1#ifndef __NVFX_SHADER_H__ 2#define __NVFX_SHADER_H__ 3 4#include <stdint.h> 5 6#include "pipe/p_compiler.h" 7 8#define NVFX_SWZ_IDENTITY ((3 << 6) | (2 << 4) | (1 << 2) | (0 << 0)) 9 10/* this will resolve to either the NV30 or the NV40 version 11 * depending on the current hardware */ 12/* unusual, but very fast and compact method */ 13#define NVFX_VP(c) ((NV30_VP_##c) + (vpc->is_nv4x & ((NV40_VP_##c) - (NV30_VP_##c)))) 14 15#define NVFX_VP_INST_SLOT_VEC 0 16#define NVFX_VP_INST_SLOT_SCA 1 17 18#define NVFX_VP_INST_IN_POS 0 /* These seem to match the bindings specified in */ 19#define NVFX_VP_INST_IN_WEIGHT 1 /* the ARB_v_p spec (2.14.3.1) */ 20#define NVFX_VP_INST_IN_NORMAL 2 21#define NVFX_VP_INST_IN_COL0 3 /* Should probably confirm them all though */ 22#define NVFX_VP_INST_IN_COL1 4 23#define NVFX_VP_INST_IN_FOGC 5 24#define NVFX_VP_INST_IN_TC0 8 25#define NVFX_VP_INST_IN_TC(n) (8+n) 26 27#define NVFX_VP_INST_SCA_OP_NOP 0x00 28#define NVFX_VP_INST_SCA_OP_MOV 0x01 29#define NVFX_VP_INST_SCA_OP_RCP 0x02 30#define NVFX_VP_INST_SCA_OP_RCC 0x03 31#define NVFX_VP_INST_SCA_OP_RSQ 0x04 32#define NVFX_VP_INST_SCA_OP_EXP 0x05 33#define NVFX_VP_INST_SCA_OP_LOG 0x06 34#define NVFX_VP_INST_SCA_OP_LIT 0x07 35#define NVFX_VP_INST_SCA_OP_BRA 0x09 36#define NVFX_VP_INST_SCA_OP_CAL 0x0B 37#define NVFX_VP_INST_SCA_OP_RET 0x0C 38#define NVFX_VP_INST_SCA_OP_LG2 0x0D 39#define NVFX_VP_INST_SCA_OP_EX2 0x0E 40#define NVFX_VP_INST_SCA_OP_SIN 0x0F 41#define NVFX_VP_INST_SCA_OP_COS 0x10 42 43#define NV40_VP_INST_SCA_OP_PUSHA 0x13 44#define NV40_VP_INST_SCA_OP_POPA 0x14 45 46#define NVFX_VP_INST_VEC_OP_NOP 0x00 47#define NVFX_VP_INST_VEC_OP_MOV 0x01 48#define NVFX_VP_INST_VEC_OP_MUL 0x02 49#define NVFX_VP_INST_VEC_OP_ADD 0x03 50#define NVFX_VP_INST_VEC_OP_MAD 0x04 51#define NVFX_VP_INST_VEC_OP_DP3 0x05 52#define NVFX_VP_INST_VEC_OP_DPH 0x06 53#define NVFX_VP_INST_VEC_OP_DP4 0x07 54#define NVFX_VP_INST_VEC_OP_DST 0x08 55#define NVFX_VP_INST_VEC_OP_MIN 0x09 56#define NVFX_VP_INST_VEC_OP_MAX 0x0A 57#define NVFX_VP_INST_VEC_OP_SLT 0x0B 58#define NVFX_VP_INST_VEC_OP_SGE 0x0C 59#define NVFX_VP_INST_VEC_OP_ARL 0x0D 60#define NVFX_VP_INST_VEC_OP_FRC 0x0E 61#define NVFX_VP_INST_VEC_OP_FLR 0x0F 62#define NVFX_VP_INST_VEC_OP_SEQ 0x10 63#define NVFX_VP_INST_VEC_OP_SFL 0x11 64#define NVFX_VP_INST_VEC_OP_SGT 0x12 65#define NVFX_VP_INST_VEC_OP_SLE 0x13 66#define NVFX_VP_INST_VEC_OP_SNE 0x14 67#define NVFX_VP_INST_VEC_OP_STR 0x15 68#define NVFX_VP_INST_VEC_OP_SSG 0x16 69#define NVFX_VP_INST_VEC_OP_ARR 0x17 70#define NVFX_VP_INST_VEC_OP_ARA 0x18 71 72#define NV40_VP_INST_VEC_OP_TXL 0x19 73 74/* DWORD 3 */ 75#define NVFX_VP_INST_LAST (1 << 0) 76 77/* 78 * Each fragment program opcode appears to be comprised of 4 32-bit values. 