1/*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "brw_cfg.h"
29#include "brw_shader.h"
30
31/** @file brw_cfg.cpp
32 *
33 * Walks the shader instructions generated and creates a set of basic
34 * blocks with successor/predecessor edges connecting them.
35 */
36
37using namespace brw;
38
39static bblock_t *
40pop_stack(exec_list *list)
41{
42   bblock_link *link = (bblock_link *)list->get_tail();
43   bblock_t *block = link->block;
44   link->link.remove();
45
46   return block;
47}
48
49static exec_node *
50link(void *mem_ctx, bblock_t *block, enum bblock_link_kind kind)
51{
52   bblock_link *l = new(mem_ctx) bblock_link(block, kind);
53   return &l->link;
54}
55
56void
57push_stack(exec_list *list, void *mem_ctx, bblock_t *block)
58{
59   /* The kind of the link is immaterial, but we need to provide one since
60    * this is (ab)using the edge data structure in order to implement a stack.
61    */
62   list->push_tail(link(mem_ctx, block, bblock_link_logical));
63}
64
65bblock_t::bblock_t(cfg_t *cfg) :
66   cfg(cfg), start_ip(0), end_ip(0), end_ip_delta(0), num(0)
67{
68   instructions.make_empty();
69   parents.make_empty();
70   children.make_empty();
71}
72
73void
74bblock_t::add_successor(void *mem_ctx, bblock_t *successor,
75                        enum bblock_link_kind kind)
76{
77   successor->parents.push_tail(::link(mem_ctx, this, kind));
78   children.push_tail(::link(mem_ctx, successor, kind));
79}
80
81bool
82bblock_t::is_predecessor_of(const bblock_t *block,
83                            enum bblock_link_kind kind) const
84{
85   foreach_list_typed_safe (bblock_link, parent, link, &block->parents) {
86      if (parent->block == this && parent->kind <= kind) {
87         return true;
88      }
89   }
90
91   return false;
92}
93
94bool
95bblock_t::is_successor_of(const bblock_t *block,
96                          enum bblock_link_kind kind) const
97{
98   foreach_list_typed_safe (bblock_link, child, link, &block->children) {
99      if (child->block == this && child->kind <= kind) {
100         return true;
101      }
102   }
103
104   return false;
105}
106
107static bool
108ends_block(const backend_instruction *inst)
109{
110   enum opcode op = inst->opcode;
111
112   return op == BRW_OPCODE_IF ||
113          op == BRW_OPCODE_ELSE ||
114          op == BRW_OPCODE_CONTINUE ||
115          op == BRW_OPCODE_BREAK ||
116          op == BRW_OPCODE_DO ||
117          op == BRW_OPCODE_WHILE;
118}
119
120static bool
121starts_block(const backend_instruction *inst)
122{
123   enum opcode op = inst->opcode;
124
125   return op == BRW_OPCODE_DO ||
126          op == BRW_OPCODE_ENDIF;
127}
128
129bool
130bblock_t::can_combine_with(const bblock_t *that) const
131{
132   if ((const bblock_t *)this->link.next != that)
133      return false;
134
135   if (ends_block(this->end()) ||
136       starts_block(that->start()))
137      return false;
138
139   return true;
140}
141
142void
143bblock_t::combine_with(bblock_t *that)
144{
145   assert(this->can_combine_with(that));
146   foreach_list_typed (bblock_link, link, link, &that->parents) {
147      assert(link->block == this);
148   }
149
150   this->end_ip = that->end_ip;
151   this->instructions.append_list(&that->instructions);
152
153   this->cfg->remove_block(that);
154}
155
156void
157bblock_t::dump() const
158{
159   const backend_shader *s = this->cfg->s;
160
161   int ip = this->start_ip;
