1/*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include "blorp_nir_builder.h"
25#include "compiler/nir/nir_format_convert.h"
26
27#include "blorp_priv.h"
28#include "dev/intel_debug.h"
29
30#include "util/format_rgb9e5.h"
31/* header-only include needed for _mesa_unorm_to_float and friends. */
32#include "mesa/main/format_utils.h"
33#include "util/u_math.h"
34
35#define FILE_DEBUG_FLAG DEBUG_BLORP
36
37static const bool split_blorp_blit_debug = false;
38
39struct brw_blorp_blit_vars {
40   /* Input values from brw_blorp_wm_inputs */
41   nir_variable *v_bounds_rect;
42   nir_variable *v_rect_grid;
43   nir_variable *v_coord_transform;
44   nir_variable *v_src_z;
45   nir_variable *v_src_offset;
46   nir_variable *v_dst_offset;
47   nir_variable *v_src_inv_size;
48};
49
50static void
51brw_blorp_blit_vars_init(nir_builder *b, struct brw_blorp_blit_vars *v,
52                         const struct brw_blorp_blit_prog_key *key)
53{
54#define LOAD_INPUT(name, type)\
55   v->v_##name = BLORP_CREATE_NIR_INPUT(b->shader, name, type);
56
57   LOAD_INPUT(bounds_rect, glsl_vec4_type())
58   LOAD_INPUT(rect_grid, glsl_vec4_type())
59   LOAD_INPUT(coord_transform, glsl_vec4_type())
60   LOAD_INPUT(src_z, glsl_float_type())
61   LOAD_INPUT(src_offset, glsl_vector_type(GLSL_TYPE_UINT, 2))
62   LOAD_INPUT(dst_offset, glsl_vector_type(GLSL_TYPE_UINT, 2))
63   LOAD_INPUT(src_inv_size, glsl_vector_type(GLSL_TYPE_FLOAT, 2))
64
65#undef LOAD_INPUT
66}
67
68static nir_ssa_def *
69blorp_blit_get_frag_coords(nir_builder *b,
70                           const struct brw_blorp_blit_prog_key *key,
71                           struct brw_blorp_blit_vars *v)
72{
73   nir_ssa_def *coord = nir_f2i32(b, nir_load_frag_coord(b));
74
75   /* Account for destination surface intratile offset
76    *
77    * Transformation parameters giving translation from destination to source
78    * coordinates don't take into account possible intra-tile destination
79    * offset.  Therefore it has to be first subtracted from the incoming
80    * coordinates.  Vertices are set up based on coordinates containing the
81    * intra-tile offset.
82    */
83   if (key->need_dst_offset)
84      coord = nir_isub(b, coord, nir_load_var(b, v->v_dst_offset));
85
86   if (key->persample_msaa_dispatch) {
87      b->shader->info.fs.uses_sample_shading = true;
88      return nir_vec3(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1),
89                      nir_load_sample_id(b));
90   } else {
91      return nir_vec2(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1));
92   }
93}
94
95static nir_ssa_def *
96blorp_blit_get_cs_dst_coords(nir_builder *b,
97                             const struct brw_blorp_blit_prog_key *key,
98                             struct brw_blorp_blit_vars *v)
99{
100   nir_ssa_def *coord = nir_load_global_invocation_id(b, 32);
101
102   /* Account for destination surface intratile offset
103    *
104    * Transformation parameters giving translation from destination to source
105    * coordinates don't take into account possible intra-tile destination
106    * offset.  Therefore it has to be first subtracted from the incoming
107    * coordinates.  Vertices are set up based on coordinates containing the
108    * intra-tile offset.
109    */
110   if (key->need_dst_offset)
111      coord = nir_isub(b, coord, nir_load_var(b, v->v_dst_offset));
112
113   assert(!key->persample_msaa_dispatch);
114   return nir_channels(b, coord, 0x3);
115}
116
117/**
118 * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
119 * coordinates.
120 */
121static nir_ssa_def *
122blorp_blit_apply_transform(nir_builder *b, nir_ssa_def *src_pos,
123                           struct brw_blorp_blit_vars *v)
124{
125   nir_ssa_def *coord_transform = nir_load_var(b, v->v_coord_transform);
126
127   nir_ssa_def *offset = nir_vec2(b, nir_channel(b, coord_transform, 1),
128                                     nir_channel(b, coord_transform, 3));
129   nir_ssa_def *mul = nir_vec2(b, nir_channel(b, coord_transform, 0),
130                                  nir_channel(b, coord_transform, 2));
131
132   return nir_fadd(b, nir_fmul(b, src_pos, mul), offset);
133}
134
135static nir_tex_instr *
136blorp_create_nir_tex_instr(nir_builder *b, struct brw_blorp_blit_vars *v,
137                           nir_texop op, nir_ssa_def *pos, unsigned num_srcs,
138                           nir_alu_type dst_type)
139{
140   nir_tex_instr *tex = nir_tex_instr_create(b->shader, num_srcs);
141
142   tex->op = op;
143
144   tex->dest_type = dst_type | 32;
145   tex->is_array = false;
146   tex->is_shadow = false;
147
148   tex->texture_index = BLORP_TEXTURE_BT_INDEX;
149   tex->sampler_index = BLORP_SAMPLER_INDEX;
150
151   /* To properly handle 3-D and 2-D array textures, we pull the Z component
152    * from an input.  TODO: This is a bit magic; we should probably make this
153    * more explicit in the future.
154    */
155   assert(pos->num_components >= 2);
156   if (op == nir_texop_txf || op == nir_texop_txf_ms ||
157       op == nir_texop_txf_ms_mcs_intel) {
158      pos = nir_vec3(b, nir_channel(b, pos, 0), nir_channel(b, pos, 1),
159                        nir_f2i32(b, nir_load_var(b, v->v_src_z)));
160   } else {
161      pos = nir_vec3(b, nir_channel(b, pos, 0), nir_channel(b, pos, 1),
162                        nir_load_var(b, v->v_src_z));
163   }
164
165   tex->src[0].src_type = nir_tex_src_coord;
166   tex->src[0].src = nir_src_for_ssa(pos);
167   tex->coord_components = 3;
168
169   nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, NULL);
170
171   return tex;
172}
173
174static nir_ssa_def *
175blorp_nir_tex(nir_builder *b, struct brw_blorp_blit_vars *v,
176              const struct brw_blorp_blit_prog_key *key, nir_ssa_def *pos)
177{
178   if (key->need_src_offset)
179      pos = nir_fadd(b, pos, nir_i2f32(b, nir_load_var(b, v->v_src_offset)));
180
181   /* If the sampler requires normalized coordinates, we need to compensate. */
182   if (key->src_coords_normalized)
183      pos = nir_fmul(b, pos, nir_load_var(b, v->v_src_inv_size));
184
185   nir_tex_instr *tex =
186      blorp_create_nir_tex_instr(b, v, nir_texop_txl, pos, 2,
187                                 key->texture_data_type);
188
189   assert(pos->num_components == 2);
190   tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
191   tex->src[1].src_type = nir_tex_src_lod;
192   tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
193
194   nir_builder_instr_insert(b, &tex->instr);
195
196   return &tex->dest.ssa;
197}
198
199static nir_ssa_def *
200blorp_nir_txf(nir_builder *b, struct brw_blorp_blit_vars *v,
201              nir_ssa_def *pos, nir_alu_type dst_type)
202{
203   nir_tex_instr *tex =
204      blorp_create_nir_tex_instr(b, v, nir_texop_txf, pos, 2, dst_type);
205
206   tex->sampler_dim = GLSL_SAMPLER_DIM_3D;
207   tex->src[1].src_type = nir_tex_src_lod;
208   tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
209
210   nir_builder_instr_insert(b, &tex->instr);
211
212   return &tex->dest.ssa;
213}
214
215static nir_ssa_def *
216blorp_nir_txf_ms(nir_builder *b, struct brw_blorp_blit_vars *v,
217                 nir_ssa_def *pos, nir_ssa_def *mcs, nir_alu_type dst_type)
218{
219   nir_tex_instr *tex =
220      blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms, pos,
221                                 mcs != NULL ? 3 : 2, dst_type);
222
223   tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
224
225   tex->src[1].src_type = nir_tex_src_ms_index;
226   if (pos->num_components == 2) {
227      tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
228   } else {
229      assert(pos->num_components == 3);
230      tex->src[1].src = nir_src_for_ssa(nir_channel(b, pos, 2));
231   }
232
233   if (mcs) {
234      tex->src[2].src_type = nir_tex_src_ms_mcs_intel;
235      tex->src[2].src = nir_src_for_ssa(mcs);
236   }
237
238   nir_builder_instr_insert(b, &tex->instr);
239
240   return &tex->dest.ssa;
241}
242
243static nir_ssa_def *
244blorp_blit_txf_ms_mcs(nir_builder *b, struct brw_blorp_blit_vars *v,
245                      nir_ssa_def *pos)
246{
247   nir_tex_instr *tex =
248      blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms_mcs_intel,
249                                 pos, 1, nir_type_int);
250
251   tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
252
253   nir_builder_instr_insert(b, &tex->instr);
254
255   return &tex->dest.ssa;
256}
257
258/**
259 * Emit code to compensate for the difference between Y and W tiling.
260 *
261 * This code modifies the X and Y coordinates according to the formula:
262 *
263 *   (X', Y', S') = detile(W-MAJOR, tile(Y-MAJOR, X, Y, S))
264 *
265 * (See brw_blorp_build_nir_shader).
266 */
267static inline nir_ssa_def *
268blorp_nir_retile_y_to_w(nir_builder *b, nir_ssa_def *pos)
269{
270   assert(pos->num_components == 2);
271   nir_ssa_def *x_Y = nir_channel(b, pos, 0);
272   nir_ssa_def *y_Y = nir_channel(b, pos, 1);
273
274   /* Given X and Y coordinates that describe an address using Y tiling,
275    * translate to the X and Y coordinates that describe the same address
276    * using W tiling.
277    *
278    * If we break down the low order bits of X and Y, using a
279    * single letter to represent each low-order bit:
280    *
281    *   X = A << 7 | 0bBCDEFGH
282    *   Y = J << 5 | 0bKLMNP                                       (1)
283    *
284    * Then we can apply the Y tiling formula to see the memory offset being
285    * addressed:
286    *
287    *   offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH       (2)
288    *
289    * If we apply the W detiling formula to this memory location, that the
290    * corresponding X' and Y' coordinates are:
291    *
292    *   X' = A << 6 | 0bBCDPFH                                     (3)
293    *   Y' = J << 6 | 0bKLMNEG
294    *
295    * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
296    * we need to make the following computation:
297    *
298    *   X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1         (4)
299    *   Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
300    */
301   nir_ssa_def *x_W = nir_imm_int(b, 0);
302   x_W = nir_mask_shift_or(b, x_W, x_Y, 0xfffffff4, -1);
303   x_W = nir_mask_shift_or(b, x_W, y_Y, 0x1, 2);
304   x_W = nir_mask_shift_or(b, x_W, x_Y, 0x1, 0);
305
306   nir_ssa_def *y_W = nir_imm_int(b, 0);
307   y_W = nir_mask_shift_or(b, y_W, y_Y, 0xfffffffe, 1);
308   y_W = nir_mask_shift_or(b, y_W, x_Y, 0x8, -2);
309   y_W = nir_mask_shift_or(b, y_W, x_Y, 0x2, -1);
310
311   return nir_vec2(b, x_W, y_W);
312}
313
314/**
315 * Emit code to compensate for the difference between Y and W tiling.
316 *
317 * This code modifies the X and Y coordinates according to the formula:
318 *
319 *   (X', Y', S') = detile(Y-MAJOR, tile(W-MAJOR, X, Y, S))
320 *
321 * (See brw_blorp_build_nir_shader).
322 */
323static inline nir_ssa_def *
324blorp_nir_retile_w_to_y(nir_builder *b, nir_ssa_def *pos)
325{
326   assert(pos->num_components == 2);
327   nir_ssa_def *x_W = nir_channel(b, pos, 0);
328   nir_ssa_def *y_W = nir_channel(b, pos, 1);
329
330   /* Applying the same logic as above, but in reverse, we obtain the
331    * formulas:
332    *
333    * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
334    * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
335    */
336   nir_ssa_def *x_Y = nir_imm_int(b, 0);
337   x_Y = nir_mask_shift_or(b, x_Y, x_W, 0xfffffffa, 1);
338   x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x2, 2);
339   x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x1, 1);
340   x_Y = nir_mask_shift_or(b, x_Y, x_W, 0x1, 0);
341
342   nir_ssa_def *y_Y = nir_imm_int(b, 0);
343   y_Y = nir_mask_shift_or(b, y_Y, y_W, 0xfffffffc, -1);
344   y_Y = nir_mask_shift_or(b, y_Y, x_W, 0x4, -2);
345
346   return nir_vec2(b, x_Y, y_Y);
347}
348
349/**
350 * Emit code to compensate for the difference between MSAA and non-MSAA
351 * surfaces.
352 *
353 * This code modifies the X and Y coordinates according to the formula:
354 *
355 *   (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
356 *
357 * (See brw_blorp_blit_program).
358 */
359static inline nir_ssa_def *
360blorp_nir_encode_msaa(nir_builder *b, nir_ssa_def *pos,
361                      unsigned num_samples, enum isl_msaa_layout layout)
362{
363   assert(pos->num_components == 2 || pos->num_components == 3);
364
365   switch (layout) {
366   case ISL_MSAA_LAYOUT_NONE:
367      assert(pos->num_components == 2);
368      return pos;
369   case ISL_MSAA_LAYOUT_ARRAY:
370      /* No translation needed */
371      return pos;
372   case ISL_MSAA_LAYOUT_INTERLEAVED: {
373      nir_ssa_def *x_in = nir_channel(b, pos, 0);
374      nir_ssa_def *y_in = nir_channel(b, pos, 1);
375      nir_ssa_def *s_in = pos->num_components == 2 ? nir_imm_int(b, 0) :
376                                                     nir_channel(b, pos, 2);
377
378      nir_ssa_def *x_out = nir_imm_int(b, 0);
379      nir_ssa_def *y_out = nir_imm_int(b, 0);
380      switch (num_samples) {
381      case 2:
382      case 4:
383         /* encode_msaa(2, IMS, X, Y, S) = (X', Y', 0)
384          *   where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
385          *         Y' = Y
386          *
387          * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
388          *   where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
389          *         Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
390          */
391         x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 1);
392         x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
393         x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
394         if (num_samples == 2) {
395            y_out = y_in;
396         } else {
397            y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
398            y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
399            y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
400         }
401         break;
402
403      case 8:
404         /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
405          *   where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
406          *              | (X & 0b1)
407          *         Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
408          */
409         x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
410         x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
411         x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
412         x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
413         y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
414         y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
415         y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
416         break;
417
418      case 16:
419         /* encode_msaa(16, IMS, X, Y, S) = (X', Y', 0)
420          *   where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
421          *              | (X & 0b1)
422          *         Y' = (Y & ~0b1) << 2 | (S & 0b1000) >> 1 (S & 0b10)
423          *              | (Y & 0b1)
424          */
425         x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
426         x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
427         x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
428         x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
429         y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 2);
430         y_out = nir_mask_shift_or(b, y_out, s_in, 0x8, -1);
431         y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
432         y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
433         break;
434
435      default:
436         unreachable("Invalid number of samples for IMS layout");
437      }
438
439      return nir_vec2(b, x_out, y_out);
440   }
441
442   default:
443      unreachable("Invalid MSAA layout");
444   }
445}
446
447/**
448 * Emit code to compensate for the difference between MSAA and non-MSAA
449 * surfaces.
450 *
451 * This code modifies the X and Y coordinates according to the formula:
452 *
453 *   (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
454 *
455 * (See brw_blorp_blit_program).
