1/*
2 * Copyright © 2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include <stdio.h>
25#include <stdbool.h>
26#include <stdint.h>
27#include <stdarg.h>
28#include <string.h>
29#include <expat.h>
30#include <inttypes.h>
31#include <zlib.h>
32
33#include <util/macros.h>
34#include <util/ralloc.h>
35#include <util/u_math.h>
36
37#include "intel_decoder.h"
38
39#include "isl/isl.h"
40#include "genxml/genX_xml.h"
41
42#define XML_BUFFER_SIZE 4096
43#define MAX_VALUE_ITEMS 128
44
45struct location {
46   const char *filename;
47   int line_number;
48};
49
50struct parser_context {
51   XML_Parser parser;
52   int foo;
53   struct location loc;
54
55   struct intel_group *group;
56   struct intel_enum *enoom;
57
58   int n_values, n_allocated_values;
59   struct intel_value **values;
60
61   struct intel_field *last_field;
62
63   struct intel_spec *spec;
64};
65
66const char *
67intel_group_get_name(struct intel_group *group)
68{
69   return group->name;
70}
71
72uint32_t
73intel_group_get_opcode(struct intel_group *group)
74{
75   return group->opcode;
76}
77
78struct intel_group *
79intel_spec_find_struct(struct intel_spec *spec, const char *name)
80{
81   struct hash_entry *entry = _mesa_hash_table_search(spec->structs,
82                                                      name);
83   return entry ? entry->data : NULL;
84}
85
86struct intel_group *
87intel_spec_find_register(struct intel_spec *spec, uint32_t offset)
88{
89   struct hash_entry *entry =
90      _mesa_hash_table_search(spec->registers_by_offset,
91                              (void *) (uintptr_t) offset);
92   return entry ? entry->data : NULL;
93}
94
95struct intel_group *
96intel_spec_find_register_by_name(struct intel_spec *spec, const char *name)
97{
98   struct hash_entry *entry =
99      _mesa_hash_table_search(spec->registers_by_name, name);
100   return entry ? entry->data : NULL;
101}
102
103struct intel_enum *
104intel_spec_find_enum(struct intel_spec *spec, const char *name)
105{
106   struct hash_entry *entry = _mesa_hash_table_search(spec->enums,
107                                                      name);
108   return entry ? entry->data : NULL;
109}
110
111uint32_t
112intel_spec_get_gen(struct intel_spec *spec)
113{
114   return spec->gen;
115}
116
117static void __attribute__((noreturn))
118fail(struct location *loc, const char *msg, ...)
119{
120   va_list ap;
121
122   va_start(ap, msg);
123   fprintf(stderr, "%s:%d: error: ",
124           loc->filename, loc->line_number);
125   vfprintf(stderr, msg, ap);
126   fprintf(stderr, "\n");
127   va_end(ap);
128   exit(EXIT_FAILURE);
129}
130
131static void
132get_array_offset_count(const char **atts, uint32_t *offset, uint32_t *count,
133                       uint32_t *size, bool *variable)
134{
135   for (int i = 0; atts[i]; i += 2) {
136      char *p;
137
138      if (strcmp(atts[i], "count") == 0) {
139         *count = strtoul(atts[i + 1], &p, 0);
140         if (*count == 0)
141            *variable = true;
142      } else if (strcmp(atts[i], "start") == 0) {
143         *offset = strtoul(atts[i + 1], &p, 0);
144      } else if (strcmp(atts[i], "size") == 0) {
145         *size = strtoul(atts[i + 1], &p, 0);
146      }
147   }
148   return;
149}
150
151static struct intel_group *
152create_group(struct parser_context *ctx,
153             const char *name,
154             const char **atts,
155             struct intel_group *parent,
156             bool fixed_length)
157{
158   struct intel_group *group;
159
160   group = rzalloc(ctx->spec, struct intel_group);
161   if (name)
162      group->name = ralloc_strdup(group, name);
163
164   group->spec = ctx->spec;
165   group->variable = false;
166   group->fixed_length = fixed_length;
167   group->dword_length_field = NULL;
168   group->dw_length = 0;
169   group->engine_mask = I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_RENDER) |
170                        I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_VIDEO) |
171                        I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_COPY);
172   group->bias = 1;
173
174   for (int i = 0; atts[i]; i += 2) {
175      char *p;
176      if (strcmp(atts[i], "length") == 0) {
177         group->dw_length = strtoul(atts[i + 1], &p, 0);
178      } else if (strcmp(atts[i], "bias") == 0) {
179         group->bias = strtoul(atts[i + 1], &p, 0);
180      } else if (strcmp(atts[i], "engine") == 0) {
181         void *mem_ctx = ralloc_context(NULL);
182         char *tmp = ralloc_strdup(mem_ctx, atts[i + 1]);
183         char *save_ptr;
184         char *tok = strtok_r(tmp, "|", &save_ptr);
185
186         group->engine_mask = 0;
187         while (tok != NULL) {
188            if (strcmp(tok, "render") == 0) {
189               group->engine_mask |= I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_RENDER);
190            } else if (strcmp(tok, "video") == 0) {
191               group->engine_mask |= I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_VIDEO);
192            } else if (strcmp(tok, "blitter") == 0) {
193               group->engine_mask |= I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_COPY);
194            } else {
195               fprintf(stderr, "unknown engine class defined for instruction \"%s\": %s\n", name, atts[i + 1]);
196            }
197
198            tok = strtok_r(NULL, "|", &save_ptr);
199         }
200
201         ralloc_free(mem_ctx);
202      }
203   }
204
205   if (parent) {
206      group->parent = parent;
207      get_array_offset_count(atts,
208                             &group->array_offset,
209                             &group->array_count,
210                             &group->array_item_size,
211                             &group->variable);
212   }
213
214   return group;
215}
216
217static struct intel_enum *
218create_enum(struct parser_context *ctx, const char *name, const char **atts)
219{
220   struct intel_enum *e;
221
222   e = rzalloc(ctx->spec, struct intel_enum);
223   if (name)
224      e->name = ralloc_strdup(e, name);
225
226   return e;
227}
228
229static void
230get_register_offset(const char **atts, uint32_t *offset)
231{
232   for (int i = 0; atts[i]; i += 2) {
233      char *p;
234
235      if (strcmp(atts[i], "num") == 0)
236         *offset = strtoul(atts[i + 1], &p, 0);
237   }
238   return;
239}
240
241static void
242get_start_end_pos(int *start, int *end)
243{
244   /* start value has to be mod with 32 as we need the relative
245    * start position in the first DWord. For the end position, add
246    * the length of the field to the start position to get the
247    * relative position in the 64 bit address.
