1/**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 * Copyright 2008-2010 VMware, Inc.  All rights reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29/**
30 * Texture sampling
31 *
32 * Authors:
33 *   Brian Paul
34 *   Keith Whitwell
35 */
36
37#include "pipe/p_context.h"
38#include "pipe/p_defines.h"
39#include "pipe/p_shader_tokens.h"
40#include "util/u_math.h"
41#include "util/format/u_format.h"
42#include "util/u_memory.h"
43#include "util/u_inlines.h"
44#include "sp_quad.h"   /* only for #define QUAD_* tokens */
45#include "sp_tex_sample.h"
46#include "sp_texture.h"
47#include "sp_tex_tile_cache.h"
48
49
50/** Set to one to help debug texture sampling */
51#define DEBUG_TEX 0
52
53
54/*
55 * Return fractional part of 'f'.  Used for computing interpolation weights.
56 * Need to be careful with negative values.
57 * Note, if this function isn't perfect you'll sometimes see 1-pixel bands
58 * of improperly weighted linear-filtered textures.
59 * The tests/texwrap.c demo is a good test.
60 */
61static inline float
62frac(float f)
63{
64   return f - floorf(f);
65}
66
67
68
69/**
70 * Linear interpolation macro
71 */
72static inline float
73lerp(float a, float v0, float v1)
74{
75   return v0 + a * (v1 - v0);
76}
77
78
79/**
80 * Do 2D/bilinear interpolation of float values.
81 * v00, v10, v01 and v11 are typically four texture samples in a square/box.
82 * a and b are the horizontal and vertical interpolants.
83 * It's important that this function is inlined when compiled with
84 * optimization!  If we find that's not true on some systems, convert
85 * to a macro.
86 */
87static inline float
88lerp_2d(float a, float b,
89        float v00, float v10, float v01, float v11)
90{
91   const float temp0 = lerp(a, v00, v10);
92   const float temp1 = lerp(a, v01, v11);
93   return lerp(b, temp0, temp1);
94}
95
96
97/**
98 * As above, but 3D interpolation of 8 values.
99 */
100static inline float
101lerp_3d(float a, float b, float c,
102        float v000, float v100, float v010, float v110,
103        float v001, float v101, float v011, float v111)
104{
105   const float temp0 = lerp_2d(a, b, v000, v100, v010, v110);
106   const float temp1 = lerp_2d(a, b, v001, v101, v011, v111);
107   return lerp(c, temp0, temp1);
108}
109
110
111
112/**
113 * Compute coord % size for repeat wrap modes.
114 * Note that if coord is negative, coord % size doesn't give the right
115 * value.  To avoid that problem we add a large multiple of the size
116 * (rather than using a conditional).
117 */
118static inline int
119repeat(int coord, unsigned size)
120{
121   return (coord + size * 1024) % size;
122}
123
124
125/**
126 * Apply texture coord wrapping mode and return integer texture indexes
127 * for a vector of four texcoords (S or T or P).
128 * \param wrapMode  PIPE_TEX_WRAP_x
129 * \param s  the incoming texcoords
130 * \param size  the texture image size
131 * \param icoord  returns the integer texcoords
132 */
133static void
134wrap_nearest_repeat(float s, unsigned size, int offset, int *icoord)
135{
136   /* s limited to [0,1) */
137   /* i limited to [0,size-1] */
138   const int i = util_ifloor(s * size);
139   *icoord = repeat(i + offset, size);
140}
141
142
143static void
144wrap_nearest_clamp(float s, unsigned size, int offset, int *icoord)
145{
146   /* s limited to [0,1] */
147   /* i limited to [0,size-1] */
148   s *= size;
149   s += offset;
150   if (s <= 0.0F)
151      *icoord = 0;
152   else if (s >= size)
153      *icoord = size - 1;
154   else
155      *icoord = util_ifloor(s);
156}
157
158
159static void
160wrap_nearest_clamp_to_edge(float s, unsigned size, int offset, int *icoord)
161{
162   /* s limited to [min,max] */
163   /* i limited to [0, size-1] */
164   const float min = 0.5F;
165   const float max = (float)size - 0.5F;
166
167   s *= size;
168   s += offset;
169
170   if (s < min)
171      *icoord = 0;
172   else if (s > max)
173      *icoord = size - 1;
174   else
175      *icoord = util_ifloor(s);
176}
177
178
179static void
180wrap_nearest_clamp_to_border(float s, unsigned size, int offset, int *icoord)
181{
182   /* s limited to [min,max] */
183   /* i limited to [-1, size] */
184   const float min = -0.5F;
185   const float max = size + 0.5F;
186
187   s *= size;
188   s += offset;
189   if (s <= min)
190      *icoord = -1;
191   else if (s >= max)
192      *icoord = size;
193   else
194      *icoord = util_ifloor(s);
195}
196
197static void
198wrap_nearest_mirror_repeat(float s, unsigned size, int offset, int *icoord)
199{
200   const float min = 1.0F / (2.0F * size);
201   const float max = 1.0F - min;
202   int flr;
203   float u;
204
205   s += (float)offset / size;
206   flr = util_ifloor(s);
207   u = frac(s);
208   if (flr & 1)
209      u = 1.0F - u;
210   if (u < min)
211      *icoord = 0;
212   else if (u > max)
213      *icoord = size - 1;
214   else
215      *icoord = util_ifloor(u * size);
216}
217
218
219static void
220wrap_nearest_mirror_clamp(float s, unsigned size, int offset, int *icoord)
221{
222   /* s limited to [0,1] */
223   /* i limited to [0,size-1] */
224   const float u = fabsf(s * size + offset);
225   if (u <= 0.0F)
226      *icoord = 0;
227   else if (u >= size)
228      *icoord = size - 1;
229   else
230      *icoord = util_ifloor(u);
231}
232
233
234static void
235wrap_nearest_mirror_clamp_to_edge(float s, unsigned size, int offset, int *icoord)
236{
237   /* s limited to [min,max] */
238   /* i limited to [0, size-1] */
239   const float min = 0.5F;
240   const float max = (float)size - 0.5F;
241   const float u = fabsf(s * size + offset);
242
243   if (u < min)
244      *icoord = 0;
245   else if (u > max)
246      *icoord = size - 1;
247   else
248      *icoord = util_ifloor(u);
249}
250
251
252static void
253wrap_nearest_mirror_clamp_to_border(float s, unsigned size, int offset, int *icoord)
254{
255   /* u limited to [-0.5, size-0.5] */
256   const float min = -0.5F;
257   const float max = (float)size + 0.5F;
258   const float u = fabsf(s * size + offset);
259
260   if (u < min)
261      *icoord = -1;
262   else if (u > max)
263      *icoord = size;
264   else
265      *icoord = util_ifloor(u);
266}
267
268
269/**
270 * Used to compute texel locations for linear sampling
271 * \param wrapMode  PIPE_TEX_WRAP_x
272 * \param s  the texcoord
273 * \param size  the texture image size
274 * \param icoord0  returns first texture index
275 * \param icoord1  returns second texture index (usually icoord0 + 1)
276 * \param w  returns blend factor/weight between texture indices
277 * \param icoord  returns the computed integer texture coord
278 */
279static void
280wrap_linear_repeat(float s, unsigned size, int offset,
281                   int *icoord0, int *icoord1, float *w)
282{
283   const float u = s * size - 0.5F;
284   *icoord0 = repeat(util_ifloor(u) + offset, size);
285   *icoord1 = repeat(*icoord0 + 1, size);
286   *w = frac(u);
287}
288
289
290static void
291wrap_linear_clamp(float s, unsigned size, int offset,
292                  int *icoord0, int *icoord1, float *w)
293{
294   const float u = CLAMP(s * size + offset, 0.0F, (float)size) - 0.5f;
295
296   *icoord0 = util_ifloor(u);
297   *icoord1 = *icoord0 + 1;
298   *w = frac(u);
299}
300
301
302static void
303wrap_linear_clamp_to_edge(float s, unsigned size, int offset,
304                          int *icoord0, int *icoord1, float *w)
305{
306   const float u = CLAMP(s * size + offset, 0.0F, (float)size) - 0.5f;
307   *icoord0 = util_ifloor(u);
308   *icoord1 = *icoord0 + 1;
309   if (*icoord0 < 0)
310      *icoord0 = 0;
311   if (*icoord1 >= (int) size)
312      *icoord1 = size - 1;
313   *w = frac(u);
314}
315
316
317static void
318wrap_linear_clamp_to_border(float s, unsigned size, int offset,
319                            int *icoord0, int *icoord1, float *w)
320{
321   const float min = -1.0F;
322   const float max = (float)size + 0.5F;
323   const float u = CLAMP(s * size + offset, min, max) - 0.5f;
324   *icoord0 = util_ifloor(u);
325   *icoord1 = *icoord0 + 1;
326   *w = frac(u);
327}
328
329
330static void
331wrap_linear_mirror_repeat(float s, unsigned size, int offset,
332                          int *icoord0, int *icoord1, float *w)
333{
334   int flr;
335   float u;
336   bool no_mirror;
337
338   s += (float)offset / size;
339   flr = util_ifloor(s);
340   no_mirror = !(flr & 1);
341
342   u = frac(s);
343   if (no_mirror) {
344      u = u * size - 0.5F;
345   } else {
346      u = 1.0F - u;
347      u = u * size + 0.5F;
348   }
349
350   *icoord0 = util_ifloor(u);
351   *icoord1 = (no_mirror) ? *icoord0 + 1 : *icoord0 - 1;
352
353   if (*icoord0 < 0)
354      *icoord0 = 1 + *icoord0;
355   if (*icoord0 >= (int) size)
356      *icoord0 = size - 1;
357
358   if (*icoord1 >= (int) size)
359      *icoord1 = size - 1;
360   if (*icoord1 < 0)
361      *icoord1 = 1 + *icoord1;
362
363   *w = (no_mirror) ? frac(u) : frac(1.0f - u);
364}
365
366
367static void
368wrap_linear_mirror_clamp(float s, unsigned size, int offset,
369                         int *icoord0, int *icoord1, float *w)
370{
371   float u = fabsf(s * size + offset);
372   if (u >= size)
373      u = (float) size;
374   u -= 0.5F;
375   *icoord0 = util_ifloor(u);
376   *icoord1 = *icoord0 + 1;
377   *w = frac(u);
378}
379
380
381static void
382wrap_linear_mirror_clamp_to_edge(float s, unsigned size, int offset,
383                                 int *icoord0, int *icoord1, float *w)
384{
385   float u = fabsf(s * size + offset);
386   if (u >= size)
387      u = (float) size;
388   u -= 0.5F;
389   *icoord0 = util_ifloor(u);
390   *icoord1 = *icoord0 + 1;
391   if (*icoord0 < 0)
392      *icoord0 = 0;
393   if (*icoord1 >= (int) size)
394      *icoord1 = size - 1;
395   *w = frac(u);
396}
397
398
399static void
400wrap_linear_mirror_clamp_to_border(float s, unsigned size, int offset,
401                                   int *icoord0, int *icoord1, float *w)
402{
403   const float min = -0.5F;
404   const float max = size + 0.5F;
405   const float t = fabsf(s * size + offset);
406   const float u = CLAMP(t, min, max) - 0.5F;
407   *icoord0 = util_ifloor(u);
408   *icoord1 = *icoord0 + 1;
409   *w = frac(u);
410}
411
412
413/**
414 * PIPE_TEX_WRAP_CLAMP for nearest sampling, unnormalized coords.
415 */
416static void
417wrap_nearest_unorm_clamp(float s, unsigned size, int offset, int *icoord)
418{
419   const int i = util_ifloor(s);
420   *icoord = CLAMP(i + offset, 0, (int) size-1);
421}
422
423
424/**
425 * PIPE_TEX_WRAP_CLAMP_TO_BORDER for nearest sampling, unnormalized coords.
426 */
427static void
428wrap_nearest_unorm_clamp_to_border(float s, unsigned size, int offset, int *icoord)
429{
430   *icoord = util_ifloor( CLAMP(s + offset, -0.5F, (float) size + 0.5F) );
431}
432
433
434/**
435 * PIPE_TEX_WRAP_CLAMP_TO_EDGE for nearest sampling, unnormalized coords.
436 */
437static void
438wrap_nearest_unorm_clamp_to_edge(float s, unsigned size, int offset, int *icoord)
439{
440   *icoord = util_ifloor( CLAMP(s + offset, 0.5F, (float) size - 0.5F) );
441}
442
443
444/**
445 * PIPE_TEX_WRAP_CLAMP for linear sampling, unnormalized coords.
446 */
447static void
448wrap_linear_unorm_clamp(float s, unsigned size, int offset,
449                        int *icoord0, int *icoord1, float *w)
450{
451   /* Not exactly what the spec says, but it matches NVIDIA output */
452   const float u = CLAMP(s + offset - 0.5F, 0.0f, (float) size - 1.0f);
453   *icoord0 = util_ifloor(u);
454   *icoord1 = *icoord0 + 1;
455   *w = frac(u);
456}
457
458
459/**
460 * PIPE_TEX_WRAP_CLAMP_TO_BORDER for linear sampling, unnormalized coords.
461 */
462static void
463wrap_linear_unorm_clamp_to_border(float s, unsigned size, int offset,
464                                  int *icoord0, int *icoord1, float *w)
465{
466   const float u = CLAMP(s + offset, -0.5F, (float) size + 0.5F) - 0.5F;
467   *icoord0 = util_ifloor(u);
468   *icoord1 = *icoord0 + 1;
469   if (*icoord1 > (int) size - 1)
470      *icoord1 = size - 1;
471   *w = frac(u);
472}
473
474
475/**
476 * PIPE_TEX_WRAP_CLAMP_TO_EDGE for linear sampling, unnormalized coords.
477 */
478static void
479wrap_linear_unorm_clamp_to_edge(float s, unsigned size, int offset,
480                                int *icoord0, int *icoord1, float *w)
481{
482   const float u = CLAMP(s + offset, +0.5F, (float) size - 0.5F) - 0.5F;
483   *icoord0 = util_ifloor(u);
484   *icoord1 = *icoord0 + 1;
485   if (*icoord1 > (int) size - 1)
486      *icoord1 = size - 1;
487   *w = frac(u);
488}
489
490
491/**
492 * Do coordinate to array index conversion.  For array textures.
493 */
494static inline int
495coord_to_layer(float coord, unsigned first_layer, unsigned last_layer)
496{
497   const int c = util_ifloor(coord + 0.5F);
498   return CLAMP(c, (int)first_layer, (int)last_layer);
499}
500
501static void
502compute_gradient_1d(const float s[TGSI_QUAD_SIZE],
503                    const float t[TGSI_QUAD_SIZE],
504                    const float p[TGSI_QUAD_SIZE],
505                    float derivs[3][2][TGSI_QUAD_SIZE])
506{
507   memset(derivs, 0, 6 * TGSI_QUAD_SIZE * sizeof(float));
508   derivs[0][0][0] = s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT];
509   derivs[0][1][0] = s[QUAD_TOP_LEFT]     - s[QUAD_BOTTOM_LEFT];
510}
511
512static float
513compute_lambda_1d_explicit_gradients(const struct sp_sampler_view *sview,
514                                     const float derivs[3][2][TGSI_QUAD_SIZE],
515                                     uint quad)
516{
517   const struct pipe_resource *texture = sview->base.texture;
518   const float dsdx = fabsf(derivs[0][0][quad]);
519   const float dsdy = fabsf(derivs[0][1][quad]);
520   const float rho = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level);
521   return util_fast_log2(rho);
522}
523
524
525/**
526 * Examine the quad's texture coordinates to compute the partial
527 * derivatives w.r.t X and Y, then compute lambda (level of detail).
