1/**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28/**
29 * \brief  Primitive rasterization/rendering (points, lines, triangles)
30 *
31 * \author  Keith Whitwell <keithw@vmware.com>
32 * \author  Brian Paul
33 */
34
35#include "sp_context.h"
36#include "sp_screen.h"
37#include "sp_quad.h"
38#include "sp_quad_pipe.h"
39#include "sp_setup.h"
40#include "sp_state.h"
41#include "draw/draw_context.h"
42#include "pipe/p_shader_tokens.h"
43#include "util/u_math.h"
44#include "util/u_memory.h"
45
46
47#define DEBUG_VERTS 0
48#define DEBUG_FRAGS 0
49
50
51/**
52 * Triangle edge info
53 */
54struct edge {
55   float dx;		/**< X(v1) - X(v0), used only during setup */
56   float dy;		/**< Y(v1) - Y(v0), used only during setup */
57   float dxdy;		/**< dx/dy */
58   float sx, sy;	/**< first sample point coord */
59   int lines;		/**< number of lines on this edge */
60};
61
62
63/**
64 * Max number of quads (2x2 pixel blocks) to process per batch.
65 * This can't be arbitrarily increased since we depend on some 32-bit
66 * bitmasks (two bits per quad).
67 */
68#define MAX_QUADS 16
69
70
71/**
72 * Triangle setup info.
73 * Also used for line drawing (taking some liberties).
74 */
75struct setup_context {
76   struct softpipe_context *softpipe;
77
78   /* Vertices are just an array of floats making up each attribute in
79    * turn.  Currently fixed at 4 floats, but should change in time.
80    * Codegen will help cope with this.
81    */
82   const float (*vmax)[4];
83   const float (*vmid)[4];
84   const float (*vmin)[4];
85   const float (*vprovoke)[4];
86
87   struct edge ebot;
88   struct edge etop;
89   struct edge emaj;
90
91   float oneoverarea;
92   int facing;
93
94   float pixel_offset;
95   unsigned max_layer;
96
97   struct quad_header quad[MAX_QUADS];
98   struct quad_header *quad_ptrs[MAX_QUADS];
99   unsigned count;
100
101   struct tgsi_interp_coef coef[PIPE_MAX_SHADER_INPUTS];
102   struct tgsi_interp_coef posCoef;  /* For Z, W */
103
104   struct {
105      int left[2];   /**< [0] = row0, [1] = row1 */
106      int right[2];
107      int y;
108   } span;
109
110#if DEBUG_FRAGS
111   uint numFragsEmitted;  /**< per primitive */
112   uint numFragsWritten;  /**< per primitive */
113#endif
114
115   unsigned cull_face;		/* which faces cull */
116   unsigned nr_vertex_attrs;
117};
118
119
120
121
122
123
124
125/**
126 * Clip setup->quad against the scissor/surface bounds.
127 */
128static inline void
129quad_clip(struct setup_context *setup, struct quad_header *quad)
130{
131   unsigned viewport_index = quad[0].input.viewport_index;
132   const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect[viewport_index];
133   const int minx = (int) cliprect->minx;
134   const int maxx = (int) cliprect->maxx;
135   const int miny = (int) cliprect->miny;
136   const int maxy = (int) cliprect->maxy;
137
138   if (quad->input.x0 >= maxx ||
139       quad->input.y0 >= maxy ||
140       quad->input.x0 + 1 < minx ||
141       quad->input.y0 + 1 < miny) {
142      /* totally clipped */
143      quad->inout.mask = 0x0;
144      return;
145   }
146   if (quad->input.x0 < minx)
147      quad->inout.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
148   if (quad->input.y0 < miny)
149      quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
150   if (quad->input.x0 == maxx - 1)
151      quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
152   if (quad->input.y0 == maxy - 1)
153      quad->inout.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
154}
155
156
157/**
158 * Emit a quad (pass to next stage) with clipping.
159 */
160static inline void
161clip_emit_quad(struct setup_context *setup, struct quad_header *quad)
162{
163   quad_clip(setup, quad);
164
165   if (quad->inout.mask) {
166      struct softpipe_context *sp = setup->softpipe;
167
168#if DEBUG_FRAGS
169      setup->numFragsEmitted += util_bitcount(quad->inout.mask);
170#endif
171
172      sp->quad.first->run( sp->quad.first, &quad, 1 );
173   }
174}
175
176
177
178/**
179 * Given an X or Y coordinate, return the block/quad coordinate that it
180 * belongs to.
181 */
182static inline int
183block(int x)
184{
185   return x & ~(2-1);
186}
187
188
189static inline int
190block_x(int x)
191{
192   return x & ~(16-1);
193}
194
195
196/**
197 * Render a horizontal span of quads
198 */
199static void
200flush_spans(struct setup_context *setup)
201{
202   const int step = MAX_QUADS;
203   const int xleft0 = setup->span.left[0];
204   const int xleft1 = setup->span.left[1];
205   const int xright0 = setup->span.right[0];
206   const int xright1 = setup->span.right[1];
207   struct quad_stage *pipe = setup->softpipe->quad.first;
208
209   const int minleft = block_x(MIN2(xleft0, xleft1));
210   const int maxright = MAX2(xright0, xright1);
211   int x;
212
213   /* process quads in horizontal chunks of 16 */
214   for (x = minleft; x < maxright; x += step) {
215      unsigned skip_left0 = CLAMP(xleft0 - x, 0, step);
216      unsigned skip_left1 = CLAMP(xleft1 - x, 0, step);
217      unsigned skip_right0 = CLAMP(x + step - xright0, 0, step);
218      unsigned skip_right1 = CLAMP(x + step - xright1, 0, step);
219      unsigned lx = x;
220      unsigned q = 0;
221
222      unsigned skipmask_left0 = (1U << skip_left0) - 1U;
223      unsigned skipmask_left1 = (1U << skip_left1) - 1U;
224
225      /* These calculations fail when step == 32 and skip_right == 0.
