1/**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 VMware, Inc.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29/**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline.  The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60#include <limits.h>
61#include "pipe/p_defines.h"
62#include "util/u_inlines.h"
63#include "util/u_memory.h"
64#include "util/u_pointer.h"
65#include "util/format/u_format.h"
66#include "util/u_dump.h"
67#include "util/u_string.h"
68#include "util/u_dual_blend.h"
69#include "util/u_upload_mgr.h"
70#include "util/os_time.h"
71#include "pipe/p_shader_tokens.h"
72#include "draw/draw_context.h"
73#include "tgsi/tgsi_dump.h"
74#include "tgsi/tgsi_scan.h"
75#include "tgsi/tgsi_parse.h"
76#include "gallivm/lp_bld_type.h"
77#include "gallivm/lp_bld_const.h"
78#include "gallivm/lp_bld_conv.h"
79#include "gallivm/lp_bld_init.h"
80#include "gallivm/lp_bld_intr.h"
81#include "gallivm/lp_bld_logic.h"
82#include "gallivm/lp_bld_tgsi.h"
83#include "gallivm/lp_bld_nir.h"
84#include "gallivm/lp_bld_swizzle.h"
85#include "gallivm/lp_bld_flow.h"
86#include "gallivm/lp_bld_debug.h"
87#include "gallivm/lp_bld_arit.h"
88#include "gallivm/lp_bld_bitarit.h"
89#include "gallivm/lp_bld_pack.h"
90#include "gallivm/lp_bld_format.h"
91#include "gallivm/lp_bld_quad.h"
92#include "gallivm/lp_bld_gather.h"
93
94#include "lp_bld_alpha.h"
95#include "lp_bld_blend.h"
96#include "lp_bld_depth.h"
97#include "lp_bld_interp.h"
98#include "lp_context.h"
99#include "lp_debug.h"
100#include "lp_perf.h"
101#include "lp_setup.h"
102#include "lp_state.h"
103#include "lp_tex_sample.h"
104#include "lp_flush.h"
105#include "lp_state_fs.h"
106#include "lp_rast.h"
107#include "nir/nir_to_tgsi_info.h"
108
109#include "lp_screen.h"
110#include "compiler/nir/nir_serialize.h"
111#include "util/mesa-sha1.h"
112
113
114/** Fragment shader number (for debugging) */
115static unsigned fs_no = 0;
116
117
118static void
119load_unswizzled_block(struct gallivm_state *gallivm,
120                      LLVMValueRef base_ptr,
121                      LLVMValueRef stride,
122                      unsigned block_width,
123                      unsigned block_height,
124                      LLVMValueRef* dst,
125                      struct lp_type dst_type,
126                      unsigned dst_count,
127                      unsigned dst_alignment);
128/**
129 * Checks if a format description is an arithmetic format
130 *
131 * A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5.
132 */
133static inline boolean
134is_arithmetic_format(const struct util_format_description *format_desc)
135{
136   boolean arith = false;
137
138   for (unsigned i = 0; i < format_desc->nr_channels; ++i) {
139      arith |= format_desc->channel[i].size != format_desc->channel[0].size;
140      arith |= (format_desc->channel[i].size % 8) != 0;
141   }
142
143   return arith;
144}
145
146
147/**
148 * Checks if this format requires special handling due to required expansion
149 * to floats for blending, and furthermore has "natural" packed AoS -> unpacked
150 * SoA conversion.
151 */
152static inline boolean
153format_expands_to_float_soa(const struct util_format_description *format_desc)
154{
155   if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT ||
156       format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
157      return true;
158   }
159   return false;
160}
161
162
163/**
164 * Retrieves the type representing the memory layout for a format
165 *
166 * e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte
167 */
168static inline void
169lp_mem_type_from_format_desc(const struct util_format_description *format_desc,
170                             struct lp_type* type)
171{
172   unsigned i;
173   unsigned chan;
174
175   if (format_expands_to_float_soa(format_desc)) {
176      /* just make this a uint with width of block */
177      type->floating = false;
178      type->fixed = false;
179      type->sign = false;
180      type->norm = false;
181      type->width = format_desc->block.bits;
182      type->length = 1;
183      return;
184   }
185
186   for (i = 0; i < 4; i++) {
187      if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
188         break;
189   }
190   chan = i;
191
192   memset(type, 0, sizeof(struct lp_type));
193   type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
194   type->fixed    = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
195   type->sign     = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
196   type->norm     = format_desc->channel[chan].normalized;
197
198   if (is_arithmetic_format(format_desc)) {
199      type->width = 0;
200      type->length = 1;
201
202      for (unsigned i = 0; i < format_desc->nr_channels; ++i) {
203         type->width += format_desc->channel[i].size;
204      }
205   } else {
206      type->width = format_desc->channel[chan].size;
207      type->length = format_desc->nr_channels;
208   }
209}
210
211/**
212 * Expand the relevant bits of mask_input to a n*4-dword mask for the
213 * n*four pixels in n 2x2 quads.  This will set the n*four elements of the
214 * quad mask vector to 0 or ~0.
215 * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
216 * quad arguments with fs length 8.
217 *
218 * \param first_quad  which quad(s) of the quad group to test, in [0,3]
219 * \param mask_input  bitwise mask for the whole 4x4 stamp
220 */
221static LLVMValueRef
222generate_quad_mask(struct gallivm_state *gallivm,
223                   struct lp_type fs_type,
224                   unsigned first_quad,
225                   unsigned sample,
226                   LLVMValueRef mask_input) /* int64 */
227{
228   LLVMBuilderRef builder = gallivm->builder;
229   LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
230   LLVMValueRef bits[16];
231   LLVMValueRef mask, bits_vec;
232
233   /*
234    * XXX: We'll need a different path for 16 x u8
235    */
236   assert(fs_type.width == 32);
237   assert(fs_type.length <= ARRAY_SIZE(bits));
238   struct lp_type mask_type = lp_int_type(fs_type);
239
240   /*
241    * mask_input >>= (quad * 4)
242    */
243   int shift;
244   switch (first_quad) {
245   case 0:
246      shift = 0;
247      break;
248   case 1:
249      assert(fs_type.length == 4);
250      shift = 2;
251      break;
252   case 2:
253      shift = 8;
254      break;
255   case 3:
256      assert(fs_type.length == 4);
257      shift = 10;
258      break;
259   default:
260      assert(0);
261      shift = 0;
262   }
263
264   mask_input = LLVMBuildLShr(builder, mask_input,
265                              lp_build_const_int64(gallivm, 16 * sample), "");
266   mask_input = LLVMBuildTrunc(builder, mask_input, i32t, "");
267   mask_input = LLVMBuildAnd(builder, mask_input,
268                             lp_build_const_int32(gallivm, 0xffff), "");
269   mask_input = LLVMBuildLShr(builder, mask_input,
270                              LLVMConstInt(i32t, shift, 0), "");
271
272   /*
273    * mask = { mask_input & (1 << i), for i in [0,3] }
274    */
275   mask = lp_build_broadcast(gallivm,
276                             lp_build_vec_type(gallivm, mask_type),
277                             mask_input);
278
279   for (int i = 0; i < fs_type.length / 4; i++) {
280      unsigned j = 2 * (i % 2) + (i / 2) * 8;
281      bits[4*i + 0] = LLVMConstInt(i32t, 1ULL << (j + 0), 0);
282      bits[4*i + 1] = LLVMConstInt(i32t, 1ULL << (j + 1), 0);
283      bits[4*i + 2] = LLVMConstInt(i32t, 1ULL << (j + 4), 0);
284      bits[4*i + 3] = LLVMConstInt(i32t, 1ULL << (j + 5), 0);
285   }
286   bits_vec = LLVMConstVector(bits, fs_type.length);
287   mask = LLVMBuildAnd(builder, mask, bits_vec, "");
288
289   /*
290    * mask = mask == bits ? ~0 : 0
291    */
292   mask = lp_build_compare(gallivm,
293                           mask_type, PIPE_FUNC_EQUAL,
294                           mask, bits_vec);
295
296   return mask;
297}
298
299
300#define EARLY_DEPTH_TEST  0x1
301#define LATE_DEPTH_TEST   0x2
302#define EARLY_DEPTH_WRITE 0x4
303#define LATE_DEPTH_WRITE  0x8
304#define EARLY_DEPTH_TEST_INFERRED  0x10 //only with EARLY_DEPTH_TEST
305
306
307static int
308find_output_by_semantic(const struct tgsi_shader_info *info,
309                        enum tgsi_semantic semantic,
310                        unsigned index)
311{
312   for (int i = 0; i < info->num_outputs; i++)
313      if (info->output_semantic_name[i] == semantic &&
314          info->output_semantic_index[i] == index)
315         return i;
316
317   return -1;
318}
319
320
321/**
322 * Fetch the specified lp_jit_viewport structure for a given viewport_index.