528 */
529static float
530compute_lambda_1d(const struct sp_sampler_view *sview,
531                  const float s[TGSI_QUAD_SIZE],
532                  const float t[TGSI_QUAD_SIZE],
533                  const float p[TGSI_QUAD_SIZE])
534{
535   float derivs[3][2][TGSI_QUAD_SIZE];
536   compute_gradient_1d(s, t, p, derivs);
537   return compute_lambda_1d_explicit_gradients(sview, derivs, 0);
538}
539
540
541static void
542compute_gradient_2d(const float s[TGSI_QUAD_SIZE],
543                    const float t[TGSI_QUAD_SIZE],
544                    const float p[TGSI_QUAD_SIZE],
545                    float derivs[3][2][TGSI_QUAD_SIZE])
546{
547   memset(derivs, 0, 6 * TGSI_QUAD_SIZE * sizeof(float));
548   derivs[0][0][0] = s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT];
549   derivs[0][1][0] = s[QUAD_TOP_LEFT]     - s[QUAD_BOTTOM_LEFT];
550   derivs[1][0][0] = t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT];
551   derivs[1][1][0] = t[QUAD_TOP_LEFT]     - t[QUAD_BOTTOM_LEFT];
552}
553
554static float
555compute_lambda_2d_explicit_gradients(const struct sp_sampler_view *sview,
556                                     const float derivs[3][2][TGSI_QUAD_SIZE],
557                                     uint quad)
558{
559   const struct pipe_resource *texture = sview->base.texture;
560   const float dsdx = fabsf(derivs[0][0][quad]);
561   const float dsdy = fabsf(derivs[0][1][quad]);
562   const float dtdx = fabsf(derivs[1][0][quad]);
563   const float dtdy = fabsf(derivs[1][1][quad]);
564   const float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level);
565   const float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, sview->base.u.tex.first_level);
566   const float rho  = MAX2(maxx, maxy);
567   return util_fast_log2(rho);
568}
569
570
571static float
572compute_lambda_2d(const struct sp_sampler_view *sview,
573                  const float s[TGSI_QUAD_SIZE],
574                  const float t[TGSI_QUAD_SIZE],
575                  const float p[TGSI_QUAD_SIZE])
576{
577   float derivs[3][2][TGSI_QUAD_SIZE];
578   compute_gradient_2d(s, t, p, derivs);
579   return compute_lambda_2d_explicit_gradients(sview, derivs, 0);
580}
581
582
583static void
584compute_gradient_3d(const float s[TGSI_QUAD_SIZE],
585                    const float t[TGSI_QUAD_SIZE],
586                    const float p[TGSI_QUAD_SIZE],
587                    float derivs[3][2][TGSI_QUAD_SIZE])
588{
589   memset(derivs, 0, 6 * TGSI_QUAD_SIZE * sizeof(float));
590   derivs[0][0][0] = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
591   derivs[0][1][0] = fabsf(s[QUAD_TOP_LEFT]     - s[QUAD_BOTTOM_LEFT]);
592   derivs[1][0][0] = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]);
593   derivs[1][1][0] = fabsf(t[QUAD_TOP_LEFT]     - t[QUAD_BOTTOM_LEFT]);
594   derivs[2][0][0] = fabsf(p[QUAD_BOTTOM_RIGHT] - p[QUAD_BOTTOM_LEFT]);
595   derivs[2][1][0] = fabsf(p[QUAD_TOP_LEFT]     - p[QUAD_BOTTOM_LEFT]);
596}
597
598static float
599compute_lambda_3d_explicit_gradients(const struct sp_sampler_view *sview,
600                                     const float derivs[3][2][TGSI_QUAD_SIZE],
601                                     uint quad)
602{
603   const struct pipe_resource *texture = sview->base.texture;
604   const float dsdx = fabsf(derivs[0][0][quad]);
605   const float dsdy = fabsf(derivs[0][1][quad]);
606   const float dtdx = fabsf(derivs[1][0][quad]);
607   const float dtdy = fabsf(derivs[1][1][quad]);
608   const float dpdx = fabsf(derivs[2][0][quad]);
609   const float dpdy = fabsf(derivs[2][1][quad]);
610   const float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level);
611   const float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, sview->base.u.tex.first_level);
612   const float maxz = MAX2(dpdx, dpdy) * u_minify(texture->depth0, sview->base.u.tex.first_level);
613   const float rho = MAX3(maxx, maxy, maxz);
614
615   return util_fast_log2(rho);
616}
617
618
619static float
620compute_lambda_3d(const struct sp_sampler_view *sview,
621                  const float s[TGSI_QUAD_SIZE],
622                  const float t[TGSI_QUAD_SIZE],
623                  const float p[TGSI_QUAD_SIZE])
624{
625   float derivs[3][2][TGSI_QUAD_SIZE];
626   compute_gradient_3d(s, t, p, derivs);
627   return compute_lambda_3d_explicit_gradients(sview, derivs, 0);
628}
629
630
631static float
632compute_lambda_cube_explicit_gradients(const struct sp_sampler_view *sview,
633                                       const float derivs[3][2][TGSI_QUAD_SIZE],
634                                       uint quad)
635{
636   const struct pipe_resource *texture = sview->base.texture;
637   const float dsdx = fabsf(derivs[0][0][quad]);
638   const float dsdy = fabsf(derivs[0][1][quad]);
639   const float dtdx = fabsf(derivs[1][0][quad]);
640   const float dtdy = fabsf(derivs[1][1][quad]);
641   const float dpdx = fabsf(derivs[2][0][quad]);
642   const float dpdy = fabsf(derivs[2][1][quad]);
643   const float maxx = MAX2(dsdx, dsdy);
644   const float maxy = MAX2(dtdx, dtdy);
645   const float maxz = MAX2(dpdx, dpdy);
646   const float rho = MAX3(maxx, maxy, maxz) * u_minify(texture->width0, sview->base.u.tex.first_level) / 2.0f;
647
648   return util_fast_log2(rho);
649}
650
651static float
652compute_lambda_cube(const struct sp_sampler_view *sview,
653                    const float s[TGSI_QUAD_SIZE],
654                    const float t[TGSI_QUAD_SIZE],
655                    const float p[TGSI_QUAD_SIZE])
656{
657   float derivs[3][2][TGSI_QUAD_SIZE];
658   compute_gradient_3d(s, t, p, derivs);
659   return compute_lambda_cube_explicit_gradients(sview, derivs, 0);
660}
661
662/**
663 * Compute lambda for a vertex texture sampler.
664 * Since there aren't derivatives to use, just return 0.
665 */
666static float
667compute_lambda_vert(const struct sp_sampler_view *sview,
668                    const float s[TGSI_QUAD_SIZE],
669                    const float t[TGSI_QUAD_SIZE],
670                    const float p[TGSI_QUAD_SIZE])
671{
672   return 0.0f;
673}
674
675
676compute_lambda_from_grad_func
677softpipe_get_lambda_from_grad_func(const struct pipe_sampler_view *view,
678                                   enum pipe_shader_type shader)
679{
680   switch (view->target) {
681   case PIPE_BUFFER:
682   case PIPE_TEXTURE_1D:
683   case PIPE_TEXTURE_1D_ARRAY:
684      return compute_lambda_1d_explicit_gradients;
685   case PIPE_TEXTURE_2D:
686   case PIPE_TEXTURE_2D_ARRAY:
687   case PIPE_TEXTURE_RECT:
688      return compute_lambda_2d_explicit_gradients;
689   case PIPE_TEXTURE_CUBE:
690   case PIPE_TEXTURE_CUBE_ARRAY:
691      return compute_lambda_cube_explicit_gradients;
692   case PIPE_TEXTURE_3D:
693      return compute_lambda_3d_explicit_gradients;
694   default:
695      assert(0);
696      return compute_lambda_1d_explicit_gradients;
697   }
698}
699
700
701/**
702 * Get a texel from a texture, using the texture tile cache.
703 *
704 * \param addr  the template tex address containing cube, z, face info.
705 * \param x  the x coord of texel within 2D image
706 * \param y  the y coord of texel within 2D image
707 * \param rgba  the quad to put the texel/color into
708 *
709 * XXX maybe move this into sp_tex_tile_cache.c and merge with the
710 * sp_get_cached_tile_tex() function.
711 */
712
713
714
715static inline const float *
716get_texel_buffer_no_border(const struct sp_sampler_view *sp_sview,
717                           union tex_tile_address addr, int x, unsigned elmsize)
718{
719   const struct softpipe_tex_cached_tile *tile;
720   addr.bits.x = x * elmsize / TEX_TILE_SIZE;
721   assert(x * elmsize / TEX_TILE_SIZE == addr.bits.x);
722
723   x %= TEX_TILE_SIZE / elmsize;
724
725   tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
726
727   return &tile->data.color[0][x][0];
728}
729
730
731static inline const float *
732get_texel_2d_no_border(const struct sp_sampler_view *sp_sview,
733                       union tex_tile_address addr, int x, int y)
734{
735   const struct softpipe_tex_cached_tile *tile;
736   addr.bits.x = x / TEX_TILE_SIZE;
737   addr.bits.y = y / TEX_TILE_SIZE;
738   y %= TEX_TILE_SIZE;
739   x %= TEX_TILE_SIZE;
740
741   tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
742
743   return &tile->data.color[y][x][0];
744}
745
746
747static inline const float *
748get_texel_2d(const struct sp_sampler_view *sp_sview,
749             const struct sp_sampler *sp_samp,
750             union tex_tile_address addr, int x, int y)
751{
752   const struct pipe_resource *texture = sp_sview->base.texture;
753   const unsigned level = addr.bits.level;
754
755   if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
756       y < 0 || y >= (int) u_minify(texture->height0, level)) {
757      return sp_sview->border_color.f;
758   }
759   else {
760      return get_texel_2d_no_border( sp_sview, addr, x, y );
761   }
762}
763
764
765/*
766 * Here's the complete logic (HOLY CRAP) for finding next face and doing the
767 * corresponding coord wrapping, implemented by get_next_face,
768 * get_next_xcoord, get_next_ycoord.
769 * Read like that (first line):
770 * If face is +x and s coord is below zero, then
771 * new face is +z, new s is max , new t is old t
772 * (max is always cube size - 1).
773 *
774 * +x s- -> +z: s = max,   t = t
775 * +x s+ -> -z: s = 0,     t = t
776 * +x t- -> +y: s = max,   t = max-s
777 * +x t+ -> -y: s = max,   t = s
778 *
779 * -x s- -> -z: s = max,   t = t
780 * -x s+ -> +z: s = 0,     t = t
781 * -x t- -> +y: s = 0,     t = s
782 * -x t+ -> -y: s = 0,     t = max-s
783 *
784 * +y s- -> -x: s = t,     t = 0
785 * +y s+ -> +x: s = max-t, t = 0
786 * +y t- -> -z: s = max-s, t = 0
787 * +y t+ -> +z: s = s,     t = 0
788 *
789 * -y s- -> -x: s = max-t, t = max
790 * -y s+ -> +x: s = t,     t = max
791 * -y t- -> +z: s = s,     t = max
792 * -y t+ -> -z: s = max-s, t = max
793
794 * +z s- -> -x: s = max,   t = t
795 * +z s+ -> +x: s = 0,     t = t
796 * +z t- -> +y: s = s,     t = max
797 * +z t+ -> -y: s = s,     t = 0
798
799 * -z s- -> +x: s = max,   t = t
800 * -z s+ -> -x: s = 0,     t = t
801 * -z t- -> +y: s = max-s, t = 0
802 * -z t+ -> -y: s = max-s, t = max
803 */
804
805
806/*
807 * seamless cubemap neighbour array.
808 * this array is used to find the adjacent face in each of 4 directions,
809 * left, right, up, down. (or -x, +x, -y, +y).
810 */
811static const unsigned face_array[PIPE_TEX_FACE_MAX][4] = {
812   /* pos X first then neg X is Z different, Y the same */
813   /* PIPE_TEX_FACE_POS_X,*/
814   { PIPE_TEX_FACE_POS_Z, PIPE_TEX_FACE_NEG_Z,
815     PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y },
816   /* PIPE_TEX_FACE_NEG_X */
817   { PIPE_TEX_FACE_NEG_Z, PIPE_TEX_FACE_POS_Z,
818     PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y },
819
820   /* pos Y first then neg Y is X different, X the same */
821   /* PIPE_TEX_FACE_POS_Y */
822   { PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X,
823     PIPE_TEX_FACE_NEG_Z, PIPE_TEX_FACE_POS_Z },
824
825   /* PIPE_TEX_FACE_NEG_Y */
826   { PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X,
827     PIPE_TEX_FACE_POS_Z, PIPE_TEX_FACE_NEG_Z },
828
829   /* pos Z first then neg Y is X different, X the same */
830   /* PIPE_TEX_FACE_POS_Z */
831   { PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X,
832     PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y },
833
834   /* PIPE_TEX_FACE_NEG_Z */
835   { PIPE_TEX_FACE_POS_X, PIPE_TEX_FACE_NEG_X,
836     PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y }
837};
838
839static inline unsigned
840get_next_face(unsigned face, int idx)
841{
842   return face_array[face][idx];
843}
844
845/*
846 * return a new xcoord based on old face, old coords, cube size
847 * and fall_off_index (0 for x-, 1 for x+, 2 for y-, 3 for y+)
848 */
849static inline int
850get_next_xcoord(unsigned face, unsigned fall_off_index, int max, int xc, int yc)
851{
852   if ((face == 0 && fall_off_index != 1) ||
853       (face == 1 && fall_off_index == 0) ||
854       (face == 4 && fall_off_index == 0) ||
855       (face == 5 && fall_off_index == 0)) {
856      return max;
857   }
858   if ((face == 1 && fall_off_index != 0) ||
859       (face == 0 && fall_off_index == 1) ||
860       (face == 4 && fall_off_index == 1) ||
861       (face == 5 && fall_off_index == 1)) {
862      return 0;
863   }
864   if ((face == 4 && fall_off_index >= 2) ||
865       (face == 2 && fall_off_index == 3) ||
866       (face == 3 && fall_off_index == 2)) {
867      return xc;
868   }
869   if ((face == 5 && fall_off_index >= 2) ||
870       (face == 2 && fall_off_index == 2) ||
871       (face == 3 && fall_off_index == 3)) {
872      return max - xc;
873   }
874   if ((face == 2 && fall_off_index == 0) ||
875       (face == 3 && fall_off_index == 1)) {
876      return yc;
877   }
878   /* (face == 2 && fall_off_index == 1) ||
879      (face == 3 && fall_off_index == 0)) */
880   return max - yc;
881}
882
883/*
884 * return a new ycoord based on old face, old coords, cube size
885 * and fall_off_index (0 for x-, 1 for x+, 2 for y-, 3 for y+)
886 */
887static inline int
888get_next_ycoord(unsigned face, unsigned fall_off_index, int max, int xc, int yc)
889{
890   if ((fall_off_index <= 1) && (face <= 1 || face >= 4)) {
891      return yc;
892   }
893   if (face == 2 ||
894       (face == 4 && fall_off_index == 3) ||
895       (face == 5 && fall_off_index == 2)) {
896      return 0;
897   }
898   if (face == 3 ||
899       (face == 4 && fall_off_index == 2) ||
900       (face == 5 && fall_off_index == 3)) {
901      return max;
902   }
903   if ((face == 0 && fall_off_index == 3) ||
904       (face == 1 && fall_off_index == 2)) {
905      return xc;
906   }
907   /* (face == 0 && fall_off_index == 2) ||
908      (face == 1 && fall_off_index == 3) */
909   return max - xc;
910}
911
912
913/* Gather a quad of adjacent texels within a tile:
914 */
915static inline void
916get_texel_quad_2d_no_border_single_tile(const struct sp_sampler_view *sp_sview,
917                                        union tex_tile_address addr,
918                                        unsigned x, unsigned y,
919                                        const float *out[4])
920{
921    const struct softpipe_tex_cached_tile *tile;
922
923   addr.bits.x = x / TEX_TILE_SIZE;
924   addr.bits.y = y / TEX_TILE_SIZE;
925   y %= TEX_TILE_SIZE;
926   x %= TEX_TILE_SIZE;
927
928   tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
929
930   out[0] = &tile->data.color[y  ][x  ][0];
931   out[1] = &tile->data.color[y  ][x+1][0];
932   out[2] = &tile->data.color[y+1][x  ][0];
933   out[3] = &tile->data.color[y+1][x+1][0];
934}
935
936
937/* Gather a quad of potentially non-adjacent texels:
938 */
939static inline void
940get_texel_quad_2d_no_border(const struct sp_sampler_view *sp_sview,
941                            union tex_tile_address addr,
942                            int x0, int y0,
943                            int x1, int y1,
944                            const float *out[4])
945{
946   out[0] = get_texel_2d_no_border( sp_sview, addr, x0, y0 );
947   out[1] = get_texel_2d_no_border( sp_sview, addr, x1, y0 );
948   out[2] = get_texel_2d_no_border( sp_sview, addr, x0, y1 );
949   out[3] = get_texel_2d_no_border( sp_sview, addr, x1, y1 );
950}
951
952
953/* 3d variants:
954 */
955static inline const float *
956get_texel_3d_no_border(const struct sp_sampler_view *sp_sview,
957                       union tex_tile_address addr, int x, int y, int z)
958{
959   const struct softpipe_tex_cached_tile *tile;
960
961   addr.bits.x = x / TEX_TILE_SIZE;
962   addr.bits.y = y / TEX_TILE_SIZE;
963   addr.bits.z = z;
964   y %= TEX_TILE_SIZE;
965   x %= TEX_TILE_SIZE;
966
967   tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
968
969   return &tile->data.color[y][x][0];
970}
971
972
973static inline const float *
974get_texel_3d(const struct sp_sampler_view *sp_sview,
975             const struct sp_sampler *sp_samp,
976             union tex_tile_address addr, int x, int y, int z)
977{
978   const struct pipe_resource *texture = sp_sview->base.texture;
979   const unsigned level = addr.bits.level;
980
981   if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
982       y < 0 || y >= (int) u_minify(texture->height0, level) ||
983       z < 0 || z >= (int) u_minify(texture->depth0, level)) {
984      return sp_sview->border_color.f;
985   }
986   else {
987      return get_texel_3d_no_border( sp_sview, addr, x, y, z );
988   }
989}
990
991
992/* Get texel pointer for 1D array texture */
993static inline const float *
994get_texel_1d_array(const struct sp_sampler_view *sp_sview,
995                   const struct sp_sampler *sp_samp,
996                   union tex_tile_address addr, int x, int y)
997{
998   const struct pipe_resource *texture = sp_sview->base.texture;
999   const unsigned level = addr.bits.level;
1000
1001   if (x < 0 || x >= (int) u_minify(texture->width0, level)) {
1002      return sp_sview->border_color.f;
1003   }
1004   else {
1005      return get_texel_2d_no_border(sp_sview, addr, x, y);
1006   }
1007}
1008
1009
1010/* Get texel pointer for 2D array texture */
1011static inline const float *
1012get_texel_2d_array(const struct sp_sampler_view *sp_sview,
1013                   const struct sp_sampler *sp_samp,
1014                   union tex_tile_address addr, int x, int y, int layer)
1015{
1016   const struct pipe_resource *texture = sp_sview->base.texture;
1017   const unsigned level = addr.bits.level;
1018
1019   assert(layer < (int) texture->array_size);
1020   assert(layer >= 0);
1021
1022   if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
1023       y < 0 || y >= (int) u_minify(texture->height0, level)) {
1024      return sp_sview->border_color.f;
1025   }
1026   else {
1027      return get_texel_3d_no_border(sp_sview, addr, x, y, layer);
1028   }
1029}
1030
1031
1032static inline const float *
1033get_texel_cube_seamless(const struct sp_sampler_view *sp_sview,
1034                        union tex_tile_address addr, int x, int y,
1035                        float *corner, int layer, unsigned face)
1036{
1037   const struct pipe_resource *texture = sp_sview->base.texture;
1038   const unsigned level = addr.bits.level;
1039   int new_x, new_y, max_x;
1040
1041   max_x = (int) u_minify(texture->width0, level);
1042
1043   assert(texture->width0 == texture->height0);
1044   new_x = x;
1045   new_y = y;
1046
1047   /* change the face */
1048   if (x < 0) {
1049      /*
1050       * Cheat with corners. They are difficult and I believe because we don't get
1051       * per-pixel faces we can actually have multiple corner texels per pixel,
1052       * which screws things up majorly in any case (as the per spec behavior is
1053       * to average the 3 remaining texels, which we might not have).
1054       * Hence just make sure that the 2nd coord is clamped, will simply pick the
1055       * sample which would have fallen off the x coord, but not y coord.
1056       * So the filter weight of the samples will be wrong, but at least this
1057       * ensures that only valid texels near the corner are used.