79 * 80 * 0: OPDEST 81 * 0: program end 82 * 1-6: destination register 83 * 7: destination register is fp16?? (use for outputs) 84 * 8: set condition code 85 * 9: writemask x 86 * 10: writemask y 87 * 11: writemask z 88 * 12: writemask w 89 * 13-16: source attribute register number (e.g. COL0) 90 * 17-20: texture unit number 91 * 21: expand value on texture operation (x -> 2x - 1) 92 * 22-23: precision 0 = fp32, 1 = fp16, 2 = s1.10 fixed, 3 = s0.8 fixed (nv40-only)) 93 * 24-29: opcode 94 * 30: no destination 95 * 31: saturate 96 * 1 - SRC0 97 * 0-17: see common source fields 98 * 18: execute if condition code less 99 * 19: execute if condition code equal 100 * 20: execute if condition code greater 101 * 21-22: condition code swizzle x source component 102 * 23-24: condition code swizzle y source component 103 * 25-26: condition code swizzle z source component 104 * 27-28: condition code swizzle w source component 105 * 29: source 0 absolute 106 * 30: always 0 in renouveau tests 107 * 31: always 0 in renouveau tests 108 * 2 - SRC1 109 * 0-17: see common source fields 110 * 18: source 1 absolute 111 * 19-20: input precision 0 = fp32, 1 = fp16, 2 = s1.10 fixed, 3 = ??? 112 * 21-27: always 0 in renouveau tests 113 * 28-30: scale (0 = 1x, 1 = 2x, 2 = 4x, 3 = 8x, 4 = ???, 5, = 1/2, 6 = 1/4, 7 = 1/8) 114 * 31: opcode is branch 115 * 3 - SRC2 116 * 0-17: see common source fields 117 * 18: source 2 absolute 118 * 19-29: address register displacement 119 * 30: use index register 120 * 31: disable perspective-correct interpolation? 121 * 122* Common fields of 0, 1, 2 - SRC 123 * 0-1: source register type (0 = temp, 1 = input, 2 = immediate, 3 = ???) 124 * 2-7: source temp register index 125 * 8: source register is fp16?? 126 * 9-10: source swizzle x source component 127 * 11-12: source swizzle y source component 128 * 13-14: source swizzle z source component 129 * 15-16: source swizzle w source component 130 * 17: negate 131 132 * There appears to be no special difference between result regs and temp regs. 133 * result.color == R0.xyzw 134 * result.depth == R1.z 135 * When the fragprog contains instructions to write depth, NV30_TCL_PRIMITIVE_3D_UNK1D78=0 136 * otherwise it is set to 1. 