456 */
457static inline nir_ssa_def *
458blorp_nir_decode_msaa(nir_builder *b, nir_ssa_def *pos,
459                      unsigned num_samples, enum isl_msaa_layout layout)
460{
461   assert(pos->num_components == 2 || pos->num_components == 3);
462
463   switch (layout) {
464   case ISL_MSAA_LAYOUT_NONE:
465      /* No translation necessary, and S should already be zero. */
466      assert(pos->num_components == 2);
467      return pos;
468   case ISL_MSAA_LAYOUT_ARRAY:
469      /* No translation necessary. */
470      return pos;
471   case ISL_MSAA_LAYOUT_INTERLEAVED: {
472      assert(pos->num_components == 2);
473
474      nir_ssa_def *x_in = nir_channel(b, pos, 0);
475      nir_ssa_def *y_in = nir_channel(b, pos, 1);
476
477      nir_ssa_def *x_out = nir_imm_int(b, 0);
478      nir_ssa_def *y_out = nir_imm_int(b, 0);
479      nir_ssa_def *s_out = nir_imm_int(b, 0);
480      switch (num_samples) {
481      case 2:
482      case 4:
483         /* decode_msaa(2, IMS, X, Y, 0) = (X', Y', S)
484          *   where X' = (X & ~0b11) >> 1 | (X & 0b1)
485          *         S = (X & 0b10) >> 1
486          *
487          * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
488          *   where X' = (X & ~0b11) >> 1 | (X & 0b1)
489          *         Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
490          *         S = (Y & 0b10) | (X & 0b10) >> 1
491          */
492         x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffc, -1);
493         x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
494         if (num_samples == 2) {
495            y_out = y_in;
496            s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
497         } else {
498            y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
499            y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
500            s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
501            s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
502         }
503         break;
504
505      case 8:
506         /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
507          *   where X' = (X & ~0b111) >> 2 | (X & 0b1)
508          *         Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
509          *         S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
510          */
511         x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
512         x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
513         y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
514         y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
515         s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
516         s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
517         s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
518         break;
519
520      case 16:
521         /* decode_msaa(16, IMS, X, Y, 0) = (X', Y', S)
522          *   where X' = (X & ~0b111) >> 2 | (X & 0b1)
523          *         Y' = (Y & ~0b111) >> 2 | (Y & 0b1)
524          *         S = (Y & 0b100) << 1 | (X & 0b100) |
525          *             (Y & 0b10) | (X & 0b10) >> 1
526          */
527         x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
528         x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
529         y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffff8, -2);
530         y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
531         s_out = nir_mask_shift_or(b, s_out, y_in, 0x4, 1);
532         s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
533         s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
534         s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
535         break;
536
537      default:
538         unreachable("Invalid number of samples for IMS layout");
539      }
540
541      return nir_vec3(b, x_out, y_out, s_out);
542   }
543
544   default:
545      unreachable("Invalid MSAA layout");
546   }
547}
548
549/**
550 * Count the number of trailing 1 bits in the given value.  For example:
551 *
552 * count_trailing_one_bits(0) == 0
553 * count_trailing_one_bits(7) == 3
554 * count_trailing_one_bits(11) == 2
555 */
556static inline int count_trailing_one_bits(unsigned value)
557{
558#ifdef HAVE___BUILTIN_CTZ
559   return __builtin_ctz(~value);
560#else
561   return util_bitcount(value & ~(value + 1));
562#endif
563}
564
565static nir_ssa_def *
566blorp_nir_combine_samples(nir_builder *b, struct brw_blorp_blit_vars *v,
567                          nir_ssa_def *pos, unsigned tex_samples,
568                          enum isl_aux_usage tex_aux_usage,
569                          nir_alu_type dst_type,
570                          enum blorp_filter filter)
571{
572   nir_variable *color =
573      nir_local_variable_create(b->impl, glsl_vec4_type(), "color");
574
575   nir_ssa_def *mcs = NULL;
576   if (isl_aux_usage_has_mcs(tex_aux_usage))
577      mcs = blorp_blit_txf_ms_mcs(b, v, pos);
578
579   nir_op combine_op;
580   switch (filter) {
581   case BLORP_FILTER_AVERAGE:
582      assert(dst_type == nir_type_float);
583      combine_op = nir_op_fadd;
584      break;
585
586   case BLORP_FILTER_MIN_SAMPLE:
587      switch (dst_type) {
588      case nir_type_int:   combine_op = nir_op_imin;  break;
589      case nir_type_uint:  combine_op = nir_op_umin;  break;
590      case nir_type_float: combine_op = nir_op_fmin;  break;
591      default: unreachable("Invalid dst_type");
592      }
593      break;
594
595   case BLORP_FILTER_MAX_SAMPLE:
596      switch (dst_type) {
597      case nir_type_int:   combine_op = nir_op_imax;  break;
598      case nir_type_uint:  combine_op = nir_op_umax;  break;
599      case nir_type_float: combine_op = nir_op_fmax;  break;
600      default: unreachable("Invalid dst_type");
601      }
602      break;
603
604   default:
605      unreachable("Invalid filter");
606   }
607
608   /* If true, we inserted an if statement that we need to pop at at the end.
609    */
610   bool inserted_if = false;
611
612   /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
613    *
614    *   result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
615    *
616    * This ensures that when all samples have the same value, no numerical
617    * precision is lost, since each addition operation always adds two equal
618    * values, and summing two equal floating point values does not lose
619    * precision.
620    *
621    * We perform this computation by treating the texture_data array as a
622    * stack and performing the following operations:
623    *
624    * - push sample 0 onto stack
625    * - push sample 1 onto stack
626    * - add top two stack entries
627    * - push sample 2 onto stack
628    * - push sample 3 onto stack
629    * - add top two stack entries
630    * - add top two stack entries
631    * - divide top stack entry by 4
632    *
633    * Note that after pushing sample i onto the stack, the number of add
634    * operations we do is equal to the number of trailing 1 bits in i.  This
635    * works provided the total number of samples is a power of two, which it
636    * always is for i965.
637    *
638    * For integer formats, we replace the add operations with average
639    * operations and skip the final division.
640    */
641   nir_ssa_def *texture_data[5];
642   texture_data[0] = NULL; /* Avoid maybe-uninitialized warning with GCC 10 */
643   unsigned stack_depth = 0;
644   for (unsigned i = 0; i < tex_samples; ++i) {
645      assert(stack_depth == util_bitcount(i)); /* Loop invariant */
646
647      /* Push sample i onto the stack */
648      assert(stack_depth < ARRAY_SIZE(texture_data));
649
650      nir_ssa_def *ms_pos = nir_vec3(b, nir_channel(b, pos, 0),
651                                        nir_channel(b, pos, 1),
652                                        nir_imm_int(b, i));
653      texture_data[stack_depth++] = blorp_nir_txf_ms(b, v, ms_pos, mcs, dst_type);
654
655      if (i == 0 && isl_aux_usage_has_mcs(tex_aux_usage)) {
656         /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
657          * suggests an optimization:
658          *
659          *     "A simple optimization with probable large return in
660          *     performance is to compare the MCS value to zero (indicating
661          *     all samples are on sample slice 0), and sample only from
662          *     sample slice 0 using ld2dss if MCS is zero."
663          *
664          * Note that in the case where the MCS value is zero, sampling from
665          * sample slice 0 using ld2dss and sampling from sample 0 using
666          * ld2dms are equivalent (since all samples are on sample slice 0).
667          * Since we have already sampled from sample 0, all we need to do is
668          * skip the remaining fetches and averaging if MCS is zero.
669          *
670          * It's also trivial to detect when the MCS has the magic clear color
671          * value.  In this case, the txf we did on sample 0 will return the
672          * clear color and we can skip the remaining fetches just like we do
673          * when MCS == 0.
674          */
675         nir_ssa_def *mcs_zero = nir_ieq_imm(b, nir_channel(b, mcs, 0), 0);
676         if (tex_samples == 16) {
677            mcs_zero = nir_iand(b, mcs_zero,
678               nir_ieq_imm(b, nir_channel(b, mcs, 1), 0));
679         }
680         nir_ssa_def *mcs_clear =
681            blorp_nir_mcs_is_clear_color(b, mcs, tex_samples);
682
683         nir_push_if(b, nir_ior(b, mcs_zero, mcs_clear));
684         nir_store_var(b, color, texture_data[0], 0xf);
685
686         nir_push_else(b, NULL);
687         inserted_if = true;
688      }
689
690      for (int j = 0; j < count_trailing_one_bits(i); j++) {
691         assert(stack_depth >= 2);
692         --stack_depth;
693
694         texture_data[stack_depth - 1] =
695            nir_build_alu(b, combine_op,
696                             texture_data[stack_depth - 1],
697                             texture_data[stack_depth],
698                             NULL, NULL);
699      }
700   }
701
702   /* We should have just 1 sample on the stack now. */
703   assert(stack_depth == 1);
704
705   if (filter == BLORP_FILTER_AVERAGE) {
706      assert(dst_type == nir_type_float);
707      texture_data[0] = nir_fmul(b, texture_data[0],
708                                 nir_imm_float(b, 1.0 / tex_samples));
709   }
710
711   nir_store_var(b, color, texture_data[0], 0xf);
712
713   if (inserted_if)
714      nir_pop_if(b, NULL);
715
716   return nir_load_var(b, color);
717}
718
719static nir_ssa_def *
720blorp_nir_manual_blend_bilinear(nir_builder *b, nir_ssa_def *pos,
721                                unsigned tex_samples,
722                                const struct brw_blorp_blit_prog_key *key,
723                                struct brw_blorp_blit_vars *v)
724{
725   nir_ssa_def *pos_xy = nir_channels(b, pos, 0x3);
726   nir_ssa_def *rect_grid = nir_load_var(b, v->v_rect_grid);
727   nir_ssa_def *scale = nir_imm_vec2(b, key->x_scale, key->y_scale);
728
729   /* Translate coordinates to lay out the samples in a rectangular  grid
730    * roughly corresponding to sample locations.
731    */
732   pos_xy = nir_fmul(b, pos_xy, scale);
733   /* Adjust coordinates so that integers represent pixel centers rather
734    * than pixel edges.
735    */
736   pos_xy = nir_fadd(b, pos_xy, nir_imm_float(b, -0.5));
737   /* Clamp the X, Y texture coordinates to properly handle the sampling of
738    * texels on texture edges.
739    */
740   pos_xy = nir_fmin(b, nir_fmax(b, pos_xy, nir_imm_float(b, 0.0)),
741                        nir_vec2(b, nir_channel(b, rect_grid, 0),
742                                    nir_channel(b, rect_grid, 1)));
743
744   /* Store the fractional parts to be used as bilinear interpolation
745    * coefficients.
746    */
747   nir_ssa_def *frac_xy = nir_ffract(b, pos_xy);
748   /* Round the float coordinates down to nearest integer */
749   pos_xy = nir_fdiv(b, nir_ftrunc(b, pos_xy), scale);
750
751   nir_ssa_def *tex_data[4];
752   for (unsigned i = 0; i < 4; ++i) {
753      float sample_off_x = (float)(i & 0x1) / key->x_scale;
754      float sample_off_y = (float)((i >> 1) & 0x1) / key->y_scale;
755      nir_ssa_def *sample_off = nir_imm_vec2(b, sample_off_x, sample_off_y);
756
757      nir_ssa_def *sample_coords = nir_fadd(b, pos_xy, sample_off);
758      nir_ssa_def *sample_coords_int = nir_f2i32(b, sample_coords);
759
760      /* The MCS value we fetch has to match up with the pixel that we're
761       * sampling from. Since we sample from different pixels in each
762       * iteration of this "for" loop, the call to mcs_fetch() should be
763       * here inside the loop after computing the pixel coordinates.
764       */
765      nir_ssa_def *mcs = NULL;
766      if (isl_aux_usage_has_mcs(key->tex_aux_usage))
767         mcs = blorp_blit_txf_ms_mcs(b, v, sample_coords_int);
768
769      /* Compute sample index and map the sample index to a sample number.
770       * Sample index layout shows the numbering of slots in a rectangular
771       * grid of samples with in a pixel. Sample number layout shows the
772       * rectangular grid of samples roughly corresponding to the real sample
773       * locations with in a pixel.
774       *
775       * In the case of 2x MSAA, the layout of sample indices is reversed from
776       * the layout of sample numbers:
777       *
778       * sample index layout :  ---------    sample number layout :  ---------
779       *                        | 0 | 1 |                            | 1 | 0 |
780       *                        ---------                            ---------
781       *
782       * In case of 4x MSAA, layout of sample indices matches the layout of
783       * sample numbers:
784       *           ---------
785       *           | 0 | 1 |
786       *           ---------
787       *           | 2 | 3 |
788       *           ---------
789       *
790       * In case of 8x MSAA the two layouts don't match.
791       * sample index layout :  ---------    sample number layout :  ---------
792       *                        | 0 | 1 |                            | 3 | 7 |
793       *                        ---------                            ---------
794       *                        | 2 | 3 |                            | 5 | 0 |
795       *                        ---------                            ---------
796       *                        | 4 | 5 |                            | 1 | 2 |
797       *                        ---------                            ---------
798       *                        | 6 | 7 |                            | 4 | 6 |
799       *                        ---------                            ---------
800       *
801       * Fortunately, this can be done fairly easily as:
802       * S' = (0x17306425 >> (S * 4)) & 0xf
803       *
804       * In the case of 16x MSAA the two layouts don't match.
805       * Sample index layout:                Sample number layout:
806       * ---------------------               ---------------------
807       * |  0 |  1 |  2 |  3 |               | 15 | 10 |  9 |  7 |
808       * ---------------------               ---------------------
809       * |  4 |  5 |  6 |  7 |               |  4 |  1 |  3 | 13 |
810       * ---------------------               ---------------------
811       * |  8 |  9 | 10 | 11 |               | 12 |  2 |  0 |  6 |
812       * ---------------------               ---------------------
813       * | 12 | 13 | 14 | 15 |               | 11 |  8 |  5 | 14 |
814       * ---------------------               ---------------------
815       *
816       * This is equivalent to
817       * S' = (0xe58b602cd31479af >> (S * 4)) & 0xf
818       */
819      nir_ssa_def *frac = nir_ffract(b, sample_coords);
820      nir_ssa_def *sample =
821         nir_fdot2(b, frac, nir_imm_vec2(b, key->x_scale,
822                                            key->x_scale * key->y_scale));
823      sample = nir_f2i32(b, sample);
824
825      if (tex_samples == 2) {
826         sample = nir_isub(b, nir_imm_int(b, 1), sample);
827      } else if (tex_samples == 8) {
828         sample = nir_iand(b, nir_ishr(b, nir_imm_int(b, 0x64210573),
829                                       nir_ishl(b, sample, nir_imm_int(b, 2))),
830                           nir_imm_int(b, 0xf));
831      } else if (tex_samples == 16) {
832         nir_ssa_def *sample_low =
833            nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xd31479af),
834                                 nir_ishl(b, sample, nir_imm_int(b, 2))),
835                     nir_imm_int(b, 0xf));
836         nir_ssa_def *sample_high =
837            nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xe58b602c),
838                                 nir_ishl(b, nir_iadd(b, sample,
839                                                      nir_imm_int(b, -8)),
840                                          nir_imm_int(b, 2))),
841                     nir_imm_int(b, 0xf));
842
843         sample = nir_bcsel(b, nir_ilt(b, sample, nir_imm_int(b, 8)),
844                            sample_low, sample_high);
845      }
846      nir_ssa_def *pos_ms = nir_vec3(b, nir_channel(b, sample_coords_int, 0),
847                                        nir_channel(b, sample_coords_int, 1),
848                                        sample);
849      tex_data[i] = blorp_nir_txf_ms(b, v, pos_ms, mcs, key->texture_data_type);
850   }
851
852   nir_ssa_def *frac_x = nir_channel(b, frac_xy, 0);
853   nir_ssa_def *frac_y = nir_channel(b, frac_xy, 1);
854   return nir_flrp(b, nir_flrp(b, tex_data[0], tex_data[1], frac_x),
855                      nir_flrp(b, tex_data[2], tex_data[3], frac_x),
856                      frac_y);
857}
858
859/** Perform a color bit-cast operation
860 *
861 * For copy operations involving CCS, we may need to use different formats for
862 * the source and destination surfaces.  The two formats must both be UINT
863 * formats and must have the same size but may have different bit layouts.
864 * For instance, we may be copying from R8G8B8A8_UINT to R32_UINT or R32_UINT
865 * to R16G16_UINT.  This function generates code to shuffle bits around to get
866 * us from one to the other.