248    */
249   if (*end - *start > 32) {
250      int len = *end - *start;
251      *start = *start % 32;
252      *end = *start + len;
253   } else {
254      *start = *start % 32;
255      *end = *end % 32;
256   }
257
258   return;
259}
260
261static inline uint64_t
262mask(int start, int end)
263{
264   uint64_t v;
265
266   v = ~0ULL >> (63 - end + start);
267
268   return v << start;
269}
270
271static inline uint64_t
272field_value(uint64_t value, int start, int end)
273{
274   get_start_end_pos(&start, &end);
275   return (value & mask(start, end)) >> (start);
276}
277
278static struct intel_type
279string_to_type(struct parser_context *ctx, const char *s)
280{
281   int i, f;
282   struct intel_group *g;
283   struct intel_enum *e;
284
285   if (strcmp(s, "int") == 0)
286      return (struct intel_type) { .kind = INTEL_TYPE_INT };
287   else if (strcmp(s, "uint") == 0)
288      return (struct intel_type) { .kind = INTEL_TYPE_UINT };
289   else if (strcmp(s, "bool") == 0)
290      return (struct intel_type) { .kind = INTEL_TYPE_BOOL };
291   else if (strcmp(s, "float") == 0)
292      return (struct intel_type) { .kind = INTEL_TYPE_FLOAT };
293   else if (strcmp(s, "address") == 0)
294      return (struct intel_type) { .kind = INTEL_TYPE_ADDRESS };
295   else if (strcmp(s, "offset") == 0)
296      return (struct intel_type) { .kind = INTEL_TYPE_OFFSET };
297   else if (sscanf(s, "u%d.%d", &i, &f) == 2)
298      return (struct intel_type) { .kind = INTEL_TYPE_UFIXED, .i = i, .f = f };
299   else if (sscanf(s, "s%d.%d", &i, &f) == 2)
300      return (struct intel_type) { .kind = INTEL_TYPE_SFIXED, .i = i, .f = f };
301   else if (g = intel_spec_find_struct(ctx->spec, s), g != NULL)
302      return (struct intel_type) { .kind = INTEL_TYPE_STRUCT, .intel_struct = g };
303   else if (e = intel_spec_find_enum(ctx->spec, s), e != NULL)
304      return (struct intel_type) { .kind = INTEL_TYPE_ENUM, .intel_enum = e };
305   else if (strcmp(s, "mbo") == 0)
306      return (struct intel_type) { .kind = INTEL_TYPE_MBO };
307   else if (strcmp(s, "mbz") == 0)
308      return (struct intel_type) { .kind = INTEL_TYPE_MBZ };
309   else
310      fail(&ctx->loc, "invalid type: %s", s);
311}
312
313static struct intel_field *
314create_field(struct parser_context *ctx, const char **atts)
315{
316   struct intel_field *field;
317
318   field = rzalloc(ctx->group, struct intel_field);
319   field->parent = ctx->group;
320
321   for (int i = 0; atts[i]; i += 2) {
322      char *p;
323
324      if (strcmp(atts[i], "name") == 0) {
325         field->name = ralloc_strdup(field, atts[i + 1]);
326         if (strcmp(field->name, "DWord Length") == 0) {
327            field->parent->dword_length_field = field;
328         }
329      } else if (strcmp(atts[i], "start") == 0) {
330         field->start = strtoul(atts[i + 1], &p, 0);
331      } else if (strcmp(atts[i], "end") == 0) {
332         field->end = strtoul(atts[i + 1], &p, 0);
333      } else if (strcmp(atts[i], "type") == 0) {
334         field->type = string_to_type(ctx, atts[i + 1]);
335      } else if (strcmp(atts[i], "default") == 0 &&
336               field->start >= 16 && field->end <= 31) {
337         field->has_default = true;
338         field->default_value = strtoul(atts[i + 1], &p, 0);
339      }
340   }
341
342   return field;
343}
344
345static struct intel_field *
346create_array_field(struct parser_context *ctx, struct intel_group *array)
347{
348   struct intel_field *field;
349
350   field = rzalloc(ctx->group, struct intel_field);
351   field->parent = ctx->group;
352
353   field->array = array;
354   field->start = field->array->array_offset;
355
356   return field;
357}
358
359static struct intel_value *
360create_value(struct parser_context *ctx, const char **atts)
361{
362   struct intel_value *value = rzalloc(ctx->values, struct intel_value);
363
364   for (int i = 0; atts[i]; i += 2) {
365      if (strcmp(atts[i], "name") == 0)
366         value->name = ralloc_strdup(value, atts[i + 1]);
367      else if (strcmp(atts[i], "value") == 0)
368         value->value = strtoul(atts[i + 1], NULL, 0);
369   }
370
371   return value;
372}
373
374static struct intel_field *
375create_and_append_field(struct parser_context *ctx,
376                        const char **atts,
377                        struct intel_group *array)
378{
379   struct intel_field *field = array ?
