1/* 2 * Copyright © 2012 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28#include "brw_cfg.h" 29#include "brw_shader.h" 30 31/** @file brw_cfg.cpp 32 * 33 * Walks the shader instructions generated and creates a set of basic 34 * blocks with successor/predecessor edges connecting them. 35 */ 36 37using namespace brw; 38 39static bblock_t * 40pop_stack(exec_list *list) 41{ 42 bblock_link *link = (bblock_link *)list->get_tail(); 43 bblock_t *block = link->block; 44 link->link.remove(); 45 46 return block; 47} 48 49static exec_node * 50link(void *mem_ctx, bblock_t *block, enum bblock_link_kind kind) 51{ 52 bblock_link *l = new(mem_ctx) bblock_link(block, kind); 53 return &l->link; 54} 55 56void 57push_stack(exec_list *list, void *mem_ctx, bblock_t *block) 58{ 59 /* The kind of the link is immaterial, but we need to provide one since 60 * this is (ab)using the edge data structure in order to implement a stack. 61 */ 62 list->push_tail(link(mem_ctx, block, bblock_link_logical)); 63} 64 65bblock_t::bblock_t(cfg_t *cfg) : 66 cfg(cfg), start_ip(0), end_ip(0), end_ip_delta(0), num(0) 67{ 68 instructions.make_empty(); 69 parents.make_empty(); 70 children.make_empty(); 71} 72 73void 74bblock_t::add_successor(void *mem_ctx, bblock_t *successor, 75 enum bblock_link_kind kind) 76{ 77 successor->parents.push_tail(::link(mem_ctx, this, kind)); 78 children.push_tail(::link(mem_ctx, successor, kind)); 79} 80 81bool 82bblock_t::is_predecessor_of(const bblock_t *block, 83 enum bblock_link_kind kind) const 84{ 85 foreach_list_typed_safe (bblock_link, parent, link, &block->parents) { 86 if (parent->block == this && parent->kind <= kind) { 87 return true; 88 } 89 } 90 91 return false; 92} 93 94bool 95bblock_t::is_successor_of(const bblock_t *block, 96 enum bblock_link_kind kind) const 97{ 98 foreach_list_typed_safe (bblock_link, child, link, &block->children) { 99 if (child->block == this && child->kind <= kind) { 100 return true; 101 } 102 } 103 104 return false; 105} 106 107static bool 108ends_block(const backend_instruction *inst) 109{ 110 enum opcode op = inst->opcode; 111 112 return op == BRW_OPCODE_IF || 113 op == BRW_OPCODE_ELSE || 114 op == BRW_OPCODE_CONTINUE || 115 op == BRW_OPCODE_BREAK || 116 op == BRW_OPCODE_DO || 117 op == BRW_OPCODE_WHILE; 118} 119 120static bool 121starts_block(const backend_instruction *inst) 122{ 123 enum opcode op = inst->opcode; 124 125 return op == BRW_OPCODE_DO || 126 op == BRW_OPCODE_ENDIF; 127} 128 129bool 130bblock_t::can_combine_with(const bblock_t *that) const 131{ 132 if ((const bblock_t *)this->link.next != that) 133 return false; 134 135 if (ends_block(this->end()) || 136 starts_block(that->start())) 137 return false; 138 139 return true; 140} 141 142void 143bblock_t::combine_with(bblock_t *that) 144{ 145 assert(this->can_combine_with(that)); 146 foreach_list_typed (bblock_link, link, link, &that->parents) { 147 assert(link->block == this); 148 } 149 150 this->end_ip = that->end_ip; 151 this->instructions.append_list(&that->instructions); 152 153 this->cfg->remove_block(that); 154} 155 156void 157bblock_t::dump() const 158{ 159 const backend_shader *s = this->cfg->s; 160 161 int ip = this->start_ip; 162 foreach_inst_in_block(backend_instruction, inst, this) { 163 fprintf(stderr, "%5d: ", ip); 164 s->dump_instruction(inst); 165 ip++; 166 } 167} 168 169cfg_t::cfg_t(const backend_shader *s, exec_list *instructions) : 170 s(s) 171{ 172 mem_ctx = ralloc_context(NULL); 173 block_list.make_empty(); 174 blocks = NULL; 175 num_blocks = 0; 176 177 bblock_t *cur = NULL; 178 int ip = 0; 179 180 bblock_t *entry = new_block(); 181 bblock_t *cur_if = NULL; /**< BB ending with IF. */ 182 bblock_t *cur_else = NULL; /**< BB ending with ELSE. */ 183 bblock_t *cur_endif = NULL; /**< BB starting with ENDIF. */ 184 bblock_t *cur_do = NULL; /**< BB starting with DO. */ 185 bblock_t *cur_while = NULL; /**< BB immediately following WHILE. */ 186 exec_list if_stack, else_stack, do_stack, while_stack; 187 bblock_t *next; 188 189 set_next_block(&cur, entry, ip); 190 191 foreach_in_list_safe(backend_instruction, inst, instructions) { 192 /* set_next_block wants the post-incremented ip */ 193 ip++; 194 195 inst->exec_node::remove(); 196 197 switch (inst->opcode) { 198 case BRW_OPCODE_IF: 199 cur->instructions.push_tail(inst); 200 201 /* Push our information onto a stack so we can recover from 202 * nested ifs. 203 */ 204 push_stack(&if_stack, mem_ctx, cur_if); 205 push_stack(&else_stack, mem_ctx, cur_else); 206 207 cur_if = cur; 208 cur_else = NULL; 209 cur_endif = NULL; 210 211 /* Set up our immediately following block, full of "then" 212 * instructions. 213 */ 214 next = new_block(); 215 cur_if->add_successor(mem_ctx, next, bblock_link_logical); 216 217 set_next_block(&cur, next, ip); 218 break; 219 220 case BRW_OPCODE_ELSE: 221 cur->instructions.push_tail(inst); 222 223 cur_else = cur; 224 225 next = new_block(); 226 assert(cur_if != NULL); 227 cur_if->add_successor(mem_ctx, next, bblock_link_logical); 228 cur_else->add_successor(mem_ctx, next, bblock_link_physical); 229 230 set_next_block(&cur, next, ip); 231 break; 232 233 case BRW_OPCODE_ENDIF: { 234 if (cur->instructions.is_empty()) { 235 /* New block was just created; use it. */ 236 cur_endif = cur; 237 } else { 238 cur_endif = new_block(); 239 240 cur->add_successor(mem_ctx, cur_endif, bblock_link_logical); 241 242 set_next_block(&cur, cur_endif, ip - 1); 243 } 244 245 cur->instructions.push_tail(inst); 246 247 if (cur_else) { 248 cur_else->add_successor(mem_ctx, cur_endif, bblock_link_logical); 249 } else { 250 assert(cur_if != NULL); 251 cur_if->add_successor(mem_ctx, cur_endif, bblock_link_logical); 252 } 253 254 assert(cur_if->end()->opcode == BRW_OPCODE_IF); 255 assert(!cur_else || cur_else->end()->opcode == BRW_OPCODE_ELSE); 256 257 /* Pop the stack so we're in the previous if/else/endif */ 258 cur_if = pop_stack(&if_stack); 259 cur_else = pop_stack(&else_stack); 260 break; 261 } 262 case BRW_OPCODE_DO: 263 /* Push our information onto a stack so we can recover from 264 * nested loops. 265 */ 266 push_stack(&do_stack, mem_ctx, cur_do); 267 push_stack(&while_stack, mem_ctx, cur_while); 268 269 /* Set up the block just after the while. Don't know when exactly 270 * it will start, yet. 271 */ 272 cur_while = new_block(); 273 274 if (cur->instructions.is_empty()) { 275 /* New block was just created; use it. */ 276 cur_do = cur; 277 } else { 278 cur_do = new_block(); 279 280 cur->add_successor(mem_ctx, cur_do, bblock_link_logical); 281 282 set_next_block(&cur, cur_do, ip - 1); 283 } 284 285 cur->instructions.push_tail(inst); 286 287 /* Represent divergent execution of the loop as a pair of alternative 288 * edges coming out of the DO instruction: For any physical iteration 289 * of the loop a given logical thread can either start off enabled 290 * (which is represented as the "next" successor), or disabled (if it 291 * has reached a non-uniform exit of the loop during a previous 292 * iteration, which is represented as the "cur_while" successor). 