
536
537struct brw_ff_gs_prog_key {
538   uint64_t attrs;
539
540   /**
541    * Map from the index of a transform feedback binding table entry to the
542    * gl_varying_slot that should be streamed out through that binding table
543    * entry.
544    */
545   unsigned char transform_feedback_bindings[BRW_MAX_SOL_BINDINGS];
546
547   /**
548    * Map from the index of a transform feedback binding table entry to the
549    * swizzles that should be used when streaming out data through that
550    * binding table entry.
551    */
552   unsigned char transform_feedback_swizzles[BRW_MAX_SOL_BINDINGS];
553
554   /**
555    * Hardware primitive type being drawn, e.g. _3DPRIM_TRILIST.
556    */
557   unsigned primitive:8;
558
559   unsigned pv_first:1;
560   unsigned need_gs_prog:1;
561
562   /**
563    * Number of varyings that are output to transform feedback.
564    */
565   unsigned num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
566   uint64_t padding:47;
567};
568
569/* brw_any_prog_key is any of the keys that map to an API stage */
570union brw_any_prog_key {
571   struct brw_base_prog_key base;
572   struct brw_vs_prog_key vs;
573   struct brw_tcs_prog_key tcs;
574   struct brw_tes_prog_key tes;
575   struct brw_gs_prog_key gs;
576   struct brw_wm_prog_key wm;
577   struct brw_cs_prog_key cs;
578   struct brw_bs_prog_key bs;
579   struct brw_task_prog_key task;
580   struct brw_mesh_prog_key mesh;
581};
582
583PRAGMA_DIAGNOSTIC_POP
584
585/*
586 * Image metadata structure as laid out in the shader parameter
587 * buffer.  Entries have to be 16B-aligned for the vec4 back-end to be
588 * able to use them.  That's okay because the padding and any unused
589 * entries [most of them except when we're doing untyped surface
590 * access] will be removed by the uniform packing pass.
591 */
592#define BRW_IMAGE_PARAM_OFFSET_OFFSET           0
593#define BRW_IMAGE_PARAM_SIZE_OFFSET             4
594#define BRW_IMAGE_PARAM_STRIDE_OFFSET           8
595#define BRW_IMAGE_PARAM_TILING_OFFSET           12
596#define BRW_IMAGE_PARAM_SWIZZLING_OFFSET        16
597#define BRW_IMAGE_PARAM_SIZE                    20
598
599struct brw_image_param {
600   /** Offset applied to the X and Y surface coordinates. */
601   uint32_t offset[2];
602
603   /** Surface X, Y and Z dimensions. */
604   uint32_t size[3];
605
606   /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
607    * pixels, vertical slice stride in pixels.
608    */
609   uint32_t stride[4];
610
611   /** Log2 of the tiling modulus in the X, Y and Z dimension. */
612   uint32_t tiling[3];
613
614   /**
615    * Right shift to apply for bit 6 address swizzling.  Two different
616    * swizzles can be specified and will be applied one after the other.  The
617    * resulting address will be:
618    *
619    *  addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
620    *                              (addr >> swizzling[1])))
621    *
622    * Use \c 0xff if any of the swizzles is not required.
623    */
624   uint32_t swizzling[2];
625};
626
627/** Max number of render targets in a shader */
628#define BRW_MAX_DRAW_BUFFERS 8
629
630/**
631 * Binding table index for the first gfx6 SOL binding.
632 */
633#define BRW_GFX6_SOL_BINDING_START 0
634
635struct brw_ubo_range
636{
637   uint16_t block;
638   uint8_t start;
639   uint8_t length;
640};
641
642/* We reserve the first 2^16 values for builtins */
643#define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
644
645enum brw_param_builtin {
646   BRW_PARAM_BUILTIN_ZERO,
647
648   BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
649   BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
650   BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
651   BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
652   BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
653   BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
654   BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
655   BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
656   BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
657   BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
658   BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
659   BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
660   BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
661   BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
662   BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
663   BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
664   BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
665   BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
666   BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
667   BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
668   BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
669   BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
670   BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
671   BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
672   BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
673   BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
674   BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
675   BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
676   BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
677   BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
678   BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
679   BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
680
681   BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
682   BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
683   BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
684   BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
685   BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
686   BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
687
688   BRW_PARAM_BUILTIN_PATCH_VERTICES_IN,
689
690   BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
691   BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
692   BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
693   BRW_PARAM_BUILTIN_SUBGROUP_ID,
694   BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X,
695   BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Y,
696   BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Z,
697   BRW_PARAM_BUILTIN_WORK_DIM,
698};
699
700#define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
701   (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
702
703#define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param)  \
704   ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
705    (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
706
707#define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
708   (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
709
710#define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
711   (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
712
713enum brw_shader_reloc_id {
714   BRW_SHADER_RELOC_CONST_DATA_ADDR_LOW,
715   BRW_SHADER_RELOC_CONST_DATA_ADDR_HIGH,
716   BRW_SHADER_RELOC_SHADER_START_OFFSET,
717   BRW_SHADER_RELOC_RESUME_SBT_ADDR_LOW,
718   BRW_SHADER_RELOC_RESUME_SBT_ADDR_HIGH,
719};
720
721enum brw_shader_reloc_type {
722   /** An arbitrary 32-bit value */
723   BRW_SHADER_RELOC_TYPE_U32,
724   /** A MOV instruction with an immediate source */
725   BRW_SHADER_RELOC_TYPE_MOV_IMM,
726};
727
728/** Represents a code relocation
729 *
730 * Relocatable constants are immediates in the code which we want to be able
731 * to replace post-compile with the actual value.
732 */
733struct brw_shader_reloc {
734   /** The 32-bit ID of the relocatable constant */
735   uint32_t id;
736
737   /** Type of this relocation */
738   enum brw_shader_reloc_type type;
739
740   /** The offset in the shader to the relocated value
741    *
742    * For MOV_IMM relocs, this is an offset to the MOV instruction.  This
743    * allows us to do some sanity checking while we update the value.