380      create_array_field(ctx, array) : create_field(ctx, atts);
381   struct intel_field *prev = NULL, *list = ctx->group->fields;
382
383   while (list && field->start > list->start) {
384      prev = list;
385      list = list->next;
386   }
387
388   field->next = list;
389   if (prev == NULL)
390      ctx->group->fields = field;
391   else
392      prev->next = field;
393
394   return field;
395}
396
397static void
398start_element(void *data, const char *element_name, const char **atts)
399{
400   struct parser_context *ctx = data;
401   const char *name = NULL;
402   const char *gen = NULL;
403
404   ctx->loc.line_number = XML_GetCurrentLineNumber(ctx->parser);
405
406   for (int i = 0; atts[i]; i += 2) {
407      if (strcmp(atts[i], "name") == 0)
408         name = atts[i + 1];
409      else if (strcmp(atts[i], "gen") == 0)
410         gen = atts[i + 1];
411   }
412
413   if (strcmp(element_name, "genxml") == 0) {
414      if (name == NULL)
415         fail(&ctx->loc, "no platform name given");
416      if (gen == NULL)
417         fail(&ctx->loc, "no gen given");
418
419      int major, minor;
420      int n = sscanf(gen, "%d.%d", &major, &minor);
421      if (n == 0)
422         fail(&ctx->loc, "invalid gen given: %s", gen);
423      if (n == 1)
424         minor = 0;
425
426      ctx->spec->gen = intel_make_gen(major, minor);
427   } else if (strcmp(element_name, "instruction") == 0) {
428      ctx->group = create_group(ctx, name, atts, NULL, false);
429   } else if (strcmp(element_name, "struct") == 0) {
430      ctx->group = create_group(ctx, name, atts, NULL, true);
431   } else if (strcmp(element_name, "register") == 0) {
432      ctx->group = create_group(ctx, name, atts, NULL, true);
433      get_register_offset(atts, &ctx->group->register_offset);
434   } else if (strcmp(element_name, "group") == 0) {
435      struct intel_group *group = create_group(ctx, "", atts, ctx->group, false);
436      ctx->last_field = create_and_append_field(ctx, NULL, group);
437      ctx->group = group;
438   } else if (strcmp(element_name, "field") == 0) {
439      ctx->last_field = create_and_append_field(ctx, atts, NULL);
440   } else if (strcmp(element_name, "enum") == 0) {
441      ctx->enoom = create_enum(ctx, name, atts);
442   } else if (strcmp(element_name, "value") == 0) {
443      if (ctx->n_values >= ctx->n_allocated_values) {
444         ctx->n_allocated_values = MAX2(2, ctx->n_allocated_values * 2);
445         ctx->values = reralloc_array_size(ctx->spec, ctx->values,
446                                           sizeof(struct intel_value *),
447                                           ctx->n_allocated_values);
448      }
449      assert(ctx->n_values < ctx->n_allocated_values);
450      ctx->values[ctx->n_values++] = create_value(ctx, atts);
451   }
452
453}
454
455static void
456end_element(void *data, const char *name)
457{
458   struct parser_context *ctx = data;
459   struct intel_spec *spec = ctx->spec;
460
461   if (strcmp(name, "instruction") == 0 ||
462       strcmp(name, "struct") == 0 ||
463       strcmp(name, "register") == 0) {
464      struct intel_group *group = ctx->group;
465      struct intel_field *list = group->fields;
466
467      ctx->group = ctx->group->parent;
468
469      while (list && list->end <= 31) {
470         if (list->start >= 16 && list->has_default) {
471            group->opcode_mask |=
472               mask(list->start % 32, list->end % 32);
473            group->opcode |= list->default_value << list->start;
474         }
475         list = list->next;
476      }
477
478      if (strcmp(name, "instruction") == 0)
479         _mesa_hash_table_insert(spec->commands, group->name, group);
480      else if (strcmp(name, "struct") == 0)
481         _mesa_hash_table_insert(spec->structs, group->name, group);
482      else if (strcmp(name, "register") == 0) {
483         _mesa_hash_table_insert(spec->registers_by_name, group->name, group);
484         _mesa_hash_table_insert(spec->registers_by_offset,
485                                 (void *) (uintptr_t) group->register_offset,
486                                 group);
487      }
488   } else if (strcmp(name, "group") == 0) {
489      ctx->group = ctx->group->parent;
490   } else if (strcmp(name, "field") == 0) {
491      struct intel_field *field = ctx->last_field;
492      ctx->last_field = NULL;
493      field->inline_enum.values = ctx->values;
494      field->inline_enum.nvalues = ctx->n_values;
495      ctx->values = ralloc_array(ctx->spec, struct intel_value*, ctx->n_allocated_values = 2);
496      ctx->n_values = 0;
497   } else if (strcmp(name, "enum") == 0) {
498      struct intel_enum *e = ctx->enoom;
499      e->values = ctx->values;