293 * 294 * The disabled edge will be taken by the logical thread anytime we 295 * arrive at the DO instruction through a back-edge coming from a 296 * conditional exit of the loop where divergent control flow started. 297 * 298 * This guarantees that there is a control-flow path from any 299 * divergence point of the loop into the convergence point 300 * (immediately past the WHILE instruction) such that it overlaps the 301 * whole IP region of divergent control flow (potentially the whole 302 * loop) *and* doesn't imply the execution of any instructions part 303 * of the loop (since the corresponding execution mask bit will be 304 * disabled for a diverging thread). 305 * 306 * This way we make sure that any variables that are live throughout 307 * the region of divergence for an inactive logical thread are also 308 * considered to interfere with any other variables assigned by 309 * active logical threads within the same physical region of the 310 * program, since otherwise we would risk cross-channel data 311 * corruption. 312 */ 313 next = new_block(); 314 cur->add_successor(mem_ctx, next, bblock_link_logical); 315 cur->add_successor(mem_ctx, cur_while, bblock_link_physical); 316 set_next_block(&cur, next, ip); 317 break; 318 319 case BRW_OPCODE_CONTINUE: 320 cur->instructions.push_tail(inst); 321 322 /* A conditional CONTINUE may start a region of divergent control 323 * flow until the start of the next loop iteration (*not* until the 324 * end of the loop which is why the successor is not the top-level 325 * divergence point at cur_do). The live interval of any variable 326 * extending through a CONTINUE edge is guaranteed to overlap the 327 * whole region of divergent execution, because any variable live-out 328 * at the CONTINUE instruction will also be live-in at the top of the 329 * loop, and therefore also live-out at the bottom-most point of the 330 * loop which is reachable from the top (since a control flow path 331 * exists from a definition of the variable through this CONTINUE 332 * instruction, the top of the loop, the (reachable) bottom of the 333 * loop, the top of the loop again, into a use of the variable). 334 */ 335 assert(cur_do != NULL); 336 cur->add_successor(mem_ctx, cur_do->next(), bblock_link_logical); 337 338 next = new_block(); 339 if (inst->predicate) 340 cur->add_successor(mem_ctx, next, bblock_link_logical); 341 else 342 cur->add_successor(mem_ctx, next, bblock_link_physical); 343 344 set_next_block(&cur, next, ip); 345 break; 346 347 case BRW_OPCODE_BREAK: 348 cur->instructions.push_tail(inst); 349 350 /* A conditional BREAK instruction may start a region of divergent 351 * control flow until the end of the loop if the condition is 352 * non-uniform, in which case the loop will execute additional 353 * iterations with the present channel disabled. We model this as a 354 * control flow path from the divergence point to the convergence 355 * point that overlaps the whole IP range of the loop and skips over 356 * the execution of any other instructions part of the loop. 357 * 358 * See the DO case for additional explanation. 