867 */
868static nir_ssa_def *
869bit_cast_color(struct nir_builder *b, nir_ssa_def *color,
870               const struct brw_blorp_blit_prog_key *key)
871{
872   if (key->src_format == key->dst_format)
873      return color;
874
875   const struct isl_format_layout *src_fmtl =
876      isl_format_get_layout(key->src_format);
877   const struct isl_format_layout *dst_fmtl =
878      isl_format_get_layout(key->dst_format);
879
880   /* They must be formats with the same bit size */
881   assert(src_fmtl->bpb == dst_fmtl->bpb);
882
883   if (src_fmtl->bpb <= 32) {
884      assert(src_fmtl->channels.r.type == ISL_UINT ||
885             src_fmtl->channels.r.type == ISL_UNORM);
886      assert(dst_fmtl->channels.r.type == ISL_UINT ||
887             dst_fmtl->channels.r.type == ISL_UNORM);
888
889      nir_ssa_def *packed = nir_imm_int(b, 0);
890      for (unsigned c = 0; c < 4; c++) {
891         if (src_fmtl->channels_array[c].bits == 0)
892            continue;
893
894         const unsigned chan_start_bit = src_fmtl->channels_array[c].start_bit;
895         const unsigned chan_bits = src_fmtl->channels_array[c].bits;
896
897         nir_ssa_def *chan =  nir_channel(b, color, c);
898         if (src_fmtl->channels_array[c].type == ISL_UNORM)
899            chan = nir_format_float_to_unorm(b, chan, &chan_bits);
900
901         packed = nir_ior(b, packed, nir_shift_imm(b, chan, chan_start_bit));
902      }
903
904      nir_ssa_def *chans[4] = { };
905      for (unsigned c = 0; c < 4; c++) {
906         if (dst_fmtl->channels_array[c].bits == 0) {
907            chans[c] = nir_imm_int(b, 0);
908            continue;
909         }
910
911         const unsigned chan_start_bit = dst_fmtl->channels_array[c].start_bit;
912         const unsigned chan_bits = dst_fmtl->channels_array[c].bits;
913         chans[c] = nir_iand(b, nir_shift_imm(b, packed, -(int)chan_start_bit),
914                                nir_imm_int(b, BITFIELD_MASK(chan_bits)));
915
916         if (dst_fmtl->channels_array[c].type == ISL_UNORM)
917            chans[c] = nir_format_unorm_to_float(b, chans[c], &chan_bits);
918      }
919      color = nir_vec(b, chans, 4);
920   } else {
921      /* This path only supports UINT formats */
922      assert(src_fmtl->channels.r.type == ISL_UINT);
923      assert(dst_fmtl->channels.r.type == ISL_UINT);
924
925      const unsigned src_bpc = src_fmtl->channels.r.bits;
926      const unsigned dst_bpc = dst_fmtl->channels.r.bits;
927
928      assert(src_fmtl->channels.g.bits == 0 ||
929             src_fmtl->channels.g.bits == src_fmtl->channels.r.bits);
930      assert(src_fmtl->channels.b.bits == 0 ||
931             src_fmtl->channels.b.bits == src_fmtl->channels.r.bits);
932      assert(src_fmtl->channels.a.bits == 0 ||
933             src_fmtl->channels.a.bits == src_fmtl->channels.r.bits);
934      assert(dst_fmtl->channels.g.bits == 0 ||
935             dst_fmtl->channels.g.bits == dst_fmtl->channels.r.bits);
936      assert(dst_fmtl->channels.b.bits == 0 ||
937             dst_fmtl->channels.b.bits == dst_fmtl->channels.r.bits);
938      assert(dst_fmtl->channels.a.bits == 0 ||
939             dst_fmtl->channels.a.bits == dst_fmtl->channels.r.bits);
940
941      /* Restrict to only the channels we actually have */
942      const unsigned src_channels =
943         isl_format_get_num_channels(key->src_format);
944      color = nir_trim_vector(b, color, src_channels);
945
946      color = nir_format_bitcast_uvec_unmasked(b, color, src_bpc, dst_bpc);
947   }
948
949   /* Blorp likes to assume that colors are vec4s */
950   nir_ssa_def *u = nir_ssa_undef(b, 1, 32);
951   nir_ssa_def *chans[4] = { u, u, u, u };
952   for (unsigned i = 0; i < color->num_components; i++)
953      chans[i] = nir_channel(b, color, i);
954   return nir_vec4(b, chans[0], chans[1], chans[2], chans[3]);
955}
956
957static nir_ssa_def *
958select_color_channel(struct nir_builder *b, nir_ssa_def *color,
959                     nir_alu_type data_type,
960                     enum isl_channel_select chan)
961{
962   if (chan == ISL_CHANNEL_SELECT_ZERO) {
963      return nir_imm_int(b, 0);
964   } else if (chan == ISL_CHANNEL_SELECT_ONE) {
965      switch (data_type) {
966      case nir_type_int:
967      case nir_type_uint:
968         return nir_imm_int(b, 1);
969      case nir_type_float:
970         return nir_imm_float(b, 1);
971      default:
972         unreachable("Invalid data type");
973      }
974   } else {
975      assert((unsigned)(chan - ISL_CHANNEL_SELECT_RED) < 4);
976      return nir_channel(b, color, chan - ISL_CHANNEL_SELECT_RED);
977   }
978}
979
980static nir_ssa_def *
981swizzle_color(struct nir_builder *b, nir_ssa_def *color,
982              struct isl_swizzle swizzle, nir_alu_type data_type)
983{
984   return nir_vec4(b,
985                   select_color_channel(b, color, data_type, swizzle.r),
986                   select_color_channel(b, color, data_type, swizzle.g),
987                   select_color_channel(b, color, data_type, swizzle.b),
988                   select_color_channel(b, color, data_type, swizzle.a));
989}
990
991static nir_ssa_def *
992convert_color(struct nir_builder *b, nir_ssa_def *color,
993              const struct brw_blorp_blit_prog_key *key)
994{
995   /* All of our color conversions end up generating a single-channel color
996    * value that we need to write out.
997    */
998   nir_ssa_def *value;
999
1000   if (key->dst_format == ISL_FORMAT_R24_UNORM_X8_TYPELESS) {
1001      /* The destination image is bound as R32_UINT but the data needs to be
1002       * in R24_UNORM_X8_TYPELESS.  The bottom 24 are the actual data and the
1003       * top 8 need to be zero.  We can accomplish this by simply multiplying
1004       * by a factor to scale things down.
1005       */
1006      unsigned factor = (1 << 24) - 1;
1007      value = nir_fsat(b, nir_channel(b, color, 0));
1008      value = nir_f2i32(b, nir_fmul(b, value, nir_imm_float(b, factor)));
1009   } else if (key->dst_format == ISL_FORMAT_L8_UNORM_SRGB) {
1010      value = nir_format_linear_to_srgb(b, nir_channel(b, color, 0));
1011   } else if (key->dst_format == ISL_FORMAT_R8G8B8_UNORM_SRGB) {
1012      value = nir_format_linear_to_srgb(b, color);
1013   } else if (key->dst_format == ISL_FORMAT_R9G9B9E5_SHAREDEXP) {
1014      value = nir_format_pack_r9g9b9e5(b, color);
1015   } else {
1016      unreachable("Unsupported format conversion");
1017   }
1018
1019   nir_ssa_def *out_comps[4];
1020   for (unsigned i = 0; i < 4; i++) {
1021      if (i < value->num_components)
1022         out_comps[i] = nir_channel(b, value, i);
1023      else
1024         out_comps[i] = nir_ssa_undef(b, 1, 32);
1025   }
1026   return nir_vec(b, out_comps, 4);
1027}
1028
1029/**
1030 * Generator for WM programs used in BLORP blits.
1031 *
1032 * The bulk of the work done by the WM program is to wrap and unwrap the
1033 * coordinate transformations used by the hardware to store surfaces in
1034 * memory.  The hardware transforms a pixel location (X, Y, S) (where S is the
1035 * sample index for a multisampled surface) to a memory offset by the
1036 * following formulas:
1037 *
1038 *   offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
1039 *   (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
1040 *
1041 * For a single-sampled surface, or for a multisampled surface using
1042 * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
1043 * function:
1044 *
1045 *   encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
1046 *   decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
1047 *   encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
1048 *   decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
1049 *
1050 * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
1051 * embeds the sample number into bit 1 of the X and Y coordinates:
1052 *
1053 *   encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
1054 *     where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
1055 *           Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
1056 *   decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
1057 *     where X' = (X & ~0b11) >> 1 | (X & 0b1)
1058 *           Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1059 *           S = (Y & 0b10) | (X & 0b10) >> 1
1060 *
1061 * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
1062 * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
1063 * the Y coordinate:
1064 *
1065 *   encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
1066 *     where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
1067 *           Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
1068 *   decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
1069 *     where X' = (X & ~0b111) >> 2 | (X & 0b1)
1070 *           Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1071 *           S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
1072 *
1073 * For X tiling, tile() combines together the low-order bits of the X and Y
1074 * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
1075 * bytes wide and 8 rows high:
1076 *
1077 *   tile(x_tiled, X, Y, S) = A
1078 *     where A = tile_num << 12 | offset
1079 *           tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
1080 *           offset = (Y' & 0b111) << 9
1081 *                    | (X & 0b111111111)
1082 *           X' = X * cpp
1083 *           Y' = Y + S * qpitch
1084 *   detile(x_tiled, A) = (X, Y, S)
1085 *     where X = X' / cpp
1086 *           Y = Y' % qpitch
1087 *           S = Y' / qpitch
1088 *           Y' = (tile_num / tile_pitch) << 3
1089 *                | (A & 0b111000000000) >> 9
1090 *           X' = (tile_num % tile_pitch) << 9
1091 *                | (A & 0b111111111)
1092 *
1093 * (In all tiling formulas, cpp is the number of bytes occupied by a single
1094 * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
1095 * to fill the width of the surface, and qpitch is the spacing (in rows)
1096 * between array slices).
1097 *
1098 * For Y tiling, tile() combines together the low-order bits of the X and Y
1099 * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
1100 * bytes wide and 32 rows high:
1101 *
1102 *   tile(y_tiled, X, Y, S) = A
1103 *     where A = tile_num << 12 | offset
1104 *           tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
1105 *           offset = (X' & 0b1110000) << 5
1106 *                    | (Y' & 0b11111) << 4
1107 *                    | (X' & 0b1111)
1108 *           X' = X * cpp
1109 *           Y' = Y + S * qpitch
1110 *   detile(y_tiled, A) = (X, Y, S)
1111 *     where X = X' / cpp
1112 *           Y = Y' % qpitch
1113 *           S = Y' / qpitch
1114 *           Y' = (tile_num / tile_pitch) << 5
1115 *                | (A & 0b111110000) >> 4
1116 *           X' = (tile_num % tile_pitch) << 7
1117 *                | (A & 0b111000000000) >> 5
1118 *                | (A & 0b1111)
1119 *
1120 * For W tiling, tile() combines together the low-order bits of the X and Y
1121 * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
1122 * bytes wide and 64 rows high (note that W tiling is only used for stencil
1123 * buffers, which always have cpp = 1 and S=0):
1124 *
1125 *   tile(w_tiled, X, Y, S) = A
1126 *     where A = tile_num << 12 | offset
1127 *           tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
1128 *           offset = (X' & 0b111000) << 6
1129 *                    | (Y' & 0b111100) << 3
1130 *                    | (X' & 0b100) << 2
1131 *                    | (Y' & 0b10) << 2
1132 *                    | (X' & 0b10) << 1
1133 *                    | (Y' & 0b1) << 1
1134 *                    | (X' & 0b1)
1135 *           X' = X * cpp = X
1136 *           Y' = Y + S * qpitch
1137 *   detile(w_tiled, A) = (X, Y, S)
1138 *     where X = X' / cpp = X'
1139 *           Y = Y' % qpitch = Y'
1140 *           S = Y / qpitch = 0
1141 *           Y' = (tile_num / tile_pitch) << 6
1142 *                | (A & 0b111100000) >> 3
1143 *                | (A & 0b1000) >> 2
1144 *                | (A & 0b10) >> 1
1145 *           X' = (tile_num % tile_pitch) << 6
1146 *                | (A & 0b111000000000) >> 6
1147 *                | (A & 0b10000) >> 2
1148 *                | (A & 0b100) >> 1
1149 *                | (A & 0b1)
1150 *
1151 * Finally, for a non-tiled surface, tile() simply combines together the X and
1152 * Y coordinates in the natural way:
1153 *
1154 *   tile(untiled, X, Y, S) = A
1155 *     where A = Y * pitch + X'
1156 *           X' = X * cpp
1157 *           Y' = Y + S * qpitch
1158 *   detile(untiled, A) = (X, Y, S)
1159 *     where X = X' / cpp
1160 *           Y = Y' % qpitch
1161 *           S = Y' / qpitch
1162 *           X' = A % pitch
1163 *           Y' = A / pitch
1164 *
1165 * (In these formulas, pitch is the number of bytes occupied by a single row
1166 * of samples).
1167 */
1168static nir_shader *
1169brw_blorp_build_nir_shader(struct blorp_context *blorp,
1170                           struct blorp_batch *batch, void *mem_ctx,
1171                           const struct brw_blorp_blit_prog_key *key)
1172{
1173   const struct intel_device_info *devinfo = blorp->isl_dev->info;
1174   nir_ssa_def *src_pos, *dst_pos, *color;
1175
1176   /* Sanity checks */
1177   if (key->dst_tiled_w && key->rt_samples > 1) {
1178      /* If the destination image is W tiled and multisampled, then the thread
1179       * must be dispatched once per sample, not once per pixel.  This is
1180       * necessary because after conversion between W and Y tiling, there's no
1181       * guarantee that all samples corresponding to a single pixel will still
1182       * be together.
1183       */
1184      assert(key->persample_msaa_dispatch);
1185   }
1186
1187   if (key->persample_msaa_dispatch) {
1188      /* It only makes sense to do persample dispatch if the render target is
1189       * configured as multisampled.
1190       */
1191      assert(key->rt_samples > 0);
1192   }
1193
1194   /* Make sure layout is consistent with sample count */
1195   assert((key->tex_layout == ISL_MSAA_LAYOUT_NONE) ==
1196          (key->tex_samples <= 1));
1197   assert((key->rt_layout == ISL_MSAA_LAYOUT_NONE) ==
1198          (key->rt_samples <= 1));
1199   assert((key->src_layout == ISL_MSAA_LAYOUT_NONE) ==
1200          (key->src_samples <= 1));
1201   assert((key->dst_layout == ISL_MSAA_LAYOUT_NONE) ==
1202          (key->dst_samples <= 1));
1203
1204   nir_builder b;
1205   const bool compute =
1206      key->base.shader_pipeline == BLORP_SHADER_PIPELINE_COMPUTE;
1207   gl_shader_stage stage =
1208      compute ? MESA_SHADER_COMPUTE : MESA_SHADER_FRAGMENT;
1209   blorp_nir_init_shader(&b, mem_ctx, stage, NULL);
1210
1211   struct brw_blorp_blit_vars v;
1212   brw_blorp_blit_vars_init(&b, &v, key);
1213
1214   dst_pos = compute ?
1215      blorp_blit_get_cs_dst_coords(&b, key, &v) :
1216      blorp_blit_get_frag_coords(&b, key, &v);
1217
1218   /* Render target and texture hardware don't support W tiling until Gfx8. */
1219   const bool rt_tiled_w = false;
1220   const bool tex_tiled_w = devinfo->ver >= 8 && key->src_tiled_w;
1221
1222   /* The address that data will be written to is determined by the
1223    * coordinates supplied to the WM thread and the tiling and sample count of
1224    * the render target, according to the formula:
1225    *
1226    * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
1227    *
1228    * If the actual tiling and sample count of the destination surface are not
1229    * the same as the configuration of the render target, then these
1230    * coordinates are wrong and we have to adjust them to compensate for the
1231    * difference.
1232    */
1233   if (rt_tiled_w != key->dst_tiled_w ||
1234       key->rt_samples != key->dst_samples ||
1235       key->rt_layout != key->dst_layout) {
1236      dst_pos = blorp_nir_encode_msaa(&b, dst_pos, key->rt_samples,
1237                                      key->rt_layout);
1238      /* Now (X, Y, S) = detile(rt_tiling, offset) */
1239      if (rt_tiled_w != key->dst_tiled_w)
1240         dst_pos = blorp_nir_retile_y_to_w(&b, dst_pos);
1241      /* Now (X, Y, S) = detile(rt_tiling, offset) */
1242      dst_pos = blorp_nir_decode_msaa(&b, dst_pos, key->dst_samples,
1243                                      key->dst_layout);
1244   }
1245
1246   nir_ssa_def *comp = NULL;
1247   if (key->dst_rgb) {
1248      /* The destination image is bound as a red texture three times as wide
1249       * as the actual image.  Our shader is effectively running one color
1250       * component at a time.  We need to save off the component and adjust
1251       * the destination position.
1252       */
1253      assert(dst_pos->num_components == 2);
1254      nir_ssa_def *dst_x = nir_channel(&b, dst_pos, 0);
1255      comp = nir_umod(&b, dst_x, nir_imm_int(&b, 3));
1256      dst_pos = nir_vec2(&b, nir_idiv(&b, dst_x, nir_imm_int(&b, 3)),
1257                             nir_channel(&b, dst_pos, 1));
1258   }
1259
1260   /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
1261    *
1262    * That is: X, Y and S now contain the true coordinates and sample index of
1263    * the data that the WM thread should output.
1264    *
1265    * If we need to kill pixels that are outside the destination rectangle,
1266    * now is the time to do it.
1267    */
1268   nir_if *bounds_if = NULL;
1269   if (key->use_kill) {
1270      nir_ssa_def *bounds_rect = nir_load_var(&b, v.v_bounds_rect);
1271      nir_ssa_def *in_bounds = blorp_check_in_bounds(&b, bounds_rect,
1272                                                     dst_pos);
1273      if (!compute)
1274         nir_discard_if(&b, nir_inot(&b, in_bounds));
1275      else
1276         bounds_if = nir_push_if(&b, in_bounds);
1277   }
1278
1279   src_pos = blorp_blit_apply_transform(&b, nir_i2f32(&b, dst_pos), &v);
1280   if (dst_pos->num_components == 3) {
1281      /* The sample coordinate is an integer that we want left alone but
1282       * blorp_blit_apply_transform() blindly applies the transform to all
1283       * three coordinates.  Grab the original sample index.
1284       */
1285      src_pos = nir_vec3(&b, nir_channel(&b, src_pos, 0),
1286                             nir_channel(&b, src_pos, 1),
1287                             nir_channel(&b, dst_pos, 2));
1288   }
1289
1290   /* If the source image is not multisampled, then we want to fetch sample
1291    * number 0, because that's the only sample there is.
