1/* 2 * Copyright 2013-2017 Advanced Micro Devices, Inc. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 22 * SOFTWARE. 23 * 24 */ 25 26#include "si_build_pm4.h" 27#include "util/os_time.h" 28#include "util/u_memory.h" 29#include "util/u_queue.h" 30#include "util/u_upload_mgr.h" 31 32#include <libsync.h> 33 34struct si_fine_fence { 35 struct si_resource *buf; 36 unsigned offset; 37}; 38 39struct si_fence { 40 struct pipe_reference reference; 41 struct pipe_fence_handle *gfx; 42 struct tc_unflushed_batch_token *tc_token; 43 struct util_queue_fence ready; 44 45 /* If the context wasn't flushed at fence creation, this is non-NULL. */ 46 struct { 47 struct si_context *ctx; 48 unsigned ib_index; 49 } gfx_unflushed; 50 51 struct si_fine_fence fine; 52}; 53 54/** 55 * Write an EOP event. 56 * 57 * \param event EVENT_TYPE_* 58 * \param event_flags Optional cache flush flags (TC) 59 * \param dst_sel MEM or TC_L2 60 * \param int_sel NONE or SEND_DATA_AFTER_WR_CONFIRM 61 * \param data_sel DISCARD, VALUE_32BIT, TIMESTAMP, or GDS 62 * \param buf Buffer 63 * \param va GPU address 64 * \param old_value Previous fence value (for a bug workaround) 65 * \param new_value Fence value to write for this event. 66 */ 67void si_cp_release_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, unsigned event, 68 unsigned event_flags, unsigned dst_sel, unsigned int_sel, unsigned data_sel, 69 struct si_resource *buf, uint64_t va, uint32_t new_fence, 70 unsigned query_type) 71{ 72 unsigned op = EVENT_TYPE(event) | 73 EVENT_INDEX(event == V_028A90_CS_DONE || event == V_028A90_PS_DONE ? 6 : 5) | 74 event_flags; 75 unsigned sel = EOP_DST_SEL(dst_sel) | EOP_INT_SEL(int_sel) | EOP_DATA_SEL(data_sel); 76 bool compute_ib = !ctx->has_graphics; 77 78 radeon_begin(cs); 79 80 if (ctx->gfx_level >= GFX9 || (compute_ib && ctx->gfx_level >= GFX7)) { 81 /* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion 82 * counters) must immediately precede every timestamp event to 83 * prevent a GPU hang on GFX9. 84 * 85 * Occlusion queries don't need to do it here, because they 86 * always do ZPASS_DONE before the timestamp. 87 */ 88 if (ctx->gfx_level == GFX9 && !compute_ib && query_type != PIPE_QUERY_OCCLUSION_COUNTER && 89 query_type != PIPE_QUERY_OCCLUSION_PREDICATE && 90 query_type != PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE) { 91 struct si_screen *sscreen = ctx->screen; 92 struct si_resource *scratch; 93 94 if (!ctx->ws->cs_is_secure(&ctx->gfx_cs)) { 95 scratch = ctx->eop_bug_scratch; 96 } else { 97 assert(ctx->screen->info.has_tmz_support); 98 if (!ctx->eop_bug_scratch_tmz) 99 ctx->eop_bug_scratch_tmz = 100 si_aligned_buffer_create(&sscreen->b, 101 PIPE_RESOURCE_FLAG_ENCRYPTED | 102 PIPE_RESOURCE_FLAG_UNMAPPABLE | 103 SI_RESOURCE_FLAG_DRIVER_INTERNAL, 104 PIPE_USAGE_DEFAULT, 105 16 * sscreen->info.max_render_backends, 256); 106 107 scratch = ctx->eop_bug_scratch_tmz; 108 } 109 110 assert(16 * ctx->screen->info.max_render_backends <= scratch->b.b.width0); 111 radeon_emit(PKT3(PKT3_EVENT_WRITE, 2, 0)); 112 radeon_emit(EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1)); 113 radeon_emit(scratch->gpu_address); 114 radeon_emit(scratch->gpu_address >> 32); 115 116 radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, scratch, 117 RADEON_USAGE_WRITE | RADEON_PRIO_QUERY); 118 } 119 120 radeon_emit(PKT3(PKT3_RELEASE_MEM, ctx->gfx_level >= GFX9 ? 