1/* 2 * Copyright 2015 Advanced Micro Devices, Inc. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 22 * SOFTWARE. 23 */ 24 25/* The GPU load is measured as follows. 26 * 27 * There is a thread which samples the GRBM_STATUS register at a certain 28 * frequency and the "busy" or "idle" counter is incremented based on 29 * whether the GUI_ACTIVE bit is set or not. 30 * 31 * Then, the user can sample the counters twice and calculate the average 32 * GPU load between the two samples. 33 */ 34 35#include "si_pipe.h" 36#include "si_query.h" 37#include "util/os_time.h" 38 39/* For good accuracy at 1000 fps or lower. This will be inaccurate for higher 40 * fps (there are too few samples per frame). */ 41#define SAMPLES_PER_SEC 10000 42 43#define GRBM_STATUS 0x8010 44#define TA_BUSY(x) (((x) >> 14) & 0x1) 45#define GDS_BUSY(x) (((x) >> 15) & 0x1) 46#define VGT_BUSY(x) (((x) >> 17) & 0x1) 47#define IA_BUSY(x) (((x) >> 19) & 0x1) 48#define SX_BUSY(x) (((x) >> 20) & 0x1) 49#define WD_BUSY(x) (((x) >> 21) & 0x1) 50#define SPI_BUSY(x) (((x) >> 22) & 0x1) 51#define BCI_BUSY(x) (((x) >> 23) & 0x1) 52#define SC_BUSY(x) (((x) >> 24) & 0x1) 53#define PA_BUSY(x) (((x) >> 25) & 0x1) 54#define DB_BUSY(x) (((x) >> 26) & 0x1) 55#define CP_BUSY(x) (((x) >> 29) & 0x1) 56#define CB_BUSY(x) (((x) >> 30) & 0x1) 57#define GUI_ACTIVE(x) (((x) >> 31) & 0x1) 58 59#define SRBM_STATUS2 0x0e4c 60#define SDMA_BUSY(x) (((x) >> 5) & 0x1) 61 62#define CP_STAT 0x8680 63#define PFP_BUSY(x) (((x) >> 15) & 0x1) 64#define MEQ_BUSY(x) (((x) >> 16) & 0x1) 65#define ME_BUSY(x) (((x) >> 17) & 0x1) 66#define SURFACE_SYNC_BUSY(x) (((x) >> 21) & 0x1) 67#define DMA_BUSY(x) (((x) >> 22) & 0x1) 68#define SCRATCH_RAM_BUSY(x) (((x) >> 24) & 0x1) 69 70#define IDENTITY(x) x 71 72#define UPDATE_COUNTER(field, mask) \ 73 do { \ 74 if (mask(value)) \ 75 p_atomic_inc(&counters->named.field.busy); \ 76 else \ 77 p_atomic_inc(&counters->named.field.idle); \ 78 } while (0) 79 80static void si_update_mmio_counters(struct si_screen *sscreen, union si_mmio_counters *counters) 81{ 82 uint32_t value = 0; 83 bool gui_busy, sdma_busy = false; 84 85 /* GRBM_STATUS */ 86 sscreen->ws->read_registers(sscreen->ws, GRBM_STATUS, 1, &value); 87 88 UPDATE_COUNTER(ta, TA_BUSY); 89 UPDATE_COUNTER(gds, GDS_BUSY); 90 UPDATE_COUNTER(vgt, VGT_BUSY); 91 UPDATE_COUNTER(ia, IA_BUSY); 92 UPDATE_COUNTER(sx, SX_BUSY); 93 UPDATE_COUNTER(wd, WD_BUSY); 94 UPDATE_COUNTER(spi, SPI_BUSY); 95 UPDATE_COUNTER(bci, BCI_BUSY); 96 UPDATE_COUNTER(sc, SC_BUSY); 97 UPDATE_COUNTER(pa, PA_BUSY); 98 UPDATE_COUNTER(db, DB_BUSY); 99 UPDATE_COUNTER(cp, CP_BUSY); 100 UPDATE_COUNTER(cb, CB_BUSY); 101 UPDATE_COUNTER(gui, GUI_ACTIVE); 102 gui_busy = GUI_ACTIVE(value); 103 104 if (sscreen->info.gfx_level == GFX7 || sscreen->info.gfx_level == GFX8) { 