162   foreach_inst_in_block(backend_instruction, inst, this) {
163      fprintf(stderr, "%5d: ", ip);
164      s->dump_instruction(inst);
165      ip++;
166   }
167}
168
169cfg_t::cfg_t(const backend_shader *s, exec_list *instructions) :
170   s(s)
171{
172   mem_ctx = ralloc_context(NULL);
173   block_list.make_empty();
174   blocks = NULL;
175   num_blocks = 0;
176
177   bblock_t *cur = NULL;
178   int ip = 0;
179
180   bblock_t *entry = new_block();
181   bblock_t *cur_if = NULL;    /**< BB ending with IF. */
182   bblock_t *cur_else = NULL;  /**< BB ending with ELSE. */
183   bblock_t *cur_endif = NULL; /**< BB starting with ENDIF. */
184   bblock_t *cur_do = NULL;    /**< BB starting with DO. */
185   bblock_t *cur_while = NULL; /**< BB immediately following WHILE. */
186   exec_list if_stack, else_stack, do_stack, while_stack;
187   bblock_t *next;
188
189   set_next_block(&cur, entry, ip);
190
191   foreach_in_list_safe(backend_instruction, inst, instructions) {
192      /* set_next_block wants the post-incremented ip */
193      ip++;
194
195      inst->exec_node::remove();
196
197      switch (inst->opcode) {
198      case BRW_OPCODE_IF:
199         cur->instructions.push_tail(inst);
200
201	 /* Push our information onto a stack so we can recover from
202	  * nested ifs.
203	  */
204         push_stack(&if_stack, mem_ctx, cur_if);
205         push_stack(&else_stack, mem_ctx, cur_else);
206
207	 cur_if = cur;
208	 cur_else = NULL;
209         cur_endif = NULL;
210
211	 /* Set up our immediately following block, full of "then"
212	  * instructions.
213	  */
214	 next = new_block();
215         cur_if->add_successor(mem_ctx, next, bblock_link_logical);
216
217	 set_next_block(&cur, next, ip);
218	 break;
219
220      case BRW_OPCODE_ELSE:
221         cur->instructions.push_tail(inst);
222
223         cur_else = cur;
224
225	 next = new_block();
226         assert(cur_if != NULL);
227         cur_if->add_successor(mem_ctx, next, bblock_link_logical);
228         cur_else->add_successor(mem_ctx, next, bblock_link_physical);
229
230	 set_next_block(&cur, next, ip);
231	 break;
232
233      case BRW_OPCODE_ENDIF: {
234         if (cur->instructions.is_empty()) {
235            /* New block was just created; use it. */
236            cur_endif = cur;
237         } else {
238            cur_endif = new_block();
239
240            cur->add_successor(mem_ctx, cur_endif, bblock_link_logical);
241
242            set_next_block(&cur, cur_endif, ip - 1);
243         }
244
245         cur->instructions.push_tail(inst);
246
247         if (cur_else) {
248            cur_else->add_successor(mem_ctx, cur_endif, bblock_link_logical);
249         } else {
250            assert(cur_if != NULL);
251            cur_if->add_successor(mem_ctx, cur_endif, bblock_link_logical);
252         }
253
254         assert(cur_if->end()->opcode == BRW_OPCODE_IF);
255         assert(!cur_else || cur_else->end()->opcode == BRW_OPCODE_ELSE);
256
257	 /* Pop the stack so we're in the previous if/else/endif */
258	 cur_if = pop_stack(&if_stack);
259	 cur_else = pop_stack(&else_stack);
260	 break;
261      }
262      case BRW_OPCODE_DO:
263	 /* Push our information onto a stack so we can recover from
264	  * nested loops.
265	  */
266         push_stack(&do_stack, mem_ctx, cur_do);
267         push_stack(&while_stack, mem_ctx, cur_while);
268
269	 /* Set up the block just after the while.  Don't know when exactly
270	  * it will start, yet.
