1/*
2 * Copyright 2018 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25#define AC_SURFACE_INCLUDE_NIR
26#include "ac_surface.h"
27#include "si_pipe.h"
28
29static void *create_shader_state(struct si_context *sctx, nir_shader *nir)
30{
31   sctx->b.screen->finalize_nir(sctx->b.screen, (void*)nir);
32
33   struct pipe_shader_state state = {0};
34   state.type = PIPE_SHADER_IR_NIR;
35   state.ir.nir = nir;
36
37   switch (nir->info.stage) {
38   case MESA_SHADER_VERTEX:
39      return sctx->b.create_vs_state(&sctx->b, &state);
40   case MESA_SHADER_TESS_CTRL:
41      return sctx->b.create_tcs_state(&sctx->b, &state);
42   case MESA_SHADER_TESS_EVAL:
43      return sctx->b.create_tes_state(&sctx->b, &state);
44   case MESA_SHADER_FRAGMENT:
45      return sctx->b.create_fs_state(&sctx->b, &state);
46   case MESA_SHADER_COMPUTE: {
47      struct pipe_compute_state cs_state = {0};
48      cs_state.ir_type = PIPE_SHADER_IR_NIR;
49      cs_state.prog = nir;
50      return sctx->b.create_compute_state(&sctx->b, &cs_state);
51   }
52   default:
53      unreachable("invalid shader stage");
54      return NULL;
55   }
56}
57
58static nir_ssa_def *get_global_ids(nir_builder *b, unsigned num_components)
59{
60   unsigned mask = BITFIELD_MASK(num_components);
61
62   nir_ssa_def *local_ids = nir_channels(b, nir_load_local_invocation_id(b), mask);
63   nir_ssa_def *block_ids = nir_channels(b, nir_load_workgroup_id(b, 32), mask);
64   nir_ssa_def *block_size = nir_channels(b, nir_load_workgroup_size(b), mask);
65   return nir_iadd(b, nir_imul(b, block_ids, block_size), local_ids);
66}
67
68static void unpack_2x16(nir_builder *b, nir_ssa_def *src, nir_ssa_def **x, nir_ssa_def **y)
69{
70   *x = nir_iand(b, src, nir_imm_int(b, 0xffff));
71   *y = nir_ushr(b, src, nir_imm_int(b, 16));
72}
73
74static nir_ssa_def *
75deref_ssa(nir_builder *b, nir_variable *var)
76{
77   return &nir_build_deref_var(b, var)->dest.ssa;
78}
79
80/* Create a NIR compute shader implementing copy_image.
81 *
82 * This shader can handle 1D and 2D, linear and non-linear images.
83 * It expects the source and destination (x,y,z) coords as user_data_amd,
84 * packed into 3 SGPRs as 2x16bits per component.
85 */
86void *si_create_copy_image_cs(struct si_context *sctx, bool src_is_1d_array, bool dst_is_1d_array)
87{
88   const nir_shader_compiler_options *options =
89      sctx->b.screen->get_compiler_options(sctx->b.screen, PIPE_SHADER_IR_NIR, PIPE_SHADER_COMPUTE);
90
91   nir_builder b = nir_builder_init_simple_shader(MESA_SHADER_COMPUTE, options, "copy_image_cs");
92   b.shader->info.num_images = 2;
93
94   /* The workgroup size is either 8x8 for normal (non-linear) 2D images,
95    * or 64x1 for 1D and linear-2D images.