137 * 138 * Constants are inserted directly after the instruction that uses them. 139 * 140 * It appears that it's not possible to use two input registers in one 141 * instruction as the input sourcing is done in the instruction dword 142 * and not the source selection dwords. As such instructions such as: 143 * 144 * ADD result.color, fragment.color, fragment.texcoord[0]; 145 * 146 * must be split into two MOV's and then an ADD (nvidia does this) but 147 * I'm not sure why it's not just one MOV and then source the second input 148 * in the ADD instruction.. 149 * 150 * Negation of the full source is done with NV30_FP_REG_NEGATE, arbitrary 151 * negation requires multiplication with a const. 152 * 153 * Arbitrary swizzling is supported with the exception of SWIZZLE_ZERO/SWIZZLE_ONE 154 * The temp/result regs appear to be initialised to (0.0, 0.0, 0.0, 0.0) as SWIZZLE_ZERO 155 * is implemented simply by not writing to the relevant components of the destination. 156 * 157 * Conditional execution 158 * TODO 159 * 160 * Non-native instructions: 161 * LIT 162 * LRP - MAD+MAD 163 * SUB - ADD, negate second source 164 * RSQ - LG2 + EX2 165 * POW - LG2 + MUL + EX2 166 * 167 * NV40 Looping 168 * Loops appear to be fairly expensive on NV40 at least, the proprietary 169 * driver goes to a lot of effort to avoid using the native looping 170 * instructions. If the total number of *executed* instructions between 171 * REP/ENDREP or LOOP/ENDLOOP is <=500, the driver will unroll the loop. 172 * The maximum loop count is 255. 173 * 174 */ 175 176//== Opcode / Destination selection == 177#define NVFX_FP_OP_PROGRAM_END (1 << 0) 178#define NVFX_FP_OP_OUT_REG_SHIFT 1 179#define NV30_FP_OP_OUT_REG_MASK (31 << 1) /* uncertain */ 180#define NV40_FP_OP_OUT_REG_MASK (63 << 1) 181/* Needs to be set when writing outputs to get expected result.. */ 182#define NVFX_FP_OP_OUT_REG_HALF (1 << 7) 183#define NVFX_FP_OP_COND_WRITE_ENABLE (1 << 8) 184#define NVFX_FP_OP_OUTMASK_SHIFT 9 185#define NVFX_FP_OP_OUTMASK_MASK (0xF << 9) 186# define NVFX_FP_OP_OUT_X (1<<9) 187# define NVFX_FP_OP_OUT_Y (1<<10) 188# define NVFX_FP_OP_OUT_Z (1<<11) 189# define NVFX_FP_OP_OUT_W (1<<12) 190/* Uncertain about these, especially the input_src values.. it's possible that 191 * they can be dynamically changed. 