1/*
2 * Copyright 2013-2017 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 *
24 */
25
26#include "si_build_pm4.h"
27#include "util/os_time.h"
28#include "util/u_memory.h"
29#include "util/u_queue.h"
30#include "util/u_upload_mgr.h"
31
32#include <libsync.h>
33
34struct si_fine_fence {
35   struct si_resource *buf;
36   unsigned offset;
37};
38
39struct si_fence {
40   struct pipe_reference reference;
41   struct pipe_fence_handle *gfx;
42   struct tc_unflushed_batch_token *tc_token;
43   struct util_queue_fence ready;
44
45   /* If the context wasn't flushed at fence creation, this is non-NULL. */
46   struct {
47      struct si_context *ctx;
48      unsigned ib_index;
49   } gfx_unflushed;
50
51   struct si_fine_fence fine;
52};
53
54/**
55 * Write an EOP event.
56 *
57 * \param event        EVENT_TYPE_*
58 * \param event_flags  Optional cache flush flags (TC)
59 * \param dst_sel      MEM or TC_L2
60 * \param int_sel      NONE or SEND_DATA_AFTER_WR_CONFIRM
61 * \param data_sel     DISCARD, VALUE_32BIT, TIMESTAMP, or GDS
62 * \param buf          Buffer
63 * \param va           GPU address
64 * \param old_value    Previous fence value (for a bug workaround)
65 * \param new_value    Fence value to write for this event.
66 */
67void si_cp_release_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, unsigned event,
68                       unsigned event_flags, unsigned dst_sel, unsigned int_sel, unsigned data_sel,
69                       struct si_resource *buf, uint64_t va, uint32_t new_fence,
70                       unsigned query_type)
71{
72   unsigned op = EVENT_TYPE(event) |
73                 EVENT_INDEX(event == V_028A90_CS_DONE || event == V_028A90_PS_DONE ? 6 : 5) |
74                 event_flags;
75   unsigned sel = EOP_DST_SEL(dst_sel) | EOP_INT_SEL(int_sel) | EOP_DATA_SEL(data_sel);
76   bool compute_ib = !ctx->has_graphics;
77
78   radeon_begin(cs);
79
80   if (ctx->gfx_level >= GFX9 || (compute_ib && ctx->gfx_level >= GFX7)) {
81      /* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion
82       * counters) must immediately precede every timestamp event to
83       * prevent a GPU hang on GFX9.
84       *
85       * Occlusion queries don't need to do it here, because they
86       * always do ZPASS_DONE before the timestamp.
87       */
88      if (ctx->gfx_level == GFX9 && !compute_ib && query_type != PIPE_QUERY_OCCLUSION_COUNTER &&
89          query_type != PIPE_QUERY_OCCLUSION_PREDICATE &&
90          query_type != PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE) {
91         struct si_screen *sscreen = ctx->screen;
92         struct si_resource *scratch;
93
94         if (!ctx->ws->cs_is_secure(&ctx->gfx_cs)) {
95            scratch = ctx->eop_bug_scratch;
96         } else {
97            assert(ctx->screen->info.has_tmz_support);
98            if (!ctx->eop_bug_scratch_tmz)
99               ctx->eop_bug_scratch_tmz =
100                  si_aligned_buffer_create(&sscreen->b,
101                                           PIPE_RESOURCE_FLAG_ENCRYPTED |
102                                           PIPE_RESOURCE_FLAG_UNMAPPABLE |
103                                           SI_RESOURCE_FLAG_DRIVER_INTERNAL,
104                                           PIPE_USAGE_DEFAULT,
105                                           16 * sscreen->info.max_render_backends, 256);
106
107            scratch = ctx->eop_bug_scratch_tmz;
108         }
109
110         assert(16 * ctx->screen->info.max_render_backends <= scratch->b.b.width0);
111         radeon_emit(PKT3(PKT3_EVENT_WRITE, 2, 0));
112         radeon_emit(EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1));
113         radeon_emit(scratch->gpu_address);
114         radeon_emit(scratch->gpu_address >> 32);
115
116         radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, scratch,
117                                   RADEON_USAGE_WRITE | RADEON_PRIO_QUERY);
118      }
119
120      radeon_emit(PKT3(PKT3_RELEASE_MEM, ctx->gfx_level >= GFX9 ? 6 : 5, 0));
121      radeon_emit(op);
122      radeon_emit(sel);
123      radeon_emit(va);        /* address lo */
124      radeon_emit(va >> 32);  /* address hi */
125      radeon_emit(new_fence); /* immediate data lo */
126      radeon_emit(0);         /* immediate data hi */
127      if (ctx->gfx_level >= GFX9)
128         radeon_emit(0); /* unused */
129   } else {
130      if (ctx->gfx_level == GFX7 || ctx->gfx_level == GFX8) {
131         struct si_resource *scratch = ctx->eop_bug_scratch;
132         uint64_t va = scratch->gpu_address;
133
134         /* Two EOP events are required to make all engines go idle
135          * (and optional cache flushes executed) before the timestamp
136          * is written.