744    */
745   uint32_t offset;
746
747   /** Value to be added to the relocated value before it is written */
748   uint32_t delta;
749};
750
751/** A value to write to a relocation */
752struct brw_shader_reloc_value {
753   /** The 32-bit ID of the relocatable constant */
754   uint32_t id;
755
756   /** The value with which to replace the relocated immediate */
757   uint32_t value;
758};
759
760struct brw_stage_prog_data {
761   struct brw_ubo_range ubo_ranges[4];
762
763   unsigned nr_params;       /**< number of float params/constants */
764
765   gl_shader_stage stage;
766
767   /* zero_push_reg is a bitfield which indicates what push registers (if any)
768    * should be zeroed by SW at the start of the shader.  The corresponding
769    * push_reg_mask_param specifies the param index (in 32-bit units) where
770    * the actual runtime 64-bit mask will be pushed.  The shader will zero
771    * push reg i if
772    *
773    *    reg_used & zero_push_reg & ~*push_reg_mask_param & (1ull << i)
774    *
775    * If this field is set, brw_compiler::compact_params must be false.
776    */
777   uint64_t zero_push_reg;
778   unsigned push_reg_mask_param;
779
780   unsigned curb_read_length;
781   unsigned total_scratch;
782   unsigned total_shared;
783
784   unsigned program_size;
785
786   unsigned const_data_size;
787   unsigned const_data_offset;
788
789   unsigned num_relocs;
790   const struct brw_shader_reloc *relocs;
791
792   /** Does this program pull from any UBO or other constant buffers? */
793   bool has_ubo_pull;
794
795   /** How many ray queries objects in this shader. */
796   unsigned ray_queries;
797
798   /**
799    * Register where the thread expects to find input data from the URB
800    * (typically uniforms, followed by vertex or fragment attributes).
801    */
802   unsigned dispatch_grf_start_reg;
803
804   bool use_alt_mode; /**< Use ALT floating point mode?  Otherwise, IEEE. */
805
806   /* 32-bit identifiers for all push/pull parameters.  These can be anything
807    * the driver wishes them to be; the core of the back-end compiler simply
808    * re-arranges them.  The one restriction is that the bottom 2^16 values
809    * are reserved for builtins defined in the brw_param_builtin enum defined
810    * above.
811    */
812   uint32_t *param;
813
814   /* Whether shader uses atomic operations. */
815   bool uses_atomic_load_store;
816};
817
818static inline uint32_t *
819brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
820                               unsigned nr_new_params)
821{
822   unsigned old_nr_params = prog_data->nr_params;
823   prog_data->nr_params += nr_new_params;
824   prog_data->param = reralloc(ralloc_parent(prog_data->param),
825                               prog_data->param, uint32_t,
826                               prog_data->nr_params);
827   return prog_data->param + old_nr_params;
828}
829
830enum brw_barycentric_mode {
831   BRW_BARYCENTRIC_PERSPECTIVE_PIXEL       = 0,
832   BRW_BARYCENTRIC_PERSPECTIVE_CENTROID    = 1,
833   BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE      = 2,
834   BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL    = 3,
835   BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
836   BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE   = 5,
837   BRW_BARYCENTRIC_MODE_COUNT              = 6
838};
839#define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
840   ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
841    (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
842    (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
843
844enum brw_pixel_shader_computed_depth_mode {
845   BRW_PSCDEPTH_OFF   = 0, /* PS does not compute depth */
846   BRW_PSCDEPTH_ON    = 1, /* PS computes depth; no guarantee about value */
847   BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
848   BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
849};
850
851/* Data about a particular attempt to compile a program.  Note that
852 * there can be many of these, each in a different GL state
853 * corresponding to a different brw_wm_prog_key struct, with different
854 * compiled programs.
855 */
856struct brw_wm_prog_data {
857   struct brw_stage_prog_data base;
858
859   unsigned num_per_primitive_inputs;
860   unsigned num_varying_inputs;
861
862   uint8_t reg_blocks_8;
863   uint8_t reg_blocks_16;
864   uint8_t reg_blocks_32;
865
866   uint8_t dispatch_grf_start_reg_16;
867   uint8_t dispatch_grf_start_reg_32;
868   uint32_t prog_offset_16;
869   uint32_t prog_offset_32;
870
871   struct {
872      /** @{
873       * surface indices the WM-specific surfaces
874       */
875      uint32_t render_target_read_start;
876      /** @} */
877   } binding_table;
878
879   uint8_t color_outputs_written;
880   uint8_t computed_depth_mode;
881   bool computed_stencil;
882
883   bool early_fragment_tests;
884   bool post_depth_coverage;
885   bool inner_coverage;
886   bool dispatch_8;
887   bool dispatch_16;
888   bool dispatch_32;
889   bool dual_src_blend;
890   bool persample_dispatch;
891   bool uses_pos_offset;
892   bool uses_omask;
893   bool uses_kill;
894   bool uses_src_depth;
895   bool uses_src_w;
896   bool uses_depth_w_coefficients;
897   bool uses_sample_mask;
898   bool uses_vmask;
899   bool has_render_target_reads;
900   bool has_side_effects;
901   bool pulls_bary;
902
903   bool contains_flat_varying;
904   bool contains_noperspective_varying;
905
906   /**
907    * Shader is ran at the coarse pixel shading dispatch rate (3DSTATE_CPS).
908    */
909   bool per_coarse_pixel_dispatch;
910
911   /**
912    * Mask of which interpolation modes are required by the fragment shader.
913    * Those interpolations are delivered as part of the thread payload. Used
914    * in hardware setup on gfx6+.
915    */
916   uint32_t barycentric_interp_modes;
917
918   /**
919    * Whether nonperspective interpolation modes are used by the
920    * barycentric_interp_modes or fragment shader through interpolator messages.
921    */
922   bool uses_nonperspective_interp_modes;
923
924   /**
925    * Mask of which FS inputs are marked flat by the shader source.  This is
926    * needed for setting up 3DSTATE_SF/SBE.
927    */
928   uint32_t flat_inputs;
929
930   /**
931    * The FS inputs
932    */
933   uint64_t inputs;
934
935   /* Mapping of VUE slots to interpolation modes.
936    * Used by the Gfx4-5 clip/sf/wm stages.
937    */
938   unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
939
940   /**
941    * Map from gl_varying_slot to the position within the FS setup data
942    * payload where the varying's attribute vertex deltas should be delivered.
943    * For varying slots that are not used by the FS, the value is -1.
944    */
945   int urb_setup[VARYING_SLOT_MAX];
946
947   /**
948    * Cache structure into the urb_setup array above that contains the
949    * attribute numbers of active varyings out of urb_setup.
950    * The actual count is stored in urb_setup_attribs_count.