500      e->nvalues = ctx->n_values;
501      ctx->values = ralloc_array(ctx->spec, struct intel_value*, ctx->n_allocated_values = 2);
502      ctx->n_values = 0;
503      ctx->enoom = NULL;
504      _mesa_hash_table_insert(spec->enums, e->name, e);
505   }
506}
507
508static void
509character_data(void *data, const XML_Char *s, int len)
510{
511}
512
513static uint32_t zlib_inflate(const void *compressed_data,
514                             uint32_t compressed_len,
515                             void **out_ptr)
516{
517   struct z_stream_s zstream;
518   void *out;
519
520   memset(&zstream, 0, sizeof(zstream));
521
522   zstream.next_in = (unsigned char *)compressed_data;
523   zstream.avail_in = compressed_len;
524
525   if (inflateInit(&zstream) != Z_OK)
526      return 0;
527
528   out = malloc(4096);
529   zstream.next_out = out;
530   zstream.avail_out = 4096;
531
532   do {
533      switch (inflate(&zstream, Z_SYNC_FLUSH)) {
534      case Z_STREAM_END:
535         goto end;
536      case Z_OK:
537         break;
538      default:
539         inflateEnd(&zstream);
540         return 0;
541      }
542
543      if (zstream.avail_out)
544         break;
545
546      out = realloc(out, 2*zstream.total_out);
547      if (out == NULL) {
548         inflateEnd(&zstream);
549         return 0;
550      }
551
552      zstream.next_out = (unsigned char *)out + zstream.total_out;
553      zstream.avail_out = zstream.total_out;
554   } while (1);
555 end:
556   inflateEnd(&zstream);
557   *out_ptr = out;
558   return zstream.total_out;
559}
560
561static uint32_t _hash_uint32(const void *key)
562{
563   return (uint32_t) (uintptr_t) key;
564}
565
566static struct intel_spec *
567intel_spec_init(void)
568{
569   struct intel_spec *spec;
570   spec = rzalloc(NULL, struct intel_spec);
571   if (spec == NULL)
572      return NULL;
573
574   spec->commands =
575      _mesa_hash_table_create(spec, _mesa_hash_string, _mesa_key_string_equal);
576   spec->structs =
577      _mesa_hash_table_create(spec, _mesa_hash_string, _mesa_key_string_equal);
578   spec->registers_by_name =
579      _mesa_hash_table_create(spec, _mesa_hash_string, _mesa_key_string_equal);
580   spec->registers_by_offset =
581      _mesa_hash_table_create(spec, _hash_uint32, _mesa_key_pointer_equal);
582   spec->enums =
583      _mesa_hash_table_create(spec, _mesa_hash_string, _mesa_key_string_equal);
584   spec->access_cache =
585      _mesa_hash_table_create(spec, _mesa_hash_string, _mesa_key_string_equal);
586
587   return spec;
588}
589
590struct intel_spec *
591intel_spec_load(const struct intel_device_info *devinfo)
592{
593   struct parser_context ctx;
594   void *buf;
595   uint8_t *text_data = NULL;
596   uint32_t text_offset = 0, text_length = 0;
597   ASSERTED uint32_t total_length;
598   uint32_t ver_10 = devinfo->verx10;
599
600   for (int i = 0; i < ARRAY_SIZE(genxml_files_table); i++) {
601      if (genxml_files_table[i].ver_10 == ver_10) {
602         text_offset = genxml_files_table[i].offset;
603         text_length = genxml_files_table[i].length;
604         break;
605      }
606   }
607
608   if (text_length == 0) {
609      fprintf(stderr, "unable to find gen (%u) data\n", ver_10);
610      return NULL;
611   }
612
613   memset(&ctx, 0, sizeof ctx);
614   ctx.parser = XML_ParserCreate(NULL);
615   XML_SetUserData(ctx.parser, &ctx);
616   if (ctx.parser == NULL) {
617      fprintf(stderr, "failed to create parser\n");
618      return NULL;
619   }
620
621   XML_SetElementHandler(ctx.parser, start_element, end_element);
622   XML_SetCharacterDataHandler(ctx.parser, character_data);
623
624   ctx.spec = intel_spec_init();
625   if (ctx.spec == NULL) {
626      fprintf(stderr, "Failed to create intel_spec\n");
627      return NULL;
628   }
629
630   total_length = zlib_inflate(compress_genxmls,
631                               sizeof(compress_genxmls),
632                               (void **) &text_data);
633   assert(text_offset + text_length <= total_length);
634
635   buf = XML_GetBuffer(ctx.parser, text_length);
636   memcpy(buf, &text_data[text_offset], text_length);
637
638   if (XML_ParseBuffer(ctx.parser, text_length, true) == 0) {
639      fprintf(stderr,
640              "Error parsing XML at line %ld col %ld byte %ld/%u: %s\n",
641              XML_GetCurrentLineNumber(ctx.parser),
642              XML_GetCurrentColumnNumber(ctx.parser),
643              XML_GetCurrentByteIndex(ctx.parser), text_length,
644              XML_ErrorString(XML_GetErrorCode(ctx.parser)));
645      XML_ParserFree(ctx.parser);
646      free(text_data);
647      return NULL;
648   }
649
650   XML_ParserFree(ctx.parser);
651   free(text_data);
652
653   return ctx.spec;