1292    */
1293   if (key->src_samples == 1)
1294      src_pos = nir_channels(&b, src_pos, 0x3);
1295
1296   /* X, Y, and S are now the coordinates of the pixel in the source image
1297    * that we want to texture from.  Exception: if we are blending, then S is
1298    * irrelevant, because we are going to fetch all samples.
1299    */
1300   switch (key->filter) {
1301   case BLORP_FILTER_NONE:
1302   case BLORP_FILTER_NEAREST:
1303   case BLORP_FILTER_SAMPLE_0:
1304      /* We're going to use texelFetch, so we need integers */
1305      if (src_pos->num_components == 2) {
1306         src_pos = nir_f2i32(&b, src_pos);
1307      } else {
1308         assert(src_pos->num_components == 3);
1309         src_pos = nir_vec3(&b, nir_channel(&b, nir_f2i32(&b, src_pos), 0),
1310                                nir_channel(&b, nir_f2i32(&b, src_pos), 1),
1311                                nir_channel(&b, src_pos, 2));
1312      }
1313
1314      /* We aren't blending, which means we just want to fetch a single
1315       * sample from the source surface.  The address that we want to fetch
1316       * from is related to the X, Y and S values according to the formula:
1317       *
1318       * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
1319       *
1320       * If the actual tiling and sample count of the source surface are
1321       * not the same as the configuration of the texture, then we need to
1322       * adjust the coordinates to compensate for the difference.
1323       */
1324      if (tex_tiled_w != key->src_tiled_w ||
1325          key->tex_samples != key->src_samples ||
1326          key->tex_layout != key->src_layout) {
1327         src_pos = blorp_nir_encode_msaa(&b, src_pos, key->src_samples,
1328                                         key->src_layout);
1329         /* Now (X, Y, S) = detile(src_tiling, offset) */
1330         if (tex_tiled_w != key->src_tiled_w)
1331            src_pos = blorp_nir_retile_w_to_y(&b, src_pos);
1332         /* Now (X, Y, S) = detile(tex_tiling, offset) */
1333         src_pos = blorp_nir_decode_msaa(&b, src_pos, key->tex_samples,
1334                                         key->tex_layout);
1335      }
1336
1337      if (key->need_src_offset)
1338         src_pos = nir_iadd(&b, src_pos, nir_load_var(&b, v.v_src_offset));
1339
1340      /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
1341       *
1342       * In other words: X, Y, and S now contain values which, when passed to
1343       * the texturing unit, will cause data to be read from the correct
1344       * memory location.  So we can fetch the texel now.
1345       */
1346      if (key->src_samples == 1) {
1347         color = blorp_nir_txf(&b, &v, src_pos, key->texture_data_type);
1348      } else {
1349         nir_ssa_def *mcs = NULL;
1350         if (isl_aux_usage_has_mcs(key->tex_aux_usage))
1351            mcs = blorp_blit_txf_ms_mcs(&b, &v, src_pos);
1352
1353         color = blorp_nir_txf_ms(&b, &v, src_pos, mcs, key->texture_data_type);
1354      }
1355      break;
1356
1357   case BLORP_FILTER_BILINEAR:
1358      assert(!key->src_tiled_w);
1359      assert(key->tex_samples == key->src_samples);
1360      assert(key->tex_layout == key->src_layout);
1361
1362      if (key->src_samples == 1) {
1363         color = blorp_nir_tex(&b, &v, key, src_pos);
1364      } else {
1365         assert(!key->use_kill);
1366         color = blorp_nir_manual_blend_bilinear(&b, src_pos, key->src_samples,
1367                                                 key, &v);
1368      }
1369      break;
1370
1371   case BLORP_FILTER_AVERAGE:
1372   case BLORP_FILTER_MIN_SAMPLE:
1373   case BLORP_FILTER_MAX_SAMPLE:
1374      assert(!key->src_tiled_w);
1375      assert(key->tex_samples == key->src_samples);
1376      assert(key->tex_layout == key->src_layout);
1377
1378      /* Resolves (effecively) use texelFetch, so we need integers and we
1379       * don't care about the sample index if we got one.
1380       */
1381      src_pos = nir_f2i32(&b, nir_channels(&b, src_pos, 0x3));
1382
1383      if (devinfo->ver == 6) {
1384         /* Because gfx6 only supports 4x interleved MSAA, we can do all the
1385          * blending we need with a single linear-interpolated texture lookup
1386          * at the center of the sample. The texture coordinates to be odd
1387          * integers so that they correspond to the center of a 2x2 block
1388          * representing the four samples that maxe up a pixel.  So we need
1389          * to multiply our X and Y coordinates each by 2 and then add 1.
1390          */
1391         assert(key->src_coords_normalized);
1392         assert(key->filter == BLORP_FILTER_AVERAGE);
1393         src_pos = nir_fadd(&b,
1394                            nir_i2f32(&b, src_pos),
1395                            nir_imm_float(&b, 0.5f));
1396         color = blorp_nir_tex(&b, &v, key, src_pos);
1397      } else {
1398         /* Gfx7+ hardware doesn't automatically blend. */
1399         color = blorp_nir_combine_samples(&b, &v, src_pos, key->src_samples,
1400                                           key->tex_aux_usage,
1401                                           key->texture_data_type,
1402                                           key->filter);
1403      }
1404      break;
1405
1406   default:
1407      unreachable("Invalid blorp filter");
1408   }
1409
1410   if (!isl_swizzle_is_identity(key->src_swizzle)) {
1411      color = swizzle_color(&b, color, key->src_swizzle,
1412                            key->texture_data_type);
1413   }
1414
1415   if (!isl_swizzle_is_identity(key->dst_swizzle)) {
1416      color = swizzle_color(&b, color, isl_swizzle_invert(key->dst_swizzle),
1417                            nir_type_int);
1418   }
1419
1420   if (key->format_bit_cast) {
1421      assert(isl_swizzle_is_identity(key->src_swizzle));
1422      assert(isl_swizzle_is_identity(key->dst_swizzle));
1423      color = bit_cast_color(&b, color, key);
1424   } else if (key->dst_format) {
1425      color = convert_color(&b, color, key);
1426   } else if (key->uint32_to_sint) {
1427      /* Normally the hardware will take care of converting values from/to
1428       * the source and destination formats.  But a few cases need help.
1429       *
1430       * The Skylake PRM, volume 07, page 658 has a programming note:
1431       *
1432       *    "When using SINT or UINT rendertarget surface formats, Blending
1433       *     must be DISABLED. The Pre-Blend Color Clamp Enable and Color
1434       *     Clamp Range fields are ignored, and an implied clamp to the
1435       *     rendertarget surface format is performed."
1436       *
1437       * For UINT to SINT blits, our sample operation gives us a uint32_t,
1438       * but our render target write expects a signed int32_t number.  If we
1439       * simply passed the value along, the hardware would interpret a value
1440       * with bit 31 set as a negative value, clamping it to the largest
1441       * negative number the destination format could represent.  But the
1442       * actual source value is a positive number, so we want to clamp it
1443       * to INT_MAX.  To fix this, we explicitly take min(color, INT_MAX).
1444       */
1445      color = nir_umin(&b, color, nir_imm_int(&b, INT32_MAX));
1446   } else if (key->sint32_to_uint) {
1447      /* Similar to above, but clamping negative numbers to zero. */
1448      color = nir_imax(&b, color, nir_imm_int(&b, 0));
1449   }
1450
1451   if (key->dst_rgb) {
1452      /* The destination image is bound as a red texture three times as wide
1453       * as the actual image.  Our shader is effectively running one color
1454       * component at a time.  We need to pick off the appropriate component
1455       * from the source color and write that to destination red.
1456       */
1457      assert(dst_pos->num_components == 2);
1458
1459      nir_ssa_def *color_component =
1460         nir_bcsel(&b, nir_ieq_imm(&b, comp, 0),
1461                       nir_channel(&b, color, 0),
1462                       nir_bcsel(&b, nir_ieq_imm(&b, comp, 1),
1463                                     nir_channel(&b, color, 1),
1464                                     nir_channel(&b, color, 2)));
1465
1466      nir_ssa_def *u = nir_ssa_undef(&b, 1, 32);
1467      color = nir_vec4(&b, color_component, u, u, u);
1468   }
1469
1470   if (compute) {
1471      nir_ssa_def *store_pos = nir_load_global_invocation_id(&b, 32);
1472      nir_image_store(&b, nir_imm_int(&b, 0),
1473                      nir_pad_vector_imm_int(&b, store_pos, 0, 4),
1474                      nir_imm_int(&b, 0),
1475                      nir_pad_vector_imm_int(&b, color, 0, 4),
1476                      nir_imm_int(&b, 0),
1477                      .image_dim = GLSL_SAMPLER_DIM_2D,
1478                      .image_array = true,
1479                      .access = ACCESS_NON_READABLE);
1480   } else if (key->dst_usage == ISL_SURF_USAGE_RENDER_TARGET_BIT) {
1481      nir_variable *color_out =
1482         nir_variable_create(b.shader, nir_var_shader_out,
1483                             glsl_vec4_type(), "gl_FragColor");
1484      color_out->data.location = FRAG_RESULT_COLOR;
1485      nir_store_var(&b, color_out, color, 0xf);
1486   } else if (key->dst_usage == ISL_SURF_USAGE_DEPTH_BIT) {
1487      nir_variable *depth_out =
1488         nir_variable_create(b.shader, nir_var_shader_out,
1489                             glsl_float_type(), "gl_FragDepth");
1490      depth_out->data.location = FRAG_RESULT_DEPTH;
1491      nir_store_var(&b, depth_out, nir_channel(&b, color, 0), 0x1);
1492   } else if (key->dst_usage == ISL_SURF_USAGE_STENCIL_BIT) {
1493      nir_variable *stencil_out =
1494         nir_variable_create(b.shader, nir_var_shader_out,
1495                             glsl_int_type(), "gl_FragStencilRef");
1496      stencil_out->data.location = FRAG_RESULT_STENCIL;
1497      nir_store_var(&b, stencil_out, nir_channel(&b, color, 0), 0x1);
1498   } else {
1499      unreachable("Invalid destination usage");
1500   }
1501
1502   if (bounds_if)
1503      nir_pop_if(&b, bounds_if);
1504
1505   return b.shader;
1506}
1507
1508static bool
1509brw_blorp_get_blit_kernel_fs(struct blorp_batch *batch,
1510                             struct blorp_params *params,
1511                             const struct brw_blorp_blit_prog_key *key)
1512{
1513   struct blorp_context *blorp = batch->blorp;
1514
1515   if (blorp->lookup_shader(batch, key, sizeof(*key),
1516                            &params->wm_prog_kernel, &params->wm_prog_data))
1517      return true;
1518
1519   void *mem_ctx = ralloc_context(NULL);
1520
1521   const unsigned *program;
1522   struct brw_wm_prog_data prog_data;
1523
1524   nir_shader *nir = brw_blorp_build_nir_shader(blorp, batch, mem_ctx, key);
1525   nir->info.name =
1526      ralloc_strdup(nir, blorp_shader_type_to_name(key->base.shader_type));
1527
1528   struct brw_wm_prog_key wm_key;
1529   brw_blorp_init_wm_prog_key(&wm_key);
1530   wm_key.base.tex.compressed_multisample_layout_mask =
1531      isl_aux_usage_has_mcs(key->tex_aux_usage);
1532   wm_key.base.tex.msaa_16 = key->tex_samples == 16;
1533   wm_key.multisample_fbo = key->rt_samples > 1;
1534
1535   program = blorp_compile_fs(blorp, mem_ctx, nir, &wm_key, false,
1536                              &prog_data);
1537
1538   bool result =
1539      blorp->upload_shader(batch, MESA_SHADER_FRAGMENT,
1540                           key, sizeof(*key),
1541                           program, prog_data.base.program_size,
1542                           &prog_data.base, sizeof(prog_data),
1543                           &params->wm_prog_kernel, &params->wm_prog_data);
1544
1545   ralloc_free(mem_ctx);
1546   return result;
1547}
1548
1549static bool
1550brw_blorp_get_blit_kernel_cs(struct blorp_batch *batch,
1551                             struct blorp_params *params,
1552                             const struct brw_blorp_blit_prog_key *prog_key)
1553{
1554   struct blorp_context *blorp = batch->blorp;
1555
1556   if (blorp->lookup_shader(batch, prog_key, sizeof(*prog_key),
1557                            &params->cs_prog_kernel, &params->cs_prog_data))
1558      return true;
1559
1560   void *mem_ctx = ralloc_context(NULL);
1561
1562   const unsigned *program;
1563   struct brw_cs_prog_data prog_data;
1564
1565   nir_shader *nir = brw_blorp_build_nir_shader(blorp, batch, mem_ctx,
1566                                                prog_key);
1567   nir->info.name = ralloc_strdup(nir, "BLORP-gpgpu-blit");
1568   blorp_set_cs_dims(nir, prog_key->local_y);
1569
1570   struct brw_cs_prog_key cs_key;
1571   brw_blorp_init_cs_prog_key(&cs_key);
1572   cs_key.base.tex.compressed_multisample_layout_mask =
1573      prog_key->tex_aux_usage == ISL_AUX_USAGE_MCS;
1574   cs_key.base.tex.msaa_16 = prog_key->tex_samples == 16;
1575   assert(prog_key->rt_samples == 1);
1576
1577   program = blorp_compile_cs(blorp, mem_ctx, nir, &cs_key, &prog_data);
1578
1579   bool result =
1580      blorp->upload_shader(batch, MESA_SHADER_COMPUTE,
1581                           prog_key, sizeof(*prog_key),
1582                           program, prog_data.base.program_size,
1583                           &prog_data.base, sizeof(prog_data),
1584                           &params->cs_prog_kernel, &params->cs_prog_data);
1585
1586   ralloc_free(mem_ctx);
1587   return result;
1588}
1589
1590static void
1591brw_blorp_setup_coord_transform(struct brw_blorp_coord_transform *xform,
1592                                GLfloat src0, GLfloat src1,
1593                                GLfloat dst0, GLfloat dst1,
1594                                bool mirror)
1595{
1596   double scale = (double)(src1 - src0) / (double)(dst1 - dst0);
1597   if (!mirror) {
1598      /* When not mirroring a coordinate (say, X), we need:
1599       *   src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
1600       * Therefore:
1601       *   src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
1602       *
1603       * blorp program uses "round toward zero" to convert the
1604       * transformed floating point coordinates to integer coordinates,
1605       * whereas the behaviour we actually want is "round to nearest",
1606       * so 0.5 provides the necessary correction.
1607       */
1608      xform->multiplier = scale;
1609      xform->offset = src0 + (-(double)dst0 + 0.5) * scale;
1610   } else {
1611      /* When mirroring X we need:
1612       *   src_x - src_x0 = dst_x1 - dst_x - 0.5
1613       * Therefore:
1614       *   src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
1615       */
1616      xform->multiplier = -scale;
1617      xform->offset = src0 + ((double)dst1 - 0.5) * scale;
1618   }
1619}
1620
1621static inline void
1622surf_get_intratile_offset_px(struct brw_blorp_surface_info *info,
1623                             uint32_t *tile_x_px, uint32_t *tile_y_px)
1624{
1625   if (info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
1626      struct isl_extent2d px_size_sa =
1627         isl_get_interleaved_msaa_px_size_sa(info->surf.samples);
1628      assert(info->tile_x_sa % px_size_sa.width == 0);
1629      assert(info->tile_y_sa % px_size_sa.height == 0);
1630      *tile_x_px = info->tile_x_sa / px_size_sa.width;
1631      *tile_y_px = info->tile_y_sa / px_size_sa.height;
1632   } else {
1633      *tile_x_px = info->tile_x_sa;
1634      *tile_y_px = info->tile_y_sa;
1635   }
1636}
1637
1638void
1639blorp_surf_convert_to_single_slice(const struct isl_device *isl_dev,
1640                                   struct brw_blorp_surface_info *info)
1641{
1642   bool ok UNUSED;
1643
1644   /* It would be insane to try and do this on a compressed surface */
1645   assert(info->aux_usage == ISL_AUX_USAGE_NONE);
1646
1647   /* Just bail if we have nothing to do. */
1648   if (info->surf.dim == ISL_SURF_DIM_2D &&
1649       info->view.base_level == 0 && info->view.base_array_layer == 0 &&
1650       info->surf.levels == 1 && info->surf.logical_level0_px.array_len == 1)
1651      return;
1652
1653   /* If this gets triggered then we've gotten here twice which.  This
1654    * shouldn't happen thanks to the above early return.
1655    */
1656   assert(info->tile_x_sa == 0 && info->tile_y_sa == 0);
1657
1658   uint32_t layer = 0, z = 0;
1659   if (info->surf.dim == ISL_SURF_DIM_3D)
1660      z = info->view.base_array_layer + info->z_offset;
1661   else
1662      layer = info->view.base_array_layer;
1663
1664   uint64_t offset_B;
1665   isl_surf_get_image_surf(isl_dev, &info->surf,
1666                           info->view.base_level, layer, z,
1667                           &info->surf,
1668                           &offset_B, &info->tile_x_sa, &info->tile_y_sa);
1669   info->addr.offset += offset_B;
1670
1671   uint32_t tile_x_px, tile_y_px;
1672   surf_get_intratile_offset_px(info, &tile_x_px, &tile_y_px);
1673
1674   /* Instead of using the X/Y Offset fields in RENDER_SURFACE_STATE, we place
1675    * the image at the tile boundary and offset our sampling or rendering.