137          */
138         radeon_emit(PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
139         radeon_emit(op);
140         radeon_emit(va);
141         radeon_emit(((va >> 32) & 0xffff) | sel);
142         radeon_emit(0); /* immediate data */
143         radeon_emit(0); /* unused */
144
145         radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, scratch,
146                                   RADEON_USAGE_WRITE | RADEON_PRIO_QUERY);
147      }
148
149      radeon_emit(PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
150      radeon_emit(op);
151      radeon_emit(va);
152      radeon_emit(((va >> 32) & 0xffff) | sel);
153      radeon_emit(new_fence); /* immediate data */
154      radeon_emit(0);         /* unused */
155   }
156
157   radeon_end();
158
159   if (buf) {
160      radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, buf, RADEON_USAGE_WRITE | RADEON_PRIO_QUERY);
161   }
162}
163
164unsigned si_cp_write_fence_dwords(struct si_screen *screen)
165{
166   unsigned dwords = 6;
167
168   if (screen->info.gfx_level == GFX7 || screen->info.gfx_level == GFX8)
169      dwords *= 2;
170
171   return dwords;
172}
173
174void si_cp_wait_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, uint64_t va, uint32_t ref,
175                    uint32_t mask, unsigned flags)
176{
177   radeon_begin(cs);
178   radeon_emit(PKT3(PKT3_WAIT_REG_MEM, 5, 0));
179   radeon_emit(WAIT_REG_MEM_MEM_SPACE(1) | flags);
180   radeon_emit(va);
181   radeon_emit(va >> 32);
182   radeon_emit(ref);  /* reference value */
183   radeon_emit(mask); /* mask */
184   radeon_emit(4);    /* poll interval */
185   radeon_end();
186}
187
188static void si_add_fence_dependency(struct si_context *sctx, struct pipe_fence_handle *fence)
189{
190   struct radeon_winsys *ws = sctx->ws;
191
192   ws->cs_add_fence_dependency(&sctx->gfx_cs, fence, 0);
193}
194
195static void si_add_syncobj_signal(struct si_context *sctx, struct pipe_fence_handle *fence)
196{
197   sctx->ws->cs_add_syncobj_signal(&sctx->gfx_cs, fence);
198}
199
200static void si_fence_reference(struct pipe_screen *screen, struct pipe_fence_handle **dst,
201                               struct pipe_fence_handle *src)
202{
203   struct radeon_winsys *ws = ((struct si_screen *)screen)->ws;
204   struct si_fence **sdst = (struct si_fence **)dst;
205   struct si_fence *ssrc = (struct si_fence *)src;
206
207   if (pipe_reference(&(*sdst)->reference, &ssrc->reference)) {
208      ws->fence_reference(&(*sdst)->gfx, NULL);
209      tc_unflushed_batch_token_reference(&(*sdst)->tc_token, NULL);
210      si_resource_reference(&(*sdst)->fine.buf, NULL);
211      FREE(*sdst);
212   }
213   *sdst = ssrc;
214}
215
216static struct si_fence *si_create_multi_fence()
217{
218   struct si_fence *fence = CALLOC_STRUCT(si_fence);
219   if (!fence)
220      return NULL;
221
222   pipe_reference_init(&fence->reference, 1);
223   util_queue_fence_init(&fence->ready);
224
225   return fence;
226}
227