192 */ 193#define NVFX_FP_OP_INPUT_SRC_SHIFT 13 194#define NVFX_FP_OP_INPUT_SRC_MASK (15 << 13) 195# define NVFX_FP_OP_INPUT_SRC_POSITION 0x0 196# define NVFX_FP_OP_INPUT_SRC_COL0 0x1 197# define NVFX_FP_OP_INPUT_SRC_COL1 0x2 198# define NVFX_FP_OP_INPUT_SRC_FOGC 0x3 199# define NVFX_FP_OP_INPUT_SRC_TC0 0x4 200# define NVFX_FP_OP_INPUT_SRC_TC(n) (0x4 + n) 201# define NV40_FP_OP_INPUT_SRC_FACING 0xE 202#define NVFX_FP_OP_TEX_UNIT_SHIFT 17 203#define NVFX_FP_OP_TEX_UNIT_MASK (0xF << 17) /* guess */ 204#define NVFX_FP_OP_PRECISION_SHIFT 22 205#define NVFX_FP_OP_PRECISION_MASK (3 << 22) 206# define NVFX_FP_PRECISION_FP32 0 207# define NVFX_FP_PRECISION_FP16 1 208# define NVFX_FP_PRECISION_FX12 2 209#define NVFX_FP_OP_OPCODE_SHIFT 24 210#define NVFX_FP_OP_OPCODE_MASK (0x3F << 24) 211/* NV30/NV40 fragment program opcodes */ 212#define NVFX_FP_OP_OPCODE_NOP 0x00 213#define NVFX_FP_OP_OPCODE_MOV 0x01 214#define NVFX_FP_OP_OPCODE_MUL 0x02 215#define NVFX_FP_OP_OPCODE_ADD 0x03 216#define NVFX_FP_OP_OPCODE_MAD 0x04 217#define NVFX_FP_OP_OPCODE_DP3 0x05 218#define NVFX_FP_OP_OPCODE_DP4 0x06 219#define NVFX_FP_OP_OPCODE_DST 0x07 220#define NVFX_FP_OP_OPCODE_MIN 0x08 221#define NVFX_FP_OP_OPCODE_MAX 0x09 222#define NVFX_FP_OP_OPCODE_SLT 0x0A 223#define NVFX_FP_OP_OPCODE_SGE 0x0B 224#define NVFX_FP_OP_OPCODE_SLE 0x0C 225#define NVFX_FP_OP_OPCODE_SGT 0x0D 226#define NVFX_FP_OP_OPCODE_SNE 0x0E 227#define NVFX_FP_OP_OPCODE_SEQ 0x0F 228#define NVFX_FP_OP_OPCODE_FRC 0x10 229#define NVFX_FP_OP_OPCODE_FLR 0x11 230#define NVFX_FP_OP_OPCODE_KIL 0x12 231#define NVFX_FP_OP_OPCODE_PK4B 0x13 232#define NVFX_FP_OP_OPCODE_UP4B 0x14 233#define NVFX_FP_OP_OPCODE_DDX 0x15 /* can only write XY */ 234#define NVFX_FP_OP_OPCODE_DDY 0x16 /* can only write XY */ 235#define NVFX_FP_OP_OPCODE_TEX 0x17 236#define NVFX_FP_OP_OPCODE_TXP 0x18 237#define NVFX_FP_OP_OPCODE_TXD 0x19 238#define NVFX_FP_OP_OPCODE_RCP 0x1A 239#define NVFX_FP_OP_OPCODE_EX2 0x1C 240#define NVFX_FP_OP_OPCODE_LG2 0x1D 241#define NVFX_FP_OP_OPCODE_STR 0x20 242#define NVFX_FP_OP_OPCODE_SFL 0x21 243#define NVFX_FP_OP_OPCODE_COS 0x22 244#define NVFX_FP_OP_OPCODE_SIN 0x23 245#define NVFX_FP_OP_OPCODE_PK2H 0x24 246#define NVFX_FP_OP_OPCODE_UP2H 0x25 247#define NVFX_FP_OP_OPCODE_PK4UB 0x27 248#define NVFX_FP_OP_OPCODE_UP4UB 0x28 249#define NVFX_FP_OP_OPCODE_PK2US 0x29 250#define NVFX_FP_OP_OPCODE_UP2US 0x2A 251#define NVFX_FP_OP_OPCODE_DP2A 0x2E 252#define NVFX_FP_OP_OPCODE_TXB 0x31 253#define NVFX_FP_OP_OPCODE_DIV 0x3A 254 255/* NV30 only fragment program opcodes */ 256#define NVFX_FP_OP_OPCODE_RSQ_NV30 0x1B 257#define NVFX_FP_OP_OPCODE_LIT_NV30 0x1E 258#define NVFX_FP_OP_OPCODE_LRP_NV30 0x1F 259#define NVFX_FP_OP_OPCODE_POW_NV30 0x26 260#define NVFX_FP_OP_OPCODE_RFL_NV30 0x36 261 262/* NV40 only fragment program opcodes */ 263#define NVFX_FP_OP_OPCODE_TXL_NV40 0x2F 264#define NVFX_FP_OP_OPCODE_LITEX2_NV40 0x3C 265 266/* The use of these instructions appears to be indicated by bit 31 of DWORD 2.