226       */
227      unsigned skipmask_right0 = ~0U << (unsigned)(step - skip_right0);
228      unsigned skipmask_right1 = ~0U << (unsigned)(step - skip_right1);
229
230      unsigned mask0 = ~skipmask_left0 & ~skipmask_right0;
231      unsigned mask1 = ~skipmask_left1 & ~skipmask_right1;
232
233      if (mask0 | mask1) {
234         do {
235            unsigned quadmask = (mask0 & 3) | ((mask1 & 3) << 2);
236            if (quadmask) {
237               setup->quad[q].input.x0 = lx;
238               setup->quad[q].input.y0 = setup->span.y;
239               setup->quad[q].input.facing = setup->facing;
240               setup->quad[q].inout.mask = quadmask;
241               setup->quad_ptrs[q] = &setup->quad[q];
242               q++;
243#if DEBUG_FRAGS
244               setup->numFragsEmitted += util_bitcount(quadmask);
245#endif
246            }
247            mask0 >>= 2;
248            mask1 >>= 2;
249            lx += 2;
250         } while (mask0 | mask1);
251
252         pipe->run( pipe, setup->quad_ptrs, q );
253      }
254   }
255
256
257   setup->span.y = 0;
258   setup->span.right[0] = 0;
259   setup->span.right[1] = 0;
260   setup->span.left[0] = 1000000;     /* greater than right[0] */
261   setup->span.left[1] = 1000000;     /* greater than right[1] */
262}
263
264
265#if DEBUG_VERTS
266static void
267print_vertex(const struct setup_context *setup,
268             const float (*v)[4])
269{
270   int i;
271   debug_printf("   Vertex: (%p)\n", (void *) v);
272   for (i = 0; i < setup->nr_vertex_attrs; i++) {
273      debug_printf("     %d: %f %f %f %f\n",  i,
274              v[i][0], v[i][1], v[i][2], v[i][3]);
275      if (util_is_inf_or_nan(v[i][0])) {
276         debug_printf("   NaN!\n");
277      }
278   }
279}
280#endif
281
282
283/**
284 * Sort the vertices from top to bottom order, setting up the triangle
285 * edge fields (ebot, emaj, etop).
286 * \return FALSE if coords are inf/nan (cull the tri), TRUE otherwise
287 */
288static boolean
289setup_sort_vertices(struct setup_context *setup,
290                    float det,
291                    const float (*v0)[4],
292                    const float (*v1)[4],
293                    const float (*v2)[4])
294{
295   if (setup->softpipe->rasterizer->flatshade_first)
296      setup->vprovoke = v0;
297   else
298      setup->vprovoke = v2;
299
300   /* determine bottom to top order of vertices */
301   {
302      float y0 = v0[0][1];
303      float y1 = v1[0][1];
304      float y2 = v2[0][1];
305      if (y0 <= y1) {
306	 if (y1 <= y2) {
307	    /* y0<=y1<=y2 */
308	    setup->vmin = v0;
309	    setup->vmid = v1;
310	    setup->vmax = v2;
311	 }
312	 else if (y2 <= y0) {
313	    /* y2<=y0<=y1 */
314	    setup->vmin = v2;
315	    setup->vmid = v0;
316	    setup->vmax = v1;
317	 }
318	 else {
319	    /* y0<=y2<=y1 */
320	    setup->vmin = v0;
321	    setup->vmid = v2;
322	    setup->vmax = v1;
323	 }
324      }
325      else {
326	 if (y0 <= y2) {
327	    /* y1<=y0<=y2 */
328	    setup->vmin = v1;
329	    setup->vmid = v0;
330	    setup->vmax = v2;
331	 }
332	 else if (y2 <= y1) {
333	    /* y2<=y1<=y0 */
334	    setup->vmin = v2;
335	    setup->vmid = v1;
336	    setup->vmax = v0;
337	 }
338	 else {
339	    /* y1<=y2<=y0 */
340	    setup->vmin = v1;
341	    setup->vmid = v2;
342	    setup->vmax = v0;
343	 }
344      }
345   }
346
347   setup->ebot.dx = setup->vmid[0][0] - setup->vmin[0][0];
348   setup->ebot.dy = setup->vmid[0][1] - setup->vmin[0][1];
349   setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
350   setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
351   setup->etop.dx = setup->vmax[0][0] - setup->vmid[0][0];
352   setup->etop.dy = setup->vmax[0][1] - setup->vmid[0][1];
353
354   /*
355    * Compute triangle's area.  Use 1/area to compute partial
356    * derivatives of attributes later.
357    *
358    * The area will be the same as prim->det, but the sign may be
359    * different depending on how the vertices get sorted above.
360    *
361    * To determine whether the primitive is front or back facing we
362    * use the prim->det value because its sign is correct.
363    */
364   {
365      const float area = (setup->emaj.dx * setup->ebot.dy -
366			    setup->ebot.dx * setup->emaj.dy);
367
368      setup->oneoverarea = 1.0f / area;
369
370      /*
371      debug_printf("%s one-over-area %f  area %f  det %f\n",
372                   __FUNCTION__, setup->oneoverarea, area, det );
373      */
374      if (util_is_inf_or_nan(setup->oneoverarea))
375         return FALSE;
376   }
377
378   /* We need to know if this is a front or back-facing triangle for:
379    *  - the GLSL gl_FrontFacing fragment attribute (bool)
380    *  - two-sided stencil test
381    * 0 = front-facing, 1 = back-facing
382    */
383   setup->facing =
384      ((det < 0.0) ^
385       (setup->softpipe->rasterizer->front_ccw));
386
387   {
388      unsigned face = setup->facing == 0 ? PIPE_FACE_FRONT : PIPE_FACE_BACK;
389
390      if (face & setup->cull_face)
391	 return FALSE;
392   }
393
394   return TRUE;
395}
396
397
398/**
399 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
400 * The value value comes from vertex[slot][i].
401 * The result will be put into setup->coef[slot].a0[i].
402 * \param slot  which attribute slot
403 * \param i  which component of the slot (0..3)
404 */
405static void
406const_coeff(struct setup_context *setup,
407            struct tgsi_interp_coef *coef,
408            uint vertSlot, uint i)
409{
410   assert(i <= 3);
411
412   coef->dadx[i] = 0;
413   coef->dady[i] = 0;
414
415   /* need provoking vertex info!
416    */
417   coef->a0[i] = setup->vprovoke[vertSlot][i];
418}
419
420
421/**
422 * Compute a0, dadx and dady for a linearly interpolated coefficient,
423 * for a triangle.
424 * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively.