654}
655
656struct intel_spec *
657intel_spec_load_filename(const char *filename)
658{
659   struct parser_context ctx;
660   FILE *input;
661   void *buf;
662   size_t len;
663
664   input = fopen(filename, "r");
665   if (input == NULL) {
666      fprintf(stderr, "failed to open xml description\n");
667      return NULL;
668   }
669
670   memset(&ctx, 0, sizeof ctx);
671   ctx.parser = XML_ParserCreate(NULL);
672   XML_SetUserData(ctx.parser, &ctx);
673   if (ctx.parser == NULL) {
674      fprintf(stderr, "failed to create parser\n");
675      fclose(input);
676      return NULL;
677   }
678
679   XML_SetElementHandler(ctx.parser, start_element, end_element);
680   XML_SetCharacterDataHandler(ctx.parser, character_data);
681   ctx.loc.filename = filename;
682
683   ctx.spec = intel_spec_init();
684   if (ctx.spec == NULL) {
685      fprintf(stderr, "Failed to create intel_spec\n");
686      goto end;
687   }
688
689   do {
690      buf = XML_GetBuffer(ctx.parser, XML_BUFFER_SIZE);
691      len = fread(buf, 1, XML_BUFFER_SIZE, input);
692      if (ferror(input)) {
693         fprintf(stderr, "fread: %m\n");
694         intel_spec_destroy(ctx.spec);
695         ctx.spec = NULL;
696         goto end;
697      } else if (len == 0 && feof(input))
698         goto end;
699
700      if (XML_ParseBuffer(ctx.parser, len, len == 0) == 0) {
701         fprintf(stderr,
702                 "Error parsing XML at line %ld col %ld: %s\n",
703                 XML_GetCurrentLineNumber(ctx.parser),
704                 XML_GetCurrentColumnNumber(ctx.parser),
705                 XML_ErrorString(XML_GetErrorCode(ctx.parser)));
706         intel_spec_destroy(ctx.spec);
707         ctx.spec = NULL;
708         goto end;
709      }
710   } while (len > 0);
711
712 end:
713   XML_ParserFree(ctx.parser);
714
715   fclose(input);
716
717   /* free ctx.spec if genxml is empty */
718   if (ctx.spec &&
719       _mesa_hash_table_num_entries(ctx.spec->commands) == 0 &&
720       _mesa_hash_table_num_entries(ctx.spec->structs) == 0) {
721      fprintf(stderr,
722              "Error parsing XML: empty spec.\n");
723      intel_spec_destroy(ctx.spec);
724      return NULL;
725   }
726
727   return ctx.spec;
728}
729
730struct intel_spec *
731intel_spec_load_from_path(const struct intel_device_info *devinfo,
732                          const char *path)
733{
734   size_t filename_len = strlen(path) + 20;
735   char *filename = malloc(filename_len);
736
737   ASSERTED size_t len = snprintf(filename, filename_len, "%s/gen%i.xml",
738                  path, devinfo->ver);
739   assert(len < filename_len);
740
741   struct intel_spec *spec = intel_spec_load_filename(filename);
742   free(filename);
743
744   return spec;
745}
746
747void intel_spec_destroy(struct intel_spec *spec)
748{
749   ralloc_free(spec);
750}
751
752struct intel_group *
753intel_spec_find_instruction(struct intel_spec *spec,
754                            enum drm_i915_gem_engine_class engine,
755                            const uint32_t *p)
756{
757   hash_table_foreach(spec->commands, entry) {
758      struct intel_group *command = entry->data;
759      uint32_t opcode = *p & command->opcode_mask;
760      if ((command->engine_mask & I915_ENGINE_CLASS_TO_MASK(engine)) &&
761           opcode == command->opcode)
762         return command;
763   }
764
765   return NULL;
766}
767
768struct intel_field *
769intel_group_find_field(struct intel_group *group, const char *name)
770{
771   char path[256];
772   snprintf(path, sizeof(path), "%s/%s", group->name, name);
773
774   struct intel_spec *spec = group->spec;
775   struct hash_entry *entry = _mesa_hash_table_search(spec->access_cache,
776                                                      path);
777   if (entry)
778      return entry->data;
779
780   struct intel_field *field = group->fields;
781   while (field) {
782      if (strcmp(field->name, name) == 0) {
783         _mesa_hash_table_insert(spec->access_cache,
784                                 ralloc_strdup(spec, path),
785                                 field);
786         return field;
787      }
788      field = field->next;
789   }
790
791   return NULL;
792}
793
794int
795intel_group_get_length(struct intel_group *group, const uint32_t *p)
796{
797   if (group) {
798      if (group->fixed_length)
799         return group->dw_length;
800      else {
801         struct intel_field *field = group->dword_length_field;
802         if (field) {
803            return field_value(p[0], field->start, field->end) + group->bias;
804         }
805      }
806   }
807
808   uint32_t h = p[0];
809   uint32_t type = field_value(h, 29, 31);
810
811   switch (type) {
812   case 0: /* MI */ {