*/ 267#define NV40_FP_OP_BRA_OPCODE_BRK 0x0 268#define NV40_FP_OP_BRA_OPCODE_CAL 0x1 269#define NV40_FP_OP_BRA_OPCODE_IF 0x2 270#define NV40_FP_OP_BRA_OPCODE_LOOP 0x3 271#define NV40_FP_OP_BRA_OPCODE_REP 0x4 272#define NV40_FP_OP_BRA_OPCODE_RET 0x5 273 274#define NV40_FP_OP_OUT_NONE (1 << 30) 275#define NVFX_FP_OP_OUT_SAT (1 << 31) 276 277/* high order bits of SRC0 */ 278#define NVFX_FP_OP_SRC0_ABS (1 << 29) 279#define NVFX_FP_OP_COND_SWZ_W_SHIFT 27 280#define NVFX_FP_OP_COND_SWZ_W_MASK (3 << 27) 281#define NVFX_FP_OP_COND_SWZ_Z_SHIFT 25 282#define NVFX_FP_OP_COND_SWZ_Z_MASK (3 << 25) 283#define NVFX_FP_OP_COND_SWZ_Y_SHIFT 23 284#define NVFX_FP_OP_COND_SWZ_Y_MASK (3 << 23) 285#define NVFX_FP_OP_COND_SWZ_X_SHIFT 21 286#define NVFX_FP_OP_COND_SWZ_X_MASK (3 << 21) 287#define NVFX_FP_OP_COND_SWZ_ALL_SHIFT 21 288#define NVFX_FP_OP_COND_SWZ_ALL_MASK (0xFF << 21) 289#define NVFX_FP_OP_COND_SHIFT 18 290#define NVFX_FP_OP_COND_MASK (0x07 << 18) 291# define NVFX_FP_OP_COND_FL 0 292# define NVFX_FP_OP_COND_LT 1 293# define NVFX_FP_OP_COND_EQ 2 294# define NVFX_FP_OP_COND_LE 3 295# define NVFX_FP_OP_COND_GT 4 296# define NVFX_FP_OP_COND_NE 5 297# define NVFX_FP_OP_COND_GE 6 298# define NVFX_FP_OP_COND_TR 7 299 300/* high order bits of SRC1 */ 301#define NV40_FP_OP_OPCODE_IS_BRANCH (1<<31) 302#define NVFX_FP_OP_DST_SCALE_SHIFT 28 303#define NVFX_FP_OP_DST_SCALE_MASK (3 << 28) 304#define NVFX_FP_OP_DST_SCALE_1X 0 305#define NVFX_FP_OP_DST_SCALE_2X 1 306#define NVFX_FP_OP_DST_SCALE_4X 2 307#define NVFX_FP_OP_DST_SCALE_8X 3 308#define NVFX_FP_OP_DST_SCALE_INV_2X 5 309#define NVFX_FP_OP_DST_SCALE_INV_4X 6 310#define NVFX_FP_OP_DST_SCALE_INV_8X 7 311#define NVFX_FP_OP_SRC1_ABS (1 << 18) 312 313/* SRC1 LOOP */ 314#define NV40_FP_OP_LOOP_INCR_SHIFT 19 315#define NV40_FP_OP_LOOP_INCR_MASK (0xFF << 19) 316#define NV40_FP_OP_LOOP_INDEX_SHIFT 10 317#define NV40_FP_OP_LOOP_INDEX_MASK (0xFF << 10) 318#define NV40_FP_OP_LOOP_COUNT_SHIFT 2 319#define NV40_FP_OP_LOOP_COUNT_MASK (0xFF << 2) 320 321/* SRC1 IF: absolute offset in dwords */ 322#define NV40_FP_OP_ELSE_OFFSET_SHIFT 0 323#define NV40_FP_OP_ELSE_OFFSET_MASK (0x7FFFFFFF << 0) 324 325/* SRC1 CAL */ 326#define NV40_FP_OP_SUB_OFFSET_SHIFT 0 327#define NV40_FP_OP_SUB_OFFSET_MASK (0x7FFFFFFF << 0) 328 329/* SRC1 REP 330 * I have no idea why there are 3 count values here.. but they 331 * have always