425 */
426static void
427tri_linear_coeff(struct setup_context *setup,
428                 struct tgsi_interp_coef *coef,
429                 uint i,
430                 const float v[3])
431{
432   float botda = v[1] - v[0];
433   float majda = v[2] - v[0];
434   float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
435   float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
436   float dadx = a * setup->oneoverarea;
437   float dady = b * setup->oneoverarea;
438
439   assert(i <= 3);
440
441   coef->dadx[i] = dadx;
442   coef->dady[i] = dady;
443
444   /* calculate a0 as the value which would be sampled for the
445    * fragment at (0,0), taking into account that we want to sample at
446    * pixel centers, in other words (pixel_offset, pixel_offset).
447    *
448    * this is neat but unfortunately not a good way to do things for
449    * triangles with very large values of dadx or dady as it will
450    * result in the subtraction and re-addition from a0 of a very
451    * large number, which means we'll end up loosing a lot of the
452    * fractional bits and precision from a0.  the way to fix this is
453    * to define a0 as the sample at a pixel center somewhere near vmin
454    * instead - i'll switch to this later.
455    */
456   coef->a0[i] = (v[0] -
457                  (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
458                   dady * (setup->vmin[0][1] - setup->pixel_offset)));
459}
460
461
462/**
463 * Compute a0, dadx and dady for a perspective-corrected interpolant,
464 * for a triangle.
465 * We basically multiply the vertex value by 1/w before computing
466 * the plane coefficients (a0, dadx, dady).
467 * Later, when we compute the value at a particular fragment position we'll
468 * divide the interpolated value by the interpolated W at that fragment.
469 * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively.
470 */
471static void
472tri_persp_coeff(struct setup_context *setup,
473                struct tgsi_interp_coef *coef,
474                uint i,
475                const float v[3])
476{
477   /* premultiply by 1/w  (v[0][3] is always W):
478    */
479   float mina = v[0] * setup->vmin[0][3];
480   float mida = v[1] * setup->vmid[0][3];
481   float maxa = v[2] * setup->vmax[0][3];
482   float botda = mida - mina;
483   float majda = maxa - mina;
484   float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
485   float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
486   float dadx = a * setup->oneoverarea;
487   float dady = b * setup->oneoverarea;
488
489   assert(i <= 3);
490
491   coef->dadx[i] = dadx;
492   coef->dady[i] = dady;
493   coef->a0[i] = (mina -
494                  (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
495                   dady * (setup->vmin[0][1] - setup->pixel_offset)));
496}
497
498
499/**
500 * Special coefficient setup for gl_FragCoord.
501 * X and Y are trivial, though Y may have to be inverted for OpenGL.
502 * Z and W are copied from posCoef which should have already been computed.
503 * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
504 */
505static void
506setup_fragcoord_coeff(struct setup_context *setup, uint slot)
507{
508   const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
509   boolean origin_lower_left =
510         fsInfo->properties[TGSI_PROPERTY_FS_COORD_ORIGIN];
511   boolean pixel_center_integer =
512         fsInfo->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
513
514   /*X*/
515   setup->coef[slot].a0[0] = pixel_center_integer ? 0.0f : 0.5f;
516   setup->coef[slot].dadx[0] = 1.0f;
517   setup->coef[slot].dady[0] = 0.0f;
518   /*Y*/
519   setup->coef[slot].a0[1] =
520		   (origin_lower_left ? setup->softpipe->framebuffer.height-1 : 0)
521		   + (pixel_center_integer ? 0.0f : 0.5f);
522   setup->coef[slot].dadx[1] = 0.0f;
523   setup->coef[slot].dady[1] = origin_lower_left ? -1.0f : 1.0f;
524   /*Z*/
525   setup->coef[slot].a0[2] = setup->posCoef.a0[2];
526   setup->coef[slot].dadx[2] = setup->posCoef.dadx[2];
527   setup->coef[slot].dady[2] = setup->posCoef.dady[2];
528   /*W*/
529   setup->coef[slot].a0[3] = setup->posCoef.a0[3];
530   setup->coef[slot].dadx[3] = setup->posCoef.dadx[3];
531   setup->coef[slot].dady[3] = setup->posCoef.dady[3];
532}
533
534
535
536/**
537 * Compute the setup->coef[] array dadx, dady, a0 values.
538 * Must be called after setup->vmin,vmid,vmax,vprovoke are initialized.
539 */
540static void
541setup_tri_coefficients(struct setup_context *setup)
542{
543   struct softpipe_context *softpipe = setup->softpipe;
544   const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
545   const struct sp_setup_info *sinfo = &softpipe->setup_info;
546   uint fragSlot;
547   float v[3];
548
549   assert(sinfo->valid);
550
551   /* z and w are done by linear interpolation:
552    */
553   v[0] = setup->vmin[0][2];
554   v[1] = setup->vmid[0][2];
555   v[2] = setup->vmax[0][2];
556   tri_linear_coeff(setup, &setup->posCoef, 2, v);
557
558   v[0] = setup->vmin[0][3];
559   v[1] = setup->vmid[0][3];
560   v[2] = setup->vmax[0][3];
561   tri_linear_coeff(setup, &setup->posCoef, 3, v);
562
563   /* setup interpolation for all the remaining attributes:
564    */
565   for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
566      const uint vertSlot = sinfo->attrib[fragSlot].src_index;
567      uint j;
568
569      switch (sinfo->attrib[fragSlot].interp) {
570      case SP_INTERP_CONSTANT:
571         for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
572            const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
573         }
574         break;