1058       */
1059      if (y < 0 || y >= max_x) {
1060         y = CLAMP(y, 0, max_x - 1);
1061      }
1062      new_x = get_next_xcoord(face, 0, max_x -1, x, y);
1063      new_y = get_next_ycoord(face, 0, max_x -1, x, y);
1064      face = get_next_face(face, 0);
1065   } else if (x >= max_x) {
1066      if (y < 0 || y >= max_x) {
1067         y = CLAMP(y, 0, max_x - 1);
1068      }
1069      new_x = get_next_xcoord(face, 1, max_x -1, x, y);
1070      new_y = get_next_ycoord(face, 1, max_x -1, x, y);
1071      face = get_next_face(face, 1);
1072   } else if (y < 0) {
1073      new_x = get_next_xcoord(face, 2, max_x -1, x, y);
1074      new_y = get_next_ycoord(face, 2, max_x -1, x, y);
1075      face = get_next_face(face, 2);
1076   } else if (y >= max_x) {
1077      new_x = get_next_xcoord(face, 3, max_x -1, x, y);
1078      new_y = get_next_ycoord(face, 3, max_x -1, x, y);
1079      face = get_next_face(face, 3);
1080   }
1081
1082   return get_texel_3d_no_border(sp_sview, addr, new_x, new_y, layer + face);
1083}
1084
1085
1086/* Get texel pointer for cube array texture */
1087static inline const float *
1088get_texel_cube_array(const struct sp_sampler_view *sp_sview,
1089                     const struct sp_sampler *sp_samp,
1090                     union tex_tile_address addr, int x, int y, int layer)
1091{
1092   const struct pipe_resource *texture = sp_sview->base.texture;
1093   const unsigned level = addr.bits.level;
1094
1095   assert(layer < (int) texture->array_size);
1096   assert(layer >= 0);
1097
1098   if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
1099       y < 0 || y >= (int) u_minify(texture->height0, level)) {
1100      return sp_sview->border_color.f;
1101   }
1102   else {
1103      return get_texel_3d_no_border(sp_sview, addr, x, y, layer);
1104   }
1105}
1106/**
1107 * Given the logbase2 of a mipmap's base level size and a mipmap level,
1108 * return the size (in texels) of that mipmap level.
1109 * For example, if level[0].width = 256 then base_pot will be 8.
1110 * If level = 2, then we'll return 64 (the width at level=2).
1111 * Return 1 if level > base_pot.
1112 */
1113static inline unsigned
1114pot_level_size(unsigned base_pot, unsigned level)
1115{
1116   return (base_pot >= level) ? (1 << (base_pot - level)) : 1;
1117}
1118
1119
1120static void
1121print_sample(const char *function, const float *rgba)
1122{
1123   debug_printf("%s %g %g %g %g\n",
1124                function,
1125                rgba[0], rgba[TGSI_NUM_CHANNELS], rgba[2*TGSI_NUM_CHANNELS], rgba[3*TGSI_NUM_CHANNELS]);
1126}
1127
1128
1129static void
1130print_sample_4(const char *function, float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
1131{
1132   debug_printf("%s %g %g %g %g, %g %g %g %g, %g %g %g %g, %g %g %g %g\n",
1133                function,
1134                rgba[0][0], rgba[1][0], rgba[2][0], rgba[3][0],
1135                rgba[0][1], rgba[1][1], rgba[2][1], rgba[3][1],
1136                rgba[0][2], rgba[1][2], rgba[2][2], rgba[3][2],
1137                rgba[0][3], rgba[1][3], rgba[2][3], rgba[3][3]);
1138}
1139
1140
1141/* Some image-filter fastpaths:
1142 */
1143static inline void
1144img_filter_2d_linear_repeat_POT(const struct sp_sampler_view *sp_sview,
1145                                const struct sp_sampler *sp_samp,
1146                                const struct img_filter_args *args,
1147                                float *rgba)
1148{
1149   const unsigned xpot = pot_level_size(sp_sview->xpot, args->level);
1150   const unsigned ypot = pot_level_size(sp_sview->ypot, args->level);
1151   const int xmax = (xpot - 1) & (TEX_TILE_SIZE - 1); /* MIN2(TEX_TILE_SIZE, xpot) - 1; */
1152   const int ymax = (ypot - 1) & (TEX_TILE_SIZE - 1); /* MIN2(TEX_TILE_SIZE, ypot) - 1; */
1153   union tex_tile_address addr;
1154   int c;
1155
1156   const float u = (args->s * xpot - 0.5F) + args->offset[0];
1157   const float v = (args->t * ypot - 0.5F) + args->offset[1];
1158
1159   const int uflr = util_ifloor(u);
1160   const int vflr = util_ifloor(v);
1161
1162   const float xw = u - (float)uflr;
1163   const float yw = v - (float)vflr;
1164
1165   const int x0 = uflr & (xpot - 1);
1166   const int y0 = vflr & (ypot - 1);
1167
1168   const float *tx[4];
1169
1170   addr.value = 0;
1171   addr.bits.level = args->level;
1172   addr.bits.z = sp_sview->base.u.tex.first_layer;
1173
1174   /* Can we fetch all four at once:
1175    */
1176   if (x0 < xmax && y0 < ymax) {
1177      get_texel_quad_2d_no_border_single_tile(sp_sview, addr, x0, y0, tx);
1178   }
1179   else {
1180      const unsigned x1 = (x0 + 1) & (xpot - 1);
1181      const unsigned y1 = (y0 + 1) & (ypot - 1);
1182      get_texel_quad_2d_no_border(sp_sview, addr, x0, y0, x1, y1, tx);
1183   }
1184
1185   /* interpolate R, G, B, A */
1186   for (c = 0; c < TGSI_NUM_CHANNELS; c++) {
1187      rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1188                                       tx[0][c], tx[1][c],
1189                                       tx[2][c], tx[3][c]);
1190   }
1191
1192   if (DEBUG_TEX) {
1193      print_sample(__FUNCTION__, rgba);
1194   }
1195}
1196
1197
1198static inline void
1199img_filter_2d_nearest_repeat_POT(const struct sp_sampler_view *sp_sview,
1200                                 const struct sp_sampler *sp_samp,
1201                                 const struct img_filter_args *args,
1202                                 float *rgba)
1203{
1204   const unsigned xpot = pot_level_size(sp_sview->xpot, args->level);
1205   const unsigned ypot = pot_level_size(sp_sview->ypot, args->level);
1206   const float *out;
1207   union tex_tile_address addr;
1208   int c;
1209
1210   const float u = args->s * xpot + args->offset[0];
1211   const float v = args->t * ypot + args->offset[1];
1212
1213   const int uflr = util_ifloor(u);
1214   const int vflr = util_ifloor(v);
1215
1216   const int x0 = uflr & (xpot - 1);
1217   const int y0 = vflr & (ypot - 1);
1218
1219   addr.value = 0;
1220   addr.bits.level = args->level;
1221   addr.bits.z = sp_sview->base.u.tex.first_layer;
1222
1223   out = get_texel_2d_no_border(sp_sview, addr, x0, y0);
1224   for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1225      rgba[TGSI_NUM_CHANNELS*c] = out[c];
1226
1227   if (DEBUG_TEX) {
1228      print_sample(__FUNCTION__, rgba);
1229   }
1230}
1231
1232
1233static inline void
1234img_filter_2d_nearest_clamp_POT(const struct sp_sampler_view *sp_sview,
1235                                const struct sp_sampler *sp_samp,
1236                                const struct img_filter_args *args,
1237                                float *rgba)
1238{
1239   const unsigned xpot = pot_level_size(sp_sview->xpot, args->level);
1240   const unsigned ypot = pot_level_size(sp_sview->ypot, args->level);
1241   union tex_tile_address addr;
1242   int c;
1243
1244   const float u = args->s * xpot + args->offset[0];
1245   const float v = args->t * ypot + args->offset[1];
1246
1247   int x0, y0;
1248   const float *out;
1249
1250   addr.value = 0;
1251   addr.bits.level = args->level;
1252   addr.bits.z = sp_sview->base.u.tex.first_layer;
1253
1254   x0 = util_ifloor(u);
1255   if (x0 < 0)
1256      x0 = 0;
1257   else if (x0 > (int) xpot - 1)
1258      x0 = xpot - 1;
1259
1260   y0 = util_ifloor(v);
1261   if (y0 < 0)
1262      y0 = 0;
1263   else if (y0 > (int) ypot - 1)
1264      y0 = ypot - 1;
1265
1266   out = get_texel_2d_no_border(sp_sview, addr, x0, y0);
1267   for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1268      rgba[TGSI_NUM_CHANNELS*c] = out[c];
1269
1270   if (DEBUG_TEX) {
1271      print_sample(__FUNCTION__, rgba);
1272   }
1273}
1274
1275
1276static void
1277img_filter_1d_nearest(const struct sp_sampler_view *sp_sview,
1278                      const struct sp_sampler *sp_samp,
1279                      const struct img_filter_args *args,
1280                      float *rgba)
1281{
1282   const struct pipe_resource *texture = sp_sview->base.texture;
1283   const int width = u_minify(texture->width0, args->level);
1284   int x;
1285   union tex_tile_address addr;
1286   const float *out;
1287   int c;
1288
1289   assert(width > 0);
1290
1291   addr.value = 0;
1292   addr.bits.level = args->level;
1293
1294   sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1295
1296   out = get_texel_1d_array(sp_sview, sp_samp, addr, x,
1297                            sp_sview->base.u.tex.first_layer);
1298   for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1299      rgba[TGSI_NUM_CHANNELS*c] = out[c];
1300
1301   if (DEBUG_TEX) {
1302      print_sample(__FUNCTION__, rgba);
1303   }
1304}
1305
1306
1307static void
1308img_filter_1d_array_nearest(const struct sp_sampler_view *sp_sview,
1309                            const struct sp_sampler *sp_samp,
1310                            const struct img_filter_args *args,
1311                            float *rgba)
1312{
1313   const struct pipe_resource *texture = sp_sview->base.texture;
1314   const int width = u_minify(texture->width0, args->level);
1315   const int layer = coord_to_layer(args->t, sp_sview->base.u.tex.first_layer,
1316                                    sp_sview->base.u.tex.last_layer);
1317   int x;
1318   union tex_tile_address addr;
1319   const float *out;
1320   int c;
1321
1322   assert(width > 0);
1323
1324   addr.value = 0;
1325   addr.bits.level = args->level;
1326
1327   sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1328
1329   out = get_texel_1d_array(sp_sview, sp_samp, addr, x, layer);
1330   for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1331      rgba[TGSI_NUM_CHANNELS*c] = out[c];
1332
1333   if (DEBUG_TEX) {
1334      print_sample(__FUNCTION__, rgba);
1335   }
1336}
1337
1338
1339static void
1340img_filter_2d_nearest(const struct sp_sampler_view *sp_sview,
1341                      const struct sp_sampler *sp_samp,
1342                      const struct img_filter_args *args,
1343                      float *rgba)
1344{
1345   const struct pipe_resource *texture = sp_sview->base.texture;
1346   const int width = u_minify(texture->width0, args->level);
1347   const int height = u_minify(texture->height0, args->level);
1348   int x, y;
1349   union tex_tile_address addr;
1350   const float *out;
1351   int c;
1352
1353   assert(width > 0);
1354   assert(height > 0);
1355
1356   addr.value = 0;
1357   addr.bits.level = args->level;
1358   addr.bits.z = sp_sview->base.u.tex.first_layer;
1359
1360   sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1361   sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1362
1363   out = get_texel_2d(sp_sview, sp_samp, addr, x, y);
1364   for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1365      rgba[TGSI_NUM_CHANNELS*c] = out[c];
1366
1367   if (DEBUG_TEX) {
1368      print_sample(__FUNCTION__, rgba);
1369   }
1370}
1371
1372
1373static void
1374img_filter_2d_array_nearest(const struct sp_sampler_view *sp_sview,
1375                            const struct sp_sampler *sp_samp,
1376                            const struct img_filter_args *args,
1377                            float *rgba)
1378{
1379   const struct pipe_resource *texture = sp_sview->base.texture;
1380   const int width = u_minify(texture->width0, args->level);
1381   const int height = u_minify(texture->height0, args->level);
1382   const int layer = coord_to_layer(args->p, sp_sview->base.u.tex.first_layer,
1383                                    sp_sview->base.u.tex.last_layer);
1384   int x, y;
1385   union tex_tile_address addr;
1386   const float *out;
1387   int c;
1388
1389   assert(width > 0);
1390   assert(height > 0);
1391
1392   addr.value = 0;
1393   addr.bits.level = args->level;
1394
1395   sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1396   sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1397
1398   out = get_texel_2d_array(sp_sview, sp_samp, addr, x, y, layer);
1399   for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1400      rgba[TGSI_NUM_CHANNELS*c] = out[c];
1401
1402   if (DEBUG_TEX) {
1403      print_sample(__FUNCTION__, rgba);
1404   }
1405}
1406
1407
1408static void
1409img_filter_cube_nearest(const struct sp_sampler_view *sp_sview,
1410                        const struct sp_sampler *sp_samp,
1411                        const struct img_filter_args *args,
1412                        float *rgba)
1413{
1414   const struct pipe_resource *texture = sp_sview->base.texture;
1415   const int width = u_minify(texture->width0, args->level);
1416   const int height = u_minify(texture->height0, args->level);
1417   const int layerface = args->face_id + sp_sview->base.u.tex.first_layer;
1418   int x, y;
1419   union tex_tile_address addr;
1420   const float *out;
1421   int c;
1422
1423   assert(width > 0);
1424   assert(height > 0);
1425
1426   addr.value = 0;
1427   addr.bits.level = args->level;
1428
1429   /*
1430    * If NEAREST filtering is done within a miplevel, always apply wrap
1431    * mode CLAMP_TO_EDGE.
1432    */
1433   if (sp_samp->base.seamless_cube_map) {
1434      wrap_nearest_clamp_to_edge(args->s, width, args->offset[0], &x);
1435      wrap_nearest_clamp_to_edge(args->t, height, args->offset[1], &y);
1436   } else {
1437      /* Would probably make sense to ignore mode and just do edge clamp */
1438      sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1439      sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1440   }
1441
1442   out = get_texel_cube_array(sp_sview, sp_samp, addr, x, y, layerface);
1443   for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1444      rgba[TGSI_NUM_CHANNELS*c] = out[c];
1445
1446   if (DEBUG_TEX) {
1447      print_sample(__FUNCTION__, rgba);
1448   }
1449}
1450
1451static void
1452img_filter_cube_array_nearest(const struct sp_sampler_view *sp_sview,
1453                              const struct sp_sampler *sp_samp,
1454                              const struct img_filter_args *args,
1455                              float *rgba)
1456{
1457   const struct pipe_resource *texture = sp_sview->base.texture;
1458   const int width = u_minify(texture->width0, args->level);
1459   const int height = u_minify(texture->height0, args->level);
1460   const int layerface = CLAMP(6 * util_ifloor(args->p + 0.5f) + sp_sview->base.u.tex.first_layer,
1461                               sp_sview->base.u.tex.first_layer,
1462                               sp_sview->base.u.tex.last_layer - 5) + args->face_id;
1463   int x, y;
1464   union tex_tile_address addr;
1465   const float *out;
1466   int c;
1467
1468   assert(width > 0);
1469   assert(height > 0);
1470
1471   addr.value = 0;
1472   addr.bits.level = args->level;
1473
1474   sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1475   sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1476
1477   out = get_texel_cube_array(sp_sview, sp_samp, addr, x, y, layerface);
1478   for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1479      rgba[TGSI_NUM_CHANNELS*c] = out[c];
1480
1481   if (DEBUG_TEX) {
1482      print_sample(__FUNCTION__, rgba);
1483   }
1484}
1485
1486static void
1487img_filter_3d_nearest(const struct sp_sampler_view *sp_sview,
1488                      const struct sp_sampler *sp_samp,
1489                      const struct img_filter_args *args,
1490                      float *rgba)
1491{
1492   const struct pipe_resource *texture = sp_sview->base.texture;
1493   const int width = u_minify(texture->width0, args->level);
1494   const int height = u_minify(texture->height0, args->level);
1495   const int depth = u_minify(texture->depth0, args->level);
1496   int x, y, z;
1497   union tex_tile_address addr;
1498   const float *out;
1499   int c;
1500
1501   assert(width > 0);
1502   assert(height > 0);
1503   assert(depth > 0);
1504
1505   sp_samp->nearest_texcoord_s(args->s, width,  args->offset[0], &x);
1506   sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1507   sp_samp->nearest_texcoord_p(args->p, depth,  args->offset[2], &z);
1508
1509   addr.value = 0;
1510   addr.bits.level = args->level;
1511
1512   out = get_texel_3d(sp_sview, sp_samp, addr, x, y, z);
1513   for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1514      rgba[TGSI_NUM_CHANNELS*c] = out[c];
1515}
1516
1517
1518static void
1519img_filter_1d_linear(const struct sp_sampler_view *sp_sview,
1520                     const struct sp_sampler *sp_samp,
1521                     const struct img_filter_args *args,
1522                     float *rgba)
1523{
1524   const struct pipe_resource *texture = sp_sview->base.texture;
1525   const int width = u_minify(texture->width0, args->level);
1526   int x0, x1;
1527   float xw; /* weights */
1528   union tex_tile_address addr;
1529   const float *tx0, *tx1;
1530   int c;
1531
1532   assert(width > 0);
1533
1534   addr.value = 0;
1535   addr.bits.level = args->level;
1536
1537   sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
1538
1539   tx0 = get_texel_1d_array(sp_sview, sp_samp, addr, x0,
1540                            sp_sview->base.u.tex.first_layer);
1541   tx1 = get_texel_1d_array(sp_sview, sp_samp, addr, x1,
1542                            sp_sview->base.u.tex.first_layer);
1543
1544   /* interpolate R, G, B, A */
1545   for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1546      rgba[TGSI_NUM_CHANNELS*c] = lerp(xw, tx0[c], tx1[c]);
1547}
1548
1549
1550static void
1551img_filter_1d_array_linear(const struct sp_sampler_view *sp_sview,
1552                           const struct sp_sampler *sp_samp,
1553                           const struct img_filter_args *args,
1554                           float *rgba)
1555{
1556   const struct pipe_resource *texture = sp_sview->base.texture;
1557   const int width = u_minify(texture->width0, args->level);
1558   const int layer = coord_to_layer(args->t, sp_sview->base.u.tex.first_layer,
1559                                    sp_sview->base.u.tex.last_layer);
1560   int x0, x1;
1561   float xw; /* weights */
1562   union tex_tile_address addr;
1563   const float *tx0, *tx1;
1564   int c;
1565
1566   assert(width > 0);
1567
1568   addr.value = 0;
1569   addr.bits.level = args->level;
1570
1571   sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
1572
1573   tx0 = get_texel_1d_array(sp_sview, sp_samp, addr, x0, layer);
1574   tx1 = get_texel_1d_array(sp_sview, sp_samp, addr, x1, layer);
1575
1576   /* interpolate R, G, B, A */
1577   for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1578      rgba[TGSI_NUM_CHANNELS*c] = lerp(xw, tx0[c], tx1[c]);
1579}
1580
1581/*
1582 * Retrieve the gathered value, need to convert to the
1583 * TGSI expected interface, and take component select
1584 * and swizzling into account.