been filled with the same value in my tests so 332 * far.. 333 */ 334#define NV40_FP_OP_REP_COUNT1_SHIFT 2 335#define NV40_FP_OP_REP_COUNT1_MASK (0xFF << 2) 336#define NV40_FP_OP_REP_COUNT2_SHIFT 10 337#define NV40_FP_OP_REP_COUNT2_MASK (0xFF << 10) 338#define NV40_FP_OP_REP_COUNT3_SHIFT 19 339#define NV40_FP_OP_REP_COUNT3_MASK (0xFF << 19) 340 341/* SRC2 REP/IF: absolute offset in dwords */ 342#define NV40_FP_OP_END_OFFSET_SHIFT 0 343#define NV40_FP_OP_END_OFFSET_MASK (0x7FFFFFFF << 0) 344 345/* high order bits of SRC2 */ 346#define NVFX_FP_OP_INDEX_INPUT (1 << 30) 347#define NV40_FP_OP_ADDR_INDEX_SHIFT 19 348#define NV40_FP_OP_ADDR_INDEX_MASK (0xF << 19) 349 350//== Register selection == 351#define NVFX_FP_REG_TYPE_SHIFT 0 352#define NVFX_FP_REG_TYPE_MASK (3 << 0) 353# define NVFX_FP_REG_TYPE_TEMP 0 354# define NVFX_FP_REG_TYPE_INPUT 1 355# define NVFX_FP_REG_TYPE_CONST 2 356#define NVFX_FP_REG_SRC_SHIFT 2 357#define NV30_FP_REG_SRC_MASK (31 << 2) 358#define NV40_FP_REG_SRC_MASK (63 << 2) 359#define NVFX_FP_REG_SRC_HALF (1 << 8) 360#define NVFX_FP_REG_SWZ_ALL_SHIFT 9 361#define NVFX_FP_REG_SWZ_ALL_MASK (255 << 9) 362#define NVFX_FP_REG_SWZ_X_SHIFT 9 363#define NVFX_FP_REG_SWZ_X_MASK (3 << 9) 364#define NVFX_FP_REG_SWZ_Y_SHIFT 11 365#define NVFX_FP_REG_SWZ_Y_MASK (3 << 11) 366#define NVFX_FP_REG_SWZ_Z_SHIFT 13 367#define NVFX_FP_REG_SWZ_Z_MASK (3 << 13) 368#define NVFX_FP_REG_SWZ_W_SHIFT 15 369#define NVFX_FP_REG_SWZ_W_MASK (3 << 15) 370# define NVFX_FP_SWIZZLE_X 0 371# define NVFX_FP_SWIZZLE_Y 1 372# define NVFX_FP_SWIZZLE_Z 2 373# define NVFX_FP_SWIZZLE_W 3 374#define NVFX_FP_REG_NEGATE (1 << 17) 375 376#define NVFXSR_NONE 0 377#define NVFXSR_OUTPUT 1 378#define NVFXSR_INPUT 2 379#define NVFXSR_TEMP 3 380#define NVFXSR_CONST 5 381#define NVFXSR_IMM 6 382 383#define NVFX_COND_FL 0 384#define NVFX_COND_LT 1 385#define NVFX_COND_EQ 2 386#define NVFX_COND_LE 3 387#define NVFX_COND_GT 4 388#define NVFX_COND_NE 5 389#define NVFX_COND_GE 6 390#define NVFX_COND_TR 7 391 392/* Yes, this are ordered differently... */ 393 394#define NVFX_VP_MASK_X 8 395#define NVFX_VP_MASK_Y 4 396#define NVFX_VP_MASK_Z 2 397#define NVFX_VP_MASK_W 1 398#define NVFX_VP_MASK_ALL 0xf 399 400#define NVFX_FP_MASK_X 1 401#define NVFX_FP_MASK_Y 2 402#define NVFX_FP_MASK_Z 4 403#define NVFX_FP_MASK_W 8 404#define NVFX_FP_MASK_ALL 0xf 405 406#define NVFX_SWZ_X 0 407#define NVFX_SWZ_Y 1 408#define NVFX_SWZ_Z 2 409#define NVFX_SWZ_W 3 410 411#define swz(s,x,y,z,w) nvfx_src_swz((s), NVFX_SWZ_##x, NVFX_SWZ_##y, NVFX_SWZ_##z, NVFX_SWZ_##w) 