323 */
324static LLVMValueRef
325lp_llvm_viewport(LLVMValueRef context_ptr,
326                 struct gallivm_state *gallivm,
327                 LLVMValueRef viewport_index)
328{
329   LLVMBuilderRef builder = gallivm->builder;
330   LLVMValueRef ptr;
331   LLVMValueRef res;
332   struct lp_type viewport_type =
333      lp_type_float_vec(32, 32 * LP_JIT_VIEWPORT_NUM_FIELDS);
334
335   ptr = lp_jit_context_viewports(gallivm, context_ptr);
336   ptr = LLVMBuildPointerCast(builder, ptr,
337            LLVMPointerType(lp_build_vec_type(gallivm, viewport_type), 0), "");
338
339   res = lp_build_pointer_get(builder, ptr, viewport_index);
340
341   return res;
342}
343
344
345static LLVMValueRef
346lp_build_depth_clamp(struct gallivm_state *gallivm,
347                     LLVMBuilderRef builder,
348                     bool depth_clamp,
349                     bool restrict_depth,
350                     struct lp_type type,
351                     LLVMValueRef context_ptr,
352                     LLVMValueRef thread_data_ptr,
353                     LLVMValueRef z)
354{
355   LLVMValueRef viewport, min_depth, max_depth;
356   LLVMValueRef viewport_index;
357   struct lp_build_context f32_bld;
358
359   assert(type.floating);
360   lp_build_context_init(&f32_bld, gallivm, type);
361
362   if (restrict_depth)
363      z = lp_build_clamp(&f32_bld, z, f32_bld.zero, f32_bld.one);
364
365   if (!depth_clamp)
366      return z;
367
368   /*
369    * Assumes clamping of the viewport index will occur in setup/gs. Value
370    * is passed through the rasterization stage via lp_rast_shader_inputs.
371    *
372    * See: draw_clamp_viewport_idx and lp_clamp_viewport_idx for clamping
373    *      semantics.
374    */
375   viewport_index = lp_jit_thread_data_raster_state_viewport_index(gallivm,
376                       thread_data_ptr);
377
378   /*
379    * Load the min and max depth from the lp_jit_context.viewports
380    * array of lp_jit_viewport structures.
381    */
382   viewport = lp_llvm_viewport(context_ptr, gallivm, viewport_index);
383
384   /* viewports[viewport_index].min_depth */
385   min_depth = LLVMBuildExtractElement(builder, viewport,
386                  lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MIN_DEPTH), "");
387   min_depth = lp_build_broadcast_scalar(&f32_bld, min_depth);
388
389   /* viewports[viewport_index].max_depth */
390   max_depth = LLVMBuildExtractElement(builder, viewport,
391                  lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MAX_DEPTH), "");
392   max_depth = lp_build_broadcast_scalar(&f32_bld, max_depth);
393
394   /*
395    * Clamp to the min and max depth values for the given viewport.
396    */
397   return lp_build_clamp(&f32_bld, z, min_depth, max_depth);
398}
399
400
401static void
402lp_build_sample_alpha_to_coverage(struct gallivm_state *gallivm,
403                                  struct lp_type type,
404                                  unsigned coverage_samples,
405                                  LLVMValueRef num_loop,
406                                  LLVMValueRef loop_counter,
407                                  LLVMValueRef coverage_mask_store,
408                                  LLVMValueRef alpha)
409{
410   struct lp_build_context bld;
411   LLVMBuilderRef builder = gallivm->builder;
412   float step = 1.0 / coverage_samples;
413
414   lp_build_context_init(&bld, gallivm, type);
415   for (unsigned s = 0; s < coverage_samples; s++) {
416      LLVMValueRef alpha_ref_value = lp_build_const_vec(gallivm, type, step * s);
417      LLVMValueRef test = lp_build_cmp(&bld, PIPE_FUNC_GREATER, alpha, alpha_ref_value);
418
419      LLVMValueRef s_mask_idx = LLVMBuildMul(builder, lp_build_const_int32(gallivm, s), num_loop, "");
420      s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_counter, "");
421      LLVMValueRef s_mask_ptr = LLVMBuildGEP(builder, coverage_mask_store, &s_mask_idx, 1, "");
422      LLVMValueRef s_mask = LLVMBuildLoad(builder, s_mask_ptr, "");
423      s_mask = LLVMBuildAnd(builder, s_mask, test, "");
424      LLVMBuildStore(builder, s_mask, s_mask_ptr);
425   }
426};
427
428
429struct lp_build_fs_llvm_iface {
430   struct lp_build_fs_iface base;
431   struct lp_build_interp_soa_context *interp;
432   struct lp_build_for_loop_state *loop_state;
433   LLVMValueRef mask_store;
434   LLVMValueRef sample_id;
435   LLVMValueRef color_ptr_ptr;
436   LLVMValueRef color_stride_ptr;
437   LLVMValueRef color_sample_stride_ptr;
438   LLVMValueRef zs_base_ptr;
439   LLVMValueRef zs_stride;
440   LLVMValueRef zs_sample_stride;
441   const struct lp_fragment_shader_variant_key *key;
442};
443
444
445static LLVMValueRef
446fs_interp(const struct lp_build_fs_iface *iface,
447          struct lp_build_context *bld,
448          unsigned attrib, unsigned chan,
449          bool centroid, bool sample,
450          LLVMValueRef attrib_indir,
451          LLVMValueRef offsets[2])
452{
453   struct lp_build_fs_llvm_iface *fs_iface = (struct lp_build_fs_llvm_iface *)iface;
454   struct lp_build_interp_soa_context *interp = fs_iface->interp;
455   unsigned loc = TGSI_INTERPOLATE_LOC_CENTER;
456   if (centroid)
457      loc = TGSI_INTERPOLATE_LOC_CENTROID;
458   if (sample)
459      loc = TGSI_INTERPOLATE_LOC_SAMPLE;
460
461   return lp_build_interp_soa(interp, bld->gallivm, fs_iface->loop_state->counter,
462                              fs_iface->mask_store,
463                              attrib, chan, loc, attrib_indir, offsets);
464}
465
466/* Convert depth-stencil format to a single component one, returning
467 * PIPE_FORMAT_NONE if it doesn't contain the required component. */
468static enum pipe_format
469select_zs_component_format(enum pipe_format format,
470                           bool fetch_stencil)
471{
472   const struct util_format_description* desc = util_format_description(format);
473   if (fetch_stencil && !util_format_has_stencil(desc))
474      return PIPE_FORMAT_NONE;
475   if (!fetch_stencil && !util_format_has_depth(desc))
476      return PIPE_FORMAT_NONE;
477
478   switch (format) {
479   case PIPE_FORMAT_Z24_UNORM_S8_UINT:
480      return fetch_stencil ? PIPE_FORMAT_X24S8_UINT : PIPE_FORMAT_Z24X8_UNORM;
481   case PIPE_FORMAT_S8_UINT_Z24_UNORM:
482      return fetch_stencil ? PIPE_FORMAT_S8X24_UINT : PIPE_FORMAT_X8Z24_UNORM;
483   case PIPE_FORMAT_Z32_FLOAT_S8X24_UINT:
484      return fetch_stencil ? PIPE_FORMAT_X32_S8X24_UINT : format;
485   default:
486      return format;
487   }
488}
489
490static void
491fs_fb_fetch(const struct lp_build_fs_iface *iface,
492            struct lp_build_context *bld,
493            int location,
494            LLVMValueRef result[4])
495{
496   struct lp_build_fs_llvm_iface *fs_iface = (struct lp_build_fs_llvm_iface *)iface;
497   struct gallivm_state *gallivm = bld->gallivm;
498   LLVMBuilderRef builder = gallivm->builder;
499   const struct lp_fragment_shader_variant_key *key = fs_iface->key;
500
501   LLVMValueRef buf_ptr;
502   LLVMValueRef stride;
503   enum pipe_format buf_format;
504
505   const bool fetch_stencil = location == FRAG_RESULT_STENCIL;
506   const bool fetch_zs = fetch_stencil || location == FRAG_RESULT_DEPTH;
507   if (fetch_zs) {
508      buf_ptr = fs_iface->zs_base_ptr;
509      stride = fs_iface->zs_stride;
510      buf_format = select_zs_component_format(key->zsbuf_format, fetch_stencil);
511   }
512   else {
513      assert(location >= FRAG_RESULT_DATA0 && location <= FRAG_RESULT_DATA7);
514      const int cbuf = location - FRAG_RESULT_DATA0;
515      LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
516
517      buf_ptr = LLVMBuildLoad(builder, LLVMBuildGEP(builder, fs_iface->color_ptr_ptr, &index, 1, ""), "");
518      stride = LLVMBuildLoad(builder, LLVMBuildGEP(builder, fs_iface->color_stride_ptr, &index, 1, ""), "");
519      buf_format = key->cbuf_format[cbuf];
520   }
521
522   const struct util_format_description* out_format_desc = util_format_description(buf_format);
523   if (out_format_desc->format == PIPE_FORMAT_NONE) {
524      result[0] = result[1] = result[2] = result[3] = bld->undef;
525      return;
526   }
527
528   unsigned block_size = bld->type.length;
529   unsigned block_height = key->resource_1d ? 1 : 2;
530   unsigned block_width = block_size / block_height;
531
532   if (key->multisample) {
533      LLVMValueRef sample_stride;
534
535      if (fetch_zs) {
536         sample_stride = fs_iface->zs_sample_stride;
537      }
538      else {
539         LLVMValueRef index = lp_build_const_int32(gallivm, location - FRAG_RESULT_DATA0);
540         sample_stride = LLVMBuildLoad(builder,
541                                       LLVMBuildGEP(builder, fs_iface->color_sample_stride_ptr,
542                                                    &index, 1, ""), "");
543      }
544
545      LLVMValueRef sample_offset = LLVMBuildMul(builder, sample_stride, fs_iface->sample_id, "");
546      buf_ptr = LLVMBuildGEP(builder, buf_ptr, &sample_offset, 1, "");
547   }
548
549   /* fragment shader executes on 4x4 blocks. depending on vector width it can
550    * execute 2 or 4 iterations.  only move to the next row once the top row
551    * has completed 8 wide 1 iteration, 4 wide 2 iterations */
552   LLVMValueRef x_offset = NULL, y_offset = NULL;
553   if (!key->resource_1d) {
554      LLVMValueRef counter = fs_iface->loop_state->counter;
555
556      if (block_size == 4) {
557         x_offset = LLVMBuildShl(builder,
558                                 LLVMBuildAnd(builder, fs_iface->loop_state->counter, lp_build_const_int32(gallivm, 1), ""),
559                                 lp_build_const_int32(gallivm, 1), "");
560         counter = LLVMBuildLShr(builder, fs_iface->loop_state->counter, lp_build_const_int32(gallivm, 1), "");
561      }
562      y_offset = LLVMBuildMul(builder, counter, lp_build_const_int32(gallivm, 2), "");
563   }
564
565   LLVMValueRef offsets[4 * 4];
566   for (unsigned i = 0; i < block_size; i++) {
567      unsigned x = i % block_width;
568      unsigned y = i / block_width;
569
570      if (block_size == 8) {
571         /* remap the raw slots into the fragment shader execution mode. */
572         /* this math took me way too long to work out, I'm sure it's overkill. */
573         x = (i & 1) + ((i >> 2) << 1);
574         if (!key->resource_1d)
575            y = (i & 2) >> 1;
576      }
577
578      LLVMValueRef x_val;
579      if (x_offset) {
580         x_val = LLVMBuildAdd(builder, lp_build_const_int32(gallivm, x), x_offset, "");
581         x_val = LLVMBuildMul(builder, x_val, lp_build_const_int32(gallivm, out_format_desc->block.bits / 8), "");
582      } else {
583         x_val = lp_build_const_int32(gallivm, x * (out_format_desc->block.bits / 8));
584      }
585
586      LLVMValueRef y_val = lp_build_const_int32(gallivm, y);
587      if (y_offset)
588         y_val = LLVMBuildAdd(builder, y_val, y_offset, "");
589      y_val = LLVMBuildMul(builder, y_val, stride, "");
590
591      offsets[i] = LLVMBuildAdd(builder, x_val, y_val, "");
592   }
593   LLVMValueRef offset = lp_build_gather_values(gallivm, offsets, block_size);
594
595   struct lp_type texel_type = bld->type;
596   if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB &&
597       out_format_desc->channel[0].pure_integer) {
598      if (out_format_desc->channel[0].type == UTIL_FORMAT_TYPE_SIGNED) {
599         texel_type = lp_type_int_vec(bld->type.width, bld->type.width * bld->type.length);
600      }
601      else if (out_format_desc->channel[0].type == UTIL_FORMAT_TYPE_UNSIGNED) {
602         texel_type = lp_type_uint_vec(bld->type.width, bld->type.width * bld->type.length);
603      }
604   } else if (fetch_stencil) {
605      texel_type = lp_type_uint_vec(bld->type.width, bld->type.width * bld->type.length);
606   }
607
608   lp_build_fetch_rgba_soa(gallivm, out_format_desc, texel_type,
609                           true, buf_ptr, offset,
610                           NULL, NULL, NULL, result);
611}
612
613
614/**
615 * Generate the fragment shader, depth/stencil test, and alpha tests.