228struct pipe_fence_handle *si_create_fence(struct pipe_context *ctx,
229                                          struct tc_unflushed_batch_token *tc_token)
230{
231   struct si_fence *fence = si_create_multi_fence();
232   if (!fence)
233      return NULL;
234
235   util_queue_fence_reset(&fence->ready);
236   tc_unflushed_batch_token_reference(&fence->tc_token, tc_token);
237
238   return (struct pipe_fence_handle *)fence;
239}
240
241static bool si_fine_fence_signaled(struct radeon_winsys *rws, const struct si_fine_fence *fine)
242{
243   char *map =
244      rws->buffer_map(rws, fine->buf->buf, NULL, PIPE_MAP_READ | PIPE_MAP_UNSYNCHRONIZED);
245   if (!map)
246      return false;
247
248   uint32_t *fence = (uint32_t *)(map + fine->offset);
249   return *fence != 0;
250}
251
252static void si_fine_fence_set(struct si_context *ctx, struct si_fine_fence *fine, unsigned flags)
253{
254   uint32_t *fence_ptr;
255
256   assert(util_bitcount(flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) == 1);
257
258   /* Use cached system memory for the fence. */
259   u_upload_alloc(ctx->cached_gtt_allocator, 0, 4, 4, &fine->offset,
260                  (struct pipe_resource **)&fine->buf, (void **)&fence_ptr);
261   if (!fine->buf)
262      return;
263
264   *fence_ptr = 0;
265
266   if (flags & PIPE_FLUSH_TOP_OF_PIPE) {
267      uint32_t value = 0x80000000;
268
269      si_cp_write_data(ctx, fine->buf, fine->offset, 4, V_370_MEM, V_370_PFP, &value);
270   } else if (flags & PIPE_FLUSH_BOTTOM_OF_PIPE) {
271      uint64_t fence_va = fine->buf->gpu_address + fine->offset;
272
273      radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, fine->buf, RADEON_USAGE_WRITE | RADEON_PRIO_QUERY);
274      si_cp_release_mem(ctx, &ctx->gfx_cs, V_028A90_BOTTOM_OF_PIPE_TS, 0, EOP_DST_SEL_MEM,
275                        EOP_INT_SEL_NONE, EOP_DATA_SEL_VALUE_32BIT, NULL, fence_va, 0x80000000,
276                        PIPE_QUERY_GPU_FINISHED);
277   } else {
278      assert(false);
279   }
280}
281
282static bool si_fence_finish(struct pipe_screen *screen, struct pipe_context *ctx,
283                            struct pipe_fence_handle *fence, uint64_t timeout)
284{
285   struct radeon_winsys *rws = ((struct si_screen *)screen)->ws;
286   struct si_fence *sfence = (struct si_fence *)fence;
287   struct si_context *sctx;
288   int64_t abs_timeout = os_time_get_absolute_timeout(timeout);
289
290   ctx = threaded_context_unwrap_sync(ctx);
291   sctx = (struct si_context *)(ctx ? ctx : NULL);
292
293   if (!util_queue_fence_is_signalled(&sfence->ready)) {
294      if (sfence->tc_token) {
295         /* Ensure that si_flush_from_st will be called for
296          * this fence, but only if we're in the API thread
297          * where the context is current.
298          *
299          * Note that the batch containing the flush may already
300          * be in flight in the driver thread, so the fence
301          * may not be ready yet when this call returns.