813      uint32_t opcode = field_value(h, 23, 28);
814      if (opcode < 16)
815         return 1;
816      else
817         return field_value(h, 0, 7) + 2;
818      break;
819   }
820
821   case 2: /* BLT */ {
822      return field_value(h, 0, 7) + 2;
823   }
824
825   case 3: /* Render */ {
826      uint32_t subtype = field_value(h, 27, 28);
827      uint32_t opcode = field_value(h, 24, 26);
828      uint16_t whole_opcode = field_value(h, 16, 31);
829      switch (subtype) {
830      case 0:
831         if (whole_opcode == 0x6104 /* PIPELINE_SELECT_965 */)
832            return 1;
833         else if (opcode < 2)
834            return field_value(h, 0, 7) + 2;
835         else
836            return -1;
837      case 1:
838         if (opcode < 2)
839            return 1;
840         else
841            return -1;
842      case 2: {
843         if (opcode == 0)
844            return field_value(h, 0, 7) + 2;
845         else if (opcode < 3)
846            return field_value(h, 0, 15) + 2;
847         else
848            return -1;
849      }
850      case 3:
851         if (whole_opcode == 0x780b)
852            return 1;
853         else if (opcode < 4)
854            return field_value(h, 0, 7) + 2;
855         else
856            return -1;
857      }
858   }
859   }
860
861   return -1;
862}
863
864static const char *
865intel_get_enum_name(struct intel_enum *e, uint64_t value)
866{
867   for (int i = 0; i < e->nvalues; i++) {
868      if (e->values[i]->value == value) {
869         return e->values[i]->name;
870      }
871   }
872   return NULL;
873}
874
875static bool
876iter_more_fields(const struct intel_field_iterator *iter)
877{
878   return iter->field != NULL && iter->field->next != NULL;
879}
880
881static uint32_t
882iter_array_offset_bits(const struct intel_field_iterator *iter)
883{
884   if (iter->level == 0)
885      return 0;
886
887   uint32_t offset = 0;
888   const struct intel_group *group = iter->groups[1];
889   for (int level = 1; level <= iter->level; level++, group = iter->groups[level]) {
890      uint32_t array_idx = iter->array_iter[level];
891      offset += group->array_offset + array_idx * group->array_item_size;
892   }
893
894   return offset;
895}
896
897/* Checks whether we have more items in the array to iterate, or more arrays to
898 * iterate through.
899 */
900/* descend into a non-array field */
901static void
902iter_push_array(struct intel_field_iterator *iter)
903{
904   assert(iter->level >= 0);
905
906   iter->group = iter->field->array;
907   iter->level++;
908   assert(iter->level < DECODE_MAX_ARRAY_DEPTH);
909   iter->groups[iter->level] = iter->group;
910   iter->array_iter[iter->level] = 0;
911
912   assert(iter->group->fields != NULL); /* an empty <group> makes no sense */
913   iter->field = iter->group->fields;
914   iter->fields[iter->level] = iter->field;
915}
916
917static void
918iter_pop_array(struct intel_field_iterator *iter)
919{
920   assert(iter->level > 0);
921
922   iter->level--;
923   iter->field = iter->fields[iter->level];
924   iter->group = iter->groups[iter->level];
925}
926
927static void
928iter_start_field(struct intel_field_iterator *iter, struct intel_field *field)
929{
930   iter->field = field;
931   iter->fields[iter->level] = field;
932
933   while (iter->field->array)
934      iter_push_array(iter);
935
936   int array_member_offset = iter_array_offset_bits(iter);
937
938   iter->start_bit = array_member_offset + iter->field->start;
939   iter->end_bit = array_member_offset + iter->field->end;
940   iter->struct_desc = NULL;
941}
942
943static void
944iter_advance_array(struct intel_field_iterator *iter)
945{
946   assert(iter->level > 0);
947   int lvl = iter->level;
948
949   if (iter->group->variable)
950      iter->array_iter[lvl]++;
951   else {
952      if ((iter->array_iter[lvl] + 1) < iter->group->array_count) {
953         iter->array_iter[lvl]++;
954      }
955   }
956
957   iter_start_field(iter, iter->group->fields);
958}
959
960static bool
961iter_more_array_elems(const struct intel_field_iterator *iter)
962{
963   int lvl = iter->level;
964   assert(lvl >= 0);
965
966   if (iter->group->variable) {
967      int length = intel_group_get_length(iter->group, iter->p);
968      assert(length >= 0 && "error the length is unknown!");
969      return iter_array_offset_bits(iter) + iter->group->array_item_size <
970         (length * 32);
971   } else {
972      return (iter->array_iter[lvl] + 1) < iter->group->array_count;
973   }
974}
975
976static bool
977iter_advance_field(struct intel_field_iterator *iter)
978{
979   /* Keep looping while we either have more fields to look at, or we are
980    * inside a <group> and can go up a level.