359 */ 360 assert(cur_do != NULL); 361 cur->add_successor(mem_ctx, cur_do, bblock_link_physical); 362 cur->add_successor(mem_ctx, cur_while, bblock_link_logical); 363 364 next = new_block(); 365 if (inst->predicate) 366 cur->add_successor(mem_ctx, next, bblock_link_logical); 367 else 368 cur->add_successor(mem_ctx, next, bblock_link_physical); 369 370 set_next_block(&cur, next, ip); 371 break; 372 373 case BRW_OPCODE_WHILE: 374 cur->instructions.push_tail(inst); 375 376 assert(cur_do != NULL && cur_while != NULL); 377 378 /* A conditional WHILE instruction may start a region of divergent 379 * control flow until the end of the loop, just like the BREAK 380 * instruction. See the BREAK case for more details. OTOH an 381 * unconditional WHILE instruction is non-divergent (just like an 382 * unconditional CONTINUE), and will necessarily lead to the 383 * execution of an additional iteration of the loop for all enabled 384 * channels, so we may skip over the divergence point at the top of 385 * the loop to keep the CFG as unambiguous as possible. 386 */ 387 if (inst->predicate) { 388 cur->add_successor(mem_ctx, cur_do, bblock_link_logical); 389 } else { 390 cur->add_successor(mem_ctx, cur_do->next(), bblock_link_logical); 391 } 392 393 set_next_block(&cur, cur_while, ip); 394 395 /* Pop the stack so we're in the previous loop */ 396 cur_do = pop_stack(&do_stack); 397 cur_while = pop_stack(&while_stack); 398 break; 399 400 default: 401 cur->instructions.push_tail(inst); 402 break; 403 } 404 } 405 406 cur->end_ip = ip - 1; 407 408 make_block_array(); 409} 410 411cfg_t::~cfg_t() 412{ 413 ralloc_free(mem_ctx); 414} 415 416void 417cfg_t::remove_block(bblock_t *block) 418{ 419 foreach_list_typed_safe (bblock_link, predecessor, link, &block->parents) { 420 /* Remove block from all of its predecessors' successor lists. */ 421 foreach_list_typed_safe (bblock_link, successor, link, 422 &predecessor->block->children) { 423 if (block == successor->block) { 424 successor->link.remove(); 425 ralloc_free(successor); 426 } 427 } 428 429 /* Add removed-block's successors to its predecessors' successor lists. */ 430 foreach_list_typed (bblock_link, successor, link, &block->children) { 431 if (!successor->block->is_successor_of(predecessor->block, 432 successor->kind)) { 433 predecessor->block->children.push_tail(link(mem_ctx, 434 successor->block, 435 successor->kind)); 436 } 437 } 438 } 439 440 foreach_list_typed_safe (bblock_link, successor, link, &block->children) { 441 /* Remove block from all of its childrens' parents lists. */ 442 foreach_list_typed_safe (bblock_link, predecessor, link, 443 &successor->block->parents) { 444 if (block == predecessor->block) { 445 predecessor->link.remove(); 446 ralloc_free(predecessor); 447 } 448 } 449 450 /* Add removed-block's predecessors to its successors' predecessor lists. */ 451 foreach_list_typed (bblock_link, predecessor, link, &block->parents) { 452 if (!predecessor->block->is_predecessor_of(successor->block, 453 predecessor->kind)) { 454 successor->block->parents.push_tail(link(mem_ctx, 455 predecessor->block, 456 predecessor->kind)); 457 } 458 } 459 } 460 461 block->link.remove(); 462 463 for (int b = block->num; b < this->num_blocks - 1; b++) { 464 this->blocks[b] = this->blocks[b + 1]; 465 this->blocks[b]->num = b; 466 } 467 468 this->blocks[this->num_blocks - 1]->num = this->num_blocks - 2; 469 this->num_blocks--; 470} 471 472bblock_t * 473cfg_t::new_block() 474{ 475 bblock_t *block = new(mem_ctx) bblock_t(this); 476 477 return block; 478} 479 480void 