6 : 5, 0)); 121 radeon_emit(op); 122 radeon_emit(sel); 123 radeon_emit(va); /* address lo */ 124 radeon_emit(va >> 32); /* address hi */ 125 radeon_emit(new_fence); /* immediate data lo */ 126 radeon_emit(0); /* immediate data hi */ 127 if (ctx->gfx_level >= GFX9) 128 radeon_emit(0); /* unused */ 129 } else { 130 if (ctx->gfx_level == GFX7 || ctx->gfx_level == GFX8) { 131 struct si_resource *scratch = ctx->eop_bug_scratch; 132 uint64_t va = scratch->gpu_address; 133 134 /* Two EOP events are required to make all engines go idle 135 * (and optional cache flushes executed) before the timestamp 136 * is written. 137 */ 138 radeon_emit(PKT3(PKT3_EVENT_WRITE_EOP, 4, 0)); 139 radeon_emit(op); 140 radeon_emit(va); 141 radeon_emit(((va >> 32) & 0xffff) | sel); 142 radeon_emit(0); /* immediate data */ 143 radeon_emit(0); /* unused */ 144 145 radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, scratch, 146 RADEON_USAGE_WRITE | RADEON_PRIO_QUERY); 147 } 148 149 radeon_emit(PKT3(PKT3_EVENT_WRITE_EOP, 4, 0)); 150 radeon_emit(op); 151 radeon_emit(va); 152 radeon_emit(((va >> 32) & 0xffff) | sel); 153 radeon_emit(new_fence); /* immediate data */ 154 radeon_emit(0); /* unused */ 155 } 156 157 radeon_end(); 158 159 if (buf) { 160 radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, buf, RADEON_USAGE_WRITE | RADEON_PRIO_QUERY); 161 } 162} 163 164unsigned si_cp_write_fence_dwords(struct si_screen *screen) 165{ 166 unsigned dwords = 6; 167 168 if (screen->info.gfx_level == GFX7 || screen->info.gfx_level == GFX8) 169 dwords *= 2; 170 171 return dwords; 172} 173 174void si_cp_wait_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, uint64_t va, uint32_t ref, 175 uint32_t mask, unsigned flags) 176{ 177 radeon_begin(cs); 178 radeon_emit(PKT3(PKT3_WAIT_REG_MEM, 5, 0)); 179 radeon_emit(WAIT_REG_MEM_MEM_SPACE(1) | flags); 180 radeon_emit(va); 181 radeon_emit(va >> 32); 182 radeon_emit(ref); /* reference value */ 183 radeon_emit(mask); /* mask */ 184 radeon_emit(4); /* poll interval */ 185 radeon_end(); 186} 187 188static void si_add_fence_dependency(struct si_context *sctx, struct pipe_fence_handle *fence) 189{ 190 struct radeon_winsys *ws = sctx->ws; 191 192 ws->cs_add_fence_dependency(&sctx->gfx_cs, fence, 0); 193} 194 195static void si_add_syncobj_signal(struct si_context *sctx, struct pipe_fence_handle *fence) 196{ 197 sctx->ws->cs_add_syncobj_signal(&sctx->gfx_cs, fence); 198} 199 200static void si_fence_reference(struct pipe_screen *screen, struct pipe_fence_handle **dst, 201 struct pipe_fence_handle *src) 202{ 203 struct radeon_winsys *ws = ((struct si_screen *)screen)->ws; 204 struct si_fence **sdst = (struct si_fence **)dst; 205 struct si_fence *ssrc = (struct si_fence *)src; 206 207 if (pipe_reference(&(*sdst)->reference, &ssrc->reference)) { 208 ws->fence_reference(&(*sdst)->gfx, NULL); 209 tc_unflushed_batch_token_reference(&(*sdst)->tc_token, NULL); 210 si_resource_reference(&(*sdst)->fine.buf, NULL); 211 FREE(*sdst); 212 } 213 *sdst = ssrc; 214} 