302          */
303         threaded_context_flush(ctx, sfence->tc_token, timeout == 0);
304      }
305
306      if (!timeout)
307         return false;
308
309      if (timeout == PIPE_TIMEOUT_INFINITE) {
310         util_queue_fence_wait(&sfence->ready);
311      } else {
312         if (!util_queue_fence_wait_timeout(&sfence->ready, abs_timeout))
313            return false;
314      }
315
316      if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
317         int64_t time = os_time_get_nano();
318         timeout = abs_timeout > time ? abs_timeout - time : 0;
319      }
320   }
321
322   if (!sfence->gfx)
323      return true;
324
325   if (sfence->fine.buf && si_fine_fence_signaled(rws, &sfence->fine)) {
326      rws->fence_reference(&sfence->gfx, NULL);
327      si_resource_reference(&sfence->fine.buf, NULL);
328      return true;
329   }
330
331   /* Flush the gfx IB if it hasn't been flushed yet. */
332   if (sctx && sfence->gfx_unflushed.ctx == sctx &&
333       sfence->gfx_unflushed.ib_index == sctx->num_gfx_cs_flushes) {
334      /* Section 4.1.2 (Signaling) of the OpenGL 4.6 (Core profile)
335       * spec says:
336       *
337       *    "If the sync object being blocked upon will not be
338       *     signaled in finite time (for example, by an associated
339       *     fence command issued previously, but not yet flushed to
340       *     the graphics pipeline), then ClientWaitSync may hang
341       *     forever. To help prevent this behavior, if
342       *     ClientWaitSync is called and all of the following are
343       *     true:
344       *
345       *     * the SYNC_FLUSH_COMMANDS_BIT bit is set in flags,
346       *     * sync is unsignaled when ClientWaitSync is called,
347       *     * and the calls to ClientWaitSync and FenceSync were
348       *       issued from the same context,
349       *
350       *     then the GL will behave as if the equivalent of Flush
351       *     were inserted immediately after the creation of sync."
352       *
353       * This means we need to flush for such fences even when we're
354       * not going to wait.
355       */
356      si_flush_gfx_cs(sctx, (timeout ? 0 : PIPE_FLUSH_ASYNC) | RADEON_FLUSH_START_NEXT_GFX_IB_NOW,
357                      NULL);
358      sfence->gfx_unflushed.ctx = NULL;
359
360      if (!timeout)
361         return false;
362
363      /* Recompute the timeout after all that. */
364      if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
365         int64_t time = os_time_get_nano();
366         timeout = abs_timeout > time ? abs_timeout - time : 0;
367      }
368   }
369
370   if (rws->fence_wait(rws, sfence->gfx, timeout))
371      return true;
372
373   /* Re-check in case the GPU is slow or hangs, but the commands before
374    * the fine-grained fence have completed. */
375   if (sfence->fine.buf && si_fine_fence_signaled(rws, &sfence->fine))
376      return true;
377
378   return false;
379}
380
381static void si_create_fence_fd(struct pipe_context *ctx, struct pipe_fence_handle **pfence, int fd,
382                               enum pipe_fd_type type)
383{
384   struct si_screen *sscreen = (struct si_screen *)ctx->screen;
385   struct radeon_winsys *ws = sscreen->ws;
386   struct si_fence *sfence;
387