951    */
952   uint8_t urb_setup_attribs[VARYING_SLOT_MAX];
953   uint8_t urb_setup_attribs_count;
954};
955
956/** Returns the SIMD width corresponding to a given KSP index
957 *
958 * The "Variable Pixel Dispatch" table in the PRM (which can be found, for
959 * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
960 * kernel start pointer (KSP) indices that is based on what dispatch widths
961 * are enabled.  This function provides, effectively, the reverse mapping.
962 *
963 * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
964 * width of 8, 16, or 32 is returned.  If the KSP is invalid, 0 is returned.
965 */
966static inline unsigned
967brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
968                          bool simd16_enabled, bool simd32_enabled)
969{
970   /* This function strictly ignores contiguous dispatch */
971   switch (ksp_idx) {
972   case 0:
973      return simd8_enabled ? 8 :
974             (simd16_enabled && !simd32_enabled) ? 16 :
975             (simd32_enabled && !simd16_enabled) ? 32 : 0;
976   case 1:
977      return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
978   case 2:
979      return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
980   default:
981      unreachable("Invalid KSP index");
982   }
983}
984
985#define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
986   brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
987                             (wm_state)._16PixelDispatchEnable, \
988                             (wm_state)._32PixelDispatchEnable)
989
990#define brw_wm_state_has_ksp(wm_state, ksp_idx) \
991   (brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
992
993static inline uint32_t
994_brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
995                              unsigned simd_width)
996{
997   switch (simd_width) {
998   case 8: return 0;
999   case 16: return prog_data->prog_offset_16;
1000   case 32: return prog_data->prog_offset_32;
1001   default: return 0;
1002   }
1003}
1004
1005#define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
1006   _brw_wm_prog_data_prog_offset(prog_data, \
1007      brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
1008
1009static inline uint8_t
1010_brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
1011                                         unsigned simd_width)
1012{
1013   switch (simd_width) {
1014   case 8: return prog_data->base.dispatch_grf_start_reg;
1015   case 16: return prog_data->dispatch_grf_start_reg_16;
1016   case 32: return prog_data->dispatch_grf_start_reg_32;
1017   default: return 0;
1018   }
1019}
1020
1021#define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
1022   _brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
1023      brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
1024
1025static inline uint8_t
1026_brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data *prog_data,
1027                             unsigned simd_width)
1028{
1029   switch (simd_width) {
1030   case 8: return prog_data->reg_blocks_8;
1031   case 16: return prog_data->reg_blocks_16;
1032   case 32: return prog_data->reg_blocks_32;
1033   default: return 0;
1034   }
1035}
1036
1037#define brw_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \
1038   _brw_wm_prog_data_reg_blocks(prog_data, \
1039      brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
1040
1041struct brw_push_const_block {
1042   unsigned dwords;     /* Dword count, not reg aligned */
1043   unsigned regs;
1044   unsigned size;       /* Bytes, register aligned */
1045};
1046
1047struct brw_cs_prog_data {
1048   struct brw_stage_prog_data base;
1049
1050   unsigned local_size[3];
1051
1052   /* Program offsets for the 8/16/32 SIMD variants.  Multiple variants are
1053    * kept when using variable group size, and the right one can only be
1054    * decided at dispatch time.
1055    */
1056   unsigned prog_offset[3];
1057
1058   /* Bitmask indicating which program offsets are valid. */
1059   unsigned prog_mask;
1060
1061   /* Bitmask indicating which programs have spilled. */
1062   unsigned prog_spilled;
1063
1064   bool uses_barrier;
1065   bool uses_num_work_groups;
1066   bool uses_inline_data;
1067   bool uses_btd_stack_ids;
1068
1069   struct {
1070      struct brw_push_const_block cross_thread;
1071      struct brw_push_const_block per_thread;
1072   } push;
1073
1074   struct {
1075      /** @{
1076       * surface indices the CS-specific surfaces
1077       */
1078      uint32_t work_groups_start;
1079      /** @} */
1080   } binding_table;
1081};
1082
1083static inline uint32_t
1084brw_cs_prog_data_prog_offset(const struct brw_cs_prog_data *prog_data,
1085                             unsigned dispatch_width)
1086{
1087   assert(dispatch_width == 8 ||
1088          dispatch_width == 16 ||
1089          dispatch_width == 32);
1090   const unsigned index = dispatch_width / 16;
1091   assert(prog_data->prog_mask & (1 << index));
1092   return prog_data->prog_offset[index];
1093}
1094
1095struct brw_bs_prog_data {
1096   struct brw_stage_prog_data base;
1097
1098   /** SIMD size of the root shader */
1099   uint8_t simd_size;
1100
1101   /** Maximum stack size of all shaders */
1102   uint32_t max_stack_size;
1103
1104   /** Offset into the shader where the resume SBT is located */
1105   uint32_t resume_sbt_offset;
1106};
1107
1108struct brw_ff_gs_prog_data {
1109   unsigned urb_read_length;
1110   unsigned total_grf;
1111
1112   /**
1113    * Gfx6 transform feedback: Amount by which the streaming vertex buffer
1114    * indices should be incremented each time the GS is invoked.
1115    */
1116   unsigned svbi_postincrement_value;
1117};
1118
1119/**
1120 * Enum representing the i965-specific vertex results that don't correspond
1121 * exactly to any element of gl_varying_slot.  The values of this enum are
1122 * assigned such that they don't conflict with gl_varying_slot.
1123 */
1124typedef enum
1125{
1126   BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
1127   BRW_VARYING_SLOT_PAD,
1128   /**
1129    * Technically this is not a varying but just a placeholder that
1130    * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
1131    * builtin variable to be compiled correctly. see compile_sf_prog() for
1132    * more info.
1133    */
1134   BRW_VARYING_SLOT_PNTC,
1135   BRW_VARYING_SLOT_COUNT
1136} brw_varying_slot;
1137
1138/**
1139 * We always program SF to start reading at an offset of 1 (2 varying slots)
1140 * from the start of the vertex URB entry.  This causes it to skip:
1141 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gfx4-5
1142 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gfx6+
1143 */
1144#define BRW_SF_URB_ENTRY_READ_OFFSET 1
1145
1146/**
1147 * Bitmask indicating which fragment shader inputs represent varyings (and
1148 * hence have to be delivered to the fragment shader by the SF/SBE stage).