1676    * For this reason, we need to grow the image by the offset to ensure that
1677    * the hardware doesn't think we've gone past the edge.
1678    */
1679   info->surf.logical_level0_px.w += tile_x_px;
1680   info->surf.logical_level0_px.h += tile_y_px;
1681   info->surf.phys_level0_sa.w += info->tile_x_sa;
1682   info->surf.phys_level0_sa.h += info->tile_y_sa;
1683
1684   /* The view is also different now. */
1685   info->view.base_level = 0;
1686   info->view.levels = 1;
1687   info->view.base_array_layer = 0;
1688   info->view.array_len = 1;
1689   info->z_offset = 0;
1690}
1691
1692void
1693blorp_surf_fake_interleaved_msaa(const struct isl_device *isl_dev,
1694                                 struct brw_blorp_surface_info *info)
1695{
1696   assert(info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
1697
1698   /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
1699   blorp_surf_convert_to_single_slice(isl_dev, info);
1700
1701   info->surf.logical_level0_px = info->surf.phys_level0_sa;
1702   info->surf.samples = 1;
1703   info->surf.msaa_layout = ISL_MSAA_LAYOUT_NONE;
1704}
1705
1706void
1707blorp_surf_retile_w_to_y(const struct isl_device *isl_dev,
1708                         struct brw_blorp_surface_info *info)
1709{
1710   assert(info->surf.tiling == ISL_TILING_W);
1711
1712   /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
1713   blorp_surf_convert_to_single_slice(isl_dev, info);
1714
1715   /* On gfx7+, we don't have interleaved multisampling for color render
1716    * targets so we have to fake it.
1717    *
1718    * TODO: Are we sure we don't also need to fake it on gfx6?
1719    */
1720   if (isl_dev->info->ver > 6 &&
1721       info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
1722      blorp_surf_fake_interleaved_msaa(isl_dev, info);
1723   }
1724
1725   if (isl_dev->info->ver == 6 || isl_dev->info->ver == 7) {
1726      /* Gfx6-7 stencil buffers have a very large alignment coming in from the
1727       * miptree.  It's out-of-bounds for what the surface state can handle.
1728       * Since we have a single layer and level, it doesn't really matter as
1729       * long as we don't pass a bogus value into isl_surf_fill_state().
1730       */
1731      info->surf.image_alignment_el = isl_extent3d(4, 2, 1);
1732   }
1733
1734   /* Now that we've converted everything to a simple 2-D surface with only
1735    * one miplevel, we can go about retiling it.
1736    */
1737   const unsigned x_align = 8, y_align = info->surf.samples != 0 ? 8 : 4;
1738   info->surf.tiling = ISL_TILING_Y0;
1739   info->surf.logical_level0_px.width =
1740      ALIGN(info->surf.logical_level0_px.width, x_align) * 2;
1741   info->surf.logical_level0_px.height =
1742      ALIGN(info->surf.logical_level0_px.height, y_align) / 2;
1743   info->tile_x_sa *= 2;
1744   info->tile_y_sa /= 2;
1745}
1746
1747static bool
1748can_shrink_surface(const struct brw_blorp_surface_info *surf)
1749{
1750   /* The current code doesn't support offsets into the aux buffers. This
1751    * should be possible, but we need to make sure the offset is page
1752    * aligned for both the surface and the aux buffer surface. Generally
1753    * this mean using the page aligned offset for the aux buffer.
1754    *
1755    * Currently the cases where we must split the blit are limited to cases
1756    * where we don't have a aux buffer.
1757    */
1758   if (surf->aux_addr.buffer != NULL)
1759      return false;
1760
1761   /* We can't support splitting the blit for gen <= 7, because the qpitch
1762    * size is calculated by the hardware based on the surface height for
1763    * gen <= 7. In gen >= 8, the qpitch is controlled by the driver.
1764    */
1765   if (surf->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY)
1766      return false;
1767
1768   return true;
1769}
1770
1771static unsigned
1772get_max_surface_size(const struct intel_device_info *devinfo,
1773                     const struct brw_blorp_surface_info *surf)
1774{
1775   const unsigned max = devinfo->ver >= 7 ? 16384 : 8192;
1776   if (split_blorp_blit_debug && can_shrink_surface(surf))
1777      return max >> 4; /* A smaller restriction when debug is enabled */
1778   else
1779      return max;
1780}
1781
1782struct blt_axis {
1783   double src0, src1, dst0, dst1;
1784   bool mirror;
1785};
1786
1787struct blt_coords {
1788   struct blt_axis x, y;
1789};
1790
1791static enum isl_format
1792get_red_format_for_rgb_format(enum isl_format format)
1793{
1794   const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1795
1796   switch (fmtl->channels.r.bits) {
1797   case 8:
1798      switch (fmtl->channels.r.type) {
1799      case ISL_UNORM:
1800         return ISL_FORMAT_R8_UNORM;
1801      case ISL_SNORM:
1802         return ISL_FORMAT_R8_SNORM;
1803      case ISL_UINT:
1804         return ISL_FORMAT_R8_UINT;
1805      case ISL_SINT:
1806         return ISL_FORMAT_R8_SINT;
1807      default:
1808         unreachable("Invalid 8-bit RGB channel type");
1809      }
1810   case 16:
1811      switch (fmtl->channels.r.type) {
1812      case ISL_UNORM:
1813         return ISL_FORMAT_R16_UNORM;
1814      case ISL_SNORM:
1815         return ISL_FORMAT_R16_SNORM;
1816      case ISL_SFLOAT:
1817         return ISL_FORMAT_R16_FLOAT;
1818      case ISL_UINT:
1819         return ISL_FORMAT_R16_UINT;
1820      case ISL_SINT:
1821         return ISL_FORMAT_R16_SINT;
1822      default:
1823         unreachable("Invalid 8-bit RGB channel type");
1824      }
1825   case 32:
1826      switch (fmtl->channels.r.type) {
1827      case ISL_SFLOAT:
1828         return ISL_FORMAT_R32_FLOAT;
1829      case ISL_UINT:
1830         return ISL_FORMAT_R32_UINT;
1831      case ISL_SINT:
1832         return ISL_FORMAT_R32_SINT;
1833      default:
1834         unreachable("Invalid 8-bit RGB channel type");
1835      }
1836   default:
1837      unreachable("Invalid number of red channel bits");
1838   }
1839}
1840
1841void
1842surf_fake_rgb_with_red(const struct isl_device *isl_dev,
1843                       struct brw_blorp_surface_info *info)
1844{
1845   blorp_surf_convert_to_single_slice(isl_dev, info);
1846
1847   info->surf.logical_level0_px.width *= 3;
1848   info->surf.phys_level0_sa.width *= 3;
1849   info->tile_x_sa *= 3;
1850
1851   enum isl_format red_format =
1852      get_red_format_for_rgb_format(info->view.format);
1853
1854   assert(isl_format_get_layout(red_format)->channels.r.type ==
1855          isl_format_get_layout(info->view.format)->channels.r.type);
1856   assert(isl_format_get_layout(red_format)->channels.r.bits ==
1857          isl_format_get_layout(info->view.format)->channels.r.bits);
1858
1859   info->surf.format = info->view.format = red_format;
1860
1861   if (isl_dev->info->verx10 >= 125) {
1862      /* The horizontal alignment is in units of texels for NPOT formats, and
1863       * bytes for other formats. Since the only allowed alignment units are
1864       * powers of two, there's no way to convert the alignment.
1865       *
1866       * Thankfully, the value doesn't matter since we're only a single slice.
1867       * Pick one allowed by isl_gfx125_choose_image_alignment_el.
1868       */
1869      info->surf.image_alignment_el.w =
1870         128 / (isl_format_get_layout(red_format)->bpb / 8);
1871   }
1872}
1873
1874enum blit_shrink_status {
1875   BLIT_NO_SHRINK = 0,
1876   BLIT_SRC_WIDTH_SHRINK   = (1 << 0),
1877   BLIT_DST_WIDTH_SHRINK   = (1 << 1),
1878   BLIT_SRC_HEIGHT_SHRINK  = (1 << 2),
1879   BLIT_DST_HEIGHT_SHRINK  = (1 << 3),
1880};
1881
1882/* Try to blit. If the surface parameters exceed the size allowed by hardware,
1883 * then enum blit_shrink_status will be returned. If BLIT_NO_SHRINK is
1884 * returned, then the blit was successful.
1885 */
1886static enum blit_shrink_status
1887try_blorp_blit(struct blorp_batch *batch,
1888               struct blorp_params *params,
1889               struct brw_blorp_blit_prog_key *key,
1890               struct blt_coords *coords)
1891{
1892   const struct intel_device_info *devinfo = batch->blorp->isl_dev->info;
1893
1894   if (params->dst.surf.usage & ISL_SURF_USAGE_DEPTH_BIT) {
1895      if (devinfo->ver >= 7) {
1896         /* We can render as depth on Gfx5 but there's no real advantage since
1897          * it doesn't support MSAA or HiZ.  On Gfx4, we can't always render
1898          * to depth due to issues with depth buffers and mip-mapping.  On
1899          * Gfx6, we can do everything but we have weird offsetting for HiZ
1900          * and stencil.  It's easier to just render using the color pipe
1901          * on those platforms.
1902          */
1903         key->dst_usage = ISL_SURF_USAGE_DEPTH_BIT;
1904      } else {
1905         key->dst_usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1906      }
1907   } else if (params->dst.surf.usage & ISL_SURF_USAGE_STENCIL_BIT) {
1908      assert(params->dst.surf.format == ISL_FORMAT_R8_UINT);
1909      if (devinfo->ver >= 9 && !(batch->flags & BLORP_BATCH_USE_COMPUTE)) {
1910         key->dst_usage = ISL_SURF_USAGE_STENCIL_BIT;
1911      } else {
1912         key->dst_usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1913      }
1914   } else {
1915      key->dst_usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1916   }
1917
1918   if (isl_format_has_sint_channel(params->src.view.format)) {
1919      key->texture_data_type = nir_type_int;
1920   } else if (isl_format_has_uint_channel(params->src.view.format)) {
1921      key->texture_data_type = nir_type_uint;
1922   } else {
1923      key->texture_data_type = nir_type_float;
1924   }
1925
1926   /* src_samples and dst_samples are the true sample counts */
1927   key->src_samples = params->src.surf.samples;
1928   key->dst_samples = params->dst.surf.samples;
1929
1930   key->tex_aux_usage = params->src.aux_usage;
1931
1932   /* src_layout and dst_layout indicate the true MSAA layout used by src and
1933    * dst.
1934    */
1935   key->src_layout = params->src.surf.msaa_layout;
1936   key->dst_layout = params->dst.surf.msaa_layout;
1937
1938   /* Round floating point values to nearest integer to avoid "off by one texel"
1939    * kind of errors when blitting.
1940    */
1941   params->x0 = params->wm_inputs.bounds_rect.x0 = round(coords->x.dst0);
1942   params->y0 = params->wm_inputs.bounds_rect.y0 = round(coords->y.dst0);
1943   params->x1 = params->wm_inputs.bounds_rect.x1 = round(coords->x.dst1);
1944   params->y1 = params->wm_inputs.bounds_rect.y1 = round(coords->y.dst1);
1945
1946   brw_blorp_setup_coord_transform(&params->wm_inputs.coord_transform[0],
1947                                   coords->x.src0, coords->x.src1,
1948                                   coords->x.dst0, coords->x.dst1,
1949                                   coords->x.mirror);
1950   brw_blorp_setup_coord_transform(&params->wm_inputs.coord_transform[1],
1951                                   coords->y.src0, coords->y.src1,
1952                                   coords->y.dst0, coords->y.dst1,
1953                                   coords->y.mirror);
1954
1955
1956   if (devinfo->ver == 4) {
1957      /* The MinLOD and MinimumArrayElement don't work properly for cube maps.
1958       * Convert them to a single slice on gfx4.
1959       */
1960      if (params->dst.surf.usage & ISL_SURF_USAGE_CUBE_BIT) {
1961         blorp_surf_convert_to_single_slice(batch->blorp->isl_dev, &params->dst);
1962         key->need_dst_offset = true;
1963      }
1964
1965      if (params->src.surf.usage & ISL_SURF_USAGE_CUBE_BIT) {
1966         blorp_surf_convert_to_single_slice(batch->blorp->isl_dev, &params->src);
1967         key->need_src_offset = true;
1968      }
1969   }
1970
1971   if (devinfo->ver > 6 &&
1972       !isl_surf_usage_is_depth_or_stencil(key->dst_usage) &&
1973       params->dst.surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
1974      assert(params->dst.surf.samples > 1);
1975
1976      /* We must expand the rectangle we send through the rendering pipeline,
1977       * to account for the fact that we are mapping the destination region as
1978       * single-sampled when it is in fact multisampled.  We must also align
1979       * it to a multiple of the multisampling pattern, because the
1980       * differences between multisampled and single-sampled surface formats
1981       * will mean that pixels are scrambled within the multisampling pattern.
1982       * TODO: what if this makes the coordinates too large?
1983       *
1984       * Note: this only works if the destination surface uses the IMS layout.
1985       * If it's UMS, then we have no choice but to set up the rendering
1986       * pipeline as multisampled.
1987       */
1988      struct isl_extent2d px_size_sa =
1989         isl_get_interleaved_msaa_px_size_sa(params->dst.surf.samples);
1990      params->x0 = ROUND_DOWN_TO(params->x0, 2) * px_size_sa.width;
1991      params->y0 = ROUND_DOWN_TO(params->y0, 2) * px_size_sa.height;
1992      params->x1 = ALIGN(params->x1, 2) * px_size_sa.width;
1993      params->y1 = ALIGN(params->y1, 2) * px_size_sa.height;
1994
1995      blorp_surf_fake_interleaved_msaa(batch->blorp->isl_dev, &params->dst);
1996
1997      key->use_kill = true;
1998      key->need_dst_offset = true;
1999   }
2000
2001   if (params->dst.surf.tiling == ISL_TILING_W &&
2002       key->dst_usage != ISL_SURF_USAGE_STENCIL_BIT) {
2003      /* We must modify the rectangle we send through the rendering pipeline
2004       * (and the size and x/y offset of the destination surface), to account
2005       * for the fact that we are mapping it as Y-tiled when it is in fact
2006       * W-tiled.
2007       *
2008       * Both Y tiling and W tiling can be understood as organizations of
2009       * 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
2010       * is different, but the layout of the 32-byte sub-tiles within the 4k
2011       * tile is the same (8 sub-tiles across by 16 sub-tiles down, in
2012       * column-major order).  In Y tiling, the sub-tiles are 16 bytes wide
2013       * and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
2014       *
2015       * Therefore, to account for the layout differences within the 32-byte
2016       * sub-tiles, we must expand the rectangle so the X coordinates of its
2017       * edges are multiples of 8 (the W sub-tile width), and its Y
2018       * coordinates of its edges are multiples of 4 (the W sub-tile height).
2019       * Then we need to scale the X and Y coordinates of the rectangle to
2020       * account for the differences in aspect ratio between the Y and W
2021       * sub-tiles.  We need to modify the layer width and height similarly.
2022       *
2023       * A correction needs to be applied when MSAA is in use: since
2024       * INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
2025       * we need to align the Y coordinates to multiples of 8, so that when
2026       * they are divided by two they are still multiples of 4.
2027       *
2028       * Note: Since the x/y offset of the surface will be applied using the
2029       * SURFACE_STATE command packet, it will be invisible to the swizzling
2030       * code in the shader; therefore it needs to be in a multiple of the
2031       * 32-byte sub-tile size.  Fortunately it is, since the sub-tile is 8
2032       * pixels wide and 4 pixels high (when viewed as a W-tiled stencil
2033       * buffer), and the miplevel alignment used for stencil buffers is 8
2034       * pixels horizontally and either 4 or 8 pixels vertically (see
2035       * intel_horizontal_texture_alignment_unit() and
2036       * intel_vertical_texture_alignment_unit()).
2037       *
2038       * Note: Also, since the SURFACE_STATE command packet can only apply
2039       * offsets that are multiples of 4 pixels horizontally and 2 pixels
2040       * vertically, it is important that the offsets will be multiples of
2041       * these sizes after they are converted into Y-tiled coordinates.
2042       * Fortunately they will be, since we know from above that the offsets
2043       * are a multiple of the 32-byte sub-tile size, and in Y-tiled
2044       * coordinates the sub-tile is 16 pixels wide and 2 pixels high.
2045       *
2046       * TODO: what if this makes the coordinates (or the texture size) too
2047       * large?