616 */
617static void
618generate_fs_loop(struct gallivm_state *gallivm,
619                 struct lp_fragment_shader *shader,
620                 const struct lp_fragment_shader_variant_key *key,
621                 LLVMBuilderRef builder,
622                 struct lp_type type,
623                 LLVMValueRef context_ptr,
624                 LLVMValueRef sample_pos_array,
625                 LLVMValueRef num_loop,
626                 struct lp_build_interp_soa_context *interp,
627                 const struct lp_build_sampler_soa *sampler,
628                 const struct lp_build_image_soa *image,
629                 LLVMValueRef mask_store,
630                 LLVMValueRef (*out_color)[4],
631                 LLVMValueRef depth_base_ptr,
632                 LLVMValueRef depth_stride,
633                 LLVMValueRef depth_sample_stride,
634                 LLVMValueRef color_ptr_ptr,
635                 LLVMValueRef color_stride_ptr,
636                 LLVMValueRef color_sample_stride_ptr,
637                 LLVMValueRef facing,
638                 LLVMValueRef thread_data_ptr)
639{
640   const struct tgsi_token *tokens = shader->base.tokens;
641   struct lp_type int_type = lp_int_type(type);
642   LLVMValueRef mask_ptr = NULL, mask_val = NULL;
643   LLVMValueRef z;
644   LLVMValueRef z_value, s_value;
645   LLVMValueRef z_fb, s_fb;
646   LLVMValueRef zs_samples = lp_build_const_int32(gallivm, key->zsbuf_nr_samples);
647   LLVMValueRef z_out = NULL, s_out = NULL;
648   struct lp_build_for_loop_state loop_state, sample_loop_state = {0};
649   struct lp_build_mask_context mask;
650   /*
651    * TODO: figure out if simple_shader optimization is really worthwile to
652    * keep. Disabled because it may hide some real bugs in the (depth/stencil)
653    * code since tests tend to take another codepath than real shaders.
654    */
655   boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
656                            shader->info.base.num_inputs < 3 &&
657                            shader->info.base.num_instructions < 8) && 0;
658   const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
659                                     util_blend_state_is_dual(&key->blend, 0);
660   const bool post_depth_coverage = shader->info.base.properties[TGSI_PROPERTY_FS_POST_DEPTH_COVERAGE];
661
662   struct lp_bld_tgsi_system_values system_values;
663
664   memset(&system_values, 0, sizeof(system_values));
665
666   /* truncate then sign extend. */
667   system_values.front_facing =
668      LLVMBuildTrunc(gallivm->builder, facing,
669                     LLVMInt1TypeInContext(gallivm->context), "");
670   system_values.front_facing =
671      LLVMBuildSExt(gallivm->builder, system_values.front_facing,
672                    LLVMInt32TypeInContext(gallivm->context), "");
673   system_values.view_index =
674      lp_jit_thread_data_raster_state_view_index(gallivm, thread_data_ptr);
675
676   unsigned depth_mode;
677   const struct util_format_description *zs_format_desc = NULL;
678   if (key->depth.enabled ||
679       key->stencil[0].enabled) {
680      zs_format_desc = util_format_description(key->zsbuf_format);
681
682      if (shader->info.base.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL])
683         depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
684      else if (!shader->info.base.writes_z && !shader->info.base.writes_stencil &&
685               !shader->info.base.uses_fbfetch && !shader->info.base.writes_memory) {
686         if (key->alpha.enabled ||
687             key->blend.alpha_to_coverage ||
688             shader->info.base.uses_kill ||
689             shader->info.base.writes_samplemask) {
690            /* With alpha test and kill, can do the depth test early
691             * and hopefully eliminate some quads.  But need to do a
692             * special deferred depth write once the final mask value
693             * is known. This only works though if there's either no
694             * stencil test or the stencil value isn't written.
695             */
696            if (key->stencil[0].enabled && (key->stencil[0].writemask ||
697                                            (key->stencil[1].enabled &&
698                                             key->stencil[1].writemask)))
699               depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
700            else
701               depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE | EARLY_DEPTH_TEST_INFERRED;
702         }
703         else
704            depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE | EARLY_DEPTH_TEST_INFERRED;
705      }
706      else {
707         depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
708      }
709
710      if (!(key->depth.enabled && key->depth.writemask) &&
711          !(key->stencil[0].enabled && (key->stencil[0].writemask ||
712                                        (key->stencil[1].enabled &&
713                                         key->stencil[1].writemask))))
714         depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
715   }
716   else {
717      depth_mode = 0;
718   }
719
720   LLVMTypeRef vec_type = lp_build_vec_type(gallivm, type);
721   LLVMTypeRef int_vec_type = lp_build_vec_type(gallivm, int_type);
722
723   LLVMValueRef stencil_refs[2];
724   stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
725   stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
726   /* convert scalar stencil refs into vectors */
727   stencil_refs[0] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[0]);
728   stencil_refs[1] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[1]);
729
730   LLVMValueRef consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
731   LLVMValueRef num_consts_ptr = lp_jit_context_num_constants(gallivm,
732                                                              context_ptr);
733
734   LLVMValueRef ssbo_ptr = lp_jit_context_ssbos(gallivm, context_ptr);
735   LLVMValueRef num_ssbo_ptr = lp_jit_context_num_ssbos(gallivm, context_ptr);
736
737   LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
738   memset(outputs, 0, sizeof outputs);
739
740   /* Allocate color storage for each fragment sample */
741   LLVMValueRef color_store_size = num_loop;
742   if (key->min_samples > 1)
743      color_store_size = LLVMBuildMul(builder, num_loop, lp_build_const_int32(gallivm, key->min_samples), "");
744
745   for (unsigned cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
746      for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
747         out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
748                                                       lp_build_vec_type(gallivm,
749                                                                         type),
750                                                       color_store_size, "color");
751      }
752   }
753   if (dual_source_blend) {
754      assert(key->nr_cbufs <= 1);
755      for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
756         out_color[1][chan] = lp_build_array_alloca(gallivm,
757                                                    lp_build_vec_type(gallivm,
758                                                                      type),
759                                                    color_store_size, "color1");
760      }
761   }
762   if (shader->info.base.writes_z) {
763      z_out = lp_build_array_alloca(gallivm,
764                                    lp_build_vec_type(gallivm, type),
765                                    color_store_size, "depth");
766   }
767
768   if (shader->info.base.writes_stencil) {
769      s_out = lp_build_array_alloca(gallivm,
770                                    lp_build_vec_type(gallivm, type),
771                                    color_store_size, "depth");
772   }
773
774   lp_build_for_loop_begin(&loop_state, gallivm,
775                           lp_build_const_int32(gallivm, 0),
776                           LLVMIntULT,
777                           num_loop,