1149 */
1150#define BRW_FS_VARYING_INPUT_MASK \
1151   (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
1152    ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
1153
1154/**
1155 * Data structure recording the relationship between the gl_varying_slot enum
1156 * and "slots" within the vertex URB entry (VUE).  A "slot" is defined as a
1157 * single octaword within the VUE (128 bits).
1158 *
1159 * Note that each BRW register contains 256 bits (2 octawords), so when
1160 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
1161 * consecutive VUE slots.  When accessing the VUE in URB_INTERLEAVED mode (as
1162 * in a vertex shader), each register corresponds to a single VUE slot, since
1163 * it contains data for two separate vertices.
1164 */
1165struct brw_vue_map {
1166   /**
1167    * Bitfield representing all varying slots that are (a) stored in this VUE
1168    * map, and (b) actually written by the shader.  Does not include any of
1169    * the additional varying slots defined in brw_varying_slot.
1170    */
1171   uint64_t slots_valid;
1172
1173   /**
1174    * Is this VUE map for a separate shader pipeline?
1175    *
1176    * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
1177    * without the linker having a chance to dead code eliminate unused varyings.
1178    *
1179    * This means that we have to use a fixed slot layout, based on the output's
1180    * location field, rather than assigning slots in a compact contiguous block.
1181    */
1182   bool separate;
1183
1184   /**
1185    * Map from gl_varying_slot value to VUE slot.  For gl_varying_slots that are
1186    * not stored in a slot (because they are not written, or because
1187    * additional processing is applied before storing them in the VUE), the
1188    * value is -1.
1189    */
1190   signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
1191
1192   /**
1193    * Map from VUE slot to gl_varying_slot value.  For slots that do not
1194    * directly correspond to a gl_varying_slot, the value comes from
1195    * brw_varying_slot.
1196    *
1197    * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
1198    */
1199   signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
1200
1201   /**
1202    * Total number of VUE slots in use
1203    */
1204   int num_slots;
1205
1206   /**
1207    * Number of per-patch VUE slots. Only valid for tessellation control
1208    * shader outputs and tessellation evaluation shader inputs.
1209    */
1210   int num_per_patch_slots;
1211
1212   /**
1213    * Number of per-vertex VUE slots. Only valid for tessellation control
1214    * shader outputs and tessellation evaluation shader inputs.
1215    */
1216   int num_per_vertex_slots;
1217};
1218
1219void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map,
1220                       gl_shader_stage stage);
1221
1222/**
1223 * Convert a VUE slot number into a byte offset within the VUE.
1224 */
1225static inline unsigned brw_vue_slot_to_offset(unsigned slot)
1226{
1227   return 16*slot;
1228}
1229
1230/**
1231 * Convert a vertex output (brw_varying_slot) into a byte offset within the
1232 * VUE.
1233 */
1234static inline unsigned
1235brw_varying_to_offset(const struct brw_vue_map *vue_map, unsigned varying)
1236{
1237   return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
1238}
1239
1240void brw_compute_vue_map(const struct intel_device_info *devinfo,
1241                         struct brw_vue_map *vue_map,
1242                         uint64_t slots_valid,
1243                         bool separate_shader,
1244                         uint32_t pos_slots);
1245
1246void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
1247                              uint64_t slots_valid,
1248                              uint32_t is_patch);
1249
1250/* brw_interpolation_map.c */
1251void brw_setup_vue_interpolation(const struct brw_vue_map *vue_map,
1252                                 struct nir_shader *nir,
1253                                 struct brw_wm_prog_data *prog_data);
1254
1255enum shader_dispatch_mode {
1256   DISPATCH_MODE_4X1_SINGLE = 0,
1257   DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
1258   DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
1259   DISPATCH_MODE_SIMD8 = 3,
1260
1261   DISPATCH_MODE_TCS_SINGLE_PATCH = 0,
1262   DISPATCH_MODE_TCS_8_PATCH = 2,
1263};
1264
1265/**
1266 * @defgroup Tessellator parameter enumerations.
1267 *
1268 * These correspond to the hardware values in 3DSTATE_TE, and are provided
1269 * as part of the tessellation evaluation shader.
1270 *
1271 * @{
1272 */
1273enum brw_tess_partitioning {
1274   BRW_TESS_PARTITIONING_INTEGER         = 0,
1275   BRW_TESS_PARTITIONING_ODD_FRACTIONAL  = 1,
1276   BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
1277};
1278
1279enum brw_tess_output_topology {
1280   BRW_TESS_OUTPUT_TOPOLOGY_POINT   = 0,
1281   BRW_TESS_OUTPUT_TOPOLOGY_LINE    = 1,
1282   BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW  = 2,
1283   BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
1284};
1285
1286enum brw_tess_domain {
1287   BRW_TESS_DOMAIN_QUAD    = 0,
1288   BRW_TESS_DOMAIN_TRI     = 1,
1289   BRW_TESS_DOMAIN_ISOLINE = 2,
1290};
1291/** @} */
1292
1293struct brw_vue_prog_data {
1294   struct brw_stage_prog_data base;
1295   struct brw_vue_map vue_map;
1296
1297   /** Should the hardware deliver input VUE handles for URB pull loads? */
1298   bool include_vue_handles;
1299
1300   unsigned urb_read_length;
1301   unsigned total_grf;
1302
1303   uint32_t clip_distance_mask;
1304   uint32_t cull_distance_mask;
1305
1306   /* Used for calculating urb partitions.  In the VS, this is the size of the
1307    * URB entry used for both input and output to the thread.  In the GS, this
1308    * is the size of the URB entry used for output.
1309    */
1310   unsigned urb_entry_size;
1311
1312   enum shader_dispatch_mode dispatch_mode;
1313};
1314
1315struct brw_vs_prog_data {
1316   struct brw_vue_prog_data base;
1317
1318   uint64_t inputs_read;
1319   uint64_t double_inputs_read;
1320
1321   unsigned nr_attribute_slots;
1322
1323   bool uses_vertexid;
1324   bool uses_instanceid;
1325   bool uses_is_indexed_draw;
1326   bool uses_firstvertex;
1327   bool uses_baseinstance;
1328   bool uses_drawid;
1329};
1330
1331struct brw_tcs_prog_data
1332{
1333   struct brw_vue_prog_data base;
1334
1335   /** Should the non-SINGLE_PATCH payload provide primitive ID? */
1336   bool include_primitive_id;
1337
1338   /** Number vertices in output patch */
1339   int instances;
1340
1341   /** Track patch count threshold */
1342   int patch_count_threshold;
1343};
1344
1345
1346struct brw_tes_prog_data
1347{
1348   struct brw_vue_prog_data base;
1349
1350   enum brw_tess_partitioning partitioning;
1351   enum brw_tess_output_topology output_topology;
1352   enum brw_tess_domain domain;
1353   bool include_primitive_id;
1354};
1355
1356struct brw_gs_prog_data
1357{
1358   struct brw_vue_prog_data base;
1359
1360   unsigned vertices_in;
1361
1362   /**
1363    * Size of an output vertex, measured in HWORDS (32 bytes).