271	  */
272	 cur_while = new_block();
273
274         if (cur->instructions.is_empty()) {
275            /* New block was just created; use it. */
276            cur_do = cur;
277         } else {
278            cur_do = new_block();
279
280            cur->add_successor(mem_ctx, cur_do, bblock_link_logical);
281
282            set_next_block(&cur, cur_do, ip - 1);
283         }
284
285         cur->instructions.push_tail(inst);
286
287         /* Represent divergent execution of the loop as a pair of alternative
288          * edges coming out of the DO instruction: For any physical iteration
289          * of the loop a given logical thread can either start off enabled
290          * (which is represented as the "next" successor), or disabled (if it
291          * has reached a non-uniform exit of the loop during a previous
292          * iteration, which is represented as the "cur_while" successor).
293          *
294          * The disabled edge will be taken by the logical thread anytime we
295          * arrive at the DO instruction through a back-edge coming from a
296          * conditional exit of the loop where divergent control flow started.
297          *
298          * This guarantees that there is a control-flow path from any
299          * divergence point of the loop into the convergence point
300          * (immediately past the WHILE instruction) such that it overlaps the
301          * whole IP region of divergent control flow (potentially the whole
302          * loop) *and* doesn't imply the execution of any instructions part
303          * of the loop (since the corresponding execution mask bit will be
304          * disabled for a diverging thread).
305          *
306          * This way we make sure that any variables that are live throughout
307          * the region of divergence for an inactive logical thread are also
308          * considered to interfere with any other variables assigned by
309          * active logical threads within the same physical region of the
310          * program, since otherwise we would risk cross-channel data
311          * corruption.
312          */
313         next = new_block();
314         cur->add_successor(mem_ctx, next, bblock_link_logical);
315         cur->add_successor(mem_ctx, cur_while, bblock_link_physical);
316         set_next_block(&cur, next, ip);
317	 break;
318
319      case BRW_OPCODE_CONTINUE:
320         cur->instructions.push_tail(inst);
321
322         /* A conditional CONTINUE may start a region of divergent control
323          * flow until the start of the next loop iteration (*not* until the
324          * end of the loop which is why the successor is not the top-level
325          * divergence point at cur_do).  The live interval of any variable
326          * extending through a CONTINUE edge is guaranteed to overlap the
327          * whole region of divergent execution, because any variable live-out
328          * at the CONTINUE instruction will also be live-in at the top of the
329          * loop, and therefore also live-out at the bottom-most point of the
330          * loop which is reachable from the top (since a control flow path
331          * exists from a definition of the variable through this CONTINUE
332          * instruction, the top of the loop, the (reachable) bottom of the
333          * loop, the top of the loop again, into a use of the variable).
334          */
335         assert(cur_do != NULL);
336         cur->add_successor(mem_ctx, cur_do->next(), bblock_link_logical);
337
338	 next = new_block();
339	 if (inst->predicate)
340            cur->add_successor(mem_ctx, next, bblock_link_logical);
341         else
342            cur->add_successor(mem_ctx, next, bblock_link_physical);
343
344	 set_next_block(&cur, next, ip);
345	 break;
346
347      case BRW_OPCODE_BREAK:
348         cur->instructions.push_tail(inst);
349
350         /* A conditional BREAK instruction may start a region of divergent
351          * control flow until the end of the loop if the condition is
352          * non-uniform, in which case the loop will execute additional
353          * iterations with the present channel disabled.  We model this as a
354          * control flow path from the divergence point to the convergence
355          * point that overlaps the whole IP range of the loop and skips over
356          * the execution of any other instructions part of the loop.
357          *
358          * See the DO case for additional explanation.