981    */
982   while (iter_more_fields(iter) || iter->level > 0) {
983      if (iter_more_fields(iter)) {
984         iter_start_field(iter, iter->field->next);
985         return true;
986      }
987
988      assert(iter->level >= 0);
989
990      if (iter_more_array_elems(iter)) {
991         iter_advance_array(iter);
992         return true;
993      }
994
995      /* At this point, we reached the end of the <group> and were on the last
996       * iteration. So it's time to go back to the parent and then advance the
997       * field.
998       */
999      iter_pop_array(iter);
1000   }
1001
1002   return false;
1003}
1004
1005static bool
1006iter_decode_field_raw(struct intel_field_iterator *iter, uint64_t *qw)
1007{
1008   *qw = 0;
1009
1010   int field_start = iter->p_bit + iter->start_bit;
1011   int field_end = iter->p_bit + iter->end_bit;
1012
1013   const uint32_t *p = iter->p + (iter->start_bit / 32);
1014   if (iter->p_end && p >= iter->p_end)
1015      return false;
1016
1017   if ((field_end - field_start) > 32) {
1018      if (!iter->p_end || (p + 1) < iter->p_end)
1019         *qw = ((uint64_t) p[1]) << 32;
1020      *qw |= p[0];
1021   } else
1022      *qw = p[0];
1023
1024   *qw = field_value(*qw, field_start, field_end);
1025
1026   /* Address & offset types have to be aligned to dwords, their start bit is
1027    * a reminder of the alignment requirement.
1028    */
1029   if (iter->field->type.kind == INTEL_TYPE_ADDRESS ||
1030       iter->field->type.kind == INTEL_TYPE_OFFSET)
1031      *qw <<= field_start % 32;
1032
1033   return true;
1034}
1035
1036static bool
1037iter_decode_field(struct intel_field_iterator *iter)
1038{
1039   union {
1040      uint64_t qw;
1041      float f;
1042   } v;
1043
1044   if (iter->field->name)
1045      snprintf(iter->name, sizeof(iter->name), "%s", iter->field->name);
1046   else
1047      memset(iter->name, 0, sizeof(iter->name));
1048
1049   memset(&v, 0, sizeof(v));
1050
1051   if (!iter_decode_field_raw(iter, &iter->raw_value))
1052      return false;
1053
1054   const char *enum_name = NULL;
1055
1056   v.qw = iter->raw_value;
1057   switch (iter->field->type.kind) {
1058   case INTEL_TYPE_UNKNOWN:
1059   case INTEL_TYPE_INT: {
1060      snprintf(iter->value, sizeof(iter->value), "%"PRId64, v.qw);
1061      enum_name = intel_get_enum_name(&iter->field->inline_enum, v.qw);
1062      break;
1063   }
1064   case INTEL_TYPE_MBZ:
1065   case INTEL_TYPE_UINT: {
1066      snprintf(iter->value, sizeof(iter->value), "%"PRIu64, v.qw);
1067      enum_name = intel_get_enum_name(&iter->field->inline_enum, v.qw);
1068      break;
1069   }
1070   case INTEL_TYPE_BOOL: {
1071      const char *true_string =
1072         iter->print_colors ? "\e[0;35mtrue\e[0m" : "true";
1073      snprintf(iter->value, sizeof(iter->value), "%s",
1074               v.qw ? true_string : "false");
1075      break;
1076   }
1077   case INTEL_TYPE_FLOAT:
1078      snprintf(iter->value, sizeof(iter->value), "%f", v.f);
1079      break;
1080   case INTEL_TYPE_ADDRESS:
1081   case INTEL_TYPE_OFFSET:
1082      snprintf(iter->value, sizeof(iter->value), "0x%08"PRIx64, v.qw);
1083      break;
1084   case INTEL_TYPE_STRUCT:
1085      snprintf(iter->value, sizeof(iter->value), "<struct %s>",
1086               iter->field->type.intel_struct->name);
1087      iter->struct_desc =
1088         intel_spec_find_struct(iter->group->spec,
1089                                iter->field->type.intel_struct->name);
1090      break;
1091   case INTEL_TYPE_UFIXED:
1092      snprintf(iter->value, sizeof(iter->value), "%f",
1093               (float) v.qw / (1 << iter->field->type.f));
1094      break;
1095   case INTEL_TYPE_SFIXED: {
1096      /* Sign extend before converting */
1097      int bits = iter->field->type.i + iter->field->type.f + 1;
1098      int64_t v_sign_extend = util_mask_sign_extend(v.qw, bits);
1099      snprintf(iter->value, sizeof(iter->value), "%f",
1100               (float) v_sign_extend / (1 << iter->field->type.f));
1101      break;
1102   }
1103   case INTEL_TYPE_MBO:
1104       break;
1105   case INTEL_TYPE_ENUM: {
1106      snprintf(iter->value, sizeof(iter->value), "%"PRId64, v.qw);
1107      enum_name = intel_get_enum_name(iter->field->type.intel_enum, v.qw);
1108      break;
1109   }
1110   }
1111