412#define neg(s) nvfx_src_neg((s)) 413#define abs(s) nvfx_src_abs((s)) 414 415struct nvfx_reg { 416 int8_t type; 417 int32_t index; 418}; 419 420struct nvfx_src { 421 struct nvfx_reg reg; 422 423 uint8_t indirect : 1; 424 uint8_t indirect_reg : 1; 425 uint8_t indirect_swz : 2; 426 uint8_t negate : 1; 427 uint8_t abs : 1; 428 uint8_t swz[4]; 429}; 430 431struct nvfx_insn 432{ 433 uint8_t op; 434 char scale; 435 int8_t unit; 436 uint8_t mask; 437 uint8_t cc_swz[4]; 438 439 uint8_t sat : 1; 440 uint8_t cc_update : 1; 441 uint8_t cc_update_reg : 1; 442 uint8_t cc_test : 3; 443 uint8_t cc_test_reg : 1; 444 445 struct nvfx_reg dst; 446 struct nvfx_src src[3]; 447}; 448 449static inline struct nvfx_insn 450nvfx_insn(bool sat, unsigned op, int unit, struct nvfx_reg dst, unsigned mask, struct nvfx_src s0, struct nvfx_src s1, struct nvfx_src s2) 451{ 452 struct nvfx_insn insn = { 453 .op = op, 454 .scale = 0, 455 .unit = unit, 456 .sat = sat, 457 .mask = mask, 458 .cc_update = 0, 459 .cc_update_reg = 0, 460 .cc_test = NVFX_COND_TR, 461 .cc_test_reg = 0, 462 .cc_swz = { 0, 1, 2, 3 }, 463 .dst = dst, 464 .src = {s0, s1, s2} 465 }; 466 return insn; 467} 468 469static inline struct nvfx_reg 470nvfx_reg(int type, int index) 471{ 472 struct nvfx_reg temp = { 473 .type = type, 474 .index = index, 475 }; 476 return temp; 477} 478 479static inline struct nvfx_src 480nvfx_src(struct nvfx_reg reg) 481{ 482 struct nvfx_src temp = { 483 .reg = reg, 484 .abs = 0, 485 .negate = 0, 486 .swz = { 0, 1, 2, 3 }, 487 .indirect = 0, 488 }; 489 return temp; 490} 491 492static inline struct nvfx_src 493nvfx_src_swz(struct nvfx_src src, int x, int y, int z, int w) 494{ 495 struct nvfx_src dst = src; 496 497 dst.swz[NVFX_SWZ_X] = src.swz[x]; 498 dst.swz[NVFX_SWZ_Y] = src.swz[y]; 499 dst.swz[NVFX_SWZ_Z] = src.swz[z]; 500 dst.swz[NVFX_SWZ_W] = src.swz[w]; 501 return dst; 502} 503 504static inline struct nvfx_src 505nvfx_src_neg(struct nvfx_src src) 506{ 507 src.negate = !src.negate; 508 return src; 509} 510 511static inline struct nvfx_src 512nvfx_src_abs(struct nvfx_src src) 513{ 514 src.abs = 1; 515 return src; 516} 517 518struct nvfx_relocation { 519 unsigned location; 520 unsigned target; 521}; 522 523struct nv30_fragprog; 524struct nv30_vertprog; 525 526//XXX: needed to make it build, clean this up! 527void 528_nvfx_fragprog_translate(uint16_t oclass, struct nv30_fragprog *fp); 529 530bool 531_nvfx_vertprog_translate(uint16_t oclass, struct nv30_vertprog *vp); 532 533#endif 534