359          */
360         assert(cur_do != NULL);
361         cur->add_successor(mem_ctx, cur_do, bblock_link_physical);
362         cur->add_successor(mem_ctx, cur_while, bblock_link_logical);
363
364	 next = new_block();
365	 if (inst->predicate)
366            cur->add_successor(mem_ctx, next, bblock_link_logical);
367         else
368            cur->add_successor(mem_ctx, next, bblock_link_physical);
369
370	 set_next_block(&cur, next, ip);
371	 break;
372
373      case BRW_OPCODE_WHILE:
374         cur->instructions.push_tail(inst);
375
376         assert(cur_do != NULL && cur_while != NULL);
377
378         /* A conditional WHILE instruction may start a region of divergent
379          * control flow until the end of the loop, just like the BREAK
380          * instruction.  See the BREAK case for more details.  OTOH an
381          * unconditional WHILE instruction is non-divergent (just like an
382          * unconditional CONTINUE), and will necessarily lead to the
383          * execution of an additional iteration of the loop for all enabled
384          * channels, so we may skip over the divergence point at the top of
385          * the loop to keep the CFG as unambiguous as possible.
386          */
387         if (inst->predicate) {
388            cur->add_successor(mem_ctx, cur_do, bblock_link_logical);
389         } else {
390            cur->add_successor(mem_ctx, cur_do->next(), bblock_link_logical);
391         }
392
393	 set_next_block(&cur, cur_while, ip);
394
395	 /* Pop the stack so we're in the previous loop */
396	 cur_do = pop_stack(&do_stack);
397	 cur_while = pop_stack(&while_stack);
398	 break;
399
400      default:
401         cur->instructions.push_tail(inst);
402	 break;
403      }
404   }
405
406   cur->end_ip = ip - 1;
407
408   make_block_array();
409}
410
411cfg_t::~cfg_t()
412{
413   ralloc_free(mem_ctx);
414}
415
416void
417cfg_t::remove_block(bblock_t *block)
418{
419   foreach_list_typed_safe (bblock_link, predecessor, link, &block->parents) {
420      /* Remove block from all of its predecessors' successor lists. */
421      foreach_list_typed_safe (bblock_link, successor, link,
422                               &predecessor->block->children) {
423         if (block == successor->block) {
424            successor->link.remove();
425            ralloc_free(successor);
426         }
427      }
428
429      /* Add removed-block's successors to its predecessors' successor lists. */
430      foreach_list_typed (bblock_link, successor, link, &block->children) {
431         if (!successor->block->is_successor_of(predecessor->block,
432                                                successor->kind)) {
433            predecessor->block->children.push_tail(link(mem_ctx,
434                                                        successor->block,
435                                                        successor->kind));
436         }
437      }
438   }
439
440   foreach_list_typed_safe (bblock_link, successor, link, &block->children) {
441      /* Remove block from all of its childrens' parents lists. */
442      foreach_list_typed_safe (bblock_link, predecessor, link,
443                               &successor->block->parents) {
444         if (block == predecessor->block) {
445            predecessor->link.remove();
446            ralloc_free(predecessor);
447         }
448      }
449
450      /* Add removed-block's predecessors to its successors' predecessor lists. */
451      foreach_list_typed (bblock_link, predecessor, link, &block->parents) {
452         if (!predecessor->block->is_predecessor_of(successor->block,
453                                                    predecessor->kind)) {
454            successor->block->parents.push_tail(link(mem_ctx,
455                                                     predecessor->block,
456                                                     predecessor->kind));
457         }
458      }
459   }
460
461   block->link.remove();
462
463   for (int b = block->num; b < this->num_blocks - 1; b++) {
464      this->blocks[b] = this->blocks[b + 1];
465      this->blocks[b]->num = b;
466   }
467