1364    */
1365   unsigned output_vertex_size_hwords;
1366
1367   unsigned output_topology;
1368
1369   /**
1370    * Size of the control data (cut bits or StreamID bits), in hwords (32
1371    * bytes).  0 if there is no control data.
1372    */
1373   unsigned control_data_header_size_hwords;
1374
1375   /**
1376    * Format of the control data (either GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1377    * if the control data is StreamID bits, or
1378    * GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1379    * Ignored if control_data_header_size is 0.
1380    */
1381   unsigned control_data_format;
1382
1383   bool include_primitive_id;
1384
1385   /**
1386    * The number of vertices emitted, if constant - otherwise -1.
1387    */
1388   int static_vertex_count;
1389
1390   int invocations;
1391
1392   /**
1393    * Gfx6: Provoking vertex convention for odd-numbered triangles
1394    * in tristrips.
1395    */
1396   unsigned pv_first:1;
1397
1398   /**
1399    * Gfx6: Number of varyings that are output to transform feedback.
1400    */
1401   unsigned num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1402
1403   /**
1404    * Gfx6: Map from the index of a transform feedback binding table entry to the
1405    * gl_varying_slot that should be streamed out through that binding table
1406    * entry.
1407    */
1408   unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1409
1410   /**
1411    * Gfx6: Map from the index of a transform feedback binding table entry to the
1412    * swizzles that should be used when streaming out data through that
1413    * binding table entry.
1414    */
1415   unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1416};
1417
1418struct brw_sf_prog_data {
1419   uint32_t urb_read_length;
1420   uint32_t total_grf;
1421
1422   /* Each vertex may have up to 12 attributes, 4 components each,
1423    * except WPOS which requires only 2.  (11*4 + 2) == 44 ==> 11
1424    * rows.
1425    *
1426    * Actually we use 4 for each, so call it 12 rows.
1427    */
1428   unsigned urb_entry_size;
1429};
1430
1431struct brw_clip_prog_data {
1432   uint32_t curb_read_length;	/* user planes? */
1433   uint32_t clip_mode;
1434   uint32_t urb_read_length;
1435   uint32_t total_grf;
1436};
1437
1438struct brw_tue_map {
1439   uint32_t size_dw;
1440
1441   uint32_t per_task_data_start_dw;
1442};
1443
1444struct brw_mue_map {
1445   int32_t start_dw[VARYING_SLOT_MAX];
1446
1447   uint32_t size_dw;
1448
1449   uint32_t max_primitives;
1450   uint32_t per_primitive_start_dw;
1451   uint32_t per_primitive_header_size_dw;
1452   uint32_t per_primitive_data_size_dw;
1453   uint32_t per_primitive_pitch_dw;
1454
1455   uint32_t max_vertices;
1456   uint32_t per_vertex_start_dw;
1457   uint32_t per_vertex_header_size_dw;
1458   uint32_t per_vertex_data_size_dw;
1459   uint32_t per_vertex_pitch_dw;
1460};
1461
1462struct brw_task_prog_data {
1463   struct brw_cs_prog_data base;
1464   struct brw_tue_map map;
1465   bool uses_drawid;
1466};
1467
1468enum brw_mesh_index_format {
1469   BRW_INDEX_FORMAT_U32,
1470};
1471
1472struct brw_mesh_prog_data {
1473   struct brw_cs_prog_data base;
1474   struct brw_mue_map map;
1475
1476   uint32_t clip_distance_mask;
1477   uint32_t cull_distance_mask;
1478   uint16_t primitive_type;
1479
1480   enum brw_mesh_index_format index_format;
1481
1482   bool uses_drawid;
1483};
1484
1485/* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1486union brw_any_prog_data {
1487   struct brw_stage_prog_data base;
1488   struct brw_vue_prog_data vue;
1489   struct brw_vs_prog_data vs;
1490   struct brw_tcs_prog_data tcs;
1491   struct brw_tes_prog_data tes;
1492   struct brw_gs_prog_data gs;
1493   struct brw_wm_prog_data wm;
1494   struct brw_cs_prog_data cs;
1495   struct brw_bs_prog_data bs;
1496   struct brw_task_prog_data task;
1497   struct brw_mesh_prog_data mesh;
1498};
1499
1500#define DEFINE_PROG_DATA_DOWNCAST(STAGE, CHECK)                            \
1501static inline struct brw_##STAGE##_prog_data *                             \
1502brw_##STAGE##_prog_data(struct brw_stage_prog_data *prog_data)             \
1503{                                                                          \
1504   if (prog_data)                                                          \
1505      assert(CHECK);                                                       \
1506   return (struct brw_##STAGE##_prog_data *) prog_data;                    \
1507}                                                                          \
1508static inline const struct brw_##STAGE##_prog_data *                       \
1509brw_##STAGE##_prog_data_const(const struct brw_stage_prog_data *prog_data) \
1510{                                                                          \
1511   if (prog_data)                                                          \
1512      assert(CHECK);                                                       \
1513   return (const struct brw_##STAGE##_prog_data *) prog_data;              \
1514}
1515
1516DEFINE_PROG_DATA_DOWNCAST(vs,  prog_data->stage == MESA_SHADER_VERTEX)
1517DEFINE_PROG_DATA_DOWNCAST(tcs, prog_data->stage == MESA_SHADER_TESS_CTRL)
1518DEFINE_PROG_DATA_DOWNCAST(tes, prog_data->stage == MESA_SHADER_TESS_EVAL)
1519DEFINE_PROG_DATA_DOWNCAST(gs,  prog_data->stage == MESA_SHADER_GEOMETRY)
1520DEFINE_PROG_DATA_DOWNCAST(wm,  prog_data->stage == MESA_SHADER_FRAGMENT)
1521DEFINE_PROG_DATA_DOWNCAST(cs,  gl_shader_stage_uses_workgroup(prog_data->stage))
1522DEFINE_PROG_DATA_DOWNCAST(bs,  brw_shader_stage_is_bindless(prog_data->stage))
1523
1524DEFINE_PROG_DATA_DOWNCAST(vue, prog_data->stage == MESA_SHADER_VERTEX ||
1525                               prog_data->stage == MESA_SHADER_TESS_CTRL ||
1526                               prog_data->stage == MESA_SHADER_TESS_EVAL ||
1527                               prog_data->stage == MESA_SHADER_GEOMETRY)
1528
1529DEFINE_PROG_DATA_DOWNCAST(task, prog_data->stage == MESA_SHADER_TASK)
1530DEFINE_PROG_DATA_DOWNCAST(mesh, prog_data->stage == MESA_SHADER_MESH)
1531
1532/* These are not really brw_stage_prog_data. */
1533DEFINE_PROG_DATA_DOWNCAST(ff_gs, true)
1534DEFINE_PROG_DATA_DOWNCAST(clip,  true)
1535DEFINE_PROG_DATA_DOWNCAST(sf,    true)
1536#undef DEFINE_PROG_DATA_DOWNCAST
1537
1538struct brw_compile_stats {
1539   uint32_t dispatch_width; /**< 0 for vec4 */
1540   uint32_t instructions;
1541   uint32_t sends;
1542   uint32_t loops;
1543   uint32_t cycles;
1544   uint32_t spills;
1545   uint32_t fills;
1546};
1547
1548/** @} */
1549
1550struct brw_compiler *
1551brw_compiler_create(void *mem_ctx, const struct intel_device_info *devinfo);
1552
1553/**
1554 * Returns a compiler configuration for use with disk shader cache
1555 *
1556 * This value only needs to change for settings that can cause different
1557 * program generation between two runs on the same hardware.