388   *pfence = NULL;
389
390   sfence = si_create_multi_fence();
391   if (!sfence)
392      return;
393
394   switch (type) {
395   case PIPE_FD_TYPE_NATIVE_SYNC:
396      if (!sscreen->info.has_fence_to_handle)
397         goto finish;
398
399      sfence->gfx = ws->fence_import_sync_file(ws, fd);
400      break;
401
402   case PIPE_FD_TYPE_SYNCOBJ:
403      if (!sscreen->info.has_syncobj)
404         goto finish;
405
406      sfence->gfx = ws->fence_import_syncobj(ws, fd);
407      break;
408
409   default:
410      unreachable("bad fence fd type when importing");
411   }
412
413finish:
414   if (!sfence->gfx) {
415      FREE(sfence);
416      return;
417   }
418
419   *pfence = (struct pipe_fence_handle *)sfence;
420}
421
422static int si_fence_get_fd(struct pipe_screen *screen, struct pipe_fence_handle *fence)
423{
424   struct si_screen *sscreen = (struct si_screen *)screen;
425   struct radeon_winsys *ws = sscreen->ws;
426   struct si_fence *sfence = (struct si_fence *)fence;
427   int gfx_fd = -1;
428
429   if (!sscreen->info.has_fence_to_handle)
430      return -1;
431
432   util_queue_fence_wait(&sfence->ready);
433
434   /* Deferred fences aren't supported. */
435   assert(!sfence->gfx_unflushed.ctx);
436   if (sfence->gfx_unflushed.ctx)
437      return -1;
438
439   if (sfence->gfx) {
440      gfx_fd = ws->fence_export_sync_file(ws, sfence->gfx);
441      if (gfx_fd == -1) {
442         return -1;
443      }
444   }
445
446   /* If we don't have FDs at this point, it means we don't have fences
447    * either. */
448   if (gfx_fd == -1)
449      return ws->export_signalled_sync_file(ws);
450
451   return gfx_fd;
452}
453
454static void si_flush_all_queues(struct pipe_context *ctx,
455                                struct pipe_fence_handle **fence,
456                                unsigned flags, bool force_flush)
457{
458   struct pipe_screen *screen = ctx->screen;
459   struct si_context *sctx = (struct si_context *)ctx;
460   struct radeon_winsys *ws = sctx->ws;
461   struct pipe_fence_handle *gfx_fence = NULL;
462   bool deferred_fence = false;
463   struct si_fine_fence fine = {};
464   unsigned rflags = PIPE_FLUSH_ASYNC;
465
466   if (!(flags & PIPE_FLUSH_DEFERRED)) {
467      si_flush_implicit_resources(sctx);
468   }
469
470   if (flags & PIPE_FLUSH_END_OF_FRAME)
471      rflags |= PIPE_FLUSH_END_OF_FRAME;
472
473   if (flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) {
474      assert(flags & PIPE_FLUSH_DEFERRED);
475      assert(fence);
476
477      si_fine_fence_set(sctx, &fine, flags);
478   }
479
480   if (force_flush) {
481      sctx->initial_gfx_cs_size = 0;
482   }
483
484   if (!radeon_emitted(&sctx->gfx_cs, sctx->initial_gfx_cs_size)) {
485      if (fence)
486         ws->fence_reference(&gfx_fence, sctx->last_gfx_fence);
487      if (!(flags & PIPE_FLUSH_DEFERRED))
488         ws->cs_sync_flush(&sctx->gfx_cs);
489
490      tc_driver_internal_flush_notify(sctx->tc);
491   } else {
492      /* Instead of flushing, create a deferred fence. Constraints:
493       * - the gallium frontend must allow a deferred flush.
494       * - the gallium frontend must request a fence.
495       * - fence_get_fd is not allowed.
496       * Thread safety in fence_finish must be ensured by the gallium frontend.