468   this->blocks[this->num_blocks - 1]->num = this->num_blocks - 2;
469   this->num_blocks--;
470}
471
472bblock_t *
473cfg_t::new_block()
474{
475   bblock_t *block = new(mem_ctx) bblock_t(this);
476
477   return block;
478}
479
480void
481cfg_t::set_next_block(bblock_t **cur, bblock_t *block, int ip)
482{
483   if (*cur) {
484      (*cur)->end_ip = ip - 1;
485   }
486
487   block->start_ip = ip;
488   block->num = num_blocks++;
489   block_list.push_tail(&block->link);
490   *cur = block;
491}
492
493void
494cfg_t::make_block_array()
495{
496   blocks = ralloc_array(mem_ctx, bblock_t *, num_blocks);
497
498   int i = 0;
499   foreach_block (block, this) {
500      blocks[i++] = block;
501   }
502   assert(i == num_blocks);
503}
504
505void
506cfg_t::dump()
507{
508   const idom_tree *idom = (s ? &s->idom_analysis.require() : NULL);
509
510   foreach_block (block, this) {
511      if (idom && idom->parent(block))
512         fprintf(stderr, "START B%d IDOM(B%d)", block->num,
513                 idom->parent(block)->num);
514      else
515         fprintf(stderr, "START B%d IDOM(none)", block->num);
516
517      foreach_list_typed(bblock_link, link, link, &block->parents) {
518         fprintf(stderr, " <%cB%d",
519                 link->kind == bblock_link_logical ? '-' : '~',
520                 link->block->num);
521      }
522      fprintf(stderr, "\n");
523      if (s != NULL)
524         block->dump();
525      fprintf(stderr, "END B%d", block->num);
526      foreach_list_typed(bblock_link, link, link, &block->children) {
527         fprintf(stderr, " %c>B%d",
528                 link->kind == bblock_link_logical ? '-' : '~',
529                 link->block->num);
530      }
531      fprintf(stderr, "\n");
532   }
533}
534
535/* Calculates the immediate dominator of each block, according to "A Simple,
536 * Fast Dominance Algorithm" by Keith D. Cooper, Timothy J. Harvey, and Ken
537 * Kennedy.
538 *
539 * The authors claim that for control flow graphs of sizes normally encountered
540 * (less than 1000 nodes) that this algorithm is significantly faster than
541 * others like Lengauer-Tarjan.
542 */
543idom_tree::idom_tree(const backend_shader *s) :
544   num_parents(s->cfg->num_blocks),
545   parents(new bblock_t *[num_parents]())
546{
547   bool changed;
548
549   parents[0] = s->cfg->blocks[0];
550
551   do {
552      changed = false;
553
554      foreach_block(block, s->cfg) {
555         if (block->num == 0)
556            continue;
557
558         bblock_t *new_idom = NULL;
559         foreach_list_typed(bblock_link, parent_link, link, &block->parents) {
560            if (parent(parent_link->block)) {
561               new_idom = (new_idom ? intersect(new_idom, parent_link->block) :
562                           parent_link->block);
563            }
564         }
565
566         if (parent(block) != new_idom) {
567            parents[block->num] = new_idom;
568            changed = true;
569         }
570      }
571   } while (changed);
572}
573
574idom_tree::~idom_tree()
575{
576   delete[] parents;
577}
578
579bblock_t *
580idom_tree::intersect(bblock_t *b1, bblock_t *b2) const
581{
582   /* Note, the comparisons here are the opposite of what the paper says
583    * because we index blocks from beginning -> end (i.e. reverse post-order)
584    * instead of post-order like they assume.
585    */
586   while (b1->num != b2->num) {
587      while (b1->num > b2->num)
588         b1 = parent(b1);
589      while (b2->num > b1->num)
590         b2 = parent(b2);
591   }
592   assert(b1);
593   return b1;
594}
595
596void
597idom_tree::dump() const
598{
599   printf("digraph DominanceTree {\n");
600   for (unsigned i = 0; i < num_parents; i++)
601      printf("\t%d -> %d\n", parents[i]->num, i);
602   printf("}\n");
603}
604
605void
606cfg_t::dump_cfg()
607{
608   printf("digraph CFG {\n");
609   for (int b = 0; b < num_blocks; b++) {
610      bblock_t *block = this->blocks[b];
611
612      foreach_list_typed_safe (bblock_link, child, link, &block->children) {
613         printf("\t%d -> %d\n", b, child->block->num);
614      }
615   }
616   printf("}\n");
617}
618