105 /* SRBM_STATUS2 */ 106 sscreen->ws->read_registers(sscreen->ws, SRBM_STATUS2, 1, &value); 107 108 UPDATE_COUNTER(sdma, SDMA_BUSY); 109 sdma_busy = SDMA_BUSY(value); 110 } 111 112 if (sscreen->info.gfx_level >= GFX8) { 113 /* CP_STAT */ 114 sscreen->ws->read_registers(sscreen->ws, CP_STAT, 1, &value); 115 116 UPDATE_COUNTER(pfp, PFP_BUSY); 117 UPDATE_COUNTER(meq, MEQ_BUSY); 118 UPDATE_COUNTER(me, ME_BUSY); 119 UPDATE_COUNTER(surf_sync, SURFACE_SYNC_BUSY); 120 UPDATE_COUNTER(cp_dma, DMA_BUSY); 121 UPDATE_COUNTER(scratch_ram, SCRATCH_RAM_BUSY); 122 } 123 124 value = gui_busy || sdma_busy; 125 UPDATE_COUNTER(gpu, IDENTITY); 126} 127 128#undef UPDATE_COUNTER 129 130static int si_gpu_load_thread(void *param) 131{ 132 struct si_screen *sscreen = (struct si_screen *)param; 133 const int period_us = 1000000 / SAMPLES_PER_SEC; 134 int sleep_us = period_us; 135 int64_t cur_time, last_time = os_time_get(); 136 137 while (!p_atomic_read(&sscreen->gpu_load_stop_thread)) { 138 if (sleep_us) 139 os_time_sleep(sleep_us); 140 141 /* Make sure we sleep the ideal amount of time to match 142 * the expected frequency. */ 143 cur_time = os_time_get(); 144 145 if (os_time_timeout(last_time, last_time + period_us, cur_time)) 146 sleep_us = MAX2(sleep_us - 1, 1); 147 else 148 sleep_us += 1; 149 150 /*printf("Hz: %.1f\n", 1000000.0 / (cur_time - last_time));*/ 151 last_time = cur_time; 152 153 /* Update the counters. */ 154 si_update_mmio_counters(sscreen, &sscreen->mmio_counters); 155 } 156 p_atomic_dec(&sscreen->gpu_load_stop_thread); 157 return 0; 158} 159 160void si_gpu_load_kill_thread(struct si_screen *sscreen) 161{ 162 if (!sscreen->gpu_load_thread_created) 163 return; 164 165 p_atomic_inc(&sscreen->gpu_load_stop_thread); 166 thrd_join(sscreen->gpu_load_thread, NULL); 167 sscreen->gpu_load_thread_created = false; 168} 169 170static uint64_t si_read_mmio_counter(struct si_screen *sscreen, unsigned busy_index) 171{ 172 /* Start the thread if needed. */ 173 if (!sscreen->gpu_load_thread_created) { 174 simple_mtx_lock(&sscreen->gpu_load_mutex); 175 /* Check again inside the mutex. */ 176 if (!sscreen->gpu_load_thread_created) { 177 if (thrd_success == u_thread_create(&sscreen->gpu_load_thread, si_gpu_load_thread, sscreen)) { 178 sscreen->gpu_load_thread_created = true; 179 } 180 } 181 simple_mtx_unlock(&sscreen->gpu_load_mutex); 182 } 183 184 unsigned busy = p_atomic_read(&sscreen->mmio_counters.array[busy_index]); 185 unsigned idle = p_atomic_read(&sscreen->mmio_counters.array[busy_index + 1]); 186 187 return busy | ((uint64_t)idle << 32); 188} 189 190static unsigned si_end_mmio_counter(struct si_screen *sscreen, uint64_t begin, unsigned busy_index) 191{ 192 uint64_t end = si_read_mmio_counter(sscreen, busy_index); 193 unsigned busy = (end & 0xffffffff) - (begin & 0xffffffff); 194 unsigned idle = (end >> 32) - (begin >> 32); 195 196 /* Calculate the % of time the busy counter was being incremented. 