497       */
498      if (flags & PIPE_FLUSH_DEFERRED && !(flags & PIPE_FLUSH_FENCE_FD) && fence) {
499         gfx_fence = sctx->ws->cs_get_next_fence(&sctx->gfx_cs);
500         deferred_fence = true;
501      } else {
502         si_flush_gfx_cs(sctx, rflags, fence ? &gfx_fence : NULL);
503      }
504   }
505
506   /* Both engines can signal out of order, so we need to keep both fences. */
507   if (fence) {
508      struct si_fence *new_fence;
509
510      if (flags & TC_FLUSH_ASYNC) {
511         new_fence = (struct si_fence *)*fence;
512         assert(new_fence);
513      } else {
514         new_fence = si_create_multi_fence();
515         if (!new_fence) {
516            ws->fence_reference(&gfx_fence, NULL);
517            goto finish;
518         }
519
520         screen->fence_reference(screen, fence, NULL);
521         *fence = (struct pipe_fence_handle *)new_fence;
522      }
523
524      /* If both fences are NULL, fence_finish will always return true. */
525      new_fence->gfx = gfx_fence;
526
527      if (deferred_fence) {
528         new_fence->gfx_unflushed.ctx = sctx;
529         new_fence->gfx_unflushed.ib_index = sctx->num_gfx_cs_flushes;
530      }
531
532      new_fence->fine = fine;
533      fine.buf = NULL;
534
535      if (flags & TC_FLUSH_ASYNC) {
536         util_queue_fence_signal(&new_fence->ready);
537         tc_unflushed_batch_token_reference(&new_fence->tc_token, NULL);
538      }
539   }
540   assert(!fine.buf);
541finish:
542   if (!(flags & (PIPE_FLUSH_DEFERRED | PIPE_FLUSH_ASYNC))) {
543      ws->cs_sync_flush(&sctx->gfx_cs);
544   }
545}
546
547static void si_flush_from_st(struct pipe_context *ctx, struct pipe_fence_handle **fence,
548                             unsigned flags)
549{
550   return si_flush_all_queues(ctx, fence, flags, false);
551}
552
553static void si_fence_server_signal(struct pipe_context *ctx, struct pipe_fence_handle *fence)
554{
555   struct si_context *sctx = (struct si_context *)ctx;
556   struct si_fence *sfence = (struct si_fence *)fence;
557
558   assert(sfence->gfx);
559
560   if (sfence->gfx)
561      si_add_syncobj_signal(sctx, sfence->gfx);
562
563   /**
564    * The spec requires a flush here. We insert a flush
565    * because syncobj based signals are not directly placed into
566    * the command stream. Instead the signal happens when the
567    * submission associated with the syncobj finishes execution.
568    *
569    * Therefore, we must make sure that we flush the pipe to avoid
570    * new work being emitted and getting executed before the signal
571    * operation.
572    *
573    * Forces a flush even if the GFX CS is empty.
574    *
575    * The flush must not be asynchronous because the kernel must receive
576    * the scheduled "signal" operation before any wait.
577    */
578   si_flush_all_queues(ctx, NULL, 0, true);
579}
580
581static void si_fence_server_sync(struct pipe_context *ctx, struct pipe_fence_handle *fence)
582{
583   struct si_context *sctx = (struct si_context *)ctx;
584   struct si_fence *sfence = (struct si_fence *)fence;
585
586   util_queue_fence_wait(&sfence->ready);
587
588   /* Unflushed fences from the same context are no-ops. */
589   if (sfence->gfx_unflushed.ctx && sfence->gfx_unflushed.ctx == sctx)
590      return;
591
592   /* All unflushed commands will not start execution before this fence
593    * dependency is signalled. That's fine. Flushing is very expensive
594    * if we get fence_server_sync after every draw call. (which happens
595    * with Android/SurfaceFlinger)
596    *
597    * In a nutshell, when CPU overhead is greater than GPU overhead,
598    * or when the time it takes to execute an IB on the GPU is less than
599    * the time it takes to create and submit that IB, flushing decreases
600    * performance. Therefore, DO NOT FLUSH.
601    */
602   if (sfence->gfx)
603      si_add_fence_dependency(sctx, sfence->gfx);
604}
605
606void si_init_fence_functions(struct si_context *ctx)
607{
608   ctx->b.flush = si_flush_from_st;
609   ctx->b.create_fence_fd = si_create_fence_fd;
610   ctx->b.fence_server_sync = si_fence_server_sync;
611   ctx->b.fence_server_signal = si_fence_server_signal;
612}
613
614void si_init_screen_fence_functions(struct si_screen *screen)
615{
616   screen->b.fence_finish = si_fence_finish;
617   screen->b.fence_reference = si_fence_reference;
618   screen->b.fence_get_fd = si_fence_get_fd;
619}
620