1558 *
1559 * For example, it doesn't need to be different for gen 8 and gen 9 hardware,
1560 * but it does need to be different if INTEL_DEBUG=nocompact is or isn't used.
1561 */
1562uint64_t
1563brw_get_compiler_config_value(const struct brw_compiler *compiler);
1564
1565unsigned
1566brw_prog_data_size(gl_shader_stage stage);
1567
1568unsigned
1569brw_prog_key_size(gl_shader_stage stage);
1570
1571void
1572brw_prog_key_set_id(union brw_any_prog_key *key, gl_shader_stage, unsigned id);
1573
1574/**
1575 * Parameters for compiling a vertex shader.
1576 *
1577 * Some of these will be modified during the shader compilation.
1578 */
1579struct brw_compile_vs_params {
1580   nir_shader *nir;
1581
1582   const struct brw_vs_prog_key *key;
1583   struct brw_vs_prog_data *prog_data;
1584
1585   bool edgeflag_is_last; /* true for gallium */
1586
1587   struct brw_compile_stats *stats;
1588
1589   void *log_data;
1590
1591   char *error_str;
1592
1593   /* If unset, DEBUG_VS is used. */
1594   uint64_t debug_flag;
1595};
1596
1597/**
1598 * Compile a vertex shader.
1599 *
1600 * Returns the final assembly and updates the parameters structure.
1601 */
1602const unsigned *
1603brw_compile_vs(const struct brw_compiler *compiler,
1604               void *mem_ctx,
1605               struct brw_compile_vs_params *params);
1606
1607/**
1608 * Parameters for compiling a tessellation control shader.
1609 *
1610 * Some of these will be modified during the shader compilation.
1611 */
1612struct brw_compile_tcs_params {
1613   nir_shader *nir;
1614
1615   const struct brw_tcs_prog_key *key;
1616   struct brw_tcs_prog_data *prog_data;
1617
1618   struct brw_compile_stats *stats;
1619
1620   void *log_data;
1621
1622   char *error_str;
1623};
1624
1625/**
1626 * Compile a tessellation control shader.
1627 *
1628 * Returns the final assembly and updates the parameters structure.
1629 */
1630const unsigned *
1631brw_compile_tcs(const struct brw_compiler *compiler,
1632                void *mem_ctx,
1633                struct brw_compile_tcs_params *params);
1634
1635/**
1636 * Parameters for compiling a tessellation evaluation shader.
1637 *
1638 * Some of these will be modified during the shader compilation.
1639 */
1640struct brw_compile_tes_params {
1641   nir_shader *nir;
1642
1643   const struct brw_tes_prog_key *key;
1644   struct brw_tes_prog_data *prog_data;
1645   const struct brw_vue_map *input_vue_map;
1646
1647   struct brw_compile_stats *stats;
1648
1649   void *log_data;
1650
1651   char *error_str;
1652};
1653
1654/**
1655 * Compile a tessellation evaluation shader.
1656 *
1657 * Returns the final assembly and updates the parameters structure.
1658 */
1659const unsigned *
1660brw_compile_tes(const struct brw_compiler *compiler,
1661                void *mem_ctx,
1662                struct brw_compile_tes_params *params);
1663
1664/**
1665 * Parameters for compiling a geometry shader.
1666 *
1667 * Some of these will be modified during the shader compilation.
1668 */
1669struct brw_compile_gs_params {
1670   nir_shader *nir;
1671
1672   const struct brw_gs_prog_key *key;
1673   struct brw_gs_prog_data *prog_data;
1674
1675   struct brw_compile_stats *stats;
1676
1677   void *log_data;
1678
1679   char *error_str;
1680};
1681
1682/**
1683 * Compile a geometry shader.
1684 *
1685 * Returns the final assembly and updates the parameters structure.
1686 */
1687const unsigned *
1688brw_compile_gs(const struct brw_compiler *compiler,
1689               void *mem_ctx,
1690               struct brw_compile_gs_params *params);
1691
1692/**
1693 * Compile a strips and fans shader.
1694 *
1695 * This is a fixed-function shader determined entirely by the shader key and
1696 * a VUE map.
1697 *
1698 * Returns the final assembly and the program's size.
1699 */
1700const unsigned *
1701brw_compile_sf(const struct brw_compiler *compiler,
1702               void *mem_ctx,
1703               const struct brw_sf_prog_key *key,
1704               struct brw_sf_prog_data *prog_data,
1705               struct brw_vue_map *vue_map,
1706               unsigned *final_assembly_size);
1707
1708/**
1709 * Compile a clipper shader.