2048       */
2049      const unsigned x_align = 8;
2050      const unsigned y_align = params->dst.surf.samples != 0 ? 8 : 4;
2051      params->x0 = ROUND_DOWN_TO(params->x0, x_align) * 2;
2052      params->y0 = ROUND_DOWN_TO(params->y0, y_align) / 2;
2053      params->x1 = ALIGN(params->x1, x_align) * 2;
2054      params->y1 = ALIGN(params->y1, y_align) / 2;
2055
2056      /* Retile the surface to Y-tiled */
2057      blorp_surf_retile_w_to_y(batch->blorp->isl_dev, &params->dst);
2058
2059      key->dst_tiled_w = true;
2060      key->use_kill = true;
2061      key->need_dst_offset = true;
2062
2063      if (params->dst.surf.samples > 1) {
2064         /* If the destination surface is a W-tiled multisampled stencil
2065          * buffer that we're mapping as Y tiled, then we need to arrange for
2066          * the WM program to run once per sample rather than once per pixel,
2067          * because the memory layout of related samples doesn't match between
2068          * W and Y tiling.
2069          */
2070         key->persample_msaa_dispatch = true;
2071      }
2072   }
2073
2074   if (devinfo->ver < 8 && params->src.surf.tiling == ISL_TILING_W) {
2075      /* On Haswell and earlier, we have to fake W-tiled sources as Y-tiled.
2076       * Broadwell adds support for sampling from stencil.
2077       *
2078       * See the comments above concerning x/y offset alignment for the
2079       * destination surface.
2080       *
2081       * TODO: what if this makes the texture size too large?
2082       */
2083      blorp_surf_retile_w_to_y(batch->blorp->isl_dev, &params->src);
2084
2085      key->src_tiled_w = true;
2086      key->need_src_offset = true;
2087   }
2088
2089   /* tex_samples and rt_samples are the sample counts that are set up in
2090    * SURFACE_STATE.
2091    */
2092   key->tex_samples = params->src.surf.samples;
2093   key->rt_samples  = params->dst.surf.samples;
2094
2095   /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
2096    * use to access the source and destination surfaces.
2097    */
2098   key->tex_layout = params->src.surf.msaa_layout;
2099   key->rt_layout = params->dst.surf.msaa_layout;
2100
2101   if (params->src.surf.samples > 0 && params->dst.surf.samples > 1) {
2102      /* We are blitting from a multisample buffer to a multisample buffer, so
2103       * we must preserve samples within a pixel.  This means we have to
2104       * arrange for the WM program to run once per sample rather than once
2105       * per pixel.
2106       */
2107      key->persample_msaa_dispatch = true;
2108   }
2109
2110   params->num_samples = params->dst.surf.samples;
2111
2112   if ((key->filter == BLORP_FILTER_AVERAGE ||
2113        key->filter == BLORP_FILTER_BILINEAR) &&
2114       batch->blorp->isl_dev->info->ver <= 6) {
2115      /* Gfx4-5 don't support non-normalized texture coordinates */
2116      key->src_coords_normalized = true;
2117      params->wm_inputs.src_inv_size[0] =
2118         1.0f / u_minify(params->src.surf.logical_level0_px.width,
2119                         params->src.view.base_level);
2120      params->wm_inputs.src_inv_size[1] =
2121         1.0f / u_minify(params->src.surf.logical_level0_px.height,
2122                         params->src.view.base_level);
2123   }
2124
2125   if (isl_format_get_layout(params->dst.view.format)->bpb % 3 == 0) {
2126      /* We can't render to  RGB formats natively because they aren't a
2127       * power-of-two size.  Instead, we fake them by using a red format
2128       * with the same channel type and size and emitting shader code to
2129       * only write one channel at a time.
2130       */
2131      params->x0 *= 3;
2132      params->x1 *= 3;
2133
2134      /* If it happens to be sRGB, we need to force a conversion */
2135      if (params->dst.view.format == ISL_FORMAT_R8G8B8_UNORM_SRGB)
2136         key->dst_format = ISL_FORMAT_R8G8B8_UNORM_SRGB;
2137
2138      surf_fake_rgb_with_red(batch->blorp->isl_dev, &params->dst);
2139
2140      key->dst_rgb = true;
2141      key->need_dst_offset = true;
2142   } else if (isl_format_is_rgbx(params->dst.view.format)) {
2143      /* We can handle RGBX formats easily enough by treating them as RGBA */
2144      params->dst.view.format =
2145         isl_format_rgbx_to_rgba(params->dst.view.format);
2146   } else if (params->dst.view.format == ISL_FORMAT_R24_UNORM_X8_TYPELESS &&
2147              key->dst_usage != ISL_SURF_USAGE_DEPTH_BIT) {
2148      key->dst_format = params->dst.view.format;
2149      params->dst.view.format = ISL_FORMAT_R32_UINT;
2150   } else if (params->dst.view.format == ISL_FORMAT_A4B4G4R4_UNORM) {
2151      params->dst.view.swizzle =
2152         isl_swizzle_compose(params->dst.view.swizzle,
2153                             ISL_SWIZZLE(ALPHA, RED, GREEN, BLUE));
2154      params->dst.view.format = ISL_FORMAT_B4G4R4A4_UNORM;
2155   } else if (params->dst.view.format == ISL_FORMAT_L8_UNORM_SRGB) {
2156      key->dst_format = params->dst.view.format;
2157      params->dst.view.format = ISL_FORMAT_R8_UNORM;
2158   } else if (params->dst.view.format == ISL_FORMAT_R9G9B9E5_SHAREDEXP) {
2159      key->dst_format = params->dst.view.format;
2160      params->dst.view.format = ISL_FORMAT_R32_UINT;
2161   }
2162
2163   if (devinfo->verx10 <= 70 &&
2164       !isl_swizzle_is_identity(params->src.view.swizzle)) {
2165      key->src_swizzle = params->src.view.swizzle;
2166      params->src.view.swizzle = ISL_SWIZZLE_IDENTITY;
2167   } else {
2168      key->src_swizzle = ISL_SWIZZLE_IDENTITY;
2169   }
2170
2171   if (!isl_swizzle_supports_rendering(devinfo, params->dst.view.swizzle)) {
2172      key->dst_swizzle = params->dst.view.swizzle;
2173      params->dst.view.swizzle = ISL_SWIZZLE_IDENTITY;
2174   } else {
2175      key->dst_swizzle = ISL_SWIZZLE_IDENTITY;
2176   }
2177
2178   if (params->src.tile_x_sa || params->src.tile_y_sa) {
2179      assert(key->need_src_offset);
2180      surf_get_intratile_offset_px(&params->src,
2181                                   &params->wm_inputs.src_offset.x,
2182                                   &params->wm_inputs.src_offset.y);
2183   }
2184
2185   if (params->dst.tile_x_sa || params->dst.tile_y_sa) {
2186      assert(key->need_dst_offset);
2187      surf_get_intratile_offset_px(&params->dst,
2188                                   &params->wm_inputs.dst_offset.x,
2189                                   &params->wm_inputs.dst_offset.y);
2190      params->x0 += params->wm_inputs.dst_offset.x;
2191      params->y0 += params->wm_inputs.dst_offset.y;
2192      params->x1 += params->wm_inputs.dst_offset.x;
2193      params->y1 += params->wm_inputs.dst_offset.y;
2194   }
2195
2196   /* For some texture types, we need to pass the layer through the sampler. */
2197   params->wm_inputs.src_z = params->src.z_offset;
2198
2199   const bool compute =
2200      key->base.shader_pipeline == BLORP_SHADER_PIPELINE_COMPUTE;
2201   if (compute) {
2202      key->local_y = blorp_get_cs_local_y(params);
2203
2204      unsigned workgroup_width = 16 / key->local_y;
2205      unsigned workgroup_height = key->local_y;
2206
2207      /* If the rectangle being drawn isn't an exact multiple of the
2208       * workgroup size, we'll get extra invocations that should not
2209       * perform blits.  We need to set use_kill to bounds check and
2210       * prevent those invocations from blitting.
2211       */
2212      if ((params->x0 % workgroup_width) != 0 ||
2213          (params->x1 % workgroup_width) != 0 ||
2214          (params->y0 % workgroup_height) != 0 ||
2215          (params->y1 % workgroup_height) != 0)
2216         key->use_kill = true;
2217   }
2218
2219   if (compute) {
2220      if (!brw_blorp_get_blit_kernel_cs(batch, params, key))
2221         return 0;
2222   } else {
2223      if (!brw_blorp_get_blit_kernel_fs(batch, params, key))
2224         return 0;
2225
2226      if (!blorp_ensure_sf_program(batch, params))
2227         return 0;
2228   }
2229
2230   unsigned result = 0;
2231   unsigned max_src_surface_size = get_max_surface_size(devinfo, &params->src);
2232   if (params->src.surf.logical_level0_px.width > max_src_surface_size)
2233      result |= BLIT_SRC_WIDTH_SHRINK;
2234   if (params->src.surf.logical_level0_px.height > max_src_surface_size)
2235      result |= BLIT_SRC_HEIGHT_SHRINK;
2236
2237   unsigned max_dst_surface_size = get_max_surface_size(devinfo, &params->dst);
2238   if (params->dst.surf.logical_level0_px.width > max_dst_surface_size)
2239      result |= BLIT_DST_WIDTH_SHRINK;
2240   if (params->dst.surf.logical_level0_px.height > max_dst_surface_size)
2241      result |= BLIT_DST_HEIGHT_SHRINK;
2242
2243   if (result == 0) {
2244      if (key->dst_usage == ISL_SURF_USAGE_DEPTH_BIT) {
2245         params->depth = params->dst;
2246         memset(&params->dst, 0, sizeof(params->dst));
2247      } else if (key->dst_usage == ISL_SURF_USAGE_STENCIL_BIT) {
2248         params->stencil = params->dst;
2249         params->stencil_mask = 0xff;
2250         memset(&params->dst, 0, sizeof(params->dst));
2251      }
2252
2253      batch->blorp->exec(batch, params);
2254   }
2255
2256   return result;
2257}
2258
2259/* Adjust split blit source coordinates for the current destination
2260 * coordinates.
2261 */
2262static void
2263adjust_split_source_coords(const struct blt_axis *orig,
2264                           struct blt_axis *split_coords,
2265                           double scale)
2266{
2267   /* When scale is greater than 0, then we are growing from the start, so
2268    * src0 uses delta0, and src1 uses delta1. When scale is less than 0, the
2269    * source range shrinks from the end. In that case src0 is adjusted by
2270    * delta1, and src1 is adjusted by delta0.
2271    */
2272   double delta0 = scale * (split_coords->dst0 - orig->dst0);
2273   double delta1 = scale * (split_coords->dst1 - orig->dst1);
2274   split_coords->src0 = orig->src0 + (scale >= 0.0 ? delta0 : delta1);
2275   split_coords->src1 = orig->src1 + (scale >= 0.0 ? delta1 : delta0);
2276}
2277
2278static struct isl_extent2d
2279get_px_size_sa(const struct isl_surf *surf)
2280{
2281   static const struct isl_extent2d one_to_one = { .w = 1, .h = 1 };
2282
2283   if (surf->msaa_layout != ISL_MSAA_LAYOUT_INTERLEAVED)
2284      return one_to_one;
2285   else
2286      return isl_get_interleaved_msaa_px_size_sa(surf->samples);
2287}
2288
2289static void
2290shrink_surface_params(const struct isl_device *dev,
2291                      struct brw_blorp_surface_info *info,
2292                      double *x0, double *x1, double *y0, double *y1)
2293{
2294   uint64_t offset_B;
2295   uint32_t x_offset_sa, y_offset_sa, size;
2296   struct isl_extent2d px_size_sa;
2297   int adjust;
2298
2299   blorp_surf_convert_to_single_slice(dev, info);
2300
2301   px_size_sa = get_px_size_sa(&info->surf);
2302
2303   /* Because this gets called after we lower compressed images, the tile
2304    * offsets may be non-zero and we need to incorporate them in our
2305    * calculations.
2306    */
2307   x_offset_sa = (uint32_t)*x0 * px_size_sa.w + info->tile_x_sa;
2308   y_offset_sa = (uint32_t)*y0 * px_size_sa.h + info->tile_y_sa;
2309   uint32_t tile_z_sa, tile_a;
2310   isl_tiling_get_intratile_offset_sa(info->surf.tiling, info->surf.dim,
2311                                      info->surf.msaa_layout,
2312                                      info->surf.format, info->surf.samples,
2313                                      info->surf.row_pitch_B,
2314                                      info->surf.array_pitch_el_rows,
2315                                      x_offset_sa, y_offset_sa, 0, 0,
2316                                      &offset_B,
2317                                      &info->tile_x_sa, &info->tile_y_sa,
2318                                      &tile_z_sa, &tile_a);
2319   assert(tile_z_sa == 0 && tile_a == 0);
2320
2321   info->addr.offset += offset_B;
2322
2323   adjust = (int)info->tile_x_sa / px_size_sa.w - (int)*x0;
2324   *x0 += adjust;
2325   *x1 += adjust;
2326   info->tile_x_sa = 0;
2327
2328   adjust = (int)info->tile_y_sa / px_size_sa.h - (int)*y0;
2329   *y0 += adjust;
2330   *y1 += adjust;
2331   info->tile_y_sa = 0;
2332
2333   size = MIN2((uint32_t)ceil(*x1), info->surf.logical_level0_px.width);
2334   info->surf.logical_level0_px.width = size;
2335   info->surf.phys_level0_sa.width = size * px_size_sa.w;
2336
2337   size = MIN2((uint32_t)ceil(*y1), info->surf.logical_level0_px.height);
2338   info->surf.logical_level0_px.height = size;
2339   info->surf.phys_level0_sa.height = size * px_size_sa.h;
2340}
2341
2342static void
2343do_blorp_blit(struct blorp_batch *batch,
2344              const struct blorp_params *orig_params,
2345              struct brw_blorp_blit_prog_key *key,
2346              const struct blt_coords *orig)
2347{
2348   struct blorp_params params;
2349   struct blt_coords blit_coords;
2350   struct blt_coords split_coords = *orig;
2351   double w = orig->x.dst1 - orig->x.dst0;
2352   double h = orig->y.dst1 - orig->y.dst0;
2353   double x_scale = (orig->x.src1 - orig->x.src0) / w;
2354   double y_scale = (orig->y.src1 - orig->y.src0) / h;
2355   if (orig->x.mirror)
2356      x_scale = -x_scale;
2357   if (orig->y.mirror)
2358      y_scale = -y_scale;
2359
2360   enum blit_shrink_status shrink = BLIT_NO_SHRINK;
2361   if (split_blorp_blit_debug) {
2362      if (can_shrink_surface(&orig_params->src))
2363         shrink |= BLIT_SRC_WIDTH_SHRINK | BLIT_SRC_HEIGHT_SHRINK;
2364      if (can_shrink_surface(&orig_params->dst))
2365         shrink |= BLIT_DST_WIDTH_SHRINK | BLIT_DST_HEIGHT_SHRINK;
2366   }
2367
2368   bool x_done, y_done;
2369   do {
2370      params = *orig_params;
2371      blit_coords = split_coords;
2372
2373      if (shrink & (BLIT_SRC_WIDTH_SHRINK | BLIT_SRC_HEIGHT_SHRINK)) {
2374         shrink_surface_params(batch->blorp->isl_dev, &params.src,
2375                               &blit_coords.x.src0, &blit_coords.x.src1,
2376                               &blit_coords.y.src0, &blit_coords.y.src1);
2377         key->need_src_offset = false;
2378      }
2379
2380      if (shrink & (BLIT_DST_WIDTH_SHRINK | BLIT_DST_HEIGHT_SHRINK)) {
2381         shrink_surface_params(batch->blorp->isl_dev, &params.dst,
2382                               &blit_coords.x.dst0, &blit_coords.x.dst1,
2383                               &blit_coords.y.dst0, &blit_coords.y.dst1);
2384         key->need_dst_offset = false;
2385      }
2386
2387      enum blit_shrink_status result =
2388         try_blorp_blit(batch, &params, key, &blit_coords);
2389
2390      if (result & (BLIT_SRC_WIDTH_SHRINK | BLIT_SRC_HEIGHT_SHRINK))
2391         assert(can_shrink_surface(&orig_params->src));
2392
2393      if (result & (BLIT_DST_WIDTH_SHRINK | BLIT_DST_HEIGHT_SHRINK))
2394         assert(can_shrink_surface(&orig_params->dst));
2395
2396      if (result & (BLIT_SRC_WIDTH_SHRINK | BLIT_DST_WIDTH_SHRINK)) {
2397         w /= 2.0;
2398         assert(w >= 1.0);
2399         split_coords.x.dst1 = MIN2(split_coords.x.dst0 + w, orig->x.dst1);
2400         adjust_split_source_coords(&orig->x, &split_coords.x, x_scale);
2401      }
2402      if (result & (BLIT_SRC_HEIGHT_SHRINK | BLIT_DST_HEIGHT_SHRINK)) {
2403         h /= 2.0;
2404         assert(h >= 1.0);
2405         split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
2406         adjust_split_source_coords(&orig->y, &split_coords.y, y_scale);
2407      }
2408
2409      if (result) {
2410         /* We may get less bits set on result than we had already, so make
2411          * sure we remember all the ways in which a resize is required.