778                           lp_build_const_int32(gallivm, 1));
779
780   LLVMValueRef sample_mask_in;
781   if (key->multisample) {
782      sample_mask_in = lp_build_const_int_vec(gallivm, type, 0);
783      /* create shader execution mask by combining all sample masks. */
784      for (unsigned s = 0; s < key->coverage_samples; s++) {
785         LLVMValueRef s_mask_idx = LLVMBuildMul(builder, num_loop, lp_build_const_int32(gallivm, s), "");
786         s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
787         LLVMValueRef s_mask = lp_build_pointer_get(builder, mask_store, s_mask_idx);
788         if (s == 0)
789            mask_val = s_mask;
790         else
791            mask_val = LLVMBuildOr(builder, s_mask, mask_val, "");
792
793         LLVMValueRef mask_in = LLVMBuildAnd(builder, s_mask, lp_build_const_int_vec(gallivm, type, (1ll << s)), "");
794         sample_mask_in = LLVMBuildOr(builder, sample_mask_in, mask_in, "");
795      }
796   } else {
797      sample_mask_in = lp_build_const_int_vec(gallivm, type, 1);
798      mask_ptr = LLVMBuildGEP(builder, mask_store,
799                              &loop_state.counter, 1, "mask_ptr");
800      mask_val = LLVMBuildLoad(builder, mask_ptr, "");
801
802      LLVMValueRef mask_in = LLVMBuildAnd(builder, mask_val, lp_build_const_int_vec(gallivm, type, 1), "");
803      sample_mask_in = LLVMBuildOr(builder, sample_mask_in, mask_in, "");
804   }
805
806   /* 'mask' will control execution based on quad's pixel alive/killed state */
807   lp_build_mask_begin(&mask, gallivm, type, mask_val);
808
809   if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
810      lp_build_mask_check(&mask);
811
812   /* Create storage for recombining sample masks after early Z pass. */
813   LLVMValueRef s_mask_or = lp_build_alloca(gallivm, lp_build_int_vec_type(gallivm, type), "cov_mask_early_depth");
814   LLVMBuildStore(builder, LLVMConstNull(lp_build_int_vec_type(gallivm, type)), s_mask_or);
815
816   /* Create storage for post depth sample mask */
817   LLVMValueRef post_depth_sample_mask_in = NULL;
818   if (post_depth_coverage)
819      post_depth_sample_mask_in = lp_build_alloca(gallivm, int_vec_type, "post_depth_sample_mask_in");
820
821   LLVMValueRef s_mask = NULL, s_mask_ptr = NULL;
822   LLVMValueRef z_sample_value_store = NULL, s_sample_value_store = NULL;
823   LLVMValueRef z_fb_store = NULL, s_fb_store = NULL;
824   LLVMTypeRef z_type = NULL, z_fb_type = NULL;
825
826   /* Run early depth once per sample */
827   if (key->multisample) {
828
829      if (zs_format_desc) {
830         struct lp_type zs_type = lp_depth_type(zs_format_desc, type.length);
831         struct lp_type z_type = zs_type;
832         struct lp_type s_type = zs_type;
833         if (zs_format_desc->block.bits < type.width)
834            z_type.width = type.width;
835         if (zs_format_desc->block.bits == 8)
836            s_type.width = type.width;
837
838         else if (zs_format_desc->block.bits > 32) {
839            z_type.width = z_type.width / 2;
840            s_type.width = s_type.width / 2;
841            s_type.floating = 0;
842         }
843         z_sample_value_store = lp_build_array_alloca(gallivm, lp_build_int_vec_type(gallivm, type),
844                                                      zs_samples, "z_sample_store");
845         s_sample_value_store = lp_build_array_alloca(gallivm, lp_build_int_vec_type(gallivm, type),
846                                                      zs_samples, "s_sample_store");
847         z_fb_store = lp_build_array_alloca(gallivm, lp_build_vec_type(gallivm, z_type),
848                                            zs_samples, "z_fb_store");
849         s_fb_store = lp_build_array_alloca(gallivm, lp_build_vec_type(gallivm, s_type),
850                                            zs_samples, "s_fb_store");
851      }
852      lp_build_for_loop_begin(&sample_loop_state, gallivm,
853                              lp_build_const_int32(gallivm, 0),
854                              LLVMIntULT, lp_build_const_int32(gallivm, key->coverage_samples),
855                              lp_build_const_int32(gallivm, 1));
856
857      LLVMValueRef s_mask_idx = LLVMBuildMul(builder, sample_loop_state.counter, num_loop, "");
858      s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
859      s_mask_ptr = LLVMBuildGEP(builder, mask_store, &s_mask_idx, 1, "");
860
861      s_mask = LLVMBuildLoad(builder, s_mask_ptr, "");
862      s_mask = LLVMBuildAnd(builder, s_mask, mask_val, "");
863   }
864
865
866   /* for multisample Z needs to be interpolated at sample points for testing. */
867   lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter,
868                                      key->multisample
869                                      ? sample_loop_state.counter : NULL);
870   z = interp->pos[2];
871
872   LLVMValueRef depth_ptr = depth_base_ptr;
873   if (key->multisample) {
874      LLVMValueRef sample_offset =
875         LLVMBuildMul(builder, sample_loop_state.counter,
876                      depth_sample_stride, "");
877      depth_ptr = LLVMBuildGEP(builder, depth_ptr, &sample_offset, 1, "");
878   }
879
880   if (depth_mode & EARLY_DEPTH_TEST) {
881      z = lp_build_depth_clamp(gallivm, builder, key->depth_clamp,
882                               key->restrict_depth_values, type, context_ptr,
883                               thread_data_ptr, z);
884
885      lp_build_depth_stencil_load_swizzled(gallivm, type,
886                                           zs_format_desc, key->resource_1d,
887                                           depth_ptr, depth_stride,
888                                           &z_fb, &s_fb, loop_state.counter);
889      lp_build_depth_stencil_test(gallivm,
890                                  &key->depth,
891                                  key->stencil,
892                                  type,
893                                  zs_format_desc,
894                                  key->multisample ? NULL : &mask,
895                                  &s_mask,
896                                  stencil_refs,
897                                  z, z_fb, s_fb,
898                                  facing,
899                                  &z_value, &s_value,
900                                  !simple_shader && !key->multisample,
901                                  key->restrict_depth_values);
902
903      if (depth_mode & EARLY_DEPTH_WRITE) {
904         lp_build_depth_stencil_write_swizzled(gallivm, type,
905                                               zs_format_desc, key->resource_1d,
906                                               NULL, NULL, NULL, loop_state.counter,
907                                               depth_ptr, depth_stride,
908                                               z_value, s_value);
909      }
910      /*
911       * Note mask check if stencil is enabled must be after ds write not after
912       * stencil test otherwise new stencil values may not get written if all
913       * fragments got killed by depth/stencil test.
914       */
915      if (!simple_shader && key->stencil[0].enabled && !key->multisample)
916         lp_build_mask_check(&mask);
917
918      if (key->multisample) {
919         z_fb_type = LLVMTypeOf(z_fb);
920         z_type = LLVMTypeOf(z_value);
921         lp_build_pointer_set(builder, z_sample_value_store, sample_loop_state.counter, LLVMBuildBitCast(builder, z_value, lp_build_int_vec_type(gallivm, type), ""));
922         lp_build_pointer_set(builder, s_sample_value_store, sample_loop_state.counter, LLVMBuildBitCast(builder, s_value, lp_build_int_vec_type(gallivm, type), ""));
923         lp_build_pointer_set(builder, z_fb_store, sample_loop_state.counter, z_fb);
924         lp_build_pointer_set(builder, s_fb_store, sample_loop_state.counter, s_fb);
925      }
926   }
927
928   if (key->multisample) {
929      /*
930       * Store the post-early Z coverage mask.
931       * Recombine the resulting coverage masks post early Z into the fragment
932       * shader execution mask.