1585 */
1586static float
1587get_gather_value(const struct sp_sampler_view *sp_sview,
1588                 int chan_in, int comp_sel,
1589                 const float *tx[4])
1590{
1591   int chan;
1592   unsigned swizzle;
1593
1594   /*
1595    * softpipe samples in a different order
1596    * to TGSI expects, so we need to swizzle,
1597    * the samples into the correct slots.
1598    */
1599   switch (chan_in) {
1600   case 0:
1601      chan = 2;
1602      break;
1603   case 1:
1604      chan = 3;
1605      break;
1606   case 2:
1607      chan = 1;
1608      break;
1609   case 3:
1610      chan = 0;
1611      break;
1612   default:
1613      assert(0);
1614      return 0.0;
1615   }
1616
1617   /* pick which component to use for the swizzle */
1618   switch (comp_sel) {
1619   case 0:
1620      swizzle = sp_sview->base.swizzle_r;
1621      break;
1622   case 1:
1623      swizzle = sp_sview->base.swizzle_g;
1624      break;
1625   case 2:
1626      swizzle = sp_sview->base.swizzle_b;
1627      break;
1628   case 3:
1629      swizzle = sp_sview->base.swizzle_a;
1630      break;
1631   default:
1632      assert(0);
1633      return 0.0;
1634   }
1635
1636   /* get correct result using the channel and swizzle */
1637   switch (swizzle) {
1638   case PIPE_SWIZZLE_0:
1639      return 0.0;
1640   case PIPE_SWIZZLE_1:
1641      return sp_sview->oneval;
1642   default:
1643      return tx[chan][swizzle];
1644   }
1645}
1646
1647
1648static void
1649img_filter_2d_linear(const struct sp_sampler_view *sp_sview,
1650                     const struct sp_sampler *sp_samp,
1651                     const struct img_filter_args *args,
1652                     float *rgba)
1653{
1654   const struct pipe_resource *texture = sp_sview->base.texture;
1655   const int width = u_minify(texture->width0, args->level);
1656   const int height = u_minify(texture->height0, args->level);
1657   int x0, y0, x1, y1;
1658   float xw, yw; /* weights */
1659   union tex_tile_address addr;
1660   const float *tx[4];
1661   int c;
1662
1663   assert(width > 0);
1664   assert(height > 0);
1665
1666   addr.value = 0;
1667   addr.bits.level = args->level;
1668   addr.bits.z = sp_sview->base.u.tex.first_layer;
1669
1670   sp_samp->linear_texcoord_s(args->s, width,  args->offset[0], &x0, &x1, &xw);
1671   sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1672
1673   tx[0] = get_texel_2d(sp_sview, sp_samp, addr, x0, y0);
1674   tx[1] = get_texel_2d(sp_sview, sp_samp, addr, x1, y0);
1675   tx[2] = get_texel_2d(sp_sview, sp_samp, addr, x0, y1);
1676   tx[3] = get_texel_2d(sp_sview, sp_samp, addr, x1, y1);
1677
1678   if (args->gather_only) {
1679      for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1680         rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
1681                                                      args->gather_comp,
1682                                                      tx);
1683   } else {
1684      /* interpolate R, G, B, A */
1685      for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1686         rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1687                                             tx[0][c], tx[1][c],
1688                                             tx[2][c], tx[3][c]);
1689   }
1690}
1691
1692
1693static void
1694img_filter_2d_array_linear(const struct sp_sampler_view *sp_sview,
1695                           const struct sp_sampler *sp_samp,
1696                           const struct img_filter_args *args,
1697                           float *rgba)
1698{
1699   const struct pipe_resource *texture = sp_sview->base.texture;
1700   const int width = u_minify(texture->width0, args->level);
1701   const int height = u_minify(texture->height0, args->level);
1702   const int layer = coord_to_layer(args->p, sp_sview->base.u.tex.first_layer,
1703                                    sp_sview->base.u.tex.last_layer);
1704   int x0, y0, x1, y1;
1705   float xw, yw; /* weights */
1706   union tex_tile_address addr;
1707   const float *tx[4];
1708   int c;
1709
1710   assert(width > 0);
1711   assert(height > 0);
1712
1713   addr.value = 0;
1714   addr.bits.level = args->level;
1715
1716   sp_samp->linear_texcoord_s(args->s, width,  args->offset[0], &x0, &x1, &xw);
1717   sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1718
1719   tx[0] = get_texel_2d_array(sp_sview, sp_samp, addr, x0, y0, layer);
1720   tx[1] = get_texel_2d_array(sp_sview, sp_samp, addr, x1, y0, layer);
1721   tx[2] = get_texel_2d_array(sp_sview, sp_samp, addr, x0, y1, layer);
1722   tx[3] = get_texel_2d_array(sp_sview, sp_samp, addr, x1, y1, layer);
1723
1724   if (args->gather_only) {
1725      for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1726         rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
1727                                                      args->gather_comp,
1728                                                      tx);
1729   } else {
1730      /* interpolate R, G, B, A */
1731      for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1732         rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1733                                             tx[0][c], tx[1][c],
1734                                             tx[2][c], tx[3][c]);
1735   }
1736}
1737
1738
1739static void
1740img_filter_cube_linear(const struct sp_sampler_view *sp_sview,
1741                       const struct sp_sampler *sp_samp,
1742                       const struct img_filter_args *args,
1743                       float *rgba)
1744{
1745   const struct pipe_resource *texture = sp_sview->base.texture;
1746   const int width = u_minify(texture->width0, args->level);
1747   const int height = u_minify(texture->height0, args->level);
1748   const int layer = sp_sview->base.u.tex.first_layer;
1749   int x0, y0, x1, y1;
1750   float xw, yw; /* weights */
1751   union tex_tile_address addr;
1752   const float *tx[4];
1753   float corner0[TGSI_QUAD_SIZE], corner1[TGSI_QUAD_SIZE],
1754         corner2[TGSI_QUAD_SIZE], corner3[TGSI_QUAD_SIZE];
1755   int c;
1756
1757   assert(width > 0);
1758   assert(height > 0);
1759
1760   addr.value = 0;
1761   addr.bits.level = args->level;
1762
1763   /*
1764    * For seamless if LINEAR filtering is done within a miplevel,
1765    * always apply wrap mode CLAMP_TO_BORDER.
1766    */
1767   if (sp_samp->base.seamless_cube_map) {
1768      /* Note this is a bit overkill, actual clamping is not required */
1769      wrap_linear_clamp_to_border(args->s, width, args->offset[0], &x0, &x1, &xw);
1770      wrap_linear_clamp_to_border(args->t, height, args->offset[1], &y0, &y1, &yw);
1771   } else {
1772      /* Would probably make sense to ignore mode and just do edge clamp */
1773      sp_samp->linear_texcoord_s(args->s, width,  args->offset[0], &x0, &x1, &xw);
1774      sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1775   }
1776
1777   if (sp_samp->base.seamless_cube_map) {
1778      tx[0] = get_texel_cube_seamless(sp_sview, addr, x0, y0, corner0, layer, args->face_id);
1779      tx[1] = get_texel_cube_seamless(sp_sview, addr, x1, y0, corner1, layer, args->face_id);
1780      tx[2] = get_texel_cube_seamless(sp_sview, addr, x0, y1, corner2, layer, args->face_id);
1781      tx[3] = get_texel_cube_seamless(sp_sview, addr, x1, y1, corner3, layer, args->face_id);
1782   } else {
1783      tx[0] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y0, layer + args->face_id);
1784      tx[1] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y0, layer + args->face_id);
1785      tx[2] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y1, layer + args->face_id);
1786      tx[3] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y1, layer + args->face_id);
1787   }
1788
1789   if (args->gather_only) {
1790      for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1791         rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
1792                                                      args->gather_comp,
1793                                                      tx);
1794   } else {
1795      /* interpolate R, G, B, A */
1796      for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1797         rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1798                                             tx[0][c], tx[1][c],
1799                                             tx[2][c], tx[3][c]);
1800   }
1801}
1802
1803
1804static void
1805img_filter_cube_array_linear(const struct sp_sampler_view *sp_sview,
1806                             const struct sp_sampler *sp_samp,
1807                             const struct img_filter_args *args,
1808                             float *rgba)
1809{
1810   const struct pipe_resource *texture = sp_sview->base.texture;
1811   const int width = u_minify(texture->width0, args->level);
1812   const int height = u_minify(texture->height0, args->level);
1813
1814   const int layer = CLAMP(6 * util_ifloor(args->p + 0.5f) + sp_sview->base.u.tex.first_layer,
1815                           sp_sview->base.u.tex.first_layer,
1816                           sp_sview->base.u.tex.last_layer - 5);
1817
1818   int x0, y0, x1, y1;
1819   float xw, yw; /* weights */
1820   union tex_tile_address addr;
1821   const float *tx[4];
1822   float corner0[TGSI_QUAD_SIZE], corner1[TGSI_QUAD_SIZE],
1823         corner2[TGSI_QUAD_SIZE], corner3[TGSI_QUAD_SIZE];
1824   int c;
1825
1826   assert(width > 0);
1827   assert(height > 0);
1828
1829   addr.value = 0;
1830   addr.bits.level = args->level;
1831
1832   /*
1833    * For seamless if LINEAR filtering is done within a miplevel,
1834    * always apply wrap mode CLAMP_TO_BORDER.
1835    */
1836   if (sp_samp->base.seamless_cube_map) {
1837      /* Note this is a bit overkill, actual clamping is not required */
1838      wrap_linear_clamp_to_border(args->s, width, args->offset[0], &x0, &x1, &xw);
1839      wrap_linear_clamp_to_border(args->t, height, args->offset[1], &y0, &y1, &yw);
1840   } else {
1841      /* Would probably make sense to ignore mode and just do edge clamp */
1842      sp_samp->linear_texcoord_s(args->s, width,  args->offset[0], &x0, &x1, &xw);
1843      sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1844   }
1845
1846   if (sp_samp->base.seamless_cube_map) {
1847      tx[0] = get_texel_cube_seamless(sp_sview, addr, x0, y0, corner0, layer, args->face_id);
1848      tx[1] = get_texel_cube_seamless(sp_sview, addr, x1, y0, corner1, layer, args->face_id);
1849      tx[2] = get_texel_cube_seamless(sp_sview, addr, x0, y1, corner2, layer, args->face_id);
1850      tx[3] = get_texel_cube_seamless(sp_sview, addr, x1, y1, corner3, layer, args->face_id);
1851   } else {
1852      tx[0] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y0, layer + args->face_id);
1853      tx[1] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y0, layer + args->face_id);
1854      tx[2] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y1, layer + args->face_id);
1855      tx[3] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y1, layer + args->face_id);
1856   }
1857
1858   if (args->gather_only) {
1859      for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1860         rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
1861                                                      args->gather_comp,
1862                                                      tx);
1863   } else {
1864      /* interpolate R, G, B, A */
1865      for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1866         rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1867                                             tx[0][c], tx[1][c],
1868                                             tx[2][c], tx[3][c]);
1869   }
1870}
1871
1872static void
1873img_filter_3d_linear(const struct sp_sampler_view *sp_sview,
1874                     const struct sp_sampler *sp_samp,
1875                     const struct img_filter_args *args,
1876                     float *rgba)
1877{
1878   const struct pipe_resource *texture = sp_sview->base.texture;
1879   const int width = u_minify(texture->width0, args->level);
1880   const int height = u_minify(texture->height0, args->level);
1881   const int depth = u_minify(texture->depth0, args->level);
1882   int x0, x1, y0, y1, z0, z1;
1883   float xw, yw, zw; /* interpolation weights */
1884   union tex_tile_address addr;
1885   const float *tx00, *tx01, *tx02, *tx03, *tx10, *tx11, *tx12, *tx13;
1886   int c;
1887
1888   addr.value = 0;
1889   addr.bits.level = args->level;
1890
1891   assert(width > 0);
1892   assert(height > 0);
1893   assert(depth > 0);
1894
1895   sp_samp->linear_texcoord_s(args->s, width,  args->offset[0], &x0, &x1, &xw);
1896   sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1897   sp_samp->linear_texcoord_p(args->p, depth,  args->offset[2], &z0, &z1, &zw);
1898
1899   tx00 = get_texel_3d(sp_sview, sp_samp, addr, x0, y0, z0);
1900   tx01 = get_texel_3d(sp_sview, sp_samp, addr, x1, y0, z0);
1901   tx02 = get_texel_3d(sp_sview, sp_samp, addr, x0, y1, z0);
1902   tx03 = get_texel_3d(sp_sview, sp_samp, addr, x1, y1, z0);
1903
1904   tx10 = get_texel_3d(sp_sview, sp_samp, addr, x0, y0, z1);
1905   tx11 = get_texel_3d(sp_sview, sp_samp, addr, x1, y0, z1);
1906   tx12 = get_texel_3d(sp_sview, sp_samp, addr, x0, y1, z1);
1907   tx13 = get_texel_3d(sp_sview, sp_samp, addr, x1, y1, z1);
1908
1909      /* interpolate R, G, B, A */
1910   for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1911      rgba[TGSI_NUM_CHANNELS*c] =  lerp_3d(xw, yw, zw,
1912                                           tx00[c], tx01[c],
1913                                           tx02[c], tx03[c],
1914                                           tx10[c], tx11[c],
1915                                           tx12[c], tx13[c]);
1916}
1917
1918
1919/* Calculate level of detail for every fragment,
1920 * with lambda already computed.
1921 * Note that lambda has already been biased by global LOD bias.
1922 * \param biased_lambda per-quad lambda.
1923 * \param lod_in per-fragment lod_bias or explicit_lod.
1924 * \param lod returns the per-fragment lod.
1925 */
1926static inline void
1927compute_lod(const struct pipe_sampler_state *sampler,
1928            enum tgsi_sampler_control control,
1929            const float biased_lambda,
1930            const float lod_in[TGSI_QUAD_SIZE],
1931            float lod[TGSI_QUAD_SIZE])
1932{
1933   const float min_lod = sampler->min_lod;
1934   const float max_lod = sampler->max_lod;
1935   uint i;
1936
1937   switch (control) {
1938   case TGSI_SAMPLER_LOD_NONE:
1939   case TGSI_SAMPLER_LOD_ZERO:
1940      lod[0] = lod[1] = lod[2] = lod[3] = CLAMP(biased_lambda, min_lod, max_lod);
1941      break;
1942   case TGSI_SAMPLER_DERIVS_EXPLICIT:
1943      for (i = 0; i < TGSI_QUAD_SIZE; i++)
1944         lod[i] = lod_in[i];
1945      break;
1946   case TGSI_SAMPLER_LOD_BIAS:
1947      for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1948         lod[i] = biased_lambda + lod_in[i];
1949         lod[i] = CLAMP(lod[i], min_lod, max_lod);
1950      }
1951      break;
1952   case TGSI_SAMPLER_LOD_EXPLICIT:
1953      for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1954         lod[i] = CLAMP(lod_in[i], min_lod, max_lod);
1955      }
1956      break;
1957   default:
1958      assert(0);
1959      lod[0] = lod[1] = lod[2] = lod[3] = 0.0f;
1960   }
1961}
1962
1963
1964/* Calculate level of detail for every fragment. The computed value is not
1965 * clamped to lod_min and lod_max.
1966 * \param lod_in per-fragment lod_bias or explicit_lod.
1967 * \param lod results per-fragment lod.
1968 */
1969static inline void
1970compute_lambda_lod_unclamped(const struct sp_sampler_view *sp_sview,
1971                             const struct sp_sampler *sp_samp,
1972                             const float s[TGSI_QUAD_SIZE],
1973                             const float t[TGSI_QUAD_SIZE],
1974                             const float p[TGSI_QUAD_SIZE],
1975                             const float derivs[3][2][TGSI_QUAD_SIZE],
1976                             const float lod_in[TGSI_QUAD_SIZE],
1977                             enum tgsi_sampler_control control,
1978                             float lod[TGSI_QUAD_SIZE])
1979{
1980   const struct pipe_sampler_state *sampler = &sp_samp->base;
1981   const float lod_bias = sampler->lod_bias;
1982   float lambda;
1983   uint i;
1984
1985   switch (control) {
1986   case TGSI_SAMPLER_LOD_NONE:
1987      lambda = sp_sview->compute_lambda(sp_sview, s, t, p) + lod_bias;
1988      lod[0] = lod[1] = lod[2] = lod[3] = lambda;
1989      break;
1990   case TGSI_SAMPLER_DERIVS_EXPLICIT:
1991      for (i = 0; i < TGSI_QUAD_SIZE; i++)
1992         lod[i] = sp_sview->compute_lambda_from_grad(sp_sview, derivs, i);
1993      break;
1994   case TGSI_SAMPLER_LOD_BIAS:
1995      lambda = sp_sview->compute_lambda(sp_sview, s, t, p) + lod_bias;
1996      for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1997         lod[i] = lambda + lod_in[i];
1998      }
1999      break;
2000   case TGSI_SAMPLER_LOD_EXPLICIT:
2001      for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2002         lod[i] = lod_in[i] + lod_bias;
2003      }
2004      break;
2005   case TGSI_SAMPLER_LOD_ZERO:
2006   case TGSI_SAMPLER_GATHER:
2007      lod[0] = lod[1] = lod[2] = lod[3] = lod_bias;
2008      break;
2009   default:
2010      assert(0);
2011      lod[0] = lod[1] = lod[2] = lod[3] = 0.0f;
2012   }
2013}
2014
2015/* Calculate level of detail for every fragment.
2016 * \param lod_in per-fragment lod_bias or explicit_lod.
2017 * \param lod results per-fragment lod.