2412          */
2413         shrink |= result;
2414         continue;
2415      }
2416
2417      y_done = (orig->y.dst1 - split_coords.y.dst1 < 0.5);
2418      x_done = y_done && (orig->x.dst1 - split_coords.x.dst1 < 0.5);
2419      if (x_done) {
2420         break;
2421      } else if (y_done) {
2422         split_coords.x.dst0 += w;
2423         split_coords.x.dst1 = MIN2(split_coords.x.dst0 + w, orig->x.dst1);
2424         split_coords.y.dst0 = orig->y.dst0;
2425         split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
2426         adjust_split_source_coords(&orig->x, &split_coords.x, x_scale);
2427      } else {
2428         split_coords.y.dst0 += h;
2429         split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
2430         adjust_split_source_coords(&orig->y, &split_coords.y, y_scale);
2431      }
2432   } while (true);
2433}
2434
2435bool
2436blorp_blit_supports_compute(struct blorp_context *blorp,
2437                            const struct isl_surf *src_surf,
2438                            const struct isl_surf *dst_surf,
2439                            enum isl_aux_usage dst_aux_usage)
2440{
2441   /* Our compiler doesn't currently support typed image writes with MSAA.
2442    * Also, our BLORP compute shaders don't handle multisampling cases.
2443    */
2444   if (dst_surf->samples > 1 || src_surf->samples > 1)
2445      return false;
2446
2447   if (blorp->isl_dev->info->ver >= 12) {
2448      return dst_aux_usage == ISL_AUX_USAGE_GFX12_CCS_E ||
2449             dst_aux_usage == ISL_AUX_USAGE_CCS_E ||
2450             dst_aux_usage == ISL_AUX_USAGE_NONE;
2451   } else if (blorp->isl_dev->info->ver >= 7) {
2452      return dst_aux_usage == ISL_AUX_USAGE_NONE;
2453   } else {
2454      /* No compute shader support */
2455      return false;
2456   }
2457}
2458
2459static bool
2460blitter_supports_aux(const struct intel_device_info *devinfo,
2461                     enum isl_aux_usage aux_usage)
2462{
2463   switch (aux_usage) {
2464   case ISL_AUX_USAGE_NONE:
2465      return true;
2466   case ISL_AUX_USAGE_CCS_E:
2467   case ISL_AUX_USAGE_GFX12_CCS_E:
2468      return devinfo->verx10 >= 125;
2469   default:
2470      return false;
2471   }
2472}
2473
2474bool
2475blorp_copy_supports_blitter(struct blorp_context *blorp,
2476                            const struct isl_surf *src_surf,
2477                            const struct isl_surf *dst_surf,
2478                            enum isl_aux_usage src_aux_usage,
2479                            enum isl_aux_usage dst_aux_usage)
2480{
2481   const struct intel_device_info *devinfo = blorp->isl_dev->info;
2482
2483   if (devinfo->ver < 12)
2484      return false;
2485
2486   if (dst_surf->samples > 1 || src_surf->samples > 1)
2487      return false;
2488
2489   if (!blitter_supports_aux(devinfo, dst_aux_usage))
2490      return false;
2491
2492   if (!blitter_supports_aux(devinfo, src_aux_usage))
2493      return false;
2494
2495   const struct isl_format_layout *fmtl =
2496      isl_format_get_layout(dst_surf->format);
2497
2498   if (fmtl->bpb == 96) {
2499      /* XY_BLOCK_COPY_BLT mentions it doesn't support clear colors for 96bpp
2500       * formats, but none of them support CCS anyway, so it's a moot point.
2501       */
2502      assert(src_aux_usage == ISL_AUX_USAGE_NONE);
2503      assert(dst_aux_usage == ISL_AUX_USAGE_NONE);
2504
2505      /* We can only support linear mode for 96bpp. */
2506      if (src_surf->tiling != ISL_TILING_LINEAR ||
2507          dst_surf->tiling != ISL_TILING_LINEAR)
2508         return false;
2509   }
2510
2511   return true;
2512}
2513
2514void
2515blorp_blit(struct blorp_batch *batch,
2516           const struct blorp_surf *src_surf,
2517           unsigned src_level, float src_layer,
2518           enum isl_format src_format, struct isl_swizzle src_swizzle,
2519           const struct blorp_surf *dst_surf,
2520           unsigned dst_level, unsigned dst_layer,
2521           enum isl_format dst_format, struct isl_swizzle dst_swizzle,
2522           float src_x0, float src_y0,
2523           float src_x1, float src_y1,
2524           float dst_x0, float dst_y0,
2525           float dst_x1, float dst_y1,
2526           enum blorp_filter filter,
2527           bool mirror_x, bool mirror_y)
2528{
2529   struct blorp_params params;
2530   blorp_params_init(&params);
2531   params.snapshot_type = INTEL_SNAPSHOT_BLIT;
2532   const bool compute = batch->flags & BLORP_BATCH_USE_COMPUTE;
2533   if (compute) {
2534      assert(blorp_blit_supports_compute(batch->blorp,
2535                                         src_surf->surf, dst_surf->surf,
2536                                         dst_surf->aux_usage));
2537   }
2538
2539   /* We cannot handle combined depth and stencil. */
2540   if (src_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT)
2541      assert(src_surf->surf->format == ISL_FORMAT_R8_UINT);
2542   if (dst_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT)
2543      assert(dst_surf->surf->format == ISL_FORMAT_R8_UINT);
2544
2545   if (dst_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT) {
2546      assert(src_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT);
2547      /* Prior to Broadwell, we can't render to R8_UINT */
2548      if (batch->blorp->isl_dev->info->ver < 8) {
2549         src_format = ISL_FORMAT_R8_UNORM;
2550         dst_format = ISL_FORMAT_R8_UNORM;
2551      }
2552   }
2553
2554   brw_blorp_surface_info_init(batch, &params.src, src_surf, src_level,
2555                               src_layer, src_format, false);
2556   brw_blorp_surface_info_init(batch, &params.dst, dst_surf, dst_level,
2557                               dst_layer, dst_format, true);
2558
2559   params.src.view.swizzle = src_swizzle;
2560   params.dst.view.swizzle = dst_swizzle;
2561
2562   const struct isl_format_layout *src_fmtl =
2563      isl_format_get_layout(params.src.view.format);
2564
2565   struct brw_blorp_blit_prog_key key = {
2566      .base = BRW_BLORP_BASE_KEY_INIT(BLORP_SHADER_TYPE_BLIT),
2567      .base.shader_pipeline = compute ? BLORP_SHADER_PIPELINE_COMPUTE :
2568                                        BLORP_SHADER_PIPELINE_RENDER,
2569      .filter = filter,
2570      .sint32_to_uint = src_fmtl->channels.r.bits == 32 &&
2571                        isl_format_has_sint_channel(params.src.view.format) &&
2572                        isl_format_has_uint_channel(params.dst.view.format),
2573      .uint32_to_sint = src_fmtl->channels.r.bits == 32 &&
2574                        isl_format_has_uint_channel(params.src.view.format) &&
2575                        isl_format_has_sint_channel(params.dst.view.format),
2576   };
2577
2578   params.shader_type = key.base.shader_type;
2579   params.shader_pipeline = key.base.shader_pipeline;
2580
2581   /* Scaling factors used for bilinear filtering in multisample scaled
2582    * blits.
2583    */
2584   if (params.src.surf.samples == 16)
2585      key.x_scale = 4.0f;
2586   else
2587      key.x_scale = 2.0f;
2588   key.y_scale = params.src.surf.samples / key.x_scale;
2589
2590   params.wm_inputs.rect_grid.x1 =
2591      u_minify(params.src.surf.logical_level0_px.width, src_level) *
2592      key.x_scale - 1.0f;
2593   params.wm_inputs.rect_grid.y1 =
2594      u_minify(params.src.surf.logical_level0_px.height, src_level) *
2595      key.y_scale - 1.0f;
2596
2597   struct blt_coords coords = {
2598      .x = {
2599         .src0 = src_x0,
2600         .src1 = src_x1,
2601         .dst0 = dst_x0,
2602         .dst1 = dst_x1,
2603         .mirror = mirror_x
2604      },
2605      .y = {
2606         .src0 = src_y0,
2607         .src1 = src_y1,
2608         .dst0 = dst_y0,
2609         .dst1 = dst_y1,
2610         .mirror = mirror_y
2611      }
2612   };
2613
2614   do_blorp_blit(batch, &params, &key, &coords);
2615}
2616
2617static enum isl_format
2618get_copy_format_for_bpb(const struct isl_device *isl_dev, unsigned bpb)
2619{
2620   /* The choice of UNORM and UINT formats is very intentional here.  Most
2621    * of the time, we want to use a UINT format to avoid any rounding error
2622    * in the blit.  For stencil blits, R8_UINT is required by the hardware.
2623    * (It's the only format allowed in conjunction with W-tiling.)  Also we
2624    * intentionally use the 4-channel formats whenever we can.  This is so
2625    * that, when we do a RGB <-> RGBX copy, the two formats will line up
2626    * even though one of them is 3/4 the size of the other.  The choice of
2627    * UNORM vs. UINT is also very intentional because we don't have 8 or
2628    * 16-bit RGB UINT formats until Sky Lake so we have to use UNORM there.
2629    * Fortunately, the only time we should ever use two different formats in
2630    * the table below is for RGB -> RGBA blits and so we will never have any
2631    * UNORM/UINT mismatch.
2632    */
2633   if (ISL_GFX_VER(isl_dev) >= 9) {
2634      switch (bpb) {
2635      case 8:  return ISL_FORMAT_R8_UINT;
2636      case 16: return ISL_FORMAT_R8G8_UINT;
2637      case 24: return ISL_FORMAT_R8G8B8_UINT;
2638      case 32: return ISL_FORMAT_R8G8B8A8_UINT;
2639      case 48: return ISL_FORMAT_R16G16B16_UINT;
2640      case 64: return ISL_FORMAT_R16G16B16A16_UINT;
2641      case 96: return ISL_FORMAT_R32G32B32_UINT;
2642      case 128:return ISL_FORMAT_R32G32B32A32_UINT;
2643      default:
2644         unreachable("Unknown format bpb");
2645      }
2646   } else {
2647      switch (bpb) {
2648      case 8:  return ISL_FORMAT_R8_UINT;
2649      case 16: return ISL_FORMAT_R8G8_UINT;
2650      case 24: return ISL_FORMAT_R8G8B8_UNORM;
2651      case 32: return ISL_FORMAT_R8G8B8A8_UNORM;
2652      case 48: return ISL_FORMAT_R16G16B16_UNORM;
2653      case 64: return ISL_FORMAT_R16G16B16A16_UNORM;
2654      case 96: return ISL_FORMAT_R32G32B32_UINT;
2655      case 128:return ISL_FORMAT_R32G32B32A32_UINT;
2656      default:
2657         unreachable("Unknown format bpb");
2658      }
2659   }
2660}
2661
2662/** Returns a UINT format that is CCS-compatible with the given format
2663 *
2664 * The PRM's say absolutely nothing about how render compression works.  The
2665 * only thing they provide is a list of formats on which it is and is not
2666 * supported.  Empirical testing indicates that the compression is only based
2667 * on the bit-layout of the format and the channel encoding doesn't matter.
2668 * So, while texture views don't work in general, you can create a view as
2669 * long as the bit-layout of the formats are the same.
2670 *
2671 * Fortunately, for every render compression capable format, the UINT format
2672 * with the same bit layout also supports render compression.  This means that
2673 * we only need to handle UINT formats for copy operations.  In order to do
2674 * copies between formats with different bit layouts, we attach both with a
2675 * UINT format and use bit_cast_color() to generate code to do the bit-cast
2676 * operation between the two bit layouts.
2677 */
2678static enum isl_format
2679get_ccs_compatible_copy_format(const struct isl_format_layout *fmtl)
2680{
2681   switch (fmtl->format) {
2682   case ISL_FORMAT_R32G32B32A32_FLOAT:
2683   case ISL_FORMAT_R32G32B32A32_SINT:
2684   case ISL_FORMAT_R32G32B32A32_UINT:
2685   case ISL_FORMAT_R32G32B32A32_UNORM:
2686   case ISL_FORMAT_R32G32B32A32_SNORM:
2687   case ISL_FORMAT_R32G32B32X32_FLOAT:
2688      return ISL_FORMAT_R32G32B32A32_UINT;
2689
2690   case ISL_FORMAT_R16G16B16A16_UNORM:
2691   case ISL_FORMAT_R16G16B16A16_SNORM:
2692   case ISL_FORMAT_R16G16B16A16_SINT:
2693   case ISL_FORMAT_R16G16B16A16_UINT:
2694   case ISL_FORMAT_R16G16B16A16_FLOAT:
2695   case ISL_FORMAT_R16G16B16X16_UNORM:
2696   case ISL_FORMAT_R16G16B16X16_FLOAT:
2697      return ISL_FORMAT_R16G16B16A16_UINT;
2698
2699   case ISL_FORMAT_R32G32_FLOAT:
2700   case ISL_FORMAT_R32G32_SINT:
2701   case ISL_FORMAT_R32G32_UINT:
2702   case ISL_FORMAT_R32G32_UNORM:
2703   case ISL_FORMAT_R32G32_SNORM:
2704      return ISL_FORMAT_R32G32_UINT;
2705
2706   case ISL_FORMAT_B8G8R8A8_UNORM:
2707   case ISL_FORMAT_B8G8R8A8_UNORM_SRGB:
2708   case ISL_FORMAT_R8G8B8A8_UNORM:
2709   case ISL_FORMAT_R8G8B8A8_UNORM_SRGB:
2710   case ISL_FORMAT_R8G8B8A8_SNORM:
2711   case ISL_FORMAT_R8G8B8A8_SINT:
2712   case ISL_FORMAT_R8G8B8A8_UINT:
2713   case ISL_FORMAT_B8G8R8X8_UNORM:
2714   case ISL_FORMAT_B8G8R8X8_UNORM_SRGB:
2715   case ISL_FORMAT_R8G8B8X8_UNORM:
2716   case ISL_FORMAT_R8G8B8X8_UNORM_SRGB:
2717      return ISL_FORMAT_R8G8B8A8_UINT;
2718
2719   case ISL_FORMAT_R16G16_UNORM:
2720   case ISL_FORMAT_R16G16_SNORM:
2721   case ISL_FORMAT_R16G16_SINT:
2722   case ISL_FORMAT_R16G16_UINT:
2723   case ISL_FORMAT_R16G16_FLOAT:
2724      return ISL_FORMAT_R16G16_UINT;
2725
2726   case ISL_FORMAT_R32_SINT:
2727   case ISL_FORMAT_R32_UINT:
2728   case ISL_FORMAT_R32_FLOAT:
2729   case ISL_FORMAT_R32_UNORM:
2730   case ISL_FORMAT_R32_SNORM:
2731      return ISL_FORMAT_R32_UINT;
2732
2733   case ISL_FORMAT_B10G10R10A2_UNORM:
2734   case ISL_FORMAT_B10G10R10A2_UNORM_SRGB:
2735   case ISL_FORMAT_R10G10B10A2_UNORM:
2736   case ISL_FORMAT_R10G10B10A2_UNORM_SRGB:
2737   case ISL_FORMAT_R10G10B10_FLOAT_A2_UNORM:
2738   case ISL_FORMAT_R10G10B10A2_UINT:
2739      return ISL_FORMAT_R10G10B10A2_UINT;
2740
2741   case ISL_FORMAT_R16_UNORM:
2742   case ISL_FORMAT_R16_SNORM:
2743   case ISL_FORMAT_R16_SINT:
2744   case ISL_FORMAT_R16_UINT:
2745   case ISL_FORMAT_R16_FLOAT:
2746      return ISL_FORMAT_R16_UINT;
2747
2748   case ISL_FORMAT_R8G8_UNORM:
2749   case ISL_FORMAT_R8G8_SNORM:
2750   case ISL_FORMAT_R8G8_SINT:
2751   case ISL_FORMAT_R8G8_UINT:
2752      return ISL_FORMAT_R8G8_UINT;
2753
2754   case ISL_FORMAT_B5G5R5X1_UNORM:
2755   case ISL_FORMAT_B5G5R5X1_UNORM_SRGB:
2756   case ISL_FORMAT_B5G5R5A1_UNORM:
2757   case ISL_FORMAT_B5G5R5A1_UNORM_SRGB:
2758      return ISL_FORMAT_B5G5R5A1_UNORM;
2759
2760   case ISL_FORMAT_A4B4G4R4_UNORM:
2761   case ISL_FORMAT_B4G4R4A4_UNORM:
2762   case ISL_FORMAT_B4G4R4A4_UNORM_SRGB:
2763      return ISL_FORMAT_B4G4R4A4_UNORM;
2764
2765   case ISL_FORMAT_B5G6R5_UNORM:
2766   case ISL_FORMAT_B5G6R5_UNORM_SRGB:
2767      return ISL_FORMAT_B5G6R5_UNORM;
2768
2769   case ISL_FORMAT_A1B5G5R5_UNORM:
2770      return ISL_FORMAT_A1B5G5R5_UNORM;
2771
2772   case ISL_FORMAT_A8_UNORM:
2773   case ISL_FORMAT_R8_UNORM:
2774   case ISL_FORMAT_R8_SNORM:
2775   case ISL_FORMAT_R8_SINT:
2776   case ISL_FORMAT_R8_UINT:
2777      return ISL_FORMAT_R8_UINT;
2778
2779   default:
2780      unreachable("Not a compressible format");
2781   }
2782}
2783
2784void
2785blorp_surf_convert_to_uncompressed(const struct isl_device *isl_dev,
2786                                   struct brw_blorp_surface_info *info,
2787                                   uint32_t *x, uint32_t *y,
2788                                   uint32_t *width, uint32_t *height)
2789{
2790   const struct isl_format_layout *fmtl =
2791      isl_format_get_layout(info->surf.format);
2792
2793   assert(fmtl->bw > 1 || fmtl->bh > 1);
2794
2795   /* This should be the first modification made to the surface */
2796   assert(info->tile_x_sa == 0 && info->tile_y_sa == 0);
2797
2798   if (width && height) {
2799      ASSERTED const uint32_t level_width =
2800         u_minify(info->surf.logical_level0_px.width, info->view.base_level);
2801      ASSERTED const uint32_t level_height =
2802         u_minify(info->surf.logical_level0_px.height, info->view.base_level);
2803      assert(*width % fmtl->bw == 0 || *x + *width == level_width);
2804      assert(*height % fmtl->bh == 0 || *y + *height == level_height);
2805      *width = DIV_ROUND_UP(*width, fmtl->bw);
2806      *height = DIV_ROUND_UP(*height, fmtl->bh);
2807   }
2808
2809   if (x && y) {
2810      assert(*x % fmtl->bw == 0);
2811      assert(*y % fmtl->bh == 0);
2812      *x /= fmtl->bw;
2813      *y /= fmtl->bh;
2814   }
2815
2816   /* We only want one level and slice */
2817   info->view.levels = 1;
2818   info->view.array_len = 1;
2819
2820   if (info->surf.dim == ISL_SURF_DIM_3D) {
2821      /* Roll the Z offset into the image view */
2822      info->view.base_array_layer += info->z_offset;
2823      info->z_offset = 0;
2824   }
2825
2826   uint64_t offset_B;
2827   ASSERTED bool ok =
2828      isl_surf_get_uncompressed_surf(isl_dev, &info->surf, &info->view,
2829                                     &info->surf, &info->view, &offset_B,
2830                                     &info->tile_x_sa, &info->tile_y_sa);
2831   assert(ok);
2832   info->addr.offset += offset_B;
2833
2834   /* BLORP doesn't use the actual intratile offsets.  Instead, it needs the
2835    * surface to be a bit bigger and we offset the vertices instead.