575      case SP_INTERP_LINEAR:
576         for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
577            v[0] = setup->vmin[vertSlot][j];
578            v[1] = setup->vmid[vertSlot][j];
579            v[2] = setup->vmax[vertSlot][j];
580            tri_linear_coeff(setup, &setup->coef[fragSlot], j, v);
581         }
582         break;
583      case SP_INTERP_PERSPECTIVE:
584         for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
585            v[0] = setup->vmin[vertSlot][j];
586            v[1] = setup->vmid[vertSlot][j];
587            v[2] = setup->vmax[vertSlot][j];
588            tri_persp_coeff(setup, &setup->coef[fragSlot], j, v);
589         }
590         break;
591      case SP_INTERP_POS:
592         setup_fragcoord_coeff(setup, fragSlot);
593         break;
594      default:
595         assert(0);
596      }
597
598      if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
599         /* convert 0 to 1.0 and 1 to -1.0 */
600         setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
601         setup->coef[fragSlot].dadx[0] = 0.0;
602         setup->coef[fragSlot].dady[0] = 0.0;
603      }
604
605      if (0) {
606         for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
607            debug_printf("attr[%d].%c: a0:%f dx:%f dy:%f\n",
608                         fragSlot, "xyzw"[j],
609                         setup->coef[fragSlot].a0[j],
610                         setup->coef[fragSlot].dadx[j],
611                         setup->coef[fragSlot].dady[j]);
612         }
613      }
614   }
615}
616
617
618static void
619setup_tri_edges(struct setup_context *setup)
620{
621   float vmin_x = setup->vmin[0][0] + setup->pixel_offset;
622   float vmid_x = setup->vmid[0][0] + setup->pixel_offset;
623
624   float vmin_y = setup->vmin[0][1] - setup->pixel_offset;
625   float vmid_y = setup->vmid[0][1] - setup->pixel_offset;
626   float vmax_y = setup->vmax[0][1] - setup->pixel_offset;
627
628   setup->emaj.sy = ceilf(vmin_y);
629   setup->emaj.lines = (int) ceilf(vmax_y - setup->emaj.sy);
630   setup->emaj.dxdy = setup->emaj.dy ? setup->emaj.dx / setup->emaj.dy : .0f;
631   setup->emaj.sx = vmin_x + (setup->emaj.sy - vmin_y) * setup->emaj.dxdy;
632
633   setup->etop.sy = ceilf(vmid_y);
634   setup->etop.lines = (int) ceilf(vmax_y - setup->etop.sy);
635   setup->etop.dxdy = setup->etop.dy ? setup->etop.dx / setup->etop.dy : .0f;
636   setup->etop.sx = vmid_x + (setup->etop.sy - vmid_y) * setup->etop.dxdy;
637
638   setup->ebot.sy = ceilf(vmin_y);
639   setup->ebot.lines = (int) ceilf(vmid_y - setup->ebot.sy);
640   setup->ebot.dxdy = setup->ebot.dy ? setup->ebot.dx / setup->ebot.dy : .0f;
641   setup->ebot.sx = vmin_x + (setup->ebot.sy - vmin_y) * setup->ebot.dxdy;
642}
643
644
645/**
646 * Render the upper or lower half of a triangle.
647 * Scissoring/cliprect is applied here too.
648 */
649static void
650subtriangle(struct setup_context *setup,
651            struct edge *eleft,
652            struct edge *eright,
653            int lines,
654            unsigned viewport_index)
655{
656   const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect[viewport_index];
657   const int minx = (int) cliprect->minx;
658   const int maxx = (int) cliprect->maxx;
659   const int miny = (int) cliprect->miny;
660   const int maxy = (int) cliprect->maxy;
661   int y, start_y, finish_y;
662   int sy = (int)eleft->sy;
663
664   assert((int)eleft->sy == (int) eright->sy);
665   assert(lines >= 0);
666
667   /* clip top/bottom */
668   start_y = sy;
669   if (start_y < miny)
670      start_y = miny;
671
672   finish_y = sy + lines;
673   if (finish_y > maxy)
674      finish_y = maxy;
675
676   start_y -= sy;
677   finish_y -= sy;
678
679   /*
680   debug_printf("%s %d %d\n", __FUNCTION__, start_y, finish_y);
681   */
682
683   for (y = start_y; y < finish_y; y++) {
684
685      /* avoid accumulating adds as floats don't have the precision to
686       * accurately iterate large triangle edges that way.  luckily we
687       * can just multiply these days.
688       *
689       * this is all drowned out by the attribute interpolation anyway.
690       */
691      int left = (int)(eleft->sx + y * eleft->dxdy);
692      int right = (int)(eright->sx + y * eright->dxdy);
693
694      /* clip left/right */
695      if (left < minx)
696         left = minx;
697      if (right > maxx)
698         right = maxx;
699
700      if (left < right) {
701         int _y = sy + y;
702         if (block(_y) != setup->span.y) {
703            flush_spans(setup);
704            setup->span.y = block(_y);
705         }
706
707         setup->span.left[_y&1] = left;
708         setup->span.right[_y&1] = right;
709      }
710   }
711
712
713   /* save the values so that emaj can be restarted:
714    */
715   eleft->sx += lines * eleft->dxdy;
716   eright->sx += lines * eright->dxdy;
717   eleft->sy += lines;
718   eright->sy += lines;
719}
720
721
722/**
723 * Recalculate prim's determinant.  This is needed as we don't have
724 * get this information through the vbuf_render interface & we must
725 * calculate it here.
726 */
727static float
728calc_det(const float (*v0)[4],
729         const float (*v1)[4],
730         const float (*v2)[4])
731{
732   /* edge vectors e = v0 - v2, f = v1 - v2 */
733   const float ex = v0[0][0] - v2[0][0];
734   const float ey = v0[0][1] - v2[0][1];
735   const float fx = v1[0][0] - v2[0][0];
736   const float fy = v1[0][1] - v2[0][1];
737
738   /* det = cross(e,f).z */
739   return ex * fy - ey * fx;
740}
741
742
743/**
744 * Do setup for triangle rasterization, then render the triangle.