215 216static struct si_fence *si_create_multi_fence() 217{ 218 struct si_fence *fence = CALLOC_STRUCT(si_fence); 219 if (!fence) 220 return NULL; 221 222 pipe_reference_init(&fence->reference, 1); 223 util_queue_fence_init(&fence->ready); 224 225 return fence; 226} 227 228struct pipe_fence_handle *si_create_fence(struct pipe_context *ctx, 229 struct tc_unflushed_batch_token *tc_token) 230{ 231 struct si_fence *fence = si_create_multi_fence(); 232 if (!fence) 233 return NULL; 234 235 util_queue_fence_reset(&fence->ready); 236 tc_unflushed_batch_token_reference(&fence->tc_token, tc_token); 237 238 return (struct pipe_fence_handle *)fence; 239} 240 241static bool si_fine_fence_signaled(struct radeon_winsys *rws, const struct si_fine_fence *fine) 242{ 243 char *map = 244 rws->buffer_map(rws, fine->buf->buf, NULL, PIPE_MAP_READ | PIPE_MAP_UNSYNCHRONIZED); 245 if (!map) 246 return false; 247 248 uint32_t *fence = (uint32_t *)(map + fine->offset); 249 return *fence != 0; 250} 251 252static void si_fine_fence_set(struct si_context *ctx, struct si_fine_fence *fine, unsigned flags) 253{ 254 uint32_t *fence_ptr; 255 256 assert(util_bitcount(flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) == 1); 257 258 /* Use cached system memory for the fence. */ 259 u_upload_alloc(ctx->cached_gtt_allocator, 0, 4, 4, &fine->offset, 260 (struct pipe_resource **)&fine->buf, (void **)&fence_ptr); 261 if (!fine->buf) 262 return; 263 264 *fence_ptr = 0; 265 266 if (flags & PIPE_FLUSH_TOP_OF_PIPE) { 267 uint32_t value = 0x80000000; 268 269 si_cp_write_data(ctx, fine->buf, fine->offset, 4, V_370_MEM, V_370_PFP, &value); 270 } else if (flags & PIPE_FLUSH_BOTTOM_OF_PIPE) { 271 uint64_t fence_va = fine->buf->gpu_address + fine->offset; 272 273 radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, fine->buf, RADEON_USAGE_WRITE | RADEON_PRIO_QUERY); 274 si_cp_release_mem(ctx, &ctx->gfx_cs, V_028A90_BOTTOM_OF_PIPE_TS, 0, EOP_DST_SEL_MEM, 275 EOP_INT_SEL_NONE, EOP_DATA_SEL_VALUE_32BIT, NULL, fence_va, 0x80000000, 276 PIPE_QUERY_GPU_FINISHED); 277 } else { 278 assert(false); 279 } 280} 281 282static bool si_fence_finish(struct pipe_screen *screen, struct pipe_context *ctx, 283 struct pipe_fence_handle *fence, uint64_t timeout) 284{ 285 struct radeon_winsys *rws = ((struct si_screen *)screen)->ws; 286 struct si_fence *sfence = (struct si_fence *)fence; 287 struct si_context *sctx; 288 int64_t abs_timeout = os_time_get_absolute_timeout(timeout); 289 290 ctx = threaded_context_unwrap_sync(ctx); 291 sctx = (struct si_context *)(ctx ? ctx : NULL); 292 293 if (!util_queue_fence_is_signalled(&sfence->ready)) { 294 if (sfence->tc_token) { 295 /* Ensure that si_flush_from_st will be called for 296 * this fence, but only if we're in the API thread 297 * where the context is current. 298 * 299 * Note that the batch containing the flush may already 300 * be in flight in the driver thread, so the fence 301 * may not be ready yet when this call returns. 