96    */
97   b.shader->info.workgroup_size_variable = true;
98
99   b.shader->info.cs.user_data_components_amd = 3;
100   nir_ssa_def *ids = get_global_ids(&b, 3);
101
102   nir_ssa_def *coord_src = NULL, *coord_dst = NULL;
103   unpack_2x16(&b, nir_load_user_data_amd(&b), &coord_src, &coord_dst);
104
105   coord_src = nir_iadd(&b, coord_src, ids);
106   coord_dst = nir_iadd(&b, coord_dst, ids);
107
108   static unsigned swizzle_xz[] = {0, 2, 0, 0};
109
110   if (src_is_1d_array)
111      coord_src = nir_swizzle(&b, coord_src, swizzle_xz, 4);
112   if (dst_is_1d_array)
113      coord_dst = nir_swizzle(&b, coord_dst, swizzle_xz, 4);
114
115   const struct glsl_type *src_img_type = glsl_image_type(src_is_1d_array ? GLSL_SAMPLER_DIM_1D
116                                                                          : GLSL_SAMPLER_DIM_2D,
117                                                          /*is_array*/ true, GLSL_TYPE_FLOAT);
118   const struct glsl_type *dst_img_type = glsl_image_type(dst_is_1d_array ? GLSL_SAMPLER_DIM_1D
119                                                                          : GLSL_SAMPLER_DIM_2D,
120                                                          /*is_array*/ true, GLSL_TYPE_FLOAT);
121
122   nir_variable *img_src = nir_variable_create(b.shader, nir_var_image, src_img_type, "img_src");
123   img_src->data.binding = 0;
124
125   nir_variable *img_dst = nir_variable_create(b.shader, nir_var_image, dst_img_type, "img_dst");
126   img_dst->data.binding = 1;
127
128   nir_ssa_def *undef32 = nir_ssa_undef(&b, 1, 32);
129   nir_ssa_def *zero = nir_imm_int(&b, 0);
130
131   nir_ssa_def *data = nir_image_deref_load(&b, /*num_components*/ 4, /*bit_size*/ 32,
132      deref_ssa(&b, img_src), coord_src, undef32, zero);
133
134   nir_image_deref_store(&b, deref_ssa(&b, img_dst), coord_dst, undef32, data, zero);
135
136   return create_shader_state(sctx, b.shader);
137}
138
139void *si_create_dcc_retile_cs(struct si_context *sctx, struct radeon_surf *surf)
140{
141   const nir_shader_compiler_options *options =
142      sctx->b.screen->get_compiler_options(sctx->b.screen, PIPE_SHADER_IR_NIR, PIPE_SHADER_COMPUTE);
143
144   nir_builder b = nir_builder_init_simple_shader(MESA_SHADER_COMPUTE, options, "dcc_retile");
145   b.shader->info.workgroup_size[0] = 8;
146   b.shader->info.workgroup_size[1] = 8;
147   b.shader->info.workgroup_size[2] = 1;
148   b.shader->info.cs.user_data_components_amd = 3;
149   b.shader->info.num_ssbos = 1;
150
151   /* Get user data SGPRs. */
152   nir_ssa_def *user_sgprs = nir_load_user_data_amd(&b);
153
154   /* Relative offset from the displayable DCC to the non-displayable DCC in the same buffer. */
155   nir_ssa_def *src_dcc_offset = nir_channel(&b, user_sgprs, 0);
156
157   nir_ssa_def *src_dcc_pitch, *dst_dcc_pitch, *src_dcc_height, *dst_dcc_height;
158   unpack_2x16(&b, nir_channel(&b, user_sgprs, 1), &src_dcc_pitch, &src_dcc_height);
159   unpack_2x16(&b, nir_channel(&b, user_sgprs, 2), &dst_dcc_pitch, &dst_dcc_height);
160
161   /* Get the 2D coordinates. */
162   nir_ssa_def *coord = get_global_ids(&b, 2);
163   nir_ssa_def *zero = nir_imm_int(&b, 0);
164
165   /* Multiply the coordinates by the DCC block size (they are DCC block coordinates). */
166   coord = nir_imul(&b, coord, nir_imm_ivec2(&b, surf->u.gfx9.color.dcc_block_width,
167                                             surf->u.gfx9.color.dcc_block_height));
168
169   nir_ssa_def *src_offset =
170      ac_nir_dcc_addr_from_coord(&b, &sctx->screen->info, surf->bpe, &surf->u.gfx9.color.dcc_equation,
171                                 src_dcc_pitch, src_dcc_height, zero, /* DCC slice size */
172                                 nir_channel(&b, coord, 0), nir_channel(&b, coord, 1), /* x, y */
173                                 zero, zero, zero); /* z, sample, pipe_xor */
174   src_offset = nir_iadd(&b, src_offset, src_dcc_offset);
175   nir_ssa_def *value = nir_load_ssbo(&b, 1, 8, zero, src_offset, .align_mul=1);
176
177   nir_ssa_def *dst_offset =
178      ac_nir_dcc_addr_from_coord(&b, &sctx->screen->info, surf->bpe, &surf->u.gfx9.color.display_dcc_equation,
179                                 dst_dcc_pitch, dst_dcc_height, zero, /* DCC slice size */
180                                 nir_channel(&b, coord, 0), nir_channel(&b, coord, 1), /* x, y */
181                                 zero, zero, zero); /* z, sample, pipe_xor */