745 */
746void
747sp_setup_tri(struct setup_context *setup,
748             const float (*v0)[4],
749             const float (*v1)[4],
750             const float (*v2)[4])
751{
752   float det;
753   uint layer = 0;
754   unsigned viewport_index = 0;
755#if DEBUG_VERTS
756   debug_printf("Setup triangle:\n");
757   print_vertex(setup, v0);
758   print_vertex(setup, v1);
759   print_vertex(setup, v2);
760#endif
761
762   if (unlikely(sp_debug & SP_DBG_NO_RAST) ||
763       setup->softpipe->rasterizer->rasterizer_discard)
764      return;
765
766   det = calc_det(v0, v1, v2);
767   /*
768   debug_printf("%s\n", __FUNCTION__ );
769   */
770
771#if DEBUG_FRAGS
772   setup->numFragsEmitted = 0;
773   setup->numFragsWritten = 0;
774#endif
775
776   if (!setup_sort_vertices( setup, det, v0, v1, v2 ))
777      return;
778
779   setup_tri_coefficients( setup );
780   setup_tri_edges( setup );
781
782   assert(setup->softpipe->reduced_prim == PIPE_PRIM_TRIANGLES);
783
784   setup->span.y = 0;
785   setup->span.right[0] = 0;
786   setup->span.right[1] = 0;
787   /*   setup->span.z_mode = tri_z_mode( setup->ctx ); */
788   if (setup->softpipe->layer_slot > 0) {
789      layer = *(unsigned *)setup->vprovoke[setup->softpipe->layer_slot];
790      layer = MIN2(layer, setup->max_layer);
791   }
792   setup->quad[0].input.layer = layer;
793
794   if (setup->softpipe->viewport_index_slot > 0) {
795      unsigned *udata = (unsigned*)v0[setup->softpipe->viewport_index_slot];
796      viewport_index = sp_clamp_viewport_idx(*udata);
797   }
798   setup->quad[0].input.viewport_index = viewport_index;
799
800   /*   init_constant_attribs( setup ); */
801
802   if (setup->oneoverarea < 0.0) {
803      /* emaj on left:
804       */
805      subtriangle(setup, &setup->emaj, &setup->ebot, setup->ebot.lines, viewport_index);
806      subtriangle(setup, &setup->emaj, &setup->etop, setup->etop.lines, viewport_index);
807   }
808   else {
809      /* emaj on right:
810       */
811      subtriangle(setup, &setup->ebot, &setup->emaj, setup->ebot.lines, viewport_index);
812      subtriangle(setup, &setup->etop, &setup->emaj, setup->etop.lines, viewport_index);
813   }
814
815   flush_spans( setup );
816
817   if (setup->softpipe->active_statistics_queries) {
818      setup->softpipe->pipeline_statistics.c_primitives++;
819   }
820
821#if DEBUG_FRAGS
822   printf("Tri: %u frags emitted, %u written\n",
823          setup->numFragsEmitted,
824          setup->numFragsWritten);
825#endif
826}
827
828
829/**
830 * Compute a0, dadx and dady for a linearly interpolated coefficient,
831 * for a line.
832 * v[0] and v[1] are vmin and vmax, respectively.
833 */
834static void
835line_linear_coeff(const struct setup_context *setup,
836                  struct tgsi_interp_coef *coef,
837                  uint i,
838                  const float v[2])
839{
840   const float da = v[1] - v[0];
841   const float dadx = da * setup->emaj.dx * setup->oneoverarea;
842   const float dady = da * setup->emaj.dy * setup->oneoverarea;
843   coef->dadx[i] = dadx;
844   coef->dady[i] = dady;
845   coef->a0[i] = (v[0] -
846                  (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
847                   dady * (setup->vmin[0][1] - setup->pixel_offset)));
848}
849
850
851/**
852 * Compute a0, dadx and dady for a perspective-corrected interpolant,
853 * for a line.
854 * v[0] and v[1] are vmin and vmax, respectively.
855 */
856static void
857line_persp_coeff(const struct setup_context *setup,
858                 struct tgsi_interp_coef *coef,
859                 uint i,
860                 const float v[2])
861{
862   const float a0 = v[0] * setup->vmin[0][3];
863   const float a1 = v[1] * setup->vmax[0][3];
864   const float da = a1 - a0;
865   const float dadx = da * setup->emaj.dx * setup->oneoverarea;
866   const float dady = da * setup->emaj.dy * setup->oneoverarea;
867   coef->dadx[i] = dadx;
868   coef->dady[i] = dady;
869   coef->a0[i] = (a0 -
870                  (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
871                   dady * (setup->vmin[0][1] - setup->pixel_offset)));
872}
873
874
875/**
876 * Compute the setup->coef[] array dadx, dady, a0 values.
877 * Must be called after setup->vmin,vmax are initialized.
878 */
879static boolean
880setup_line_coefficients(struct setup_context *setup,
881                        const float (*v0)[4],
882                        const float (*v1)[4])
883{
884   struct softpipe_context *softpipe = setup->softpipe;
885   const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
886   const struct sp_setup_info *sinfo = &softpipe->setup_info;
887   uint fragSlot;
888   float area;
889   float v[2];
890
891   assert(sinfo->valid);
892
893   /* use setup->vmin, vmax to point to vertices */
894   if (softpipe->rasterizer->flatshade_first)
895      setup->vprovoke = v0;
896   else
897      setup->vprovoke = v1;
898   setup->vmin = v0;
899   setup->vmax = v1;
900
901   setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
902   setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
903
904   /* NOTE: this is not really area but something proportional to it */
905   area = setup->emaj.dx * setup->emaj.dx + setup->emaj.dy * setup->emaj.dy;
906   if (area == 0.0f || util_is_inf_or_nan(area))
907      return FALSE;
908   setup->oneoverarea = 1.0f / area;
909
910   /* z and w are done by linear interpolation:
911    */
912   v[0] = setup->vmin[0][2];
913   v[1] = setup->vmax[0][2];
914   line_linear_coeff(setup, &setup->posCoef, 2, v);
915
916   v[0] = setup->vmin[0][3];
917   v[1] = setup->vmax[0][3];
918   line_linear_coeff(setup, &setup->posCoef, 3, v);
919
920   /* setup interpolation for all the remaining attributes:
921    */
922   for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
923      const uint vertSlot = sinfo->attrib[fragSlot].src_index;
924      uint j;
925
926      switch (sinfo->attrib[fragSlot].interp) {
927      case SP_INTERP_CONSTANT:
928         for (j = 0; j < TGSI_NUM_CHANNELS; j++)
929            const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
930         break;
931      case SP_INTERP_LINEAR:
932         for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
933            v[0] = setup->vmin[vertSlot][j];
934            v[1] = setup->vmax[vertSlot][j];
935            line_linear_coeff(setup, &setup->coef[fragSlot], j, v);
936         }
937         break;
938      case SP_INTERP_PERSPECTIVE:
939         for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
940            v[0] = setup->vmin[vertSlot][j];
941            v[1] = setup->vmax[vertSlot][j];
942            line_persp_coeff(setup, &setup->coef[fragSlot], j, v);
943         }
944         break;
945      case SP_INTERP_POS:
946         setup_fragcoord_coeff(setup, fragSlot);
947         break;
948      default:
949         assert(0);
950      }
951
952      if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
953         /* convert 0 to 1.0 and 1 to -1.0 */
954         setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
955         setup->coef[fragSlot].dadx[0] = 0.0;
956         setup->coef[fragSlot].dady[0] = 0.0;
957      }
958   }
959   return TRUE;
960}
961
962
963/**
964 * Plot a pixel in a line segment.