302 */ 303 threaded_context_flush(ctx, sfence->tc_token, timeout == 0); 304 } 305 306 if (!timeout) 307 return false; 308 309 if (timeout == PIPE_TIMEOUT_INFINITE) { 310 util_queue_fence_wait(&sfence->ready); 311 } else { 312 if (!util_queue_fence_wait_timeout(&sfence->ready, abs_timeout)) 313 return false; 314 } 315 316 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { 317 int64_t time = os_time_get_nano(); 318 timeout = abs_timeout > time ? abs_timeout - time : 0; 319 } 320 } 321 322 if (!sfence->gfx) 323 return true; 324 325 if (sfence->fine.buf && si_fine_fence_signaled(rws, &sfence->fine)) { 326 rws->fence_reference(&sfence->gfx, NULL); 327 si_resource_reference(&sfence->fine.buf, NULL); 328 return true; 329 } 330 331 /* Flush the gfx IB if it hasn't been flushed yet. */ 332 if (sctx && sfence->gfx_unflushed.ctx == sctx && 333 sfence->gfx_unflushed.ib_index == sctx->num_gfx_cs_flushes) { 334 /* Section 4.1.2 (Signaling) of the OpenGL 4.6 (Core profile) 335 * spec says: 336 * 337 * "If the sync object being blocked upon will not be 338 * signaled in finite time (for example, by an associated 339 * fence command issued previously, but not yet flushed to 340 * the graphics pipeline), then ClientWaitSync may hang 341 * forever. To help prevent this behavior, if 342 * ClientWaitSync is called and all of the following are 343 * true: 344 * 345 * * the SYNC_FLUSH_COMMANDS_BIT bit is set in flags, 346 * * sync is unsignaled when ClientWaitSync is called, 347 * * and the calls to ClientWaitSync and FenceSync were 348 * issued from the same context, 349 * 350 * then the GL will behave as if the equivalent of Flush 351 * were inserted immediately after the creation of sync." 352 * 353 * This means we need to flush for such fences even when we're 354 * not going to wait. 355 */ 356 si_flush_gfx_cs(sctx, (timeout ? 0 : PIPE_FLUSH_ASYNC) | RADEON_FLUSH_START_NEXT_GFX_IB_NOW, 357 NULL); 358 sfence->gfx_unflushed.ctx = NULL; 359 360 if (!timeout) 361 return false; 362 363 /* Recompute the timeout after all that. */ 364 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { 365 int64_t time = os_time_get_nano(); 366 timeout = abs_timeout > time ? abs_timeout - time : 0; 367 } 368 } 369 370 if (rws->fence_wait(rws, sfence->gfx, timeout)) 371 return true; 372 373 /* Re-check in case the GPU is slow or hangs, but the commands before 374 * the fine-grained fence have completed. */ 375 if (sfence->fine.buf && si_fine_fence_signaled(rws, &sfence->fine)) 376 return true; 377 378 return false; 379} 380 381static void si_create_fence_fd(struct pipe_context *ctx, struct pipe_fence_handle **pfence, int fd, 382 enum pipe_fd_type type) 383{ 384 struct si_screen *sscreen = (struct si_screen *)ctx->screen; 385 struct radeon_winsys *ws = sscreen->ws; 386 struct si_fence *sfence; 387 388 *pfence = NULL; 389 390 sfence = si_create_multi_fence(); 391 if (!sfence) 392 return; 393 394 switch (type) { 395 case PIPE_FD_TYPE_NATIVE_SYNC: 396 if (!sscreen->info.has_fence_to_handle) 397 goto finish; 398 399 sfence->gfx = ws->fence_import_sync_file(ws, fd); 400 break; 401 402 case PIPE_FD_TYPE_SYNCOBJ: 403 if (!sscreen->info.has_syncobj) 404 goto finish; 405 406 sfence->gfx = ws->fence_import_syncobj(ws, fd); 407 break; 408 409 default: 410 unreachable("bad fence fd type when importing"); 411 } 412 413finish: 414 if (!sfence->gfx) { 415 FREE(sfence); 416 return; 417 } 418 419 *pfence = (struct