2018 */
2019static inline void
2020compute_lambda_lod(const struct sp_sampler_view *sp_sview,
2021                   const struct sp_sampler *sp_samp,
2022                   const float s[TGSI_QUAD_SIZE],
2023                   const float t[TGSI_QUAD_SIZE],
2024                   const float p[TGSI_QUAD_SIZE],
2025                   float derivs[3][2][TGSI_QUAD_SIZE],
2026                   const float lod_in[TGSI_QUAD_SIZE],
2027                   enum tgsi_sampler_control control,
2028                   float lod[TGSI_QUAD_SIZE])
2029{
2030   const struct pipe_sampler_state *sampler = &sp_samp->base;
2031   const float min_lod = sampler->min_lod;
2032   const float max_lod = sampler->max_lod;
2033   int i;
2034
2035   compute_lambda_lod_unclamped(sp_sview, sp_samp,
2036                                s, t, p, derivs, lod_in, control, lod);
2037   for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2038      lod[i] = CLAMP(lod[i], min_lod, max_lod);
2039   }
2040}
2041
2042static inline unsigned
2043get_gather_component(const float lod_in[TGSI_QUAD_SIZE])
2044{
2045   /* gather component is stored in lod_in slot as unsigned */
2046   return (*(unsigned int *)lod_in) & 0x3;
2047}
2048
2049/**
2050 * Clamps given lod to both lod limits and mip level limits. Clamping to the
2051 * latter limits is done so that lod is relative to the first (base) level.
2052 */
2053static void
2054clamp_lod(const struct sp_sampler_view *sp_sview,
2055          const struct sp_sampler *sp_samp,
2056          const float lod[TGSI_QUAD_SIZE],
2057          float clamped[TGSI_QUAD_SIZE])
2058{
2059   const float min_lod = sp_samp->base.min_lod;
2060   const float max_lod = sp_samp->base.max_lod;
2061   const float min_level = sp_sview->base.u.tex.first_level;
2062   const float max_level = sp_sview->base.u.tex.last_level;
2063   int i;
2064
2065   for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2066      float cl = lod[i];
2067
2068      cl = CLAMP(cl, min_lod, max_lod);
2069      cl = CLAMP(cl, 0, max_level - min_level);
2070      clamped[i] = cl;
2071   }
2072}
2073
2074/**
2075 * Get mip level relative to base level for linear mip filter
2076 */
2077static void
2078mip_rel_level_linear(const struct sp_sampler_view *sp_sview,
2079                     const struct sp_sampler *sp_samp,
2080                     const float lod[TGSI_QUAD_SIZE],
2081                     float level[TGSI_QUAD_SIZE])
2082{
2083   clamp_lod(sp_sview, sp_samp, lod, level);
2084}
2085
2086static void
2087mip_filter_linear(const struct sp_sampler_view *sp_sview,
2088                  const struct sp_sampler *sp_samp,
2089                  img_filter_func min_filter,
2090                  img_filter_func mag_filter,
2091                  const float s[TGSI_QUAD_SIZE],
2092                  const float t[TGSI_QUAD_SIZE],
2093                  const float p[TGSI_QUAD_SIZE],
2094                  int gather_comp,
2095                  const float lod[TGSI_QUAD_SIZE],
2096                  const struct filter_args *filt_args,
2097                  float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2098{
2099   const struct pipe_sampler_view *psview = &sp_sview->base;
2100   int j;
2101   struct img_filter_args args;
2102
2103   args.offset = filt_args->offset;
2104   args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2105   args.gather_comp = gather_comp;
2106
2107   for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2108      const int level0 = psview->u.tex.first_level + (int)lod[j];
2109
2110      args.s = s[j];
2111      args.t = t[j];
2112      args.p = p[j];
2113      args.face_id = filt_args->faces[j];
2114
2115      if (lod[j] <= 0.0 && !args.gather_only) {
2116         args.level = psview->u.tex.first_level;
2117         mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2118      }
2119      else if (level0 >= (int) psview->u.tex.last_level) {
2120         args.level = psview->u.tex.last_level;
2121         min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2122      }
2123      else {
2124         float levelBlend = frac(lod[j]);
2125         float rgbax[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2126         int c;
2127
2128         args.level = level0;
2129         min_filter(sp_sview, sp_samp, &args, &rgbax[0][0]);
2130         args.level = level0+1;
2131         min_filter(sp_sview, sp_samp, &args, &rgbax[0][1]);
2132
2133         for (c = 0; c < 4; c++) {
2134            rgba[c][j] = lerp(levelBlend, rgbax[c][0], rgbax[c][1]);
2135         }
2136      }
2137   }
2138
2139   if (DEBUG_TEX) {
2140      print_sample_4(__FUNCTION__, rgba);
2141   }
2142}
2143
2144
2145/**
2146 * Get mip level relative to base level for nearest mip filter
2147 */
2148static void
2149mip_rel_level_nearest(const struct sp_sampler_view *sp_sview,
2150                      const struct sp_sampler *sp_samp,
2151                      const float lod[TGSI_QUAD_SIZE],
2152                      float level[TGSI_QUAD_SIZE])
2153{
2154   int j;
2155
2156   clamp_lod(sp_sview, sp_samp, lod, level);
2157   for (j = 0; j < TGSI_QUAD_SIZE; j++)
2158      /* TODO: It should rather be:
2159       * level[j] = ceil(level[j] + 0.5F) - 1.0F;
2160       */
2161      level[j] = (int)(level[j] + 0.5F);
2162}
2163
2164/**
2165 * Compute nearest mipmap level from texcoords.
2166 * Then sample the texture level for four elements of a quad.
2167 * \param c0  the LOD bias factors, or absolute LODs (depending on control)
2168 */
2169static void
2170mip_filter_nearest(const struct sp_sampler_view *sp_sview,
2171                   const struct sp_sampler *sp_samp,
2172                   img_filter_func min_filter,
2173                   img_filter_func mag_filter,
2174                   const float s[TGSI_QUAD_SIZE],
2175                   const float t[TGSI_QUAD_SIZE],
2176                   const float p[TGSI_QUAD_SIZE],
2177                   int gather_component,
2178                   const float lod[TGSI_QUAD_SIZE],
2179                   const struct filter_args *filt_args,
2180                   float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2181{
2182   const struct pipe_sampler_view *psview = &sp_sview->base;
2183   int j;
2184   struct img_filter_args args;
2185
2186   args.offset = filt_args->offset;
2187   args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2188   args.gather_comp = gather_component;
2189
2190   for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2191      args.s = s[j];
2192      args.t = t[j];
2193      args.p = p[j];
2194      args.face_id = filt_args->faces[j];
2195
2196      if (lod[j] <= 0.0f && !args.gather_only) {
2197         args.level = psview->u.tex.first_level;
2198         mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2199      } else {
2200         const int level = psview->u.tex.first_level + (int)(lod[j] + 0.5F);
2201         args.level = MIN2(level, (int)psview->u.tex.last_level);
2202         min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2203      }
2204   }
2205
2206   if (DEBUG_TEX) {
2207      print_sample_4(__FUNCTION__, rgba);
2208   }
2209}
2210
2211
2212/**
2213 * Get mip level relative to base level for none mip filter
2214 */
2215static void
2216mip_rel_level_none(const struct sp_sampler_view *sp_sview,
2217                   const struct sp_sampler *sp_samp,
2218                   const float lod[TGSI_QUAD_SIZE],
2219                   float level[TGSI_QUAD_SIZE])
2220{
2221   int j;
2222
2223   for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2224      level[j] = 0;
2225   }
2226}
2227
2228static void
2229mip_filter_none(const struct sp_sampler_view *sp_sview,
2230                const struct sp_sampler *sp_samp,
2231                img_filter_func min_filter,
2232                img_filter_func mag_filter,
2233                const float s[TGSI_QUAD_SIZE],
2234                const float t[TGSI_QUAD_SIZE],
2235                const float p[TGSI_QUAD_SIZE],
2236                int gather_component,
2237                const float lod[TGSI_QUAD_SIZE],
2238                const struct filter_args *filt_args,
2239                float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2240{
2241   int j;
2242   struct img_filter_args args;
2243
2244   args.level = sp_sview->base.u.tex.first_level;
2245   args.offset = filt_args->offset;
2246   args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2247   args.gather_comp = gather_component;
2248
2249   for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2250      args.s = s[j];
2251      args.t = t[j];
2252      args.p = p[j];
2253      args.face_id = filt_args->faces[j];
2254      if (lod[j] <= 0.0f && !args.gather_only) {
2255         mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2256      }
2257      else {
2258         min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2259      }
2260   }
2261}
2262
2263
2264/**
2265 * Get mip level relative to base level for none mip filter
2266 */
2267static void
2268mip_rel_level_none_no_filter_select(const struct sp_sampler_view *sp_sview,
2269                                    const struct sp_sampler *sp_samp,
2270                                    const float lod[TGSI_QUAD_SIZE],
2271                                    float level[TGSI_QUAD_SIZE])
2272{
2273   mip_rel_level_none(sp_sview, sp_samp, lod, level);
2274}
2275
2276static void
2277mip_filter_none_no_filter_select(const struct sp_sampler_view *sp_sview,
2278                                 const struct sp_sampler *sp_samp,
2279                                 img_filter_func min_filter,
2280                                 img_filter_func mag_filter,
2281                                 const float s[TGSI_QUAD_SIZE],
2282                                 const float t[TGSI_QUAD_SIZE],
2283                                 const float p[TGSI_QUAD_SIZE],
2284                                 int gather_comp,
2285                                 const float lod_in[TGSI_QUAD_SIZE],
2286                                 const struct filter_args *filt_args,
2287                                 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2288{
2289   int j;
2290   struct img_filter_args args;
2291   args.level = sp_sview->base.u.tex.first_level;
2292   args.offset = filt_args->offset;
2293   args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2294   args.gather_comp = gather_comp;
2295   for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2296      args.s = s[j];
2297      args.t = t[j];
2298      args.p = p[j];
2299      args.face_id = filt_args->faces[j];
2300      mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2301   }
2302}
2303
2304
2305/* For anisotropic filtering */
2306#define WEIGHT_LUT_SIZE 1024
2307
2308static const float *weightLut = NULL;
2309
2310/**
2311 * Creates the look-up table used to speed-up EWA sampling
2312 */
2313static void
2314create_filter_table(void)
2315{
2316   unsigned i;
2317   if (!weightLut) {
2318      float *lut = (float *) MALLOC(WEIGHT_LUT_SIZE * sizeof(float));
2319
2320      for (i = 0; i < WEIGHT_LUT_SIZE; ++i) {
2321         const float alpha = 2;
2322         const float r2 = (float) i / (float) (WEIGHT_LUT_SIZE - 1);
2323         const float weight = (float) expf(-alpha * r2);
2324         lut[i] = weight;
2325      }
2326      weightLut = lut;
2327   }
2328}
2329
2330
2331/**
2332 * Elliptical weighted average (EWA) filter for producing high quality
2333 * anisotropic filtered results.
2334 * Based on the Higher Quality Elliptical Weighted Average Filter
2335 * published by Paul S. Heckbert in his Master's Thesis
2336 * "Fundamentals of Texture Mapping and Image Warping" (1989)
2337 */
2338static void
2339img_filter_2d_ewa(const struct sp_sampler_view *sp_sview,
2340                  const struct sp_sampler *sp_samp,
2341                  img_filter_func min_filter,
2342                  img_filter_func mag_filter,
2343                  const float s[TGSI_QUAD_SIZE],
2344                  const float t[TGSI_QUAD_SIZE],
2345                  const float p[TGSI_QUAD_SIZE],
2346                  const uint faces[TGSI_QUAD_SIZE],
2347                  const int8_t *offset,
2348                  unsigned level,
2349                  const float dudx, const float dvdx,
2350                  const float dudy, const float dvdy,
2351                  float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2352{
2353   const struct pipe_resource *texture = sp_sview->base.texture;
2354
2355   // ??? Won't the image filters blow up if level is negative?
2356   const unsigned level0 = level > 0 ? level : 0;
2357   const float scaling = 1.0f / (1 << level0);
2358   const int width = u_minify(texture->width0, level0);
2359   const int height = u_minify(texture->height0, level0);
2360   struct img_filter_args args;
2361   const float ux = dudx * scaling;
2362   const float vx = dvdx * scaling;
2363   const float uy = dudy * scaling;
2364   const float vy = dvdy * scaling;
2365
2366   /* compute ellipse coefficients to bound the region:
2367    * A*x*x + B*x*y + C*y*y = F.
2368    */
2369   float A = vx*vx+vy*vy+1;
2370   float B = -2*(ux*vx+uy*vy);
2371   float C = ux*ux+uy*uy+1;
2372   float F = A*C-B*B/4.0f;
2373
2374   /* check if it is an ellipse */
2375   /* assert(F > 0.0); */
2376
2377   /* Compute the ellipse's (u,v) bounding box in texture space */
2378   const float d = -B*B+4.0f*C*A;
2379   const float box_u = 2.0f / d * sqrtf(d*C*F); /* box_u -> half of bbox with   */
2380   const float box_v = 2.0f / d * sqrtf(A*d*F); /* box_v -> half of bbox height */
2381
2382   float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2383   float s_buffer[TGSI_QUAD_SIZE];
2384   float t_buffer[TGSI_QUAD_SIZE];
2385   float weight_buffer[TGSI_QUAD_SIZE];
2386   int j;
2387
2388   /* Scale ellipse formula to directly index the Filter Lookup Table.
2389    * i.e. scale so that F = WEIGHT_LUT_SIZE-1
2390    */
2391   const double formScale = (double) (WEIGHT_LUT_SIZE - 1) / F;
2392   A *= formScale;
2393   B *= formScale;
2394   C *= formScale;
2395   /* F *= formScale; */ /* no need to scale F as we don't use it below here */
2396
2397   /* For each quad, the du and dx values are the same and so the ellipse is
2398    * also the same. Note that texel/image access can only be performed using
2399    * a quad, i.e. it is not possible to get the pixel value for a single
2400    * tex coord. In order to have a better performance, the access is buffered
2401    * using the s_buffer/t_buffer and weight_buffer. Only when the buffer is
2402    * full, then the pixel values are read from the image.
2403    */
2404   const float ddq = 2 * A;
2405
2406   args.level = level;
2407   args.offset = offset;
2408
2409   for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2410      /* Heckbert MS thesis, p. 59; scan over the bounding box of the ellipse
2411       * and incrementally update the value of Ax^2+Bxy*Cy^2; when this
2412       * value, q, is less than F, we're inside the ellipse
2413       */
2414      const float tex_u = -0.5F + s[j] * texture->width0 * scaling;
2415      const float tex_v = -0.5F + t[j] * texture->height0 * scaling;
2416
2417      const int u0 = (int) floorf(tex_u - box_u);
2418      const int u1 = (int) ceilf(tex_u + box_u);
2419      const int v0 = (int) floorf(tex_v - box_v);
2420      const int v1 = (int) ceilf(tex_v + box_v);
2421      const float U = u0 - tex_u;
2422
2423      float num[4] = {0.0F, 0.0F, 0.0F, 0.0F};
2424      unsigned buffer_next = 0;
2425      float den = 0;
2426      int v;
2427      args.face_id = faces[j];
2428
2429      for (v = v0; v <= v1; ++v) {
2430         const float V = v - tex_v;
2431         float dq = A * (2 * U + 1) + B * V;
2432         float q = (C * V + B * U) * V + A * U * U;
2433
2434         int u;
2435         for (u = u0; u <= u1; ++u) {
2436            /* Note that the ellipse has been pre-scaled so F =
2437             * WEIGHT_LUT_SIZE - 1
2438             */
2439            if (q < WEIGHT_LUT_SIZE) {
2440               /* as a LUT is used, q must never be negative;
2441                * should not happen, though
2442                */
2443               const int qClamped = q >= 0.0F ? q : 0;
2444               const float weight = weightLut[qClamped];
2445
2446               weight_buffer[buffer_next] = weight;
2447               s_buffer[buffer_next] = u / ((float) width);
2448               t_buffer[buffer_next] = v / ((float) height);
2449
2450               buffer_next++;
2451               if (buffer_next == TGSI_QUAD_SIZE) {
2452                  /* 4 texel coords are in the buffer -> read it now */
2453                  unsigned jj;
2454                  /* it is assumed that samp->min_img_filter is set to
2455                   * img_filter_2d_nearest or one of the
2456                   * accelerated img_filter_2d_nearest_XXX functions.
2457                   */
2458                  for (jj = 0; jj < buffer_next; jj++) {
2459                     args.s = s_buffer[jj];
2460                     args.t = t_buffer[jj];
2461                     args.p = p[jj];
2462                     min_filter(sp_sview, sp_samp, &args, &rgba_temp[0][jj]);
2463                     num[0] += weight_buffer[jj] * rgba_temp[0][jj];
2464                     num[1] += weight_buffer[jj] * rgba_temp[1][jj];
2465                     num[2] += weight_buffer[jj] * rgba_temp[2][jj];
2466                     num[3] += weight_buffer[jj] * rgba_temp[3][jj];
2467                  }
2468
2469                  buffer_next = 0;
2470               }
2471
2472               den += weight;
2473            }
2474            q += dq;
2475            dq += ddq;
2476         }
2477      }
2478
2479      /* if the tex coord buffer contains unread values, we will read
2480       * them now.
2481       */
2482      if (buffer_next > 0) {
2483         unsigned jj;
2484         /* it is assumed that samp->min_img_filter is set to
2485          * img_filter_2d_nearest or one of the
2486          * accelerated img_filter_2d_nearest_XXX functions.
2487          */
2488         for (jj = 0; jj < buffer_next; jj++) {
2489            args.s = s_buffer[jj];
2490            args.t = t_buffer[jj];
2491            args.p = p[jj];
2492            min_filter(sp_sview, sp_samp, &args, &rgba_temp[0][jj]);
2493            num[0] += weight_buffer[jj] * rgba_temp[0][jj];
2494            num[1] += weight_buffer[jj] * rgba_temp[1][jj];
2495            num[2] += weight_buffer[jj] * rgba_temp[2][jj];
2496            num[3] += weight_buffer[jj] * rgba_temp[3][jj];
2497         }
2498      }
2499
2500      if (den <= 0.0F) {
2501         /* Reaching this place would mean that no pixels intersected
2502          * the ellipse.  This should never happen because the filter
2503          * we use always intersects at least one pixel.