933       */
934      LLVMValueRef tmp_s_mask_or = LLVMBuildLoad(builder, s_mask_or, "");
935      tmp_s_mask_or = LLVMBuildOr(builder, tmp_s_mask_or, s_mask, "");
936      LLVMBuildStore(builder, tmp_s_mask_or, s_mask_or);
937
938      if (post_depth_coverage) {
939         LLVMValueRef mask_bit_idx = LLVMBuildShl(builder, lp_build_const_int32(gallivm, 1), sample_loop_state.counter, "");
940         LLVMValueRef post_depth_mask_in = LLVMBuildLoad(builder, post_depth_sample_mask_in, "");
941         mask_bit_idx = LLVMBuildAnd(builder, s_mask, lp_build_broadcast(gallivm, int_vec_type, mask_bit_idx), "");
942         post_depth_mask_in = LLVMBuildOr(builder, post_depth_mask_in, mask_bit_idx, "");
943         LLVMBuildStore(builder, post_depth_mask_in, post_depth_sample_mask_in);
944      }
945
946      LLVMBuildStore(builder, s_mask, s_mask_ptr);
947
948      lp_build_for_loop_end(&sample_loop_state);
949
950      /* recombined all the coverage masks in the shader exec mask. */
951      tmp_s_mask_or = LLVMBuildLoad(builder, s_mask_or, "");
952      lp_build_mask_update(&mask, tmp_s_mask_or);
953
954      if (key->min_samples == 1) {
955         /* for multisample Z needs to be re interpolated at pixel center */
956         lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter, NULL);
957         z = interp->pos[2];
958         lp_build_mask_update(&mask, tmp_s_mask_or);
959      }
960   } else {
961      if (post_depth_coverage) {
962         LLVMValueRef post_depth_mask_in = LLVMBuildAnd(builder, lp_build_mask_value(&mask), lp_build_const_int_vec(gallivm, type, 1), "");
963         LLVMBuildStore(builder, post_depth_mask_in, post_depth_sample_mask_in);
964      }
965   }
966
967   LLVMValueRef out_sample_mask_storage = NULL;
968   if (shader->info.base.writes_samplemask) {
969      out_sample_mask_storage = lp_build_alloca(gallivm, int_vec_type, "write_mask");
970      if (key->min_samples > 1)
971         LLVMBuildStore(builder, LLVMConstNull(int_vec_type), out_sample_mask_storage);
972   }
973
974   if (post_depth_coverage) {
975      system_values.sample_mask_in = LLVMBuildLoad(builder, post_depth_sample_mask_in, "");
976   }
977   else
978      system_values.sample_mask_in = sample_mask_in;
979   if (key->multisample && key->min_samples > 1) {
980      lp_build_for_loop_begin(&sample_loop_state, gallivm,
981                              lp_build_const_int32(gallivm, 0),
982                              LLVMIntULT,
983                              lp_build_const_int32(gallivm, key->min_samples),
984                              lp_build_const_int32(gallivm, 1));
985
986      LLVMValueRef s_mask_idx = LLVMBuildMul(builder, sample_loop_state.counter, num_loop, "");
987      s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
988      s_mask_ptr = LLVMBuildGEP(builder, mask_store, &s_mask_idx, 1, "");
989      s_mask = LLVMBuildLoad(builder, s_mask_ptr, "");
990      lp_build_mask_force(&mask, s_mask);
991      lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter, sample_loop_state.counter);
992      system_values.sample_id = sample_loop_state.counter;
993      system_values.sample_mask_in = LLVMBuildAnd(builder, system_values.sample_mask_in,
994                                                  lp_build_broadcast(gallivm, int_vec_type,
995                                                                     LLVMBuildShl(builder, lp_build_const_int32(gallivm, 1), sample_loop_state.counter, "")), "");
996   } else {
997      system_values.sample_id = lp_build_const_int32(gallivm, 0);
998
999   }
1000   system_values.sample_pos = sample_pos_array;
1001
1002   lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter, mask_store, sample_loop_state.counter);
1003
1004   struct lp_build_fs_llvm_iface fs_iface = {
1005     .base.interp_fn = fs_interp,
1006     .base.fb_fetch = fs_fb_fetch,
1007     .interp = interp,
1008     .loop_state = &loop_state,
1009     .sample_id = system_values.sample_id,
1010     .mask_store = mask_store,
1011     .color_ptr_ptr = color_ptr_ptr,
1012     .color_stride_ptr = color_stride_ptr,
1013     .color_sample_stride_ptr = color_sample_stride_ptr,
1014     .zs_base_ptr = depth_base_ptr,
1015     .zs_stride = depth_stride,
1016     .zs_sample_stride = depth_sample_stride,
1017     .key = key,
1018   };
1019
1020   struct lp_build_tgsi_params params;
1021   memset(&params, 0, sizeof(params));
1022
1023   params.type = type;
1024   params.mask = &mask;
1025   params.fs_iface = &fs_iface.base;
1026   params.consts_ptr = consts_ptr;
1027   params.const_sizes_ptr = num_consts_ptr;
1028   params.system_values = &system_values;
1029   params.inputs = interp->inputs;
1030   params.context_ptr = context_ptr;
1031   params.thread_data_ptr = thread_data_ptr;
1032   params.sampler = sampler;
1033   params.info = &shader->info.base;
1034   params.ssbo_ptr = ssbo_ptr;
1035   params.ssbo_sizes_ptr = num_ssbo_ptr;
1036   params.image = image;
1037   params.aniso_filter_table = lp_jit_context_aniso_filter_table(gallivm, context_ptr);
1038
1039   /* Build the actual shader */
1040   if (shader->base.type == PIPE_SHADER_IR_TGSI)
1041      lp_build_tgsi_soa(gallivm, tokens, &params,
1042                        outputs);
1043   else
1044      lp_build_nir_soa(gallivm, shader->base.ir.nir, &params,
1045                       outputs);
1046
1047   /* Alpha test */
1048   if (key->alpha.enabled) {
1049      int color0 = find_output_by_semantic(&shader->info.base,
1050                                           TGSI_SEMANTIC_COLOR,
1051                                           0);
1052
1053      if (color0 != -1 && outputs[color0][3]) {
1054         const struct util_format_description *cbuf_format_desc;
1055         LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
1056         LLVMValueRef alpha_ref_value;
1057
1058         alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
1059         alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
1060
1061         cbuf_format_desc = util_format_description(key->cbuf_format[0]);
1062
1063         lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
1064                             &mask, alpha, alpha_ref_value,
1065                             ((depth_mode & LATE_DEPTH_TEST) != 0) && !key->multisample);
1066      }
1067   }
1068
1069   /* Emulate Alpha to Coverage with Alpha test */
1070   if (key->blend.alpha_to_coverage) {
1071      int color0 = find_output_by_semantic(&shader->info.base,
1072                                           TGSI_SEMANTIC_COLOR,
1073                                           0);
1074
1075      if (color0 != -1 && outputs[color0][3]) {
1076         LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
1077
1078         if (!key->multisample) {
1079            lp_build_alpha_to_coverage(gallivm, type,
1080                                       &mask, alpha,
1081                                       (depth_mode & LATE_DEPTH_TEST) != 0);
1082         } else {
1083            lp_build_sample_alpha_to_coverage(gallivm, type, key->coverage_samples, num_loop,
1084                                              loop_state.counter,
1085                                              mask_store, alpha);
1086         }
1087      }
1088   }
1089
1090   if (key->blend.alpha_to_one) {
1091      for (unsigned attrib = 0; attrib < shader->info.base.num_outputs; ++attrib) {
1092         unsigned cbuf = shader->info.base.output_semantic_index[attrib];
1093         if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
1094             ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
1095            if (outputs[cbuf][3]) {
1096               LLVMBuildStore(builder, lp_build_const_vec(gallivm, type, 1.0),
1097                              outputs[cbuf][3]);
1098            }
1099      }
1100   }
1101
1102   if (shader->info.base.writes_samplemask) {
1103      LLVMValueRef output_smask = NULL;
1104      int smaski = find_output_by_semantic(&shader->info.base,
1105                                           TGSI_SEMANTIC_SAMPLEMASK,
1106                                           0);
1107      struct lp_build_context smask_bld;
1108      lp_build_context_init(&smask_bld, gallivm, int_type);
1109
1110      assert(smaski >= 0);
1111      output_smask = LLVMBuildLoad(builder, outputs[smaski][0], "smask");
1112      output_smask = LLVMBuildBitCast(builder, output_smask, smask_bld.vec_type, "");
1113      if (!key->multisample && key->no_ms_sample_mask_out) {
1114         output_smask = lp_build_and(&smask_bld, output_smask, smask_bld.one);
1115         output_smask = lp_build_cmp(&smask_bld, PIPE_FUNC_NOTEQUAL, output_smask, smask_bld.zero);
1116         lp_build_mask_update(&mask, output_smask);
1117      }
1118
1119      if (key->min_samples > 1) {
1120         /* only the bit corresponding to this sample is to be used. */
1121         LLVMValueRef tmp_mask = LLVMBuildLoad(builder, out_sample_mask_storage, "tmp_mask");
1122         LLVMValueRef out_smask_idx = LLVMBuildShl(builder, lp_build_const_int32(gallivm, 1), sample_loop_state.counter, "");
1123         LLVMValueRef smask_bit = LLVMBuildAnd(builder, output_smask, lp_build_broadcast(gallivm, int_vec_type, out_smask_idx), "");
1124         output_smask = LLVMBuildOr(builder, tmp_mask, smask_bit, "");
1125      }
1126
1127      LLVMBuildStore(builder, output_smask, out_sample_mask_storage);
1128   }
1129
1130   if (shader->info.base.writes_z) {
1131      int pos0 = find_output_by_semantic(&shader->info.base,
1132                                         TGSI_SEMANTIC_POSITION,
1133                                         0);
1134      LLVMValueRef out = LLVMBuildLoad(builder, outputs[pos0][2], "");
1135      LLVMValueRef idx = loop_state.counter;
1136      if (key->min_samples > 1)
1137         idx = LLVMBuildAdd(builder, idx,
1138                            LLVMBuildMul(builder, sample_loop_state.counter, num_loop, ""), "");
1139      LLVMValueRef ptr = LLVMBuildGEP(builder, z_out, &idx, 1, "");
1140      LLVMBuildStore(builder, out, ptr);
1141   }
1142
1143   if (shader->info.base.writes_stencil) {
1144      int sten_out = find_output_by_semantic(&shader->info.base,
1145                                             TGSI_SEMANTIC_STENCIL,
1146                                             0);
1147      LLVMValueRef out = LLVMBuildLoad(builder, outputs[sten_out][1], "output.s");
1148      LLVMValueRef idx = loop_state.counter;
1149      if (key->min_samples > 1)
1150         idx = LLVMBuildAdd(builder, idx,
1151                            LLVMBuildMul(builder, sample_loop_state.counter, num_loop, ""), "");
1152      LLVMValueRef ptr = LLVMBuildGEP(builder, s_out, &idx, 1, "");
1153      LLVMBuildStore(builder, out, ptr);
1154   }
1155
1156   bool has_cbuf0_write = false;
1157   /* Color write - per fragment sample */
1158   for (unsigned attrib = 0; attrib < shader->info.base.num_outputs; ++attrib) {
1159      unsigned cbuf = shader->info.base.output_semantic_index[attrib];
1160      if ((shader->info.base.output_semantic_name[attrib]
1161           == TGSI_SEMANTIC_COLOR) &&
1162           ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend))) {
1163         if (cbuf == 0 &&
1164             shader->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS]) {
1165            /* XXX: there is an edge case with FB fetch where gl_FragColor and
1166             * gl_LastFragData[0] are used together. This creates both
1167             * FRAG_RESULT_COLOR and FRAG_RESULT_DATA* output variables. This
1168             * loop then writes to cbuf 0 twice, owerwriting the correct value
1169             * from gl_FragColor with some garbage. This case is excercised in
1170             * one of deqp tests.  A similar bug can happen if
1171             * gl_SecondaryFragColorEXT and gl_LastFragData[1] are mixed in
1172             * the same fashion...  This workaround will break if
1173             * gl_LastFragData[0] goes in outputs list before
1174             * gl_FragColor. This doesn't seem to happen though.