1710 *
1711 * This is a fixed-function shader determined entirely by the shader key and
1712 * a VUE map.
1713 *
1714 * Returns the final assembly and the program's size.
1715 */
1716const unsigned *
1717brw_compile_clip(const struct brw_compiler *compiler,
1718                 void *mem_ctx,
1719                 const struct brw_clip_prog_key *key,
1720                 struct brw_clip_prog_data *prog_data,
1721                 struct brw_vue_map *vue_map,
1722                 unsigned *final_assembly_size);
1723
1724struct brw_compile_task_params {
1725   struct nir_shader *nir;
1726
1727   const struct brw_task_prog_key *key;
1728   struct brw_task_prog_data *prog_data;
1729
1730   struct brw_compile_stats *stats;
1731
1732   char *error_str;
1733   void *log_data;
1734};
1735
1736const unsigned *
1737brw_compile_task(const struct brw_compiler *compiler,
1738                 void *mem_ctx,
1739                 struct brw_compile_task_params *params);
1740
1741struct brw_compile_mesh_params {
1742   struct nir_shader *nir;
1743
1744   const struct brw_mesh_prog_key *key;
1745   struct brw_mesh_prog_data *prog_data;
1746   const struct brw_tue_map *tue_map;
1747
1748   struct brw_compile_stats *stats;
1749
1750   char *error_str;
1751   void *log_data;
1752};
1753
1754const unsigned *
1755brw_compile_mesh(const struct brw_compiler *compiler,
1756                 void *mem_ctx,
1757                 struct brw_compile_mesh_params *params);
1758
1759/**
1760 * Parameters for compiling a fragment shader.
1761 *
1762 * Some of these will be modified during the shader compilation.
1763 */
1764struct brw_compile_fs_params {
1765   nir_shader *nir;
1766
1767   const struct brw_wm_prog_key *key;
1768   struct brw_wm_prog_data *prog_data;
1769
1770   const struct brw_vue_map *vue_map;
1771   const struct brw_mue_map *mue_map;
1772
1773   bool allow_spilling;
1774   bool use_rep_send;
1775
1776   struct brw_compile_stats *stats;
1777
1778   void *log_data;
1779
1780   char *error_str;
1781
1782   /* If unset, DEBUG_WM is used. */
1783   uint64_t debug_flag;
1784};
1785
1786/**
1787 * Compile a fragment shader.
1788 *
1789 * Returns the final assembly and updates the parameters structure.
1790 */
1791const unsigned *
1792brw_compile_fs(const struct brw_compiler *compiler,
1793               void *mem_ctx,
1794               struct brw_compile_fs_params *params);
1795
1796/**
1797 * Parameters for compiling a compute shader.
1798 *
1799 * Some of these will be modified during the shader compilation.
1800 */
1801struct brw_compile_cs_params {
1802   nir_shader *nir;
1803
1804   const struct brw_cs_prog_key *key;
1805   struct brw_cs_prog_data *prog_data;
1806
1807   struct brw_compile_stats *stats;
1808
1809   void *log_data;
1810
1811   char *error_str;
1812
1813   /* If unset, DEBUG_CS is used. */
1814   uint64_t debug_flag;
1815};
1816
1817/**
1818 * Compile a compute shader.
1819 *
1820 * Returns the final assembly and updates the parameters structure.
1821 */
1822const unsigned *
1823brw_compile_cs(const struct brw_compiler *compiler,
1824               void *mem_ctx,
1825               struct brw_compile_cs_params *params);
1826
1827/**
1828 * Parameters for compiling a Bindless shader.
1829 *
1830 * Some of these will be modified during the shader compilation.
1831 */
1832struct brw_compile_bs_params {
1833   nir_shader *nir;
1834
1835   const struct brw_bs_prog_key *key;
1836   struct brw_bs_prog_data *prog_data;
1837
1838   unsigned num_resume_shaders;
1839   struct nir_shader **resume_shaders;
1840
1841   struct brw_compile_stats *stats;
1842
1843   void *log_data;
1844
1845   char *error_str;
1846};
1847
1848/**
1849 * Compile a Bindless shader.
1850 *
1851 * Returns the final assembly and updates the parameters structure.
1852 */
1853const unsigned *
1854brw_compile_bs(const struct brw_compiler *compiler,
1855               void *mem_ctx,
1856               struct brw_compile_bs_params *params);
1857
1858/**
1859 * Compile a fixed function geometry shader.
1860 *
1861 * Returns the final assembly and the program's size.
1862 */
1863const unsigned *
1864brw_compile_ff_gs_prog(struct brw_compiler *compiler,
1865		       void *mem_ctx,
1866		       const struct brw_ff_gs_prog_key *key,
1867		       struct brw_ff_gs_prog_data *prog_data,
1868		       struct brw_vue_map *vue_map,
1869		       unsigned *final_assembly_size);
1870
1871void brw_debug_key_recompile(const struct brw_compiler *c, void *log,
1872                             gl_shader_stage stage,
1873                             const struct brw_base_prog_key *old_key,
1874                             const struct brw_base_prog_key *key);
1875
1876/* Shared Local Memory Size is specified as powers of two,
1877 * and also have a Gen-dependent minimum value if not zero.
1878 */
1879static inline uint32_t
1880intel_calculate_slm_size(unsigned gen, uint32_t bytes)
1881{
1882   assert(bytes <= 64 * 1024);
1883   if (bytes > 0)
1884      return MAX2(util_next_power_of_two(bytes), gen >= 9 ? 1024 : 4096);
1885   else
1886      return 0;
1887}
1888
1889static inline uint32_t
1890encode_slm_size(unsigned gen, uint32_t bytes)
1891{
1892   uint32_t slm_size = 0;
1893
1894   /* Shared Local Memory is specified as powers of two, and encoded in
1895    * INTERFACE_DESCRIPTOR_DATA with the following representations:
1896    *
1897    * Size   | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1898    * -------------------------------------------------------------------
1899    * Gfx7-8 |    0 | none | none |    1 |    2 |     4 |     8 |    16 |
1900    * -------------------------------------------------------------------
1901    * Gfx9+  |    0 |    1 |    2 |    3 |    4 |     5 |     6 |     7 |
1902    */
1903
1904   if (bytes > 0) {
1905      slm_size = intel_calculate_slm_size(gen, bytes);
1906      assert(util_is_power_of_two_nonzero(slm_size));
1907
1908      if (gen >= 9) {
1909         /* Turn an exponent of 10 (1024 kB) into 1. */
1910         assert(slm_size >= 1024);
1911         slm_size = ffs(slm_size) - 10;
1912      } else {
1913         assert(slm_size >= 4096);
1914         /* Convert to the pre-Gfx9 representation. */
1915         slm_size = slm_size / 4096;
1916      }
1917   }
1918
1919   return slm_size;
1920}
1921
1922unsigned
1923brw_cs_push_const_total_size(const struct brw_cs_prog_data *cs_prog_data,
1924                             unsigned threads);
1925
1926void
1927brw_write_shader_relocs(const struct brw_isa_info *isa,
1928                        void *program,
1929                        const struct brw_stage_prog_data *prog_data,
1930                        struct brw_shader_reloc_value *values,
1931                        unsigned num_values);
1932
1933struct brw_cs_dispatch_info {
1934   uint32_t group_size;
1935   uint32_t simd_size;
1936   uint32_t threads;
1937
1938   /* RightExecutionMask field used in GPGPU_WALKER. */
1939   uint32_t right_mask;
1940};
1941
1942/**
1943 * Get the dispatch information for a shader to be used with GPGPU_WALKER and
1944 * similar instructions.