2504          */
2505
2506         /*rgba[0]=0;
2507         rgba[1]=0;
2508         rgba[2]=0;
2509         rgba[3]=0;*/
2510         /* not enough pixels in resampling, resort to direct interpolation */
2511         args.s = s[j];
2512         args.t = t[j];
2513         args.p = p[j];
2514         min_filter(sp_sview, sp_samp, &args, &rgba_temp[0][j]);
2515         den = 1;
2516         num[0] = rgba_temp[0][j];
2517         num[1] = rgba_temp[1][j];
2518         num[2] = rgba_temp[2][j];
2519         num[3] = rgba_temp[3][j];
2520      }
2521
2522      rgba[0][j] = num[0] / den;
2523      rgba[1][j] = num[1] / den;
2524      rgba[2][j] = num[2] / den;
2525      rgba[3][j] = num[3] / den;
2526   }
2527}
2528
2529
2530/**
2531 * Get mip level relative to base level for linear mip filter
2532 */
2533static void
2534mip_rel_level_linear_aniso(const struct sp_sampler_view *sp_sview,
2535                           const struct sp_sampler *sp_samp,
2536                           const float lod[TGSI_QUAD_SIZE],
2537                           float level[TGSI_QUAD_SIZE])
2538{
2539   mip_rel_level_linear(sp_sview, sp_samp, lod, level);
2540}
2541
2542/**
2543 * Sample 2D texture using an anisotropic filter.
2544 */
2545static void
2546mip_filter_linear_aniso(const struct sp_sampler_view *sp_sview,
2547                        const struct sp_sampler *sp_samp,
2548                        img_filter_func min_filter,
2549                        img_filter_func mag_filter,
2550                        const float s[TGSI_QUAD_SIZE],
2551                        const float t[TGSI_QUAD_SIZE],
2552                        const float p[TGSI_QUAD_SIZE],
2553                        UNUSED int gather_comp,
2554                        const float lod_in[TGSI_QUAD_SIZE],
2555                        const struct filter_args *filt_args,
2556                        float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2557{
2558   const struct pipe_resource *texture = sp_sview->base.texture;
2559   const struct pipe_sampler_view *psview = &sp_sview->base;
2560   int level0;
2561   float lambda;
2562   float lod[TGSI_QUAD_SIZE];
2563
2564   const float s_to_u = u_minify(texture->width0, psview->u.tex.first_level);
2565   const float t_to_v = u_minify(texture->height0, psview->u.tex.first_level);
2566   const float dudx = (s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]) * s_to_u;
2567   const float dudy = (s[QUAD_TOP_LEFT]     - s[QUAD_BOTTOM_LEFT]) * s_to_u;
2568   const float dvdx = (t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]) * t_to_v;
2569   const float dvdy = (t[QUAD_TOP_LEFT]     - t[QUAD_BOTTOM_LEFT]) * t_to_v;
2570   struct img_filter_args args;
2571
2572   args.offset = filt_args->offset;
2573
2574   if (filt_args->control == TGSI_SAMPLER_LOD_BIAS ||
2575       filt_args->control == TGSI_SAMPLER_LOD_NONE ||
2576       /* XXX FIXME */
2577       filt_args->control == TGSI_SAMPLER_DERIVS_EXPLICIT) {
2578      /* note: instead of working with Px and Py, we will use the
2579       * squared length instead, to avoid sqrt.
2580       */
2581      const float Px2 = dudx * dudx + dvdx * dvdx;
2582      const float Py2 = dudy * dudy + dvdy * dvdy;
2583
2584      float Pmax2;
2585      float Pmin2;
2586      float e;
2587      const float maxEccentricity = sp_samp->base.max_anisotropy * sp_samp->base.max_anisotropy;
2588
2589      if (Px2 < Py2) {
2590         Pmax2 = Py2;
2591         Pmin2 = Px2;
2592      }
2593      else {
2594         Pmax2 = Px2;
2595         Pmin2 = Py2;
2596      }
2597
2598      /* if the eccentricity of the ellipse is too big, scale up the shorter
2599       * of the two vectors to limit the maximum amount of work per pixel
2600       */
2601      e = Pmax2 / Pmin2;
2602      if (e > maxEccentricity) {
2603         /* float s=e / maxEccentricity;
2604            minor[0] *= s;
2605            minor[1] *= s;
2606            Pmin2 *= s; */
2607         Pmin2 = Pmax2 / maxEccentricity;
2608      }
2609
2610      /* note: we need to have Pmin=sqrt(Pmin2) here, but we can avoid
2611       * this since 0.5*log(x) = log(sqrt(x))
2612       */
2613      lambda = 0.5F * util_fast_log2(Pmin2) + sp_samp->base.lod_bias;
2614      compute_lod(&sp_samp->base, filt_args->control, lambda, lod_in, lod);
2615   }
2616   else {
2617      assert(filt_args->control == TGSI_SAMPLER_LOD_EXPLICIT ||
2618             filt_args->control == TGSI_SAMPLER_LOD_ZERO);
2619      compute_lod(&sp_samp->base, filt_args->control, sp_samp->base.lod_bias, lod_in, lod);
2620   }
2621
2622   /* XXX: Take into account all lod values.
2623    */
2624   lambda = lod[0];
2625   level0 = psview->u.tex.first_level + (int)lambda;
2626
2627   /* If the ellipse covers the whole image, we can
2628    * simply return the average of the whole image.
2629    */
2630   if (level0 >= (int) psview->u.tex.last_level) {
2631      int j;
2632      for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2633         args.s = s[j];
2634         args.t = t[j];
2635         args.p = p[j];
2636         args.level = psview->u.tex.last_level;
2637         args.face_id = filt_args->faces[j];
2638         /*
2639          * XXX: we overwrote any linear filter with nearest, so this
2640          * isn't right (albeit if last level is 1x1 and no border it
2641          * will work just the same).
2642          */
2643         min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2644      }
2645   }
2646   else {
2647      /* don't bother interpolating between multiple LODs; it doesn't
2648       * seem to be worth the extra running time.
2649       */
2650      img_filter_2d_ewa(sp_sview, sp_samp, min_filter, mag_filter,
2651                        s, t, p, filt_args->faces, filt_args->offset,
2652                        level0, dudx, dvdx, dudy, dvdy, rgba);
2653   }
2654
2655   if (DEBUG_TEX) {
2656      print_sample_4(__FUNCTION__, rgba);
2657   }
2658}
2659
2660/**
2661 * Get mip level relative to base level for linear mip filter
2662 */
2663static void
2664mip_rel_level_linear_2d_linear_repeat_POT(
2665   const struct sp_sampler_view *sp_sview,
2666   const struct sp_sampler *sp_samp,
2667   const float lod[TGSI_QUAD_SIZE],
2668   float level[TGSI_QUAD_SIZE])
2669{
2670   mip_rel_level_linear(sp_sview, sp_samp, lod, level);
2671}
2672
2673/**
2674 * Specialized version of mip_filter_linear with hard-wired calls to
2675 * 2d lambda calculation and 2d_linear_repeat_POT img filters.
2676 */
2677static void
2678mip_filter_linear_2d_linear_repeat_POT(
2679   const struct sp_sampler_view *sp_sview,
2680   const struct sp_sampler *sp_samp,
2681   img_filter_func min_filter,
2682   img_filter_func mag_filter,
2683   const float s[TGSI_QUAD_SIZE],
2684   const float t[TGSI_QUAD_SIZE],
2685   const float p[TGSI_QUAD_SIZE],
2686   int gather_comp,
2687   const float lod[TGSI_QUAD_SIZE],
2688   const struct filter_args *filt_args,
2689   float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2690{
2691   const struct pipe_sampler_view *psview = &sp_sview->base;
2692   int j;
2693
2694   for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2695      const int level0 = psview->u.tex.first_level + (int)lod[j];
2696      struct img_filter_args args;
2697      /* Catches both negative and large values of level0:
2698       */
2699      args.s = s[j];
2700      args.t = t[j];
2701      args.p = p[j];
2702      args.face_id = filt_args->faces[j];
2703      args.offset = filt_args->offset;
2704      args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2705      args.gather_comp = gather_comp;
2706      if ((unsigned)level0 >= psview->u.tex.last_level) {
2707         if (level0 < 0)
2708            args.level = psview->u.tex.first_level;
2709         else
2710            args.level = psview->u.tex.last_level;
2711         img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, &args,
2712                                         &rgba[0][j]);
2713
2714      }
2715      else {
2716         const float levelBlend = frac(lod[j]);
2717         float rgbax[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2718         int c;
2719
2720         args.level = level0;
2721         img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, &args, &rgbax[0][0]);
2722         args.level = level0+1;
2723         img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, &args, &rgbax[0][1]);
2724
2725         for (c = 0; c < TGSI_NUM_CHANNELS; c++)
2726            rgba[c][j] = lerp(levelBlend, rgbax[c][0], rgbax[c][1]);
2727      }
2728   }
2729
2730   if (DEBUG_TEX) {
2731      print_sample_4(__FUNCTION__, rgba);
2732   }
2733}
2734
2735static const struct sp_filter_funcs funcs_linear = {
2736   mip_rel_level_linear,
2737   mip_filter_linear
2738};
2739
2740static const struct sp_filter_funcs funcs_nearest = {
2741   mip_rel_level_nearest,
2742   mip_filter_nearest
2743};
2744
2745static const struct sp_filter_funcs funcs_none = {
2746   mip_rel_level_none,
2747   mip_filter_none
2748};
2749
2750static const struct sp_filter_funcs funcs_none_no_filter_select = {
2751   mip_rel_level_none_no_filter_select,
2752   mip_filter_none_no_filter_select
2753};
2754
2755static const struct sp_filter_funcs funcs_linear_aniso = {
2756   mip_rel_level_linear_aniso,
2757   mip_filter_linear_aniso
2758};
2759
2760static const struct sp_filter_funcs funcs_linear_2d_linear_repeat_POT = {
2761   mip_rel_level_linear_2d_linear_repeat_POT,
2762   mip_filter_linear_2d_linear_repeat_POT
2763};
2764
2765/**
2766 * Do shadow/depth comparisons.
2767 */
2768static void
2769sample_compare(const struct sp_sampler_view *sp_sview,
2770               const struct sp_sampler *sp_samp,
2771               const float c0[TGSI_QUAD_SIZE],
2772               enum tgsi_sampler_control control,
2773               float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2774{
2775   const struct pipe_sampler_state *sampler = &sp_samp->base;
2776   int j, v;
2777   int k[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2778   float pc[4];
2779   const struct util_format_description *format_desc =
2780      util_format_description(sp_sview->base.format);
2781   /* not entirely sure we couldn't end up with non-valid swizzle here */
2782   const unsigned chan_type =
2783      format_desc->swizzle[0] <= PIPE_SWIZZLE_W ?
2784      format_desc->channel[format_desc->swizzle[0]].type :
2785      UTIL_FORMAT_TYPE_FLOAT;
2786   const bool is_gather = (control == TGSI_SAMPLER_GATHER);
2787
2788   /**
2789    * Compare texcoord 'p' (aka R) against texture value 'rgba[0]'
2790    * for 2D Array texture we need to use the 'c0' (aka Q).
2791    * When we sampled the depth texture, the depth value was put into all
2792    * RGBA channels.  We look at the red channel here.
2793    */
2794
2795
2796
2797   if (chan_type != UTIL_FORMAT_TYPE_FLOAT) {
2798      /*
2799       * clamping is a result of conversion to texture format, hence
2800       * doesn't happen with floats. Technically also should do comparison
2801       * in texture format (quantization!).
2802       */
2803      pc[0] = CLAMP(c0[0], 0.0F, 1.0F);
2804      pc[1] = CLAMP(c0[1], 0.0F, 1.0F);
2805      pc[2] = CLAMP(c0[2], 0.0F, 1.0F);
2806      pc[3] = CLAMP(c0[3], 0.0F, 1.0F);
2807   } else {
2808      pc[0] = c0[0];
2809      pc[1] = c0[1];
2810      pc[2] = c0[2];
2811      pc[3] = c0[3];
2812   }
2813
2814   for (v = 0; v < (is_gather ? TGSI_NUM_CHANNELS : 1); v++) {
2815      /* compare four texcoords vs. four texture samples */
2816      switch (sampler->compare_func) {
2817      case PIPE_FUNC_LESS:
2818         k[v][0] = pc[0] < rgba[v][0];
2819         k[v][1] = pc[1] < rgba[v][1];
2820         k[v][2] = pc[2] < rgba[v][2];
2821         k[v][3] = pc[3] < rgba[v][3];
2822         break;
2823      case PIPE_FUNC_LEQUAL:
2824         k[v][0] = pc[0] <= rgba[v][0];
2825         k[v][1] = pc[1] <= rgba[v][1];
2826         k[v][2] = pc[2] <= rgba[v][2];
2827         k[v][3] = pc[3] <= rgba[v][3];
2828         break;
2829      case PIPE_FUNC_GREATER:
2830         k[v][0] = pc[0] > rgba[v][0];
2831         k[v][1] = pc[1] > rgba[v][1];
2832         k[v][2] = pc[2] > rgba[v][2];
2833         k[v][3] = pc[3] > rgba[v][3];
2834         break;
2835      case PIPE_FUNC_GEQUAL:
2836         k[v][0] = pc[0] >= rgba[v][0];
2837         k[v][1] = pc[1] >= rgba[v][1];
2838         k[v][2] = pc[2] >= rgba[v][2];
2839         k[v][3] = pc[3] >= rgba[v][3];
2840         break;
2841      case PIPE_FUNC_EQUAL:
2842         k[v][0] = pc[0] == rgba[v][0];
2843         k[v][1] = pc[1] == rgba[v][1];
2844         k[v][2] = pc[2] == rgba[v][2];
2845         k[v][3] = pc[3] == rgba[v][3];
2846         break;
2847      case PIPE_FUNC_NOTEQUAL:
2848         k[v][0] = pc[0] != rgba[v][0];
2849         k[v][1] = pc[1] != rgba[v][1];
2850         k[v][2] = pc[2] != rgba[v][2];
2851         k[v][3] = pc[3] != rgba[v][3];
2852         break;
2853      case PIPE_FUNC_ALWAYS:
2854         k[v][0] = k[v][1] = k[v][2] = k[v][3] = 1;
2855         break;
2856      case PIPE_FUNC_NEVER:
2857         k[v][0] = k[v][1] = k[v][2] = k[v][3] = 0;
2858         break;
2859      default:
2860         k[v][0] = k[v][1] = k[v][2] = k[v][3] = 0;
2861         assert(0);
2862         break;
2863      }
2864   }
2865
2866   if (is_gather) {
2867      for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2868         for (v = 0; v < TGSI_NUM_CHANNELS; v++) {
2869            rgba[v][j] = k[v][j];
2870         }
2871      }
2872   } else {
2873      for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2874         rgba[0][j] = k[0][j];
2875         rgba[1][j] = k[0][j];
2876         rgba[2][j] = k[0][j];
2877         rgba[3][j] = 1.0F;
2878      }
2879   }
2880}
2881
2882static void
2883do_swizzling(const struct pipe_sampler_view *sview,
2884             float in[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE],
2885             float out[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2886{
2887   struct sp_sampler_view *sp_sview = (struct sp_sampler_view *)sview;
2888   int j;
2889   const unsigned swizzle_r = sview->swizzle_r;
2890   const unsigned swizzle_g = sview->swizzle_g;
2891   const unsigned swizzle_b = sview->swizzle_b;
2892   const unsigned swizzle_a = sview->swizzle_a;
2893
2894   switch (swizzle_r) {
2895   case PIPE_SWIZZLE_0:
2896      for (j = 0; j < 4; j++)
2897         out[0][j] = 0.0f;
2898      break;
2899   case PIPE_SWIZZLE_1:
2900      for (j = 0; j < 4; j++)
2901         out[0][j] = sp_sview->oneval;
2902      break;
2903   default:
2904      assert(swizzle_r < 4);
2905      for (j = 0; j < 4; j++)
2906         out[0][j] = in[swizzle_r][j];
2907   }
2908
2909   switch (swizzle_g) {
2910   case PIPE_SWIZZLE_0:
2911      for (j = 0; j < 4; j++)
2912         out[1][j] = 0.0f;
2913      break;
2914   case PIPE_SWIZZLE_1:
2915      for (j = 0; j < 4; j++)
2916         out[1][j] = sp_sview->oneval;
2917      break;
2918   default:
2919      assert(swizzle_g < 4);
2920      for (j = 0; j < 4; j++)
2921         out[1][j] = in[swizzle_g][j];
2922   }
2923
2924   switch (swizzle_b) {
2925   case PIPE_SWIZZLE_0:
2926      for (j = 0; j < 4; j++)
2927         out[2][j] = 0.0f;
2928      break;
2929   case PIPE_SWIZZLE_1:
2930      for (j = 0; j < 4; j++)
2931         out[2][j] = sp_sview->oneval;
2932      break;
2933   default:
2934      assert(swizzle_b < 4);
2935      for (j = 0; j < 4; j++)
2936         out[2][j] = in[swizzle_b][j];
2937   }
2938
2939   switch (swizzle_a) {
2940   case PIPE_SWIZZLE_0:
2941      for (j = 0; j < 4; j++)
2942         out[3][j] = 0.0f;
2943      break;
2944   case PIPE_SWIZZLE_1:
2945      for (j = 0; j < 4; j++)
2946         out[3][j] = sp_sview->oneval;
2947      break;
2948   default:
2949      assert(swizzle_a < 4);
2950      for (j = 0; j < 4; j++)
2951         out[3][j] = in[swizzle_a][j];
2952   }
2953}
2954
2955
2956static wrap_nearest_func
2957get_nearest_unorm_wrap(unsigned mode)
2958{
2959   switch (mode) {
2960   case PIPE_TEX_WRAP_CLAMP:
2961      return wrap_nearest_unorm_clamp;
2962   case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2963      return wrap_nearest_unorm_clamp_to_edge;
2964   case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2965      return wrap_nearest_unorm_clamp_to_border;
2966   default:
2967      debug_printf("illegal wrap mode %d with non-normalized coords\n", mode);
2968      return wrap_nearest_unorm_clamp;
2969   }
2970}
2971
2972
2973static wrap_nearest_func
2974get_nearest_wrap(unsigned mode)
2975{
2976   switch (mode) {
2977   case PIPE_TEX_WRAP_REPEAT:
2978      return wrap_nearest_repeat;
2979   case PIPE_TEX_WRAP_CLAMP:
2980      return wrap_nearest_clamp;
2981   case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2982      return wrap_nearest_clamp_to_edge;
2983   case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2984      return wrap_nearest_clamp_to_border;
2985   case PIPE_TEX_WRAP_MIRROR_REPEAT:
2986      return wrap_nearest_mirror_repeat;
2987   case PIPE_TEX_WRAP_MIRROR_CLAMP:
2988      return wrap_nearest_mirror_clamp;
2989   case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
2990      return wrap_nearest_mirror_clamp_to_edge;
2991   case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
2992      return wrap_nearest_mirror_clamp_to_border;
2993   default:
2994      assert(0);
2995      return wrap_nearest_repeat;
2996   }
2997}
2998
2999
3000static wrap_linear_func
3001get_linear_unorm_wrap(unsigned mode)
3002{
3003   switch (mode) {
3004   case PIPE_TEX_WRAP_CLAMP:
3005      return wrap_linear_unorm_clamp;
3006   case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
3007      return wrap_linear_unorm_clamp_to_edge;
3008   case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
3009      return wrap_linear_unorm_clamp_to_border;
3010   default:
3011      debug_printf("illegal wrap mode %d with non-normalized coords\n", mode);
3012      return wrap_linear_unorm_clamp;
3013   }
3014}
3015
3016
3017static wrap_linear_func
3018get_linear_wrap(unsigned mode)
3019{
3020   switch (mode) {
3021   case PIPE_TEX_WRAP_REPEAT:
3022      return wrap_linear_repeat;
3023   case PIPE_TEX_WRAP_CLAMP:
3024      return wrap_linear_clamp;
3025   case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
3026      return wrap_linear_clamp_to_edge;
3027   case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
3028      return wrap_linear_clamp_to_border;
3029   case PIPE_TEX_WRAP_MIRROR_REPEAT:
3030      return wrap_linear_mirror_repeat;
3031   case PIPE_TEX_WRAP_MIRROR_CLAMP:
3032      return wrap_linear_mirror_clamp;
3033   case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
3034      return wrap_linear_mirror_clamp_to_edge;
3035   case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
3036      return wrap_linear_mirror_clamp_to_border;
3037   default:
3038      assert(0);
3039      return wrap_linear_repeat;
3040   }
3041}
3042
3043
3044/**
3045 * Is swizzling needed for the given state key?