1175             */
1176            if (has_cbuf0_write)
1177               continue;
1178            has_cbuf0_write = true;
1179         }
1180
1181         for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
1182            if (outputs[attrib][chan]) {
1183               /* XXX: just initialize outputs to point at colors[] and
1184                * skip this.
1185                */
1186               LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
1187               LLVMValueRef color_ptr;
1188               LLVMValueRef color_idx = loop_state.counter;
1189               if (key->min_samples > 1)
1190                  color_idx = LLVMBuildAdd(builder, color_idx,
1191                                           LLVMBuildMul(builder, sample_loop_state.counter, num_loop, ""), "");
1192               color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
1193                                        &color_idx, 1, "");
1194               lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
1195               LLVMBuildStore(builder, out, color_ptr);
1196            }
1197         }
1198      }
1199   }
1200
1201   if (key->multisample && key->min_samples > 1) {
1202      LLVMBuildStore(builder, lp_build_mask_value(&mask), s_mask_ptr);
1203      lp_build_for_loop_end(&sample_loop_state);
1204   }
1205
1206   if (key->multisample) {
1207      /* execute depth test for each sample */
1208      lp_build_for_loop_begin(&sample_loop_state, gallivm,
1209                              lp_build_const_int32(gallivm, 0),
1210                              LLVMIntULT, lp_build_const_int32(gallivm, key->coverage_samples),
1211                              lp_build_const_int32(gallivm, 1));
1212
1213      /* load the per-sample coverage mask */
1214      LLVMValueRef s_mask_idx = LLVMBuildMul(builder, sample_loop_state.counter, num_loop, "");
1215      s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
1216      s_mask_ptr = LLVMBuildGEP(builder, mask_store, &s_mask_idx, 1, "");
1217
1218      /* combine the execution mask post fragment shader with the coverage mask. */
1219      s_mask = LLVMBuildLoad(builder, s_mask_ptr, "");
1220      if (key->min_samples == 1)
1221         s_mask = LLVMBuildAnd(builder, s_mask, lp_build_mask_value(&mask), "");
1222
1223      /* if the shader writes sample mask use that,
1224       * but only if this isn't genuine early-depth to avoid breaking occlusion query */
1225      if (shader->info.base.writes_samplemask &&
1226          (!(depth_mode & EARLY_DEPTH_TEST) || (depth_mode & (EARLY_DEPTH_TEST_INFERRED)))) {
1227         LLVMValueRef out_smask_idx = LLVMBuildShl(builder, lp_build_const_int32(gallivm, 1), sample_loop_state.counter, "");
1228         out_smask_idx = lp_build_broadcast(gallivm, int_vec_type, out_smask_idx);
1229         LLVMValueRef output_smask = LLVMBuildLoad(builder, out_sample_mask_storage, "");
1230         LLVMValueRef smask_bit = LLVMBuildAnd(builder, output_smask, out_smask_idx, "");
1231         LLVMValueRef cmp = LLVMBuildICmp(builder, LLVMIntNE, smask_bit, lp_build_const_int_vec(gallivm, int_type, 0), "");
1232         smask_bit = LLVMBuildSExt(builder, cmp, int_vec_type, "");
1233
1234         s_mask = LLVMBuildAnd(builder, s_mask, smask_bit, "");
1235      }
1236   }
1237
1238   depth_ptr = depth_base_ptr;
1239   if (key->multisample) {
1240      LLVMValueRef sample_offset = LLVMBuildMul(builder, sample_loop_state.counter, depth_sample_stride, "");
1241      depth_ptr = LLVMBuildGEP(builder, depth_ptr, &sample_offset, 1, "");
1242   }
1243
1244   /* Late Z test */
1245   if (depth_mode & LATE_DEPTH_TEST) {
1246      if (shader->info.base.writes_z) {
1247         LLVMValueRef idx = loop_state.counter;
1248         if (key->min_samples > 1)
1249            idx = LLVMBuildAdd(builder, idx,
1250                               LLVMBuildMul(builder, sample_loop_state.counter, num_loop, ""), "");
1251         LLVMValueRef ptr = LLVMBuildGEP(builder, z_out, &idx, 1, "");
1252         z = LLVMBuildLoad(builder, ptr, "output.z");
1253      } else {
1254         if (key->multisample) {
1255            lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter, key->multisample ? sample_loop_state.counter : NULL);
1256            z = interp->pos[2];
1257         }
1258      }
1259
1260      /*
1261       * Clamp according to ARB_depth_clamp semantics.
1262       */
1263      z = lp_build_depth_clamp(gallivm, builder, key->depth_clamp,
1264                               key->restrict_depth_values, type, context_ptr,
1265                               thread_data_ptr, z);
1266
1267      if (shader->info.base.writes_stencil) {
1268         LLVMValueRef idx = loop_state.counter;
1269         if (key->min_samples > 1)
1270            idx = LLVMBuildAdd(builder, idx,
1271                               LLVMBuildMul(builder, sample_loop_state.counter, num_loop, ""), "");
1272         LLVMValueRef ptr = LLVMBuildGEP(builder, s_out, &idx, 1, "");
1273         stencil_refs[0] = LLVMBuildLoad(builder, ptr, "output.s");
1274         /* there's only one value, and spec says to discard additional bits */
1275         LLVMValueRef s_max_mask = lp_build_const_int_vec(gallivm, int_type, 255);
1276         stencil_refs[0] = LLVMBuildBitCast(builder, stencil_refs[0], int_vec_type, "");
1277         stencil_refs[0] = LLVMBuildAnd(builder, stencil_refs[0], s_max_mask, "");
1278         stencil_refs[1] = stencil_refs[0];
1279      }
1280
1281      lp_build_depth_stencil_load_swizzled(gallivm, type,
1282                                           zs_format_desc, key->resource_1d,
1283                                           depth_ptr, depth_stride,
1284                                           &z_fb, &s_fb, loop_state.counter);
1285
1286      lp_build_depth_stencil_test(gallivm,
1287                                  &key->depth,
1288                                  key->stencil,
1289                                  type,
1290                                  zs_format_desc,
1291                                  key->multisample ? NULL : &mask,
1292                                  &s_mask,
1293                                  stencil_refs,
1294                                  z, z_fb, s_fb,
1295                                  facing,
1296                                  &z_value, &s_value,
1297                                  !simple_shader,
1298                                  key->restrict_depth_values);
1299      /* Late Z write */
1300      if (depth_mode & LATE_DEPTH_WRITE) {
1301         lp_build_depth_stencil_write_swizzled(gallivm, type,
1302                                               zs_format_desc, key->resource_1d,
1303                                               NULL, NULL, NULL, loop_state.counter,
1304                                               depth_ptr, depth_stride,
1305                                               z_value, s_value);
1306      }
1307   }
1308   else if ((depth_mode & EARLY_DEPTH_TEST) &&
1309            (depth_mode & LATE_DEPTH_WRITE))
1310   {
1311      /* Need to apply a reduced mask to the depth write.  Reload the
1312       * depth value, update from zs_value with the new mask value and
1313       * write that out.
1314       */
1315      if (key->multisample) {
1316         z_value = LLVMBuildBitCast(builder, lp_build_pointer_get(builder, z_sample_value_store, sample_loop_state.counter), z_type, "");;
1317         s_value = lp_build_pointer_get(builder, s_sample_value_store, sample_loop_state.counter);
1318         z_fb = LLVMBuildBitCast(builder, lp_build_pointer_get(builder, z_fb_store, sample_loop_state.counter), z_fb_type, "");
1319         s_fb = lp_build_pointer_get(builder, s_fb_store, sample_loop_state.counter);
1320      }
1321      lp_build_depth_stencil_write_swizzled(gallivm, type,
1322                                            zs_format_desc, key->resource_1d,
1323                                            key->multisample ? s_mask : lp_build_mask_value(&mask), z_fb, s_fb, loop_state.counter,
1324                                            depth_ptr, depth_stride,
1325                                            z_value, s_value);
1326   }
1327
1328   if (key->occlusion_count) {
1329      LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr);
1330      lp_build_name(counter, "counter");
1331
1332      lp_build_occlusion_count(gallivm, type,
1333                               key->multisample ? s_mask : lp_build_mask_value(&mask), counter);
1334   }
1335
1336   /* if this is genuine early-depth in the shader, write samplemask now
1337    * after occlusion count has been updated
1338    */
1339   if (key->multisample && shader->info.base.writes_samplemask &&
1340       (depth_mode & (EARLY_DEPTH_TEST_INFERRED | EARLY_DEPTH_TEST)) == EARLY_DEPTH_TEST) {
1341      /* if the shader writes sample mask use that */
1342         LLVMValueRef out_smask_idx = LLVMBuildShl(builder, lp_build_const_int32(gallivm, 1), sample_loop_state.counter, "");
1343         out_smask_idx = lp_build_broadcast(gallivm, int_vec_type, out_smask_idx);
1344         LLVMValueRef output_smask = LLVMBuildLoad(builder, out_sample_mask_storage, "");
1345         LLVMValueRef smask_bit = LLVMBuildAnd(builder, output_smask, out_smask_idx, "");
1346         LLVMValueRef cmp = LLVMBuildICmp(builder, LLVMIntNE, smask_bit, lp_build_const_int_vec(gallivm, int_type, 0), "");
1347         smask_bit = LLVMBuildSExt(builder, cmp, int_vec_type, "");
1348
1349         s_mask = LLVMBuildAnd(builder, s_mask, smask_bit, "");
1350   }
1351
1352
1353   if (key->multisample) {
1354      /* store the sample mask for this loop */
1355      LLVMBuildStore(builder, s_mask, s_mask_ptr);
1356      lp_build_for_loop_end(&sample_loop_state);
1357   }
1358
1359   mask_val = lp_build_mask_end(&mask);
1360   if (!key->multisample)
1361      LLVMBuildStore(builder, mask_val, mask_ptr);
1362   lp_build_for_loop_end(&loop_state);
1363}
1364
1365
1366/**
1367 * This function will reorder pixels from the fragment shader SoA to memory layout AoS
1368 *
1369 * Fragment Shader outputs pixels in small 2x2 blocks
1370 *  e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ...