2836    */
2837   assert(info->surf.dim == ISL_SURF_DIM_2D);
2838   assert(info->surf.logical_level0_px.array_len == 1);
2839   info->surf.logical_level0_px.w += info->tile_x_sa;
2840   info->surf.logical_level0_px.h += info->tile_y_sa;
2841   info->surf.phys_level0_sa.w += info->tile_x_sa;
2842   info->surf.phys_level0_sa.h += info->tile_y_sa;
2843}
2844
2845bool
2846blorp_copy_supports_compute(struct blorp_context *blorp,
2847                            const struct isl_surf *src_surf,
2848                            const struct isl_surf *dst_surf,
2849                            enum isl_aux_usage dst_aux_usage)
2850{
2851   return blorp_blit_supports_compute(blorp, src_surf, dst_surf, dst_aux_usage);
2852}
2853
2854void
2855blorp_copy(struct blorp_batch *batch,
2856           const struct blorp_surf *src_surf,
2857           unsigned src_level, unsigned src_layer,
2858           const struct blorp_surf *dst_surf,
2859           unsigned dst_level, unsigned dst_layer,
2860           uint32_t src_x, uint32_t src_y,
2861           uint32_t dst_x, uint32_t dst_y,
2862           uint32_t src_width, uint32_t src_height)
2863{
2864   const struct isl_device *isl_dev = batch->blorp->isl_dev;
2865   const struct intel_device_info *devinfo = isl_dev->info;
2866   struct blorp_params params;
2867
2868   if (src_width == 0 || src_height == 0)
2869      return;
2870
2871   blorp_params_init(&params);
2872   params.snapshot_type = INTEL_SNAPSHOT_COPY;
2873
2874   const bool compute = batch->flags & BLORP_BATCH_USE_COMPUTE;
2875   if (compute) {
2876      assert(blorp_copy_supports_compute(batch->blorp,
2877                                         src_surf->surf, dst_surf->surf,
2878                                         dst_surf->aux_usage));
2879   } else if (batch->flags & BLORP_BATCH_USE_BLITTER) {
2880      assert(blorp_copy_supports_blitter(batch->blorp,
2881                                         src_surf->surf, dst_surf->surf,
2882                                         src_surf->aux_usage,
2883                                         dst_surf->aux_usage));
2884   }
2885
2886   brw_blorp_surface_info_init(batch, &params.src, src_surf, src_level,
2887                               src_layer, ISL_FORMAT_UNSUPPORTED, false);
2888   brw_blorp_surface_info_init(batch, &params.dst, dst_surf, dst_level,
2889                               dst_layer, ISL_FORMAT_UNSUPPORTED, true);
2890
2891   struct brw_blorp_blit_prog_key key = {
2892      .base = BRW_BLORP_BASE_KEY_INIT(BLORP_SHADER_TYPE_COPY),
2893      .base.shader_pipeline = compute ? BLORP_SHADER_PIPELINE_COMPUTE :
2894                                        BLORP_SHADER_PIPELINE_RENDER,
2895      .filter = BLORP_FILTER_NONE,
2896      .need_src_offset = src_surf->tile_x_sa || src_surf->tile_y_sa,
2897      .need_dst_offset = dst_surf->tile_x_sa || dst_surf->tile_y_sa,
2898   };
2899
2900   params.shader_type = key.base.shader_type;
2901   params.shader_pipeline = key.base.shader_pipeline;
2902
2903   const struct isl_format_layout *src_fmtl =
2904      isl_format_get_layout(params.src.surf.format);
2905   const struct isl_format_layout *dst_fmtl =
2906      isl_format_get_layout(params.dst.surf.format);
2907
2908   assert(params.src.aux_usage == ISL_AUX_USAGE_NONE ||
2909          params.src.aux_usage == ISL_AUX_USAGE_HIZ ||
2910          params.src.aux_usage == ISL_AUX_USAGE_HIZ_CCS_WT ||
2911          params.src.aux_usage == ISL_AUX_USAGE_MCS ||
2912          params.src.aux_usage == ISL_AUX_USAGE_MCS_CCS ||
2913          params.src.aux_usage == ISL_AUX_USAGE_CCS_E ||
2914          params.src.aux_usage == ISL_AUX_USAGE_GFX12_CCS_E ||
2915          params.src.aux_usage == ISL_AUX_USAGE_STC_CCS);
2916
2917   if (isl_aux_usage_has_hiz(params.src.aux_usage)) {
2918      /* In order to use HiZ, we have to use the real format for the source.
2919       * Depth <-> Color copies are not allowed.
2920       */
2921      params.src.view.format = params.src.surf.format;
2922      params.dst.view.format = params.src.surf.format;
2923   } else if ((params.dst.surf.usage & ISL_SURF_USAGE_DEPTH_BIT) &&
2924              isl_dev->info->ver >= 7) {
2925      /* On Gfx7 and higher, we use actual depth writes for blits into depth
2926       * buffers so we need the real format.
2927       */
2928      params.src.view.format = params.dst.surf.format;
2929      params.dst.view.format = params.dst.surf.format;
2930   } else if (params.dst.aux_usage == ISL_AUX_USAGE_CCS_E ||
2931              params.dst.aux_usage == ISL_AUX_USAGE_GFX12_CCS_E) {
2932      params.dst.view.format = get_ccs_compatible_copy_format(dst_fmtl);
2933      if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E ||
2934          params.src.aux_usage == ISL_AUX_USAGE_GFX12_CCS_E) {
2935         params.src.view.format = get_ccs_compatible_copy_format(src_fmtl);
2936      } else if (src_fmtl->bpb == dst_fmtl->bpb) {
2937         params.src.view.format = params.dst.view.format;
2938      } else {
2939         params.src.view.format =
2940            get_copy_format_for_bpb(isl_dev, src_fmtl->bpb);
2941      }
2942   } else if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E ||
2943              params.src.aux_usage == ISL_AUX_USAGE_GFX12_CCS_E) {
2944      params.src.view.format = get_ccs_compatible_copy_format(src_fmtl);
2945      if (src_fmtl->bpb == dst_fmtl->bpb) {
2946         params.dst.view.format = params.src.view.format;
2947      } else {
2948         params.dst.view.format =
2949            get_copy_format_for_bpb(isl_dev, dst_fmtl->bpb);
2950      }
2951   } else {
2952      params.dst.view.format = get_copy_format_for_bpb(isl_dev, dst_fmtl->bpb);
2953      params.src.view.format = get_copy_format_for_bpb(isl_dev, src_fmtl->bpb);
2954   }
2955
2956   if (params.src.view.format != params.dst.view.format) {
2957      enum isl_format src_cast_format = params.src.view.format;
2958      enum isl_format dst_cast_format = params.dst.view.format;
2959
2960      /* The BLORP bitcast code gets confused by RGB formats.  Just treat them
2961       * as RGBA and then everything will be happy.  This is perfectly safe
2962       * because BLORP likes to treat things as if they have vec4 colors all
2963       * the time anyway.
2964       */
2965      if (isl_format_get_layout(src_cast_format)->bpb % 3 == 0)
2966         src_cast_format = isl_format_rgb_to_rgba(src_cast_format);
2967      if (isl_format_get_layout(dst_cast_format)->bpb % 3 == 0)
2968         dst_cast_format = isl_format_rgb_to_rgba(dst_cast_format);
2969
2970      if (src_cast_format != dst_cast_format) {
2971         key.format_bit_cast = true;
2972         key.src_format = src_cast_format;
2973         key.dst_format = dst_cast_format;
2974      }
2975   }
2976
2977   if (src_fmtl->bw > 1 || src_fmtl->bh > 1) {
2978      blorp_surf_convert_to_uncompressed(batch->blorp->isl_dev, &params.src,
2979                                         &src_x, &src_y,
2980                                         &src_width, &src_height);
2981      key.need_src_offset = true;
2982   }
2983
2984   if (dst_fmtl->bw > 1 || dst_fmtl->bh > 1) {
2985      blorp_surf_convert_to_uncompressed(batch->blorp->isl_dev, &params.dst,
2986                                         &dst_x, &dst_y, NULL, NULL);
2987      key.need_dst_offset = true;
2988   }
2989
2990   /* Once both surfaces are stompped to uncompressed as needed, the
2991    * destination size is the same as the source size.
2992    */
2993   uint32_t dst_width = src_width;
2994   uint32_t dst_height = src_height;
2995
2996   if (batch->flags & BLORP_BATCH_USE_BLITTER) {
2997      if (devinfo->verx10 < 125) {
2998         blorp_surf_convert_to_single_slice(isl_dev, &params.dst);
2999         blorp_surf_convert_to_single_slice(isl_dev, &params.src);
3000      }
3001
3002      params.x0 = dst_x;
3003      params.x1 = dst_x + dst_width;
3004      params.y0 = dst_y;
3005      params.y1 = dst_y + dst_height;
3006      params.wm_inputs.coord_transform[0].offset = dst_x - (float)src_x;
3007      params.wm_inputs.coord_transform[1].offset = dst_y - (float)src_y;
3008      params.wm_inputs.coord_transform[0].multiplier = 1.0f;
3009      params.wm_inputs.coord_transform[1].multiplier = 1.0f;
3010
3011      batch->blorp->exec(batch, &params);
3012      return;
3013   }
3014
3015   struct blt_coords coords = {
3016      .x = {
3017         .src0 = src_x,
3018         .src1 = src_x + src_width,
3019         .dst0 = dst_x,
3020         .dst1 = dst_x + dst_width,
3021         .mirror = false
3022      },
3023      .y = {
3024         .src0 = src_y,
3025         .src1 = src_y + src_height,
3026         .dst0 = dst_y,
3027         .dst1 = dst_y + dst_height,
3028         .mirror = false
3029      }
3030   };
3031
3032   do_blorp_blit(batch, &params, &key, &coords);
3033}
3034
3035static enum isl_format
3036isl_format_for_size(unsigned size_B)
3037{
3038   switch (size_B) {
3039   case 1:  return ISL_FORMAT_R8_UINT;
3040   case 2:  return ISL_FORMAT_R8G8_UINT;
3041   case 4:  return ISL_FORMAT_R8G8B8A8_UINT;
3042   case 8:  return ISL_FORMAT_R16G16B16A16_UINT;
3043   case 16: return ISL_FORMAT_R32G32B32A32_UINT;
3044   default:
3045      unreachable("Not a power-of-two format size");
3046   }
3047}
3048
3049/**
3050 * Returns the greatest common divisor of a and b that is a power of two.
3051 */
3052static uint64_t
3053gcd_pow2_u64(uint64_t a, uint64_t b)
3054{
3055   assert(a > 0 || b > 0);
3056
3057   unsigned a_log2 = ffsll(a) - 1;
3058   unsigned b_log2 = ffsll(b) - 1;
3059
3060   /* If either a or b is 0, then a_log2 or b_log2 till be UINT_MAX in which
3061    * case, the MIN2() will take the other one.  If both are 0 then we will
3062    * hit the assert above.
3063    */
3064   return 1 << MIN2(a_log2, b_log2);
3065}
3066
3067static void
3068do_buffer_copy(struct blorp_batch *batch,
3069               struct blorp_address *src,
3070               struct blorp_address *dst,
3071               int width, int height, int block_size)
3072{
3073   /* The actual format we pick doesn't matter as blorp will throw it away.
3074    * The only thing that actually matters is the size.
3075    */
3076   enum isl_format format = isl_format_for_size(block_size);
3077
3078   UNUSED bool ok;
3079   struct isl_surf surf;
3080   ok = isl_surf_init(batch->blorp->isl_dev, &surf,
3081                      .dim = ISL_SURF_DIM_2D,
3082                      .format = format,
3083                      .width = width,
3084                      .height = height,
3085                      .depth = 1,
3086                      .levels = 1,
3087                      .array_len = 1,
3088                      .samples = 1,
3089                      .row_pitch_B = width * block_size,
3090                      .usage = ISL_SURF_USAGE_TEXTURE_BIT |
3091                               ISL_SURF_USAGE_RENDER_TARGET_BIT,
3092                      .tiling_flags = ISL_TILING_LINEAR_BIT);
3093   assert(ok);
3094
3095   struct blorp_surf src_blorp_surf = {
3096      .surf = &surf,
3097      .addr = *src,
3098   };
3099
3100   struct blorp_surf dst_blorp_surf = {
3101      .surf = &surf,
3102      .addr = *dst,
3103   };
3104
3105   blorp_copy(batch, &src_blorp_surf, 0, 0, &dst_blorp_surf, 0, 0,
3106              0, 0, 0, 0, width, height);
3107}
3108
3109void
3110blorp_buffer_copy(struct blorp_batch *batch,
3111                  struct blorp_address src,
3112                  struct blorp_address dst,
3113                  uint64_t size)
3114{
3115   const struct intel_device_info *devinfo = batch->blorp->isl_dev->info;
3116   uint64_t copy_size = size;
3117
3118   /* This is maximum possible width/height our HW can handle */
3119   uint64_t max_surface_dim = 1 << (devinfo->ver >= 7 ? 14 : 13);
3120
3121   /* First, we compute the biggest format that can be used with the
3122    * given offsets and size.
3123    */
3124   int bs = 16;
3125   bs = gcd_pow2_u64(bs, src.offset);
3126   bs = gcd_pow2_u64(bs, dst.offset);
3127   bs = gcd_pow2_u64(bs, size);
3128
3129   /* First, we make a bunch of max-sized copies */
3130   uint64_t max_copy_size = max_surface_dim * max_surface_dim * bs;
3131   while (copy_size >= max_copy_size) {
3132      do_buffer_copy(batch, &src, &dst, max_surface_dim, max_surface_dim, bs);
3133      copy_size -= max_copy_size;
3134      src.offset += max_copy_size;
3135      dst.offset += max_copy_size;
3136   }
3137
3138   /* Now make a max-width copy */
3139   uint64_t height = copy_size / (max_surface_dim * bs);
3140   assert(height < max_surface_dim);
3141   if (height != 0) {
3142      uint64_t rect_copy_size = height * max_surface_dim * bs;
3143      do_buffer_copy(batch, &src, &dst, max_surface_dim, height, bs);
3144      copy_size -= rect_copy_size;
3145      src.offset += rect_copy_size;
3146      dst.offset += rect_copy_size;
3147   }
3148
3149   /* Finally, make a small copy to finish it off */
3150   if (copy_size != 0) {
3151      do_buffer_copy(batch, &src, &dst, copy_size / bs, 1, bs);
3152   }
3153}
3154