965 */
966static inline void
967plot(struct setup_context *setup, int x, int y)
968{
969   const int iy = y & 1;
970   const int ix = x & 1;
971   const int quadX = x - ix;
972   const int quadY = y - iy;
973   const int mask = (1 << ix) << (2 * iy);
974
975   if (quadX != setup->quad[0].input.x0 ||
976       quadY != setup->quad[0].input.y0)
977   {
978      /* flush prev quad, start new quad */
979
980      if (setup->quad[0].input.x0 != -1)
981         clip_emit_quad(setup, &setup->quad[0]);
982
983      setup->quad[0].input.x0 = quadX;
984      setup->quad[0].input.y0 = quadY;
985      setup->quad[0].inout.mask = 0x0;
986   }
987
988   setup->quad[0].inout.mask |= mask;
989}
990
991
992/**
993 * Do setup for line rasterization, then render the line.
994 * Single-pixel width, no stipple, etc.  We rely on the 'draw' module
995 * to handle stippling and wide lines.
996 */
997void
998sp_setup_line(struct setup_context *setup,
999              const float (*v0)[4],
1000              const float (*v1)[4])
1001{
1002   int x0 = (int) v0[0][0];
1003   int x1 = (int) v1[0][0];
1004   int y0 = (int) v0[0][1];
1005   int y1 = (int) v1[0][1];
1006   int dx = x1 - x0;
1007   int dy = y1 - y0;
1008   int xstep, ystep;
1009   uint layer = 0;
1010   unsigned viewport_index = 0;
1011
1012#if DEBUG_VERTS
1013   debug_printf("Setup line:\n");
1014   print_vertex(setup, v0);
1015   print_vertex(setup, v1);
1016#endif
1017
1018   if (unlikely(sp_debug & SP_DBG_NO_RAST) ||
1019       setup->softpipe->rasterizer->rasterizer_discard)
1020      return;
1021
1022   if (dx == 0 && dy == 0)
1023      return;
1024
1025   if (!setup_line_coefficients(setup, v0, v1))
1026      return;
1027
1028   assert(v0[0][0] < 1.0e9);
1029   assert(v0[0][1] < 1.0e9);
1030   assert(v1[0][0] < 1.0e9);
1031   assert(v1[0][1] < 1.0e9);
1032
1033   if (dx < 0) {
1034      dx = -dx;   /* make positive */
1035      xstep = -1;
1036   }
1037   else {
1038      xstep = 1;
1039   }
1040
1041   if (dy < 0) {
1042      dy = -dy;   /* make positive */
1043      ystep = -1;
1044   }
1045   else {
1046      ystep = 1;
1047   }
1048
1049   assert(dx >= 0);
1050   assert(dy >= 0);
1051   assert(setup->softpipe->reduced_prim == PIPE_PRIM_LINES);
1052
1053   setup->quad[0].input.x0 = setup->quad[0].input.y0 = -1;
1054   setup->quad[0].inout.mask = 0x0;
1055   if (setup->softpipe->layer_slot > 0) {
1056      layer = *(unsigned *)setup->vprovoke[setup->softpipe->layer_slot];
1057      layer = MIN2(layer, setup->max_layer);
1058   }
1059   setup->quad[0].input.layer = layer;
1060
1061   if (setup->softpipe->viewport_index_slot > 0) {
1062      unsigned *udata = (unsigned*)setup->vprovoke[setup->softpipe->viewport_index_slot];
1063      viewport_index = sp_clamp_viewport_idx(*udata);
1064   }
1065   setup->quad[0].input.viewport_index = viewport_index;
1066
1067   /* XXX temporary: set coverage to 1.0 so the line appears
1068    * if AA mode happens to be enabled.
1069    */
1070   setup->quad[0].input.coverage[0] =
1071   setup->quad[0].input.coverage[1] =
1072   setup->quad[0].input.coverage[2] =
1073   setup->quad[0].input.coverage[3] = 1.0;
1074
1075   if (dx > dy) {
1076      /*** X-major line ***/
1077      int i;
1078      const int errorInc = dy + dy;
1079      int error = errorInc - dx;
1080      const int errorDec = error - dx;
1081
1082      for (i = 0; i < dx; i++) {
1083         plot(setup, x0, y0);
1084
1085         x0 += xstep;
1086         if (error < 0) {
1087            error += errorInc;
1088         }
1089         else {
1090            error += errorDec;
1091            y0 += ystep;
1092         }
1093      }
1094   }
1095   else {
1096      /*** Y-major line ***/
1097      int i;
1098      const int errorInc = dx + dx;
1099      int error = errorInc - dy;
1100      const int errorDec = error - dy;
1101
1102      for (i = 0; i < dy; i++) {
1103         plot(setup, x0, y0);
1104
1105         y0 += ystep;
1106         if (error < 0) {
1107            error += errorInc;
1108         }
1109         else {
1110            error += errorDec;
1111            x0 += xstep;
1112         }
1113      }
1114   }
1115
1116   /* draw final quad */
1117   if (setup->quad[0].inout.mask) {
1118      clip_emit_quad(setup, &setup->quad[0]);
1119   }
1120}
1121
1122
1123static void
1124point_persp_coeff(const struct setup_context *setup,
1125                  const float (*vert)[4],
1126                  struct tgsi_interp_coef *coef,
1127                  uint vertSlot, uint i)
1128{
1129   assert(i <= 3);
1130   coef->dadx[i] = 0.0F;
1131   coef->dady[i] = 0.0F;
1132   coef->a0[i] = vert[vertSlot][i] * vert[0][3];
1133}
1134
1135
1136/**
1137 * Do setup for point rasterization, then render the point.
1138 * Round or square points...
1139 * XXX could optimize a lot for 1-pixel points.