1371 *
1372 * However in memory pixels are stored in rows
1373 *  e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ...
1374 *
1375 * @param type            fragment shader type (4x or 8x float)
1376 * @param num_fs          number of fs_src
1377 * @param is_1d           whether we're outputting to a 1d resource
1378 * @param dst_channels    number of output channels
1379 * @param fs_src          output from fragment shader
1380 * @param dst             pointer to store result
1381 * @param pad_inline      is channel padding inline or at end of row
1382 * @return                the number of dsts
1383 */
1384static int
1385generate_fs_twiddle(struct gallivm_state *gallivm,
1386                    struct lp_type type,
1387                    unsigned num_fs,
1388                    unsigned dst_channels,
1389                    LLVMValueRef fs_src[][4],
1390                    LLVMValueRef* dst,
1391                    bool pad_inline)
1392{
1393   LLVMValueRef src[16];
1394
1395   bool swizzle_pad;
1396   bool twiddle;
1397   bool split;
1398
1399   unsigned pixels = type.length / 4;
1400   unsigned reorder_group;
1401   unsigned src_channels;
1402   unsigned src_count;
1403   unsigned i;
1404
1405   src_channels = dst_channels < 3 ? dst_channels : 4;
1406   src_count = num_fs * src_channels;
1407
1408   assert(pixels == 2 || pixels == 1);
1409   assert(num_fs * src_channels <= ARRAY_SIZE(src));
1410
1411   /*
1412    * Transpose from SoA -> AoS
1413    */
1414   for (i = 0; i < num_fs; ++i) {
1415      lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]);
1416   }
1417
1418   /*
1419    * Pick transformation options
1420    */
1421   swizzle_pad = false;
1422   twiddle = false;
1423   split = false;
1424   reorder_group = 0;
1425
1426   if (dst_channels == 1) {
1427      twiddle = true;
1428
1429      if (pixels == 2) {
1430         split = true;
1431      }
1432   } else if (dst_channels == 2) {
1433      if (pixels == 1) {
1434         reorder_group = 1;
1435      }
1436   } else if (dst_channels > 2) {
1437      if (pixels == 1) {
1438         reorder_group = 2;
1439      } else {
1440         twiddle = true;
1441      }
1442
1443      if (!pad_inline && dst_channels == 3 && pixels > 1) {
1444         swizzle_pad = true;
1445      }
1446   }
1447
1448   /*
1449    * Split the src in half
1450    */
1451   if (split) {
1452      for (i = num_fs; i > 0; --i) {
1453         src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4);
1454         src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4);
1455      }
1456
1457      src_count *= 2;
1458      type.length = 4;
1459   }
1460
1461   /*
1462    * Ensure pixels are in memory order
1463    */
1464   if (reorder_group) {
1465      /* Twiddle pixels by reordering the array, e.g.:
1466       *
1467       * src_count =  8 -> 0 2 1 3 4 6 5 7
1468       * src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
1469       */
1470      const unsigned reorder_sw[] = { 0, 2, 1, 3 };
1471
1472      for (i = 0; i < src_count; ++i) {
1473         unsigned group = i / reorder_group;
1474         unsigned block = (group / 4) * 4 * reorder_group;
1475         unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group);
1476         dst[i] = src[j];
1477      }
1478   } else if (twiddle) {
1479      /* Twiddle pixels across elements of array */
1480      /*
1481       * XXX: we should avoid this in some cases, but would need to tell
1482       * lp_build_conv to reorder (or deal with it ourselves).
1483       */
1484      lp_bld_quad_twiddle(gallivm, type, src, src_count, dst);
1485   } else {
1486      /* Do nothing */
1487      memcpy(dst, src, sizeof(LLVMValueRef) * src_count);
1488   }
1489
1490   /*
1491    * Moves any padding between pixels to the end
1492    * e.g. RGBXRGBX -> RGBRGBXX
1493    */
1494   if (swizzle_pad) {
1495      unsigned char swizzles[16];
1496      unsigned elems = pixels * dst_channels;
1497
1498      for (i = 0; i < type.length; ++i) {
1499         if (i < elems)
1500            swizzles[i] = i % dst_channels + (i / dst_channels) * 4;
1501         else
1502            swizzles[i] = LP_BLD_SWIZZLE_DONTCARE;
1503      }
1504
1505      for (i = 0; i < src_count; ++i) {
1506         dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length);
1507      }
1508   }
1509
1510   return src_count;
1511}
1512
1513
1514/*
1515 * Untwiddle and transpose, much like the above.
1516 * However, this is after conversion, so we get packed vectors.
1517 * At this time only handle 4x16i8 rgba / 2x16i8 rg / 1x16i8 r data,
1518 * the vectors will look like:
1519 * r0r1r4r5r2r3r6r7r8r9r12... (albeit color channels may
1520 * be swizzled here). Extending to 16bit should be trivial.
1521 * Should also be extended to handle twice wide vectors with AVX2...
1522 */
1523static void
1524fs_twiddle_transpose(struct gallivm_state *gallivm,
1525                     struct lp_type type,
1526                     LLVMValueRef *src,
1527                     unsigned src_count,
1528                     LLVMValueRef *dst)
1529{
1530   struct lp_type type64, type16, type32;
1531   LLVMTypeRef type64_t, type8_t, type16_t, type32_t;
1532   LLVMBuilderRef builder = gallivm->builder;
1533   LLVMValueRef tmp[4], shuf[8];
1534   for (unsigned j = 0; j < 2; j++) {
1535      shuf[j*4 + 0] = lp_build_const_int32(gallivm, j*4 + 0);
1536      shuf[j*4 + 1] = lp_build_const_int32(gallivm, j*4 + 2);
1537      shuf[j*4 + 2] = lp_build_const_int32(gallivm, j*4 + 1);
1538      shuf[j*4 + 3] = lp_build_const_int32(gallivm, j*4 + 3);
1539   }
1540
1541   assert(src_count == 4 || src_count == 2 || src_count == 1);
1542   assert(type.width == 8);
1543   assert(type.length == 16);
1544
1545   type8_t = lp_build_vec_type(gallivm, type);
1546
1547   type64 = type;
1548   type64.length /= 8;
1549   type64.width *= 8;
1550   type64_t = lp_build_vec_type(gallivm, type64);
1551
1552   type16 = type;
1553   type16.length /= 2;
1554   type16.width *= 2;
1555   type16_t = lp_build_vec_type(gallivm, type16);
1556
1557   type32 = type;
1558   type32.length /= 4;
1559   type32.width *= 4;
1560   type32_t = lp_build_vec_type(gallivm, type32);
1561
1562   lp_build_transpose_aos_n(gallivm, type, src, src_count, tmp);
1563
1564   if (src_count == 1) {
1565      /* transpose was no-op, just untwiddle */
1566      LLVMValueRef shuf_vec;
1567      shuf_vec = LLVMConstVector(shuf, 8);
1568      tmp[0] = LLVMBuildBitCast(builder, src[0], type16_t, "");
1569      tmp[0] = LLVMBuildShuffleVector(builder, tmp[0], tmp[0], shuf_vec, "");
1570      dst[0] = LLVMBuildBitCast(builder, tmp[0], type8_t, "");
1571   } else if (src_count == 2) {
1572      LLVMValueRef shuf_vec;
1573      shuf_vec = LLVMConstVector(shuf, 4);
1574
1575      for (unsigned i = 0; i < 2; i++) {
1576         tmp[i] = LLVMBuildBitCast(builder, tmp[i], type32_t, "");
1577         tmp[i] = LLVMBuildShuffleVector(builder, tmp[i], tmp[i], shuf_vec, "");
1578         dst[i] = LLVMBuildBitCast(builder, tmp[i], type8_t, "");
1579      }
1580   } else {
1581      for (unsigned j = 0; j < 2; j++) {
1582         LLVMValueRef lo, hi, lo2, hi2;
1583          /*
1584          * Note that if we only really have 3 valid channels (rgb)
1585          * and we don't need alpha we could substitute a undef here
1586          * for the respective channel (causing llvm to drop conversion
1587          * for alpha).