182   nir_store_ssbo(&b, value, zero, dst_offset, .write_mask=0x1, .align_mul=1);
183
184   return create_shader_state(sctx, b.shader);
185}
186
187void *gfx9_create_clear_dcc_msaa_cs(struct si_context *sctx, struct si_texture *tex)
188{
189   const nir_shader_compiler_options *options =
190      sctx->b.screen->get_compiler_options(sctx->b.screen, PIPE_SHADER_IR_NIR, PIPE_SHADER_COMPUTE);
191
192   nir_builder b = nir_builder_init_simple_shader(MESA_SHADER_COMPUTE, options, "clear_dcc_msaa");
193   b.shader->info.workgroup_size[0] = 8;
194   b.shader->info.workgroup_size[1] = 8;
195   b.shader->info.workgroup_size[2] = 1;
196   b.shader->info.cs.user_data_components_amd = 2;
197   b.shader->info.num_ssbos = 1;
198
199   /* Get user data SGPRs. */
200   nir_ssa_def *user_sgprs = nir_load_user_data_amd(&b);
201   nir_ssa_def *dcc_pitch, *dcc_height, *clear_value, *pipe_xor;
202   unpack_2x16(&b, nir_channel(&b, user_sgprs, 0), &dcc_pitch, &dcc_height);
203   unpack_2x16(&b, nir_channel(&b, user_sgprs, 1), &clear_value, &pipe_xor);
204   clear_value = nir_u2u16(&b, clear_value);
205
206   /* Get the 2D coordinates. */
207   nir_ssa_def *coord = get_global_ids(&b, 3);
208   nir_ssa_def *zero = nir_imm_int(&b, 0);
209
210   /* Multiply the coordinates by the DCC block size (they are DCC block coordinates). */
211   coord = nir_imul(&b, coord,
212                    nir_channels(&b, nir_imm_ivec4(&b, tex->surface.u.gfx9.color.dcc_block_width,
213                                                   tex->surface.u.gfx9.color.dcc_block_height,
214                                                   tex->surface.u.gfx9.color.dcc_block_depth, 0), 0x7));
215
216   nir_ssa_def *offset =
217      ac_nir_dcc_addr_from_coord(&b, &sctx->screen->info, tex->surface.bpe,
218                                 &tex->surface.u.gfx9.color.dcc_equation,
219                                 dcc_pitch, dcc_height, zero, /* DCC slice size */
220                                 nir_channel(&b, coord, 0), nir_channel(&b, coord, 1), /* x, y */
221                                 tex->buffer.b.b.array_size > 1 ? nir_channel(&b, coord, 2) : zero, /* z */
222                                 zero, pipe_xor); /* sample, pipe_xor */
223
224   /* The trick here is that DCC elements for an even and the next odd sample are next to each other
225    * in memory, so we only need to compute the address for sample 0 and the next DCC byte is always
226    * sample 1. That's why the clear value has 2 bytes - we're clearing 2 samples at the same time.
227    */
228   nir_store_ssbo(&b, clear_value, zero, offset, .write_mask=0x1, .align_mul=2);
229
230   return create_shader_state(sctx, b.shader);
231}
232
233/* Create a compute shader implementing clear_buffer or copy_buffer. */
234void *si_create_clear_buffer_rmw_cs(struct si_context *sctx)
235{
236   const nir_shader_compiler_options *options =
237      sctx->b.screen->get_compiler_options(sctx->b.screen, PIPE_SHADER_IR_NIR, PIPE_SHADER_COMPUTE);
238
239   nir_builder b =
240      nir_builder_init_simple_shader(MESA_SHADER_COMPUTE, options, "clear_buffer_rmw_cs");
241   b.shader->info.workgroup_size[0] = 64;
242   b.shader->info.workgroup_size[1] = 1;
243   b.shader->info.workgroup_size[2] = 1;
244   b.shader->info.cs.user_data_components_amd = 2;
245   b.shader->info.num_ssbos = 1;
246
247   /* address = blockID * 64 + threadID; */
248   nir_ssa_def *address = get_global_ids(&b, 1);
249
250   /* address = address * 16; (byte offset, loading one vec4 per thread) */
251   address = nir_ishl(&b, address, nir_imm_int(&b, 4));
252
253   nir_ssa_def *zero = nir_imm_int(&b, 0);
254   nir_ssa_def *data = nir_load_ssbo(&b, 4, 32, zero, address, .align_mul = 4);
255
256   /* Get user data SGPRs. */
257   nir_ssa_def *user_sgprs = nir_load_user_data_amd(&b);
258
259   /* data &= inverted_writemask; */
260   data = nir_iand(&b, data, nir_channel(&b, user_sgprs, 1));
261   /* data |= clear_value_masked; */
262   data = nir_ior(&b, data, nir_channel(&b, user_sgprs, 0));
263
264   nir_store_ssbo(&b, data, zero, address,
265      .access = SI_COMPUTE_DST_CACHE_POLICY != L2_LRU ? ACCESS_STREAM_CACHE_POLICY : 0,
266      .align_mul = 4);
267
268   return create_shader_state(sctx, b.shader);
269}
270
271/* This is used when TCS is NULL in the VS->TCS->TES chain. In this case,
272 * VS passes its outputs to TES directly, so the fixed-function shader only
273 * has to write TESSOUTER and TESSINNER.