1140 */
1141void
1142sp_setup_point(struct setup_context *setup,
1143               const float (*v0)[4])
1144{
1145   struct softpipe_context *softpipe = setup->softpipe;
1146   const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
1147   const int sizeAttr = setup->softpipe->psize_slot;
1148   const float size
1149      = sizeAttr > 0 ? v0[sizeAttr][0]
1150      : setup->softpipe->rasterizer->point_size;
1151   const float halfSize = 0.5F * size;
1152   const boolean round = (boolean) setup->softpipe->rasterizer->point_smooth;
1153   const float x = v0[0][0];  /* Note: data[0] is always position */
1154   const float y = v0[0][1];
1155   const struct sp_setup_info *sinfo = &softpipe->setup_info;
1156   uint fragSlot;
1157   uint layer = 0;
1158   unsigned viewport_index = 0;
1159#if DEBUG_VERTS
1160   debug_printf("Setup point:\n");
1161   print_vertex(setup, v0);
1162#endif
1163
1164   assert(sinfo->valid);
1165
1166   if (unlikely(sp_debug & SP_DBG_NO_RAST) ||
1167       setup->softpipe->rasterizer->rasterizer_discard)
1168      return;
1169
1170   assert(setup->softpipe->reduced_prim == PIPE_PRIM_POINTS);
1171
1172   if (setup->softpipe->layer_slot > 0) {
1173      layer = *(unsigned *)v0[setup->softpipe->layer_slot];
1174      layer = MIN2(layer, setup->max_layer);
1175   }
1176   setup->quad[0].input.layer = layer;
1177
1178   if (setup->softpipe->viewport_index_slot > 0) {
1179      unsigned *udata = (unsigned*)v0[setup->softpipe->viewport_index_slot];
1180      viewport_index = sp_clamp_viewport_idx(*udata);
1181   }
1182   setup->quad[0].input.viewport_index = viewport_index;
1183
1184   /* For points, all interpolants are constant-valued.
1185    * However, for point sprites, we'll need to setup texcoords appropriately.
1186    * XXX: which coefficients are the texcoords???
1187    * We may do point sprites as textured quads...
1188    *
1189    * KW: We don't know which coefficients are texcoords - ultimately
1190    * the choice of what interpolation mode to use for each attribute
1191    * should be determined by the fragment program, using
1192    * per-attribute declaration statements that include interpolation
1193    * mode as a parameter.  So either the fragment program will have
1194    * to be adjusted for pointsprite vs normal point behaviour, or
1195    * otherwise a special interpolation mode will have to be defined
1196    * which matches the required behaviour for point sprites.  But -
1197    * the latter is not a feature of normal hardware, and as such
1198    * probably should be ruled out on that basis.
1199    */
1200   setup->vprovoke = v0;
1201
1202   /* setup Z, W */
1203   const_coeff(setup, &setup->posCoef, 0, 2);
1204   const_coeff(setup, &setup->posCoef, 0, 3);
1205
1206   for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
1207      const uint vertSlot = sinfo->attrib[fragSlot].src_index;
1208      uint j;
1209
1210      switch (sinfo->attrib[fragSlot].interp) {
1211      case SP_INTERP_CONSTANT:
1212         FALLTHROUGH;
1213      case SP_INTERP_LINEAR:
1214         for (j = 0; j < TGSI_NUM_CHANNELS; j++)
1215            const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
1216         break;
1217      case SP_INTERP_PERSPECTIVE:
1218         for (j = 0; j < TGSI_NUM_CHANNELS; j++)
1219            point_persp_coeff(setup, setup->vprovoke,
1220                              &setup->coef[fragSlot], vertSlot, j);
1221         break;
1222      case SP_INTERP_POS:
1223         setup_fragcoord_coeff(setup, fragSlot);
1224         break;
1225      default:
1226         assert(0);
1227      }
1228
1229      if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
1230         /* convert 0 to 1.0 and 1 to -1.0 */
1231         setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
1232         setup->coef[fragSlot].dadx[0] = 0.0;
1233         setup->coef[fragSlot].dady[0] = 0.0;
1234      }
1235   }
1236
1237
1238   if (halfSize <= 0.5 && !round) {
1239      /* special case for 1-pixel points */
1240      const int ix = ((int) x) & 1;
1241      const int iy = ((int) y) & 1;
1242      setup->quad[0].input.x0 = (int) x - ix;
1243      setup->quad[0].input.y0 = (int) y - iy;
1244      setup->quad[0].inout.mask = (1 << ix) << (2 * iy);
1245      clip_emit_quad(setup, &setup->quad[0]);
1246   }
1247   else {
1248      if (round) {
1249         /* rounded points */
1250         const int ixmin = block((int) (x - halfSize));
1251         const int ixmax = block((int) (x + halfSize));
1252         const int iymin = block((int) (y - halfSize));
1253         const int iymax = block((int) (y + halfSize));
1254         const float rmin = halfSize - 0.7071F;  /* 0.7071 = sqrt(2)/2 */
1255         const float rmax = halfSize + 0.7071F;
1256         const float rmin2 = MAX2(0.0F, rmin * rmin);
1257         const float rmax2 = rmax * rmax;
1258         const float cscale = 1.0F / (rmax2 - rmin2);
1259         int ix, iy;
1260
1261         for (iy = iymin; iy <= iymax; iy += 2) {
1262            for (ix = ixmin; ix <= ixmax; ix += 2) {
1263               float dx, dy, dist2, cover;
1264
1265               setup->quad[0].inout.mask = 0x0;
1266
1267               dx = (ix + 0.5f) - x;
1268               dy = (iy + 0.5f) - y;
1269               dist2 = dx * dx + dy * dy;
1270               if (dist2 <= rmax2) {
1271                  cover = 1.0F - (dist2 - rmin2) * cscale;
1272                  setup->quad[0].input.coverage[QUAD_TOP_LEFT] = MIN2(cover, 1.0f);
1273                  setup->quad[0].inout.mask |= MASK_TOP_LEFT;
1274               }
1275
1276               dx = (ix + 1.5f) - x;
1277               dy = (iy + 0.5f) - y;
1278               dist2 = dx * dx + dy * dy;
1279               if (dist2 <= rmax2) {
1280                  cover = 1.0F - (dist2 - rmin2) * cscale;
1281                  setup->quad[0].input.coverage[QUAD_TOP_RIGHT] = MIN2(cover, 1.0f);