3046 */
3047static inline bool
3048any_swizzle(const struct pipe_sampler_view *view)
3049{
3050   return (view->swizzle_r != PIPE_SWIZZLE_X ||
3051           view->swizzle_g != PIPE_SWIZZLE_Y ||
3052           view->swizzle_b != PIPE_SWIZZLE_Z ||
3053           view->swizzle_a != PIPE_SWIZZLE_W);
3054}
3055
3056
3057static img_filter_func
3058get_img_filter(const struct sp_sampler_view *sp_sview,
3059               const struct pipe_sampler_state *sampler,
3060               unsigned filter, bool gather)
3061{
3062   switch (sp_sview->base.target) {
3063   case PIPE_BUFFER:
3064   case PIPE_TEXTURE_1D:
3065      if (filter == PIPE_TEX_FILTER_NEAREST)
3066         return img_filter_1d_nearest;
3067      else
3068         return img_filter_1d_linear;
3069      break;
3070   case PIPE_TEXTURE_1D_ARRAY:
3071      if (filter == PIPE_TEX_FILTER_NEAREST)
3072         return img_filter_1d_array_nearest;
3073      else
3074         return img_filter_1d_array_linear;
3075      break;
3076   case PIPE_TEXTURE_2D:
3077   case PIPE_TEXTURE_RECT:
3078      /* Try for fast path:
3079       */
3080      if (!gather && sp_sview->pot2d &&
3081          sampler->wrap_s == sampler->wrap_t &&
3082          sampler->normalized_coords)
3083      {
3084         switch (sampler->wrap_s) {
3085         case PIPE_TEX_WRAP_REPEAT:
3086            switch (filter) {
3087            case PIPE_TEX_FILTER_NEAREST:
3088               return img_filter_2d_nearest_repeat_POT;
3089            case PIPE_TEX_FILTER_LINEAR:
3090               return img_filter_2d_linear_repeat_POT;
3091            default:
3092               break;
3093            }
3094            break;
3095         case PIPE_TEX_WRAP_CLAMP:
3096            switch (filter) {
3097            case PIPE_TEX_FILTER_NEAREST:
3098               return img_filter_2d_nearest_clamp_POT;
3099            default:
3100               break;
3101            }
3102         }
3103      }
3104      /* Otherwise use default versions:
3105       */
3106      if (filter == PIPE_TEX_FILTER_NEAREST)
3107         return img_filter_2d_nearest;
3108      else
3109         return img_filter_2d_linear;
3110      break;
3111   case PIPE_TEXTURE_2D_ARRAY:
3112      if (filter == PIPE_TEX_FILTER_NEAREST)
3113         return img_filter_2d_array_nearest;
3114      else
3115         return img_filter_2d_array_linear;
3116      break;
3117   case PIPE_TEXTURE_CUBE:
3118      if (filter == PIPE_TEX_FILTER_NEAREST)
3119         return img_filter_cube_nearest;
3120      else
3121         return img_filter_cube_linear;
3122      break;
3123   case PIPE_TEXTURE_CUBE_ARRAY:
3124      if (filter == PIPE_TEX_FILTER_NEAREST)
3125         return img_filter_cube_array_nearest;
3126      else
3127         return img_filter_cube_array_linear;
3128      break;
3129   case PIPE_TEXTURE_3D:
3130      if (filter == PIPE_TEX_FILTER_NEAREST)
3131         return img_filter_3d_nearest;
3132      else
3133         return img_filter_3d_linear;
3134      break;
3135   default:
3136      assert(0);
3137      return img_filter_1d_nearest;
3138   }
3139}
3140
3141/**
3142 * Get mip filter funcs, and optionally both img min filter and img mag
3143 * filter. Note that both img filter function pointers must be either non-NULL
3144 * or NULL.
3145 */
3146static void
3147get_filters(const struct sp_sampler_view *sp_sview,
3148            const struct sp_sampler *sp_samp,
3149            const enum tgsi_sampler_control control,
3150            const struct sp_filter_funcs **funcs,
3151            img_filter_func *min,
3152            img_filter_func *mag)
3153{
3154   assert(funcs);
3155   if (control == TGSI_SAMPLER_GATHER) {
3156      *funcs = &funcs_nearest;
3157      if (min) {
3158         *min = get_img_filter(sp_sview, &sp_samp->base,
3159                               PIPE_TEX_FILTER_LINEAR, true);
3160      }
3161   } else if (sp_sview->pot2d & sp_samp->min_mag_equal_repeat_linear) {
3162      *funcs = &funcs_linear_2d_linear_repeat_POT;
3163   } else {
3164      *funcs = sp_samp->filter_funcs;
3165      if (min) {
3166         assert(mag);
3167         *min = get_img_filter(sp_sview, &sp_samp->base,
3168                               sp_samp->min_img_filter, false);
3169         if (sp_samp->min_mag_equal) {
3170            *mag = *min;
3171         } else {
3172            *mag = get_img_filter(sp_sview, &sp_samp->base,
3173                                  sp_samp->base.mag_img_filter, false);
3174         }
3175      }
3176   }
3177}
3178
3179static void
3180sample_mip(const struct sp_sampler_view *sp_sview,
3181           const struct sp_sampler *sp_samp,
3182           const float s[TGSI_QUAD_SIZE],
3183           const float t[TGSI_QUAD_SIZE],
3184           const float p[TGSI_QUAD_SIZE],
3185           const float c0[TGSI_QUAD_SIZE],
3186           int gather_comp,
3187           const float lod[TGSI_QUAD_SIZE],
3188           const struct filter_args *filt_args,
3189           float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3190{
3191   const struct sp_filter_funcs *funcs = NULL;
3192   img_filter_func min_img_filter = NULL;
3193   img_filter_func mag_img_filter = NULL;
3194
3195   get_filters(sp_sview, sp_samp, filt_args->control,
3196               &funcs, &min_img_filter, &mag_img_filter);
3197
3198   funcs->filter(sp_sview, sp_samp, min_img_filter, mag_img_filter,
3199                 s, t, p, gather_comp, lod, filt_args, rgba);
3200
3201   if (sp_samp->base.compare_mode != PIPE_TEX_COMPARE_NONE) {
3202      sample_compare(sp_sview, sp_samp, c0, filt_args->control, rgba);
3203   }
3204
3205   if (sp_sview->need_swizzle && filt_args->control != TGSI_SAMPLER_GATHER) {
3206      float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3207      memcpy(rgba_temp, rgba, sizeof(rgba_temp));
3208      do_swizzling(&sp_sview->base, rgba_temp, rgba);
3209   }
3210
3211}
3212
3213
3214/**
3215 * This function uses cube texture coordinates to choose a face of a cube and
3216 * computes the 2D cube face coordinates. Puts face info into the sampler
3217 * faces[] array.
3218 */
3219static void
3220convert_cube(const struct sp_sampler_view *sp_sview,
3221             const struct sp_sampler *sp_samp,
3222             const float s[TGSI_QUAD_SIZE],
3223             const float t[TGSI_QUAD_SIZE],
3224             const float p[TGSI_QUAD_SIZE],
3225             const float c0[TGSI_QUAD_SIZE],
3226             float ssss[TGSI_QUAD_SIZE],
3227             float tttt[TGSI_QUAD_SIZE],
3228             float pppp[TGSI_QUAD_SIZE],
3229             uint faces[TGSI_QUAD_SIZE])
3230{
3231   unsigned j;
3232
3233   pppp[0] = c0[0];
3234   pppp[1] = c0[1];
3235   pppp[2] = c0[2];
3236   pppp[3] = c0[3];
3237   /*
3238     major axis
3239     direction    target                             sc     tc    ma
3240     ----------   -------------------------------    ---    ---   ---
3241     +rx          TEXTURE_CUBE_MAP_POSITIVE_X_EXT    -rz    -ry   rx
3242     -rx          TEXTURE_CUBE_MAP_NEGATIVE_X_EXT    +rz    -ry   rx
3243     +ry          TEXTURE_CUBE_MAP_POSITIVE_Y_EXT    +rx    +rz   ry
3244     -ry          TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT    +rx    -rz   ry
3245     +rz          TEXTURE_CUBE_MAP_POSITIVE_Z_EXT    +rx    -ry   rz
3246     -rz          TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT    -rx    -ry   rz
3247   */
3248
3249   /* Choose the cube face and compute new s/t coords for the 2D face.
3250    *
3251    * Use the same cube face for all four pixels in the quad.
3252    *
3253    * This isn't ideal, but if we want to use a different cube face
3254    * per pixel in the quad, we'd have to also compute the per-face
3255    * LOD here too.  That's because the four post-face-selection
3256    * texcoords are no longer related to each other (they're
3257    * per-face!)  so we can't use subtraction to compute the partial
3258    * deriviates to compute the LOD.  Doing so (near cube edges
3259    * anyway) gives us pretty much random values.
3260    */
3261   for (j = 0; j < TGSI_QUAD_SIZE; j++)  {
3262      const float rx = s[j], ry = t[j], rz = p[j];
3263      const float arx = fabsf(rx), ary = fabsf(ry), arz = fabsf(rz);
3264
3265      if (arx >= ary && arx >= arz) {
3266         const float sign = (rx >= 0.0F) ? 1.0F : -1.0F;
3267         const uint face = (rx >= 0.0F) ?
3268            PIPE_TEX_FACE_POS_X : PIPE_TEX_FACE_NEG_X;
3269         const float ima = -0.5F / fabsf(s[j]);
3270         ssss[j] = sign *  p[j] * ima + 0.5F;
3271         tttt[j] =         t[j] * ima + 0.5F;
3272         faces[j] = face;
3273      }
3274      else if (ary >= arx && ary >= arz) {
3275         const float sign = (ry >= 0.0F) ? 1.0F : -1.0F;
3276         const uint face = (ry >= 0.0F) ?
3277            PIPE_TEX_FACE_POS_Y : PIPE_TEX_FACE_NEG_Y;
3278         const float ima = -0.5F / fabsf(t[j]);
3279         ssss[j] =        -s[j] * ima + 0.5F;
3280         tttt[j] = sign * -p[j] * ima + 0.5F;
3281         faces[j] = face;
3282      }
3283      else {
3284         const float sign = (rz >= 0.0F) ? 1.0F : -1.0F;
3285         const uint face = (rz >= 0.0F) ?
3286            PIPE_TEX_FACE_POS_Z : PIPE_TEX_FACE_NEG_Z;
3287         const float ima = -0.5F / fabsf(p[j]);
3288         ssss[j] = sign * -s[j] * ima + 0.5F;
3289         tttt[j] =         t[j] * ima + 0.5F;
3290         faces[j] = face;
3291      }
3292   }
3293}
3294
3295
3296static void
3297sp_get_dims(const struct sp_sampler_view *sp_sview,
3298            int level,
3299            int dims[4])
3300{
3301   const struct pipe_sampler_view *view = &sp_sview->base;
3302   const struct pipe_resource *texture = view->texture;
3303
3304   if (view->target == PIPE_BUFFER) {
3305      dims[0] = view->u.buf.size / util_format_get_blocksize(view->format);
3306      /* the other values are undefined, but let's avoid potential valgrind
3307       * warnings.
3308       */
3309      dims[1] = dims[2] = dims[3] = 0;
3310      return;
3311   }
3312
3313   /* undefined according to EXT_gpu_program */
3314   level += view->u.tex.first_level;
3315   if (level > view->u.tex.last_level)
3316      return;
3317
3318   dims[3] = view->u.tex.last_level - view->u.tex.first_level + 1;
3319   dims[0] = u_minify(texture->width0, level);
3320
3321   switch (view->target) {
3322   case PIPE_TEXTURE_1D_ARRAY:
3323      dims[1] = view->u.tex.last_layer - view->u.tex.first_layer + 1;
3324      FALLTHROUGH;
3325   case PIPE_TEXTURE_1D:
3326      return;
3327   case PIPE_TEXTURE_2D_ARRAY:
3328      dims[2] = view->u.tex.last_layer - view->u.tex.first_layer + 1;
3329      FALLTHROUGH;
3330   case PIPE_TEXTURE_2D:
3331   case PIPE_TEXTURE_CUBE:
3332   case PIPE_TEXTURE_RECT:
3333      dims[1] = u_minify(texture->height0, level);
3334      return;
3335   case PIPE_TEXTURE_3D:
3336      dims[1] = u_minify(texture->height0, level);
3337      dims[2] = u_minify(texture->depth0, level);
3338      return;
3339   case PIPE_TEXTURE_CUBE_ARRAY:
3340      dims[1] = u_minify(texture->height0, level);
3341      dims[2] = (view->u.tex.last_layer - view->u.tex.first_layer + 1) / 6;
3342      break;
3343   default:
3344      assert(!"unexpected texture target in sp_get_dims()");
3345      return;
3346   }
3347}
3348
3349/**
3350 * This function is only used for getting unfiltered texels via the
3351 * TXF opcode.  The GL spec says that out-of-bounds texel fetches
3352 * produce undefined results.  Instead of crashing, lets just clamp
3353 * coords to the texture image size.
3354 */
3355static void
3356sp_get_texels(const struct sp_sampler_view *sp_sview,
3357              const int v_i[TGSI_QUAD_SIZE],
3358              const int v_j[TGSI_QUAD_SIZE],
3359              const int v_k[TGSI_QUAD_SIZE],
3360              const int lod[TGSI_QUAD_SIZE],
3361              const int8_t offset[3],
3362              float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3363{
3364   union tex_tile_address addr;
3365   const struct pipe_resource *texture = sp_sview->base.texture;
3366   int j, c;
3367   const float *tx;
3368   /* TODO write a better test for LOD */
3369   const unsigned level =
3370      sp_sview->base.target == PIPE_BUFFER ? 0 :
3371      CLAMP(lod[0] + sp_sview->base.u.tex.first_level,
3372            sp_sview->base.u.tex.first_level,
3373            sp_sview->base.u.tex.last_level);
3374   const int width = u_minify(texture->width0, level);
3375   const int height = u_minify(texture->height0, level);
3376   const int depth = u_minify(texture->depth0, level);
3377   unsigned elem_size, first_element, last_element;
3378
3379   addr.value = 0;
3380   addr.bits.level = level;
3381
3382   switch (sp_sview->base.target) {
3383   case PIPE_BUFFER:
3384      elem_size = util_format_get_blocksize(sp_sview->base.format);
3385      first_element = sp_sview->base.u.buf.offset / elem_size;
3386      last_element = (sp_sview->base.u.buf.offset +
3387                      sp_sview->base.u.buf.size) / elem_size - 1;
3388      for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3389         const int x = CLAMP(v_i[j] + offset[0] +
3390                             first_element,
3391                             first_element,
3392                             last_element);
3393         tx = get_texel_buffer_no_border(sp_sview, addr, x, elem_size);
3394         for (c = 0; c < 4; c++) {
3395            rgba[c][j] = tx[c];
3396         }
3397      }
3398      break;
3399   case PIPE_TEXTURE_1D:
3400      for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3401         const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3402         tx = get_texel_2d_no_border(sp_sview, addr, x,
3403                                     sp_sview->base.u.tex.first_layer);
3404         for (c = 0; c < 4; c++) {
3405            rgba[c][j] = tx[c];
3406         }
3407      }
3408      break;
3409   case PIPE_TEXTURE_1D_ARRAY:
3410      for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3411         const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3412         const int y = CLAMP(v_j[j], sp_sview->base.u.tex.first_layer,
3413                             sp_sview->base.u.tex.last_layer);
3414         tx = get_texel_2d_no_border(sp_sview, addr, x, y);
3415         for (c = 0; c < 4; c++) {
3416            rgba[c][j] = tx[c];
3417         }
3418      }
3419      break;
3420   case PIPE_TEXTURE_2D:
3421   case PIPE_TEXTURE_RECT:
3422      for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3423         const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3424         const int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
3425         tx = get_texel_3d_no_border(sp_sview, addr, x, y,
3426                                     sp_sview->base.u.tex.first_layer);
3427         for (c = 0; c < 4; c++) {
3428            rgba[c][j] = tx[c];
3429         }
3430      }
3431      break;
3432   case PIPE_TEXTURE_2D_ARRAY:
3433      for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3434         const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3435         const int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
3436         const int layer = CLAMP(v_k[j], sp_sview->base.u.tex.first_layer,
3437                                 sp_sview->base.u.tex.last_layer);
3438         tx = get_texel_3d_no_border(sp_sview, addr, x, y, layer);
3439         for (c = 0; c < 4; c++) {
3440            rgba[c][j] = tx[c];
3441         }
3442      }
3443      break;
3444   case PIPE_TEXTURE_3D:
3445      for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3446         int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3447         int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
3448         int z = CLAMP(v_k[j] + offset[2], 0, depth - 1);
3449         tx = get_texel_3d_no_border(sp_sview, addr, x, y, z);
3450         for (c = 0; c < 4; c++) {
3451            rgba[c][j] = tx[c];
3452         }
3453      }
3454      break;
3455   case PIPE_TEXTURE_CUBE: /* TXF can't work on CUBE according to spec */
3456   case PIPE_TEXTURE_CUBE_ARRAY:
3457   default:
3458      assert(!"Unknown or CUBE texture type in TXF processing\n");
3459      break;
3460   }
3461
3462   if (sp_sview->need_swizzle) {
3463      float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3464      memcpy(rgba_temp, rgba, sizeof(rgba_temp));
3465      do_swizzling(&sp_sview->base, rgba_temp, rgba);
3466   }
3467}
3468
3469
3470void *
3471softpipe_create_sampler_state(struct pipe_context *pipe,
3472                              const struct pipe_sampler_state *sampler)
3473{
3474   struct sp_sampler *samp = CALLOC_STRUCT(sp_sampler);
3475
3476   samp->base = *sampler;
3477
3478   /* Note that (for instance) linear_texcoord_s and
3479    * nearest_texcoord_s may be active at the same time, if the
3480    * sampler min_img_filter differs from its mag_img_filter.