pipe_fence_handle *)sfence; 420} 421 422static int si_fence_get_fd(struct pipe_screen *screen, struct pipe_fence_handle *fence) 423{ 424 struct si_screen *sscreen = (struct si_screen *)screen; 425 struct radeon_winsys *ws = sscreen->ws; 426 struct si_fence *sfence = (struct si_fence *)fence; 427 int gfx_fd = -1; 428 429 if (!sscreen->info.has_fence_to_handle) 430 return -1; 431 432 util_queue_fence_wait(&sfence->ready); 433 434 /* Deferred fences aren't supported. */ 435 assert(!sfence->gfx_unflushed.ctx); 436 if (sfence->gfx_unflushed.ctx) 437 return -1; 438 439 if (sfence->gfx) { 440 gfx_fd = ws->fence_export_sync_file(ws, sfence->gfx); 441 if (gfx_fd == -1) { 442 return -1; 443 } 444 } 445 446 /* If we don't have FDs at this point, it means we don't have fences 447 * either. */ 448 if (gfx_fd == -1) 449 return ws->export_signalled_sync_file(ws); 450 451 return gfx_fd; 452} 453 454static void si_flush_all_queues(struct pipe_context *ctx, 455 struct pipe_fence_handle **fence, 456 unsigned flags, bool force_flush) 457{ 458 struct pipe_screen *screen = ctx->screen; 459 struct si_context *sctx = (struct si_context *)ctx; 460 struct radeon_winsys *ws = sctx->ws; 461 struct pipe_fence_handle *gfx_fence = NULL; 462 bool deferred_fence = false; 463 struct si_fine_fence fine = {}; 464 unsigned rflags = PIPE_FLUSH_ASYNC; 465 466 if (!(flags & PIPE_FLUSH_DEFERRED)) { 467 si_flush_implicit_resources(sctx); 468 } 469 470 if (flags & PIPE_FLUSH_END_OF_FRAME) 471 rflags |= PIPE_FLUSH_END_OF_FRAME; 472 473 if (flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) { 474 assert(flags & PIPE_FLUSH_DEFERRED); 475 assert(fence); 476 477 si_fine_fence_set(sctx, &fine, flags); 478 } 479 480 if (force_flush) { 481 sctx->initial_gfx_cs_size = 0; 482 } 483 484 if (!radeon_emitted(&sctx->gfx_cs, sctx->initial_gfx_cs_size)) { 485 if (fence) 486 ws->fence_reference(&gfx_fence, sctx->last_gfx_fence); 487 if (!(flags & PIPE_FLUSH_DEFERRED)) 488 ws->cs_sync_flush(&sctx->gfx_cs); 489 490 tc_driver_internal_flush_notify(sctx->tc); 491 } else { 492 /* Instead of flushing, create a deferred fence. Constraints: 493 * - the gallium frontend must allow a deferred flush. 494 * - the gallium frontend must request a fence. 495 * - fence_get_fd is not allowed. 496 * Thread safety in fence_finish must be ensured by the gallium frontend. 497 */ 498 if (flags & PIPE_FLUSH_DEFERRED && !(flags & PIPE_FLUSH_FENCE_FD) && fence) { 499 gfx_fence = sctx->ws->cs_get_next_fence(&sctx->gfx_cs); 500 deferred_fence = true; 501 } else { 502 si_flush_gfx_cs(sctx, rflags, fence ? &gfx_fence : NULL); 503 } 504 } 505 506 /* Both engines can signal out of order, so we need to keep both fences. */ 507 if (fence) { 508 struct si_fence *new_fence; 509 510 if (flags & TC_FLUSH_ASYNC) { 511 new_fence = (struct si_fence *)*fence; 512 assert(new_fence); 513 } else { 514 new_fence = si_create_multi_fence(); 515 if (!new_fence) { 516 ws->fence_reference(&gfx_fence, NULL); 517 goto finish; 518 } 519 520 screen->fence_reference(screen, fence, NULL); 521 *fence = (struct pipe_fence_handle *)new_fence; 522 } 523 524 /* If both fences are NULL, fence_finish will always return true. */ 525 new_fence->gfx = gfx_fence; 526 527 if (deferred_fence) { 528 new_fence->gfx_unflushed.ctx = sctx; 529 new_fence->gfx_unflushed.ib_index = sctx->num_gfx_cs_flushes; 530 } 531 532 new_fence->fine = fine; 533 fine.buf = NULL; 534 535 if (flags & TC_FLUSH_ASYNC) { 536 util_queue_fence_signal(&new_fence->ready); 537 tc_unflushed_batch_token_reference(&new_fence->tc_token, NULL); 538 } 539 } 540 assert(!fine.buf); 541finish: 542 if (!