481cfg_t::set_next_block(bblock_t **cur, bblock_t *block, int ip) 482{ 483 if (*cur) { 484 (*cur)->end_ip = ip - 1; 485 } 486 487 block->start_ip = ip; 488 block->num = num_blocks++; 489 block_list.push_tail(&block->link); 490 *cur = block; 491} 492 493void 494cfg_t::make_block_array() 495{ 496 blocks = ralloc_array(mem_ctx, bblock_t *, num_blocks); 497 498 int i = 0; 499 foreach_block (block, this) { 500 blocks[i++] = block; 501 } 502 assert(i == num_blocks); 503} 504 505void 506cfg_t::dump() 507{ 508 const idom_tree *idom = (s ? &s->idom_analysis.require() : NULL); 509 510 foreach_block (block, this) { 511 if (idom && idom->parent(block)) 512 fprintf(stderr, "START B%d IDOM(B%d)", block->num, 513 idom->parent(block)->num); 514 else 515 fprintf(stderr, "START B%d IDOM(none)", block->num); 516 517 foreach_list_typed(bblock_link, link, link, &block->parents) { 518 fprintf(stderr, " <%cB%d", 519 link->kind == bblock_link_logical ? '-' : '~', 520 link->block->num); 521 } 522 fprintf(stderr, "\n"); 523 if (s != NULL) 524 block->dump(); 525 fprintf(stderr, "END B%d", block->num); 526 foreach_list_typed(bblock_link, link, link, &block->children) { 527 fprintf(stderr, " %c>B%d", 528 link->kind == bblock_link_logical ? '-' : '~', 529 link->block->num); 530 } 531 fprintf(stderr, "\n"); 532 } 533} 534 535/* Calculates the immediate dominator of each block, according to "A Simple, 536 * Fast Dominance Algorithm" by Keith D. Cooper, Timothy J. Harvey, and Ken 537 * Kennedy. 538 * 539 * The authors claim that for control flow graphs of sizes normally encountered 540 * (less than 1000 nodes) that this algorithm is significantly faster than 541 * others like Lengauer-Tarjan. 542 */ 543idom_tree::idom_tree(const backend_shader *s) : 544 num_parents(s->cfg->num_blocks), 545 parents(new bblock_t *[num_parents]()) 546{ 547 bool changed; 548 549 parents[0] = s->cfg->blocks[0]; 550 551 do { 552 changed = false; 553 554 foreach_block(block, s->cfg) { 555 if (block->num == 0) 556 continue; 557 558 bblock_t *new_idom = NULL; 559 foreach_list_typed(bblock_link, parent_link, link, &block->parents) { 560 if (parent(parent_link->block)) { 561 new_idom = (new_idom ? intersect(new_idom, parent_link->block) : 562 parent_link->block); 563 } 564 } 565 566 if (parent(block) != new_idom) { 567 parents[block->num] = new_idom; 568 changed = true; 569 } 570 } 571 } while (changed); 572} 573 574idom_tree::~idom_tree() 575{ 576 delete[] parents; 577} 578 579bblock_t * 580idom_tree::intersect(bblock_t *b1, bblock_t *b2) const 581{ 582 /* Note, the comparisons here are the opposite of what the paper says 583 * because we index blocks from beginning -> end (i.e. reverse post-order) 584 * instead of post-order like they assume. 585 */ 586 while (b1->num != b2->num) { 587 while (b1->num > b2->num) 588 b1 = parent(b1); 589 while (b2->num > b1->num) 590 b2 = parent(b2); 591 } 592 assert(b1); 593 return b1; 594} 595 596void 597idom_tree::dump() const 598{ 599 printf("digraph DominanceTree {\n"); 600 for (unsigned i = 0; i < num_parents; i++) 601 printf("\t%d -> %d\n", parents[i]->num, i); 602 printf("}\n"); 603} 604 605void 606cfg_t::dump_cfg() 607{ 608 printf("digraph CFG {\n"); 609 for (int b = 0; b < num_blocks; b++) { 610 bblock_t *block = this->blocks[b]; 611 612 foreach_list_typed_safe (bblock_link, child, link, &block->children) { 613 printf("\t%d -> %d\n", b, child->block->num); 614 } 615 } 616 printf("}\n"); 617} 618