1945 *
1946 * If override_local_size is not NULL, it must to point to a 3-element that
1947 * will override the value from prog_data->local_size.  This is used by
1948 * ARB_compute_variable_group_size, where the size is set only at dispatch
1949 * time (so prog_data is outdated).
1950 */
1951struct brw_cs_dispatch_info
1952brw_cs_get_dispatch_info(const struct intel_device_info *devinfo,
1953                         const struct brw_cs_prog_data *prog_data,
1954                         const unsigned *override_local_size);
1955
1956/**
1957 * Return true if the given shader stage is dispatched contiguously by the
1958 * relevant fixed function starting from channel 0 of the SIMD thread, which
1959 * implies that the dispatch mask of a thread can be assumed to have the form
1960 * '2^n - 1' for some n.
1961 */
1962static inline bool
1963brw_stage_has_packed_dispatch(ASSERTED const struct intel_device_info *devinfo,
1964                              gl_shader_stage stage,
1965                              const struct brw_stage_prog_data *prog_data)
1966{
1967   /* The code below makes assumptions about the hardware's thread dispatch
1968    * behavior that could be proven wrong in future generations -- Make sure
1969    * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1970    * the NIR front-end before changing this assertion.
1971    */
1972   assert(devinfo->ver <= 12);
1973
1974   switch (stage) {
1975   case MESA_SHADER_FRAGMENT: {
1976      /* The PSD discards subspans coming in with no lit samples, which in the
1977       * per-pixel shading case implies that each subspan will either be fully
1978       * lit (due to the VMask being used to allow derivative computations),
1979       * or not dispatched at all.  In per-sample dispatch mode individual
1980       * samples from the same subspan have a fixed relative location within
1981       * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1982       * general and we should return false.
1983       */
1984      const struct brw_wm_prog_data *wm_prog_data =
1985         (const struct brw_wm_prog_data *)prog_data;
1986      return devinfo->verx10 < 125 &&
1987             !wm_prog_data->persample_dispatch &&
1988             wm_prog_data->uses_vmask;
1989   }
1990   case MESA_SHADER_COMPUTE:
1991      /* Compute shaders will be spawned with either a fully enabled dispatch
1992       * mask or with whatever bottom/right execution mask was given to the
1993       * GPGPU walker command to be used along the workgroup edges -- In both
1994       * cases the dispatch mask is required to be tightly packed for our
1995       * invocation index calculations to work.
1996       */
1997      return true;
1998   default:
1999      /* Most remaining fixed functions are limited to use a packed dispatch
2000       * mask due to the hardware representation of the dispatch mask as a
2001       * single counter representing the number of enabled channels.
2002       */
2003      return true;
2004   }
2005}
2006
2007/**
2008 * Computes the first varying slot in the URB produced by the previous stage
2009 * that is used in the next stage. We do this by testing the varying slots in
2010 * the previous stage's vue map against the inputs read in the next stage.
2011 *
2012 * Note that:
2013 *
2014 * - Each URB offset contains two varying slots and we can only skip a
2015 *   full offset if both slots are unused, so the value we return here is always
2016 *   rounded down to the closest multiple of two.
2017 *
2018 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
2019 *   part of the vue header, so if these are read we can't skip anything.
2020 */
2021static inline int
2022brw_compute_first_urb_slot_required(uint64_t inputs_read,
2023                                    const struct brw_vue_map *prev_stage_vue_map)
2024{
2025   if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PRIMITIVE_SHADING_RATE)) == 0) {
2026      for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
2027         int varying = prev_stage_vue_map->slot_to_varying[i];
2028         if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
2029            return ROUND_DOWN_TO(i, 2);
2030      }
2031   }
2032
2033   return 0;
2034}
2035
2036/* From InlineData in 3DSTATE_TASK_SHADER_DATA and 3DSTATE_MESH_SHADER_DATA. */
2037#define BRW_TASK_MESH_INLINE_DATA_SIZE_DW 8
2038
2039/* InlineData[0-1] is used for Vulkan descriptor. */
2040#define BRW_TASK_MESH_PUSH_CONSTANTS_START_DW 2
2041
2042#define BRW_TASK_MESH_PUSH_CONSTANTS_SIZE_DW \
2043   (BRW_TASK_MESH_INLINE_DATA_SIZE_DW - BRW_TASK_MESH_PUSH_CONSTANTS_START_DW)
2044
2045/**
2046 * This enum is used as the base indice of the nir_load_topology_id_intel
2047 * intrinsic. This is used to return different values based on some aspect of
2048 * the topology of the device.
2049 */
2050enum brw_topology_id
2051{
2052   /* A value based of the DSS identifier the shader is currently running on.
2053    * Be mindful that the DSS ID can be higher than the total number of DSS on
2054    * the device. This is because of the fusing that can occur on different
2055    * parts.
2056    */
2057   BRW_TOPOLOGY_ID_DSS,
2058
2059   /* A value composed of EU ID, thread ID & SIMD lane ID. */
2060   BRW_TOPOLOGY_ID_EU_THREAD_SIMD,
2061};
2062
2063#ifdef __cplusplus
2064} /* extern "C" */
2065#endif
2066
2067#endif /* BRW_COMPILER_H */
2068