(flags & (PIPE_FLUSH_DEFERRED | PIPE_FLUSH_ASYNC))) { 543 ws->cs_sync_flush(&sctx->gfx_cs); 544 } 545} 546 547static void si_flush_from_st(struct pipe_context *ctx, struct pipe_fence_handle **fence, 548 unsigned flags) 549{ 550 return si_flush_all_queues(ctx, fence, flags, false); 551} 552 553static void si_fence_server_signal(struct pipe_context *ctx, struct pipe_fence_handle *fence) 554{ 555 struct si_context *sctx = (struct si_context *)ctx; 556 struct si_fence *sfence = (struct si_fence *)fence; 557 558 assert(sfence->gfx); 559 560 if (sfence->gfx) 561 si_add_syncobj_signal(sctx, sfence->gfx); 562 563 /** 564 * The spec requires a flush here. We insert a flush 565 * because syncobj based signals are not directly placed into 566 * the command stream. Instead the signal happens when the 567 * submission associated with the syncobj finishes execution. 568 * 569 * Therefore, we must make sure that we flush the pipe to avoid 570 * new work being emitted and getting executed before the signal 571 * operation. 572 * 573 * Forces a flush even if the GFX CS is empty. 574 * 575 * The flush must not be asynchronous because the kernel must receive 576 * the scheduled "signal" operation before any wait. 577 */ 578 si_flush_all_queues(ctx, NULL, 0, true); 579} 580 581static void si_fence_server_sync(struct pipe_context *ctx, struct pipe_fence_handle *fence) 582{ 583 struct si_context *sctx = (struct si_context *)ctx; 584 struct si_fence *sfence = (struct si_fence *)fence; 585 586 util_queue_fence_wait(&sfence->ready); 587 588 /* Unflushed fences from the same context are no-ops. */ 589 if (sfence->gfx_unflushed.ctx && sfence->gfx_unflushed.ctx == sctx) 590 return; 591 592 /* All unflushed commands will not start execution before this fence 593 * dependency is signalled. That's fine. Flushing is very expensive 594 * if we get fence_server_sync after every draw call. (which happens 595 * with Android/SurfaceFlinger) 596 * 597 * In a nutshell, when CPU overhead is greater than GPU overhead, 598 * or when the time it takes to execute an IB on the GPU is less than 599 * the time it takes to create and submit that IB, flushing decreases 600 * performance. Therefore, DO NOT FLUSH. 601 */ 602 if (sfence->gfx) 603 si_add_fence_dependency(sctx, sfence->gfx); 604} 605 606void si_init_fence_functions(struct si_context *ctx) 607{ 608 ctx->b.flush = si_flush_from_st; 609 ctx->b.create_fence_fd = si_create_fence_fd; 610 ctx->b.fence_server_sync = si_fence_server_sync; 611 ctx->b.fence_server_signal = si_fence_server_signal; 612} 613 614void si_init_screen_fence_functions(struct si_screen *screen) 615{ 616 screen->b.fence_finish = si_fence_finish; 617 screen->b.fence_reference = si_fence_reference; 618 screen->b.fence_get_fd = si_fence_get_fd; 619} 620