197 * 198 * If no counters were incremented, return the current counter status. 199 * It's for the case when the load is queried faster than 200 * the counters are updated. 201 */ 202 if (idle || busy) { 203 return busy * 100 / (busy + idle); 204 } else { 205 union si_mmio_counters counters; 206 207 memset(&counters, 0, sizeof(counters)); 208 si_update_mmio_counters(sscreen, &counters); 209 return counters.array[busy_index] ? 100 : 0; 210 } 211} 212 213#define BUSY_INDEX(sscreen, field) \ 214 (&sscreen->mmio_counters.named.field.busy - sscreen->mmio_counters.array) 215 216static unsigned busy_index_from_type(struct si_screen *sscreen, unsigned type) 217{ 218 switch (type) { 219 case SI_QUERY_GPU_LOAD: 220 return BUSY_INDEX(sscreen, gpu); 221 case SI_QUERY_GPU_SHADERS_BUSY: 222 return BUSY_INDEX(sscreen, spi); 223 case SI_QUERY_GPU_TA_BUSY: 224 return BUSY_INDEX(sscreen, ta); 225 case SI_QUERY_GPU_GDS_BUSY: 226 return BUSY_INDEX(sscreen, gds); 227 case SI_QUERY_GPU_VGT_BUSY: 228 return BUSY_INDEX(sscreen, vgt); 229 case SI_QUERY_GPU_IA_BUSY: 230 return BUSY_INDEX(sscreen, ia); 231 case SI_QUERY_GPU_SX_BUSY: 232 return BUSY_INDEX(sscreen, sx); 233 case SI_QUERY_GPU_WD_BUSY: 234 return BUSY_INDEX(sscreen, wd); 235 case SI_QUERY_GPU_BCI_BUSY: 236 return BUSY_INDEX(sscreen, bci); 237 case SI_QUERY_GPU_SC_BUSY: 238 return BUSY_INDEX(sscreen, sc); 239 case SI_QUERY_GPU_PA_BUSY: 240 return BUSY_INDEX(sscreen, pa); 241 case SI_QUERY_GPU_DB_BUSY: 242 return BUSY_INDEX(sscreen, db); 243 case SI_QUERY_GPU_CP_BUSY: 244 return BUSY_INDEX(sscreen, cp); 245 case SI_QUERY_GPU_CB_BUSY: 246 return BUSY_INDEX(sscreen, cb); 247 case SI_QUERY_GPU_SDMA_BUSY: 248 return BUSY_INDEX(sscreen, sdma); 249 case SI_QUERY_GPU_PFP_BUSY: 250 return BUSY_INDEX(sscreen, pfp); 251 case SI_QUERY_GPU_MEQ_BUSY: 252 return BUSY_INDEX(sscreen, meq); 253 case SI_QUERY_GPU_ME_BUSY: 254 return BUSY_INDEX(sscreen, me); 255 case SI_QUERY_GPU_SURF_SYNC_BUSY: 256 return BUSY_INDEX(sscreen, surf_sync); 257 case SI_QUERY_GPU_CP_DMA_BUSY: 258 return BUSY_INDEX(sscreen, cp_dma); 259 case SI_QUERY_GPU_SCRATCH_RAM_BUSY: 260 return BUSY_INDEX(sscreen, scratch_ram); 261 default: 262 unreachable("invalid query type"); 263 } 264} 265 266uint64_t si_begin_counter(struct si_screen *sscreen, unsigned type) 267{ 268 unsigned busy_index = busy_index_from_type(sscreen, type); 269 return si_read_mmio_counter(sscreen, busy_index); 270} 271 272unsigned si_end_counter(struct si_screen *sscreen, unsigned type, uint64_t begin) 273{ 274 unsigned busy_index = busy_index_from_type(sscreen, type); 275 return si_end_mmio_counter(sscreen, begin, busy_index); 276} 277