1112   if (strlen(iter->group->name) == 0) {
1113      int length = strlen(iter->name);
1114      assert(iter->level >= 0);
1115
1116      int level = 1;
1117      char *buf = iter->name + length;
1118      while (level <= iter->level) {
1119         int printed = snprintf(buf, sizeof(iter->name) - length,
1120                                "[%i]", iter->array_iter[level]);
1121         level++;
1122         length += printed;
1123         buf += printed;
1124      }
1125   }
1126
1127   if (enum_name) {
1128      int length = strlen(iter->value);
1129      snprintf(iter->value + length, sizeof(iter->value) - length,
1130               " (%s)", enum_name);
1131   } else if (strcmp(iter->name, "Surface Format") == 0 ||
1132              strcmp(iter->name, "Source Element Format") == 0) {
1133      if (isl_format_is_valid((enum isl_format)v.qw)) {
1134         const char *fmt_name = isl_format_get_name((enum isl_format)v.qw);
1135         int length = strlen(iter->value);
1136         snprintf(iter->value + length, sizeof(iter->value) - length,
1137                  " (%s)", fmt_name);
1138      }
1139   }
1140
1141   return true;
1142}
1143
1144void
1145intel_field_iterator_init(struct intel_field_iterator *iter,
1146                          struct intel_group *group,
1147                          const uint32_t *p, int p_bit,
1148                          bool print_colors)
1149{
1150   memset(iter, 0, sizeof(*iter));
1151
1152   iter->groups[iter->level] = group;
1153   iter->group = group;
1154   iter->p = p;
1155   iter->p_bit = p_bit;
1156
1157   int length = intel_group_get_length(iter->group, iter->p);
1158   assert(length >= 0 && "error the length is unknown!");
1159   iter->p_end = length >= 0 ? &p[length] : NULL;
1160   iter->print_colors = print_colors;
1161}
1162
1163bool
1164intel_field_iterator_next(struct intel_field_iterator *iter)
1165{
1166   /* Initial condition */
1167   if (!iter->field) {
1168      if (iter->group->fields)
1169         iter_start_field(iter, iter->group->fields);
1170
1171      bool result = iter_decode_field(iter);
1172      if (!result && iter->p_end) {
1173         /* We're dealing with a non empty struct of length=0 (BLEND_STATE on
1174          * Gen 7.5)
1175          */
1176         assert(iter->group->dw_length == 0);
1177      }
1178
1179      return result;
1180   }
1181
1182   if (!iter_advance_field(iter))
1183      return false;
1184
1185   if (!iter_decode_field(iter))
1186      return false;
1187
1188   return true;
1189}
1190
1191static void
1192print_dword_header(FILE *outfile,
1193                   struct intel_field_iterator *iter,
1194                   uint64_t offset, uint32_t dword)
1195{
1196   fprintf(outfile, "0x%08"PRIx64":  0x%08x : Dword %d\n",
1197           offset + 4 * dword, iter->p[dword], dword);
1198}
1199
1200bool
1201intel_field_is_header(struct intel_field *field)
1202{
1203   uint32_t bits;
1204
1205   /* Instructions are identified by the first DWord. */
1206   if (field->start >= 32 ||
1207       field->end >= 32)
1208      return false;
1209
1210   bits = (1ULL << (field->end - field->start + 1)) - 1;
1211   bits <<= field->start;
1212
1213   return (field->parent->opcode_mask & bits) != 0;
1214}
1215
1216void
1217intel_print_group(FILE *outfile, struct intel_group *group, uint64_t offset,
1218                  const uint32_t *p, int p_bit, bool color)
1219{
1220   struct intel_field_iterator iter;
1221   int last_dword = -1;
1222
1223   intel_field_iterator_init(&iter, group, p, p_bit, color);
1224   while (intel_field_iterator_next(&iter)) {
1225      int iter_dword = iter.end_bit / 32;
1226      if (last_dword != iter_dword) {
1227         for (int i = last_dword + 1; i <= iter_dword; i++)
1228            print_dword_header(outfile, &iter, offset, i);
1229         last_dword = iter_dword;
1230      }
1231      if (!intel_field_is_header(iter.field)) {
1232         fprintf(outfile, "    %s: %s\n", iter.name, iter.value);
1233         if (iter.struct_desc) {
1234            int struct_dword = iter.start_bit / 32;
1235            uint64_t struct_offset = offset + 4 * struct_dword;
1236            intel_print_group(outfile, iter.struct_desc, struct_offset,
1237                              &p[struct_dword], iter.start_bit % 32, color);
1238         }
1239      }
1240   }
1241}
1242