1282                  setup->quad[0].inout.mask |= MASK_TOP_RIGHT;
1283               }
1284
1285               dx = (ix + 0.5f) - x;
1286               dy = (iy + 1.5f) - y;
1287               dist2 = dx * dx + dy * dy;
1288               if (dist2 <= rmax2) {
1289                  cover = 1.0F - (dist2 - rmin2) * cscale;
1290                  setup->quad[0].input.coverage[QUAD_BOTTOM_LEFT] = MIN2(cover, 1.0f);
1291                  setup->quad[0].inout.mask |= MASK_BOTTOM_LEFT;
1292               }
1293
1294               dx = (ix + 1.5f) - x;
1295               dy = (iy + 1.5f) - y;
1296               dist2 = dx * dx + dy * dy;
1297               if (dist2 <= rmax2) {
1298                  cover = 1.0F - (dist2 - rmin2) * cscale;
1299                  setup->quad[0].input.coverage[QUAD_BOTTOM_RIGHT] = MIN2(cover, 1.0f);
1300                  setup->quad[0].inout.mask |= MASK_BOTTOM_RIGHT;
1301               }
1302
1303               if (setup->quad[0].inout.mask) {
1304                  setup->quad[0].input.x0 = ix;
1305                  setup->quad[0].input.y0 = iy;
1306                  clip_emit_quad(setup, &setup->quad[0]);
1307               }
1308            }
1309         }
1310      }
1311      else {
1312         /* square points */
1313         const int xmin = (int) (x + 0.75 - halfSize);
1314         const int ymin = (int) (y + 0.25 - halfSize);
1315         const int xmax = xmin + (int) size;
1316         const int ymax = ymin + (int) size;
1317         /* XXX could apply scissor to xmin,ymin,xmax,ymax now */
1318         const int ixmin = block(xmin);
1319         const int ixmax = block(xmax - 1);
1320         const int iymin = block(ymin);
1321         const int iymax = block(ymax - 1);
1322         int ix, iy;
1323
1324         /*
1325         debug_printf("(%f, %f) -> X:%d..%d Y:%d..%d\n", x, y, xmin, xmax,ymin,ymax);
1326         */
1327         for (iy = iymin; iy <= iymax; iy += 2) {
1328            uint rowMask = 0xf;
1329            if (iy < ymin) {
1330               /* above the top edge */
1331               rowMask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
1332            }
1333            if (iy + 1 >= ymax) {
1334               /* below the bottom edge */
1335               rowMask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
1336            }
1337
1338            for (ix = ixmin; ix <= ixmax; ix += 2) {
1339               uint mask = rowMask;
1340
1341               if (ix < xmin) {
1342                  /* fragment is past left edge of point, turn off left bits */
1343                  mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
1344               }
1345               if (ix + 1 >= xmax) {
1346                  /* past the right edge */
1347                  mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
1348               }
1349
1350               setup->quad[0].inout.mask = mask;
1351               setup->quad[0].input.x0 = ix;
1352               setup->quad[0].input.y0 = iy;
1353               clip_emit_quad(setup, &setup->quad[0]);
1354            }
1355         }
1356      }
1357   }
1358}
1359
1360
1361/**
1362 * Called by vbuf code just before we start buffering primitives.
1363 */
1364void
1365sp_setup_prepare(struct setup_context *setup)
1366{
1367   struct softpipe_context *sp = setup->softpipe;
1368   int i;
1369   unsigned max_layer = ~0;
1370   if (sp->dirty) {
1371      softpipe_update_derived(sp, sp->reduced_api_prim);
1372   }
1373
1374   /* Note: nr_attrs is only used for debugging (vertex printing) */
1375   setup->nr_vertex_attrs = draw_num_shader_outputs(sp->draw);
1376
1377   /*
1378    * Determine how many layers the fb has (used for clamping layer value).
1379    * OpenGL (but not d3d10) permits different amount of layers per rt, however
1380    * results are undefined if layer exceeds the amount of layers of ANY
1381    * attachment hence don't need separate per cbuf and zsbuf max.
1382    */
1383   for (i = 0; i < setup->softpipe->framebuffer.nr_cbufs; i++) {
1384      struct pipe_surface *cbuf = setup->softpipe->framebuffer.cbufs[i];
1385      if (cbuf) {
1386         max_layer = MIN2(max_layer,
1387                          cbuf->u.tex.last_layer - cbuf->u.tex.first_layer);
1388
1389      }
1390   }
1391
1392   /* Prepare pixel offset for rasterisation:
1393    *  - pixel center (0.5, 0.5) for GL, or
1394    *  - assume (0.0, 0.0) for other APIs.
1395    */
1396   if (setup->softpipe->rasterizer->half_pixel_center) {
1397      setup->pixel_offset = 0.5f;
1398   } else {
1399      setup->pixel_offset = 0.0f;
1400   }
1401
1402   setup->max_layer = max_layer;
1403
1404   sp->quad.first->begin( sp->quad.first );
1405
1406   if (sp->reduced_api_prim == PIPE_PRIM_TRIANGLES &&
1407       sp->rasterizer->fill_front == PIPE_POLYGON_MODE_FILL &&
1408       sp->rasterizer->fill_back == PIPE_POLYGON_MODE_FILL) {
1409      /* we'll do culling */
1410      setup->cull_face = sp->rasterizer->cull_face;
1411   }
1412   else {
1413      /* 'draw' will do culling */
1414      setup->cull_face = PIPE_FACE_NONE;
1415   }
1416}
1417
1418
1419void
1420sp_setup_destroy_context(struct setup_context *setup)
1421{
1422   FREE( setup );
1423}
1424
1425
1426/**
1427 * Create a new primitive setup/render stage.
1428 */
1429struct setup_context *
1430sp_setup_create_context(struct softpipe_context *softpipe)
1431{
1432   struct setup_context *setup = CALLOC_STRUCT(setup_context);
1433   unsigned i;
1434
1435   setup->softpipe = softpipe;
1436
1437   for (i = 0; i < MAX_QUADS; i++) {
1438      setup->quad[i].coef = setup->coef;
1439      setup->quad[i].posCoef = &setup->posCoef;
1440   }
1441
1442   setup->span.left[0] = 1000000;     /* greater than right[0] */
1443   setup->span.left[1] = 1000000;     /* greater than right[1] */
1444
1445   return setup;
1446}
1447