274 */
275void *si_create_passthrough_tcs(struct si_context *sctx)
276{
277   const nir_shader_compiler_options *options =
278      sctx->b.screen->get_compiler_options(sctx->b.screen, PIPE_SHADER_IR_NIR,
279                                           PIPE_SHADER_TESS_CTRL);
280
281   nir_builder b = nir_builder_init_simple_shader(MESA_SHADER_TESS_CTRL, options,
282                                                  "tcs passthrough");
283
284   unsigned num_inputs = 0;
285   unsigned num_outputs = 0;
286
287   nir_variable *in_inner =
288      nir_variable_create(b.shader, nir_var_system_value, glsl_vec_type(2),
289                          "tess inner default");
290   in_inner->data.location = SYSTEM_VALUE_TESS_LEVEL_INNER_DEFAULT;
291
292   nir_variable *out_inner =
293      nir_variable_create(b.shader, nir_var_shader_out, glsl_vec_type(2),
294                          "tess inner");
295   out_inner->data.location = VARYING_SLOT_TESS_LEVEL_INNER;
296   out_inner->data.driver_location = num_outputs++;
297
298   nir_ssa_def *inner = nir_load_var(&b, in_inner);
299   nir_store_var(&b, out_inner, inner, 0x3);
300
301   nir_variable *in_outer =
302      nir_variable_create(b.shader, nir_var_system_value, glsl_vec4_type(),
303                          "tess outer default");
304   in_outer->data.location = SYSTEM_VALUE_TESS_LEVEL_OUTER_DEFAULT;
305
306   nir_variable *out_outer =
307      nir_variable_create(b.shader, nir_var_shader_out, glsl_vec4_type(),
308                          "tess outer");
309   out_outer->data.location = VARYING_SLOT_TESS_LEVEL_OUTER;
310   out_outer->data.driver_location = num_outputs++;
311
312   nir_ssa_def *outer = nir_load_var(&b, in_outer);
313   nir_store_var(&b, out_outer, outer, 0xf);
314
315   nir_ssa_def *id = nir_load_invocation_id(&b);
316   struct si_shader_info *info = &sctx->shader.vs.cso->info;
317   for (unsigned i = 0; i < info->num_outputs; i++) {
318      const struct glsl_type *type;
319      unsigned semantic = info->output_semantic[i];
320      if (semantic < VARYING_SLOT_VAR31 && semantic != VARYING_SLOT_EDGE)
321         type = glsl_array_type(glsl_vec4_type(), 0, 0);
322      else if (semantic >= VARYING_SLOT_VAR0_16BIT)
323         type = glsl_array_type(glsl_vector_type(GLSL_TYPE_FLOAT16, 4), 0, 0);
324      else
325         continue;
326
327      char name[10];
328      snprintf(name, sizeof(name), "in_%u", i);
329      nir_variable *in = nir_variable_create(b.shader, nir_var_shader_in, type, name);
330      in->data.location = semantic;
331      in->data.driver_location = num_inputs++;
332
333      snprintf(name, sizeof(name), "out_%u", i);
334      nir_variable *out = nir_variable_create(b.shader, nir_var_shader_out, type, name);
335      out->data.location = semantic;
336      out->data.driver_location = num_outputs++;
337
338      /* no need to use copy_var to save a lower pass */
339      nir_ssa_def *value = nir_load_array_var(&b, in, id);
340      nir_store_array_var(&b, out, id, value, 0xf);
341   }
342
343   b.shader->num_inputs = num_inputs;
344   b.shader->num_outputs = num_outputs;
345
346   b.shader->info.tess.tcs_vertices_out = sctx->patch_vertices;
347
348   return create_shader_state(sctx, b.shader);
349}
350