3481    */
3482   if (sampler->normalized_coords) {
3483      samp->linear_texcoord_s = get_linear_wrap( sampler->wrap_s );
3484      samp->linear_texcoord_t = get_linear_wrap( sampler->wrap_t );
3485      samp->linear_texcoord_p = get_linear_wrap( sampler->wrap_r );
3486
3487      samp->nearest_texcoord_s = get_nearest_wrap( sampler->wrap_s );
3488      samp->nearest_texcoord_t = get_nearest_wrap( sampler->wrap_t );
3489      samp->nearest_texcoord_p = get_nearest_wrap( sampler->wrap_r );
3490   }
3491   else {
3492      samp->linear_texcoord_s = get_linear_unorm_wrap( sampler->wrap_s );
3493      samp->linear_texcoord_t = get_linear_unorm_wrap( sampler->wrap_t );
3494      samp->linear_texcoord_p = get_linear_unorm_wrap( sampler->wrap_r );
3495
3496      samp->nearest_texcoord_s = get_nearest_unorm_wrap( sampler->wrap_s );
3497      samp->nearest_texcoord_t = get_nearest_unorm_wrap( sampler->wrap_t );
3498      samp->nearest_texcoord_p = get_nearest_unorm_wrap( sampler->wrap_r );
3499   }
3500
3501   samp->min_img_filter = sampler->min_img_filter;
3502
3503   switch (sampler->min_mip_filter) {
3504   case PIPE_TEX_MIPFILTER_NONE:
3505      if (sampler->min_img_filter == sampler->mag_img_filter)
3506         samp->filter_funcs = &funcs_none_no_filter_select;
3507      else
3508         samp->filter_funcs = &funcs_none;
3509      break;
3510
3511   case PIPE_TEX_MIPFILTER_NEAREST:
3512      samp->filter_funcs = &funcs_nearest;
3513      break;
3514
3515   case PIPE_TEX_MIPFILTER_LINEAR:
3516      if (sampler->min_img_filter == sampler->mag_img_filter &&
3517          sampler->normalized_coords &&
3518          sampler->wrap_s == PIPE_TEX_WRAP_REPEAT &&
3519          sampler->wrap_t == PIPE_TEX_WRAP_REPEAT &&
3520          sampler->min_img_filter == PIPE_TEX_FILTER_LINEAR &&
3521          sampler->max_anisotropy <= 1) {
3522         samp->min_mag_equal_repeat_linear = TRUE;
3523      }
3524      samp->filter_funcs = &funcs_linear;
3525
3526      /* Anisotropic filtering extension. */
3527      if (sampler->max_anisotropy > 1) {
3528         samp->filter_funcs = &funcs_linear_aniso;
3529
3530         /* Override min_img_filter:
3531          * min_img_filter needs to be set to NEAREST since we need to access
3532          * each texture pixel as it is and weight it later; using linear
3533          * filters will have incorrect results.
3534          * By setting the filter to NEAREST here, we can avoid calling the
3535          * generic img_filter_2d_nearest in the anisotropic filter function,
3536          * making it possible to use one of the accelerated implementations
3537          */
3538         samp->min_img_filter = PIPE_TEX_FILTER_NEAREST;
3539
3540         /* on first access create the lookup table containing the filter weights. */
3541        if (!weightLut) {
3542           create_filter_table();
3543        }
3544      }
3545      break;
3546   }
3547   if (samp->min_img_filter == sampler->mag_img_filter) {
3548      samp->min_mag_equal = TRUE;
3549   }
3550
3551   return (void *)samp;
3552}
3553
3554
3555compute_lambda_func
3556softpipe_get_lambda_func(const struct pipe_sampler_view *view,
3557                         enum pipe_shader_type shader)
3558{
3559   if (shader != PIPE_SHADER_FRAGMENT)
3560      return compute_lambda_vert;
3561
3562   switch (view->target) {
3563   case PIPE_BUFFER:
3564   case PIPE_TEXTURE_1D:
3565   case PIPE_TEXTURE_1D_ARRAY:
3566      return compute_lambda_1d;
3567   case PIPE_TEXTURE_2D:
3568   case PIPE_TEXTURE_2D_ARRAY:
3569   case PIPE_TEXTURE_RECT:
3570      return compute_lambda_2d;
3571   case PIPE_TEXTURE_CUBE:
3572   case PIPE_TEXTURE_CUBE_ARRAY:
3573      return compute_lambda_cube;
3574   case PIPE_TEXTURE_3D:
3575      return compute_lambda_3d;
3576   default:
3577      assert(0);
3578      return compute_lambda_1d;
3579   }
3580}
3581
3582
3583struct pipe_sampler_view *
3584softpipe_create_sampler_view(struct pipe_context *pipe,
3585                             struct pipe_resource *resource,
3586                             const struct pipe_sampler_view *templ)
3587{
3588   struct sp_sampler_view *sview = CALLOC_STRUCT(sp_sampler_view);
3589   const struct softpipe_resource *spr = (struct softpipe_resource *)resource;
3590
3591   if (sview) {
3592      struct pipe_sampler_view *view = &sview->base;
3593      *view = *templ;
3594      view->reference.count = 1;
3595      view->texture = NULL;
3596      pipe_resource_reference(&view->texture, resource);
3597      view->context = pipe;
3598
3599#ifdef DEBUG
3600     /*
3601      * This is possibly too lenient, but the primary reason is just
3602      * to catch gallium frontends which forget to initialize this, so
3603      * it only catches clearly impossible view targets.
3604      */
3605      if (view->target != resource->target) {
3606         if (view->target == PIPE_TEXTURE_1D)
3607            assert(resource->target == PIPE_TEXTURE_1D_ARRAY);
3608         else if (view->target == PIPE_TEXTURE_1D_ARRAY)
3609            assert(resource->target == PIPE_TEXTURE_1D);
3610         else if (view->target == PIPE_TEXTURE_2D)
3611            assert(resource->target == PIPE_TEXTURE_2D_ARRAY ||
3612                   resource->target == PIPE_TEXTURE_CUBE ||
3613                   resource->target == PIPE_TEXTURE_CUBE_ARRAY);
3614         else if (view->target == PIPE_TEXTURE_2D_ARRAY)
3615            assert(resource->target == PIPE_TEXTURE_2D ||
3616                   resource->target == PIPE_TEXTURE_CUBE ||
3617                   resource->target == PIPE_TEXTURE_CUBE_ARRAY);
3618         else if (view->target == PIPE_TEXTURE_CUBE)
3619            assert(resource->target == PIPE_TEXTURE_CUBE_ARRAY ||
3620                   resource->target == PIPE_TEXTURE_2D_ARRAY);
3621         else if (view->target == PIPE_TEXTURE_CUBE_ARRAY)
3622            assert(resource->target == PIPE_TEXTURE_CUBE ||
3623                   resource->target == PIPE_TEXTURE_2D_ARRAY);
3624         else
3625            assert(0);
3626      }
3627#endif
3628
3629      if (any_swizzle(view)) {
3630         sview->need_swizzle = TRUE;
3631      }
3632
3633      sview->need_cube_convert = (view->target == PIPE_TEXTURE_CUBE ||
3634                                  view->target == PIPE_TEXTURE_CUBE_ARRAY);
3635      sview->pot2d = spr->pot &&
3636                     (view->target == PIPE_TEXTURE_2D ||
3637                      view->target == PIPE_TEXTURE_RECT);
3638
3639      sview->xpot = util_logbase2( resource->width0 );
3640      sview->ypot = util_logbase2( resource->height0 );
3641
3642      sview->oneval = util_format_is_pure_integer(view->format) ? uif(1) : 1.0f;
3643   }
3644
3645   return (struct pipe_sampler_view *) sview;
3646}
3647
3648
3649static inline const struct sp_tgsi_sampler *
3650sp_tgsi_sampler_cast_c(const struct tgsi_sampler *sampler)
3651{
3652   return (const struct sp_tgsi_sampler *)sampler;
3653}
3654
3655
3656static void
3657sp_tgsi_get_dims(struct tgsi_sampler *tgsi_sampler,
3658                 const unsigned sview_index,
3659                 int level, int dims[4])
3660{
3661   const struct sp_tgsi_sampler *sp_samp =
3662      sp_tgsi_sampler_cast_c(tgsi_sampler);
3663
3664   assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3665   /* always have a view here but texture is NULL if no sampler view was set. */
3666   if (!sp_samp->sp_sview[sview_index].base.texture) {
3667      dims[0] = dims[1] = dims[2] = dims[3] = 0;
3668      return;
3669   }
3670   sp_get_dims(&sp_samp->sp_sview[sview_index], level, dims);
3671}
3672
3673
3674static void prepare_compare_values(enum pipe_texture_target target,
3675                                   const float p[TGSI_QUAD_SIZE],
3676                                   const float c0[TGSI_QUAD_SIZE],
3677                                   const float c1[TGSI_QUAD_SIZE],
3678                                   float pc[TGSI_QUAD_SIZE])
3679{
3680   if (target == PIPE_TEXTURE_2D_ARRAY ||
3681       target == PIPE_TEXTURE_CUBE) {
3682      pc[0] = c0[0];
3683      pc[1] = c0[1];
3684      pc[2] = c0[2];
3685      pc[3] = c0[3];
3686   } else if (target == PIPE_TEXTURE_CUBE_ARRAY) {
3687      pc[0] = c1[0];
3688      pc[1] = c1[1];
3689      pc[2] = c1[2];
3690      pc[3] = c1[3];
3691   } else {
3692      pc[0] = p[0];
3693      pc[1] = p[1];
3694      pc[2] = p[2];
3695      pc[3] = p[3];
3696   }
3697}
3698
3699static void
3700sp_tgsi_get_samples(struct tgsi_sampler *tgsi_sampler,
3701                    const unsigned sview_index,
3702                    const unsigned sampler_index,
3703                    const float s[TGSI_QUAD_SIZE],
3704                    const float t[TGSI_QUAD_SIZE],
3705                    const float p[TGSI_QUAD_SIZE],
3706                    const float c0[TGSI_QUAD_SIZE],
3707                    const float lod_in[TGSI_QUAD_SIZE],
3708                    float derivs[3][2][TGSI_QUAD_SIZE],
3709                    const int8_t offset[3],
3710                    enum tgsi_sampler_control control,
3711                    float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3712{
3713   const struct sp_tgsi_sampler *sp_tgsi_samp =
3714      sp_tgsi_sampler_cast_c(tgsi_sampler);
3715   struct sp_sampler_view sp_sview;
3716   const struct sp_sampler *sp_samp;
3717   struct filter_args filt_args;
3718   float compare_values[TGSI_QUAD_SIZE];
3719   float lod[TGSI_QUAD_SIZE];
3720   int c;
3721
3722   assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3723   assert(sampler_index < PIPE_MAX_SAMPLERS);
3724   assert(sp_tgsi_samp->sp_sampler[sampler_index]);
3725
3726   memcpy(&sp_sview, &sp_tgsi_samp->sp_sview[sview_index],
3727          sizeof(struct sp_sampler_view));
3728   sp_samp = sp_tgsi_samp->sp_sampler[sampler_index];
3729
3730   if (util_format_is_unorm(sp_sview.base.format)) {
3731      for (c = 0; c < TGSI_NUM_CHANNELS; c++)
3732          sp_sview.border_color.f[c] = CLAMP(sp_samp->base.border_color.f[c],
3733                                              0.0f, 1.0f);
3734   } else if (util_format_is_snorm(sp_sview.base.format)) {
3735      for (c = 0; c < TGSI_NUM_CHANNELS; c++)
3736          sp_sview.border_color.f[c] = CLAMP(sp_samp->base.border_color.f[c],
3737                                              -1.0f, 1.0f);
3738   } else {
3739      memcpy(sp_sview.border_color.f, sp_samp->base.border_color.f,
3740             TGSI_NUM_CHANNELS * sizeof(float));
3741   }
3742
3743   /* always have a view here but texture is NULL if no sampler view was set. */
3744   if (!sp_sview.base.texture) {
3745      int i, j;
3746      for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
3747         for (i = 0; i < TGSI_QUAD_SIZE; i++) {
3748            rgba[j][i] = 0.0f;
3749         }
3750      }
3751      return;
3752   }
3753
3754   if (sp_samp->base.compare_mode != PIPE_TEX_COMPARE_NONE)
3755      prepare_compare_values(sp_sview.base.target, p, c0, lod_in, compare_values);
3756
3757   filt_args.control = control;
3758   filt_args.offset = offset;
3759   int gather_comp = get_gather_component(lod_in);
3760
3761   compute_lambda_lod(&sp_sview, sp_samp, s, t, p, derivs, lod_in, control, lod);
3762
3763   if (sp_sview.need_cube_convert) {
3764      float cs[TGSI_QUAD_SIZE];
3765      float ct[TGSI_QUAD_SIZE];
3766      float cp[TGSI_QUAD_SIZE];
3767      uint faces[TGSI_QUAD_SIZE];
3768
3769      convert_cube(&sp_sview, sp_samp, s, t, p, c0, cs, ct, cp, faces);
3770
3771      filt_args.faces = faces;
3772      sample_mip(&sp_sview, sp_samp, cs, ct, cp, compare_values, gather_comp, lod, &filt_args, rgba);
3773   } else {
3774      static const uint zero_faces[TGSI_QUAD_SIZE] = {0, 0, 0, 0};
3775
3776      filt_args.faces = zero_faces;
3777      sample_mip(&sp_sview, sp_samp, s, t, p, compare_values, gather_comp, lod, &filt_args, rgba);
3778   }
3779}
3780
3781static void
3782sp_tgsi_query_lod(const struct tgsi_sampler *tgsi_sampler,
3783                  const unsigned sview_index,
3784                  const unsigned sampler_index,
3785                  const float s[TGSI_QUAD_SIZE],
3786                  const float t[TGSI_QUAD_SIZE],
3787                  const float p[TGSI_QUAD_SIZE],
3788                  const float c0[TGSI_QUAD_SIZE],
3789                  const enum tgsi_sampler_control control,
3790                  float mipmap[TGSI_QUAD_SIZE],
3791                  float lod[TGSI_QUAD_SIZE])
3792{
3793   static const float lod_in[TGSI_QUAD_SIZE] = { 0.0, 0.0, 0.0, 0.0 };
3794   static const float dummy_grad[3][2][TGSI_QUAD_SIZE];
3795
3796   const struct sp_tgsi_sampler *sp_tgsi_samp =
3797      sp_tgsi_sampler_cast_c(tgsi_sampler);
3798   const struct sp_sampler_view *sp_sview;
3799   const struct sp_sampler *sp_samp;
3800   const struct sp_filter_funcs *funcs;
3801   int i;
3802
3803   assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3804   assert(sampler_index < PIPE_MAX_SAMPLERS);
3805   assert(sp_tgsi_samp->sp_sampler[sampler_index]);
3806
3807   sp_sview = &sp_tgsi_samp->sp_sview[sview_index];
3808   sp_samp = sp_tgsi_samp->sp_sampler[sampler_index];
3809   /* always have a view here but texture is NULL if no sampler view was
3810    * set. */
3811   if (!sp_sview->base.texture) {
3812      for (i = 0; i < TGSI_QUAD_SIZE; i++) {
3813         mipmap[i] = 0.0f;
3814         lod[i] = 0.0f;
3815      }
3816      return;
3817   }
3818   compute_lambda_lod_unclamped(sp_sview, sp_samp,
3819                                s, t, p, dummy_grad, lod_in, control, lod);
3820
3821   get_filters(sp_sview, sp_samp, control, &funcs, NULL, NULL);
3822   funcs->relative_level(sp_sview, sp_samp, lod, mipmap);
3823}
3824
3825static void
3826sp_tgsi_get_texel(struct tgsi_sampler *tgsi_sampler,
3827                  const unsigned sview_index,
3828                  const int i[TGSI_QUAD_SIZE],
3829                  const int j[TGSI_QUAD_SIZE], const int k[TGSI_QUAD_SIZE],
3830                  const int lod[TGSI_QUAD_SIZE], const int8_t offset[3],
3831                  float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3832{
3833   const struct sp_tgsi_sampler *sp_samp =
3834      sp_tgsi_sampler_cast_c(tgsi_sampler);
3835
3836   assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3837   /* always have a view here but texture is NULL if no sampler view was set. */
3838   if (!sp_samp->sp_sview[sview_index].base.texture) {
3839      int i, j;
3840      for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
3841         for (i = 0; i < TGSI_QUAD_SIZE; i++) {
3842            rgba[j][i] = 0.0f;
3843         }
3844      }
3845      return;
3846   }
3847   sp_get_texels(&sp_samp->sp_sview[sview_index], i, j, k, lod, offset, rgba);
3848}
3849
3850
3851struct sp_tgsi_sampler *
3852sp_create_tgsi_sampler(void)
3853{
3854   struct sp_tgsi_sampler *samp = CALLOC_STRUCT(sp_tgsi_sampler);
3855   if (!samp)
3856      return NULL;
3857
3858   samp->base.get_dims = sp_tgsi_get_dims;
3859   samp->base.get_samples = sp_tgsi_get_samples;
3860   samp->base.get_texel = sp_tgsi_get_texel;
3861   samp->base.query_lod = sp_tgsi_query_lod;
3862
3863   return samp;
3864}
3865