1588          */
1589         /* we now have rgba0rgba1rgba4rgba5 etc, untwiddle */
1590         lo2 = LLVMBuildBitCast(builder, tmp[j*2], type64_t, "");
1591         hi2 = LLVMBuildBitCast(builder, tmp[j*2 + 1], type64_t, "");
1592         lo = lp_build_interleave2(gallivm, type64, lo2, hi2, 0);
1593         hi = lp_build_interleave2(gallivm, type64, lo2, hi2, 1);
1594         dst[j*2] = LLVMBuildBitCast(builder, lo, type8_t, "");
1595         dst[j*2 + 1] = LLVMBuildBitCast(builder, hi, type8_t, "");
1596      }
1597   }
1598}
1599
1600
1601/**
1602 * Load an unswizzled block of pixels from memory
1603 */
1604static void
1605load_unswizzled_block(struct gallivm_state *gallivm,
1606                      LLVMValueRef base_ptr,
1607                      LLVMValueRef stride,
1608                      unsigned block_width,
1609                      unsigned block_height,
1610                      LLVMValueRef* dst,
1611                      struct lp_type dst_type,
1612                      unsigned dst_count,
1613                      unsigned dst_alignment)
1614{
1615   LLVMBuilderRef builder = gallivm->builder;
1616   const unsigned row_size = dst_count / block_height;
1617
1618   /* Ensure block exactly fits into dst */
1619   assert((block_width * block_height) % dst_count == 0);
1620
1621   for (unsigned i = 0; i < dst_count; ++i) {
1622      unsigned x = i % row_size;
1623      unsigned y = i / row_size;
1624
1625      LLVMValueRef bx = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length);
1626      LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
1627
1628      LLVMValueRef gep[2];
1629      LLVMValueRef dst_ptr;
1630
1631      gep[0] = lp_build_const_int32(gallivm, 0);
1632      gep[1] = LLVMBuildAdd(builder, bx, by, "");
1633
1634      dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
1635      dst_ptr = LLVMBuildBitCast(builder, dst_ptr,
1636                                 LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), "");
1637
1638      dst[i] = LLVMBuildLoad(builder, dst_ptr, "");
1639
1640      LLVMSetAlignment(dst[i], dst_alignment);
1641   }
1642}
1643
1644
1645/**
1646 * Store an unswizzled block of pixels to memory
1647 */
1648static void
1649store_unswizzled_block(struct gallivm_state *gallivm,
1650                       LLVMValueRef base_ptr,
1651                       LLVMValueRef stride,
1652                       unsigned block_width,
1653                       unsigned block_height,
1654                       LLVMValueRef* src,
1655                       struct lp_type src_type,
1656                       unsigned src_count,
1657                       unsigned src_alignment)
1658{
1659   LLVMBuilderRef builder = gallivm->builder;
1660   const unsigned row_size = src_count / block_height;
1661
1662   /* Ensure src exactly fits into block */
1663   assert((block_width * block_height) % src_count == 0);
1664
1665   for (unsigned i = 0; i < src_count; ++i) {
1666      unsigned x = i % row_size;
1667      unsigned y = i / row_size;
1668
1669      LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length);
1670      LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
1671
1672      LLVMValueRef gep[2];
1673      LLVMValueRef src_ptr;
1674
1675      gep[0] = lp_build_const_int32(gallivm, 0);
1676      gep[1] = LLVMBuildAdd(builder, bx, by, "");
1677
1678      src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
1679      src_ptr = LLVMBuildBitCast(builder, src_ptr,
1680                                 LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), "");
1681
1682      src_ptr = LLVMBuildStore(builder, src[i], src_ptr);
1683
1684      LLVMSetAlignment(src_ptr, src_alignment);
1685   }
1686}
1687
1688
1689
1690/**
1691 * Retrieves the type for a format which is usable in the blending code.
1692 *
1693 * e.g. RGBA16F = 4x float, R3G3B2 = 3x byte
1694 */
1695static inline void
1696lp_blend_type_from_format_desc(const struct util_format_description *format_desc,
1697                               struct lp_type* type)
1698{
1699   if (format_expands_to_float_soa(format_desc)) {
1700      /* always use ordinary floats for blending */
1701      type->floating = true;
1702      type->fixed = false;
1703      type->sign = true;
1704      type->norm = false;
1705      type->width = 32;
1706      type->length = 4;
1707      return;
1708   }
1709
1710   unsigned i;
1711   for (i = 0; i < 4; i++)
1712      if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1713         break;
1714   const unsigned chan = i;
1715
1716   memset(type, 0, sizeof(struct lp_type));
1717   type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1718   type->fixed    = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1719   type->sign     = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1720   type->norm     = format_desc->channel[chan].normalized;
1721   type->width    = format_desc->channel[chan].size;
1722   type->length   = format_desc->nr_channels;
1723
1724   for (unsigned i = 1; i < format_desc->nr_channels; ++i) {
1725      if (format_desc->channel[i].size > type->width)
1726         type->width = format_desc->channel[i].size;
1727   }
1728
1729   if (type->floating) {
1730      type->width = 32;
1731   } else {
1732      if (type->width <= 8) {
1733         type->width = 8;
1734      } else if (type->width <= 16) {
1735         type->width = 16;
1736      } else {
1737         type->width = 32;
1738      }
1739   }
1740
1741   if (is_arithmetic_format(format_desc) && type->length == 3) {
1742      type->length = 4;
1743   }
1744}
1745
1746
1747/**
1748 * Scale a normalized value from src_bits to dst_bits.
1749 *
1750 * The exact calculation is
1751 *
1752 *    dst = iround(src * dst_mask / src_mask)
1753 *
1754 *  or with integer rounding
1755 *
1756 *    dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask)
1757 *
1758 *  where
1759 *
1760 *    src_mask = (1 << src_bits) - 1
1761 *    dst_mask = (1 << dst_bits) - 1
1762 *
1763 * but we try to avoid division and multiplication through shifts.
1764 */
1765static inline LLVMValueRef
1766scale_bits(struct gallivm_state *gallivm,
1767           int src_bits,
1768           int dst_bits,
1769           LLVMValueRef src,
1770           struct lp_type src_type)
1771{
1772   LLVMBuilderRef builder = gallivm->builder;
1773   LLVMValueRef result = src;
1774
1775   if (dst_bits < src_bits) {
1776      int delta_bits = src_bits - dst_bits;
1777
1778      if (delta_bits <= dst_bits) {
1779
1780         if (dst_bits == 4) {
1781            struct lp_type flt_type = lp_type_float_vec(32, src_type.length * 32);
1782
1783            result = lp_build_unsigned_norm_to_float(gallivm, src_bits, flt_type, src);
1784            result = lp_build_clamped_float_to_unsigned_norm(gallivm, flt_type, dst_bits, result);
1785            result = LLVMBuildTrunc(gallivm->builder, result, lp_build_int_vec_type(gallivm, src_type), "");
1786            return result;
1787         }
1788
1789         /*
1790          * Approximate the rescaling with a single shift.
1791          *
1792          * This gives the wrong rounding.
1793          */
1794
1795         result = LLVMBuildLShr(builder,
1796                                src,
1797                                lp_build_const_int_vec(gallivm, src_type, delta_bits),
1798                                "");
1799
1800      } else {
1801         /*
1802          * Try more accurate rescaling.
1803          */
1804
1805         /*
1806          * Drop the least significant bits to make space for the multiplication.
1807          *
1808          * XXX: A better approach would be to use a wider integer type as intermediate.  But
1809          * this is enough to convert alpha from 16bits -> 2 when rendering to
1810          * PIPE_FORMAT_R10G10B10A2_UNORM.
1811          */
1812         result = LLVMBuildLShr(builder,
1813                                src,
1814                                lp_build_const_int_vec(gallivm, src_type, dst_bits),
1815                                "");
1816
1817
1818         result = LLVMBuildMul(builder,
1819                               result,
1820                               lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1),
1821                               "");
1822
1823         /*
1824          * Add a rounding term before the division.
1825          *
1826          * TODO: Handle signed integers too.
1827          */
1828         if (!src_type.sign) {
1829            result = LLVMBuildAdd(builder,
1830                                  result,
1831                                  lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))),
1832                                  "");
1833         }
1834
1835         /*
1836          * Approximate the division by src_mask with a src_bits shift.
1837          *
1838          * Given the src has already been shifted by dst_bits, all we need
1839          * to do is to shift by the difference.
1840          */
1841
1842         result = LLVMBuildLShr(builder,
1843                                result,
1844                                lp_build_const_int_vec(gallivm, src_type, delta_bits),
1845                                "");
1846      }
1847
1848   } else if (dst_bits > src_bits) {
1849      /* Scale up bits */
1850      int db = dst_bits - src_bits;
1851
1852      /* Shift left by difference in bits */
1853      result = LLVMBuildShl(builder,
1854                            src,
1855                            lp_build_const_int_vec(gallivm, src_type, db),
1856                            "");
1857
1858      if (db <= src_bits) {
1859         /* Enough bits in src to fill the remainder */
1860         LLVMValueRef lower = LLVMBuildLShr(builder,
1861                                            src,
1862                                            lp_build_const_int_vec(gallivm, src_type, src_bits - db),
1863                                            "");
1864
1865         result = LLVMBuildOr(builder, result, lower, "");
1866      } else if (db > src_bits) {
1867         /* Need to repeatedly copy src bits to fill remainder in dst */
1868         unsigned n;
1869
1870         for (n = src_bits; n < dst_bits; n *= 2) {
1871            LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n);
1872
1873            result = LLVMBuildOr(builder,
1874                                 result,
1875                                 LLVMBuildLShr(builder, result, shuv, ""),
1876                                 "");
1877         }
1878      }
1879   }
1880
1881   return result;
1882}
1883
1884/**
1885 * If RT is a smallfloat (needing denorms) format
1886 */
1887static inline int
1888have_smallfloat_format(struct lp_type dst_type,
1889                       enum pipe_format format)
1890{
1891   return ((dst_type.floating && dst_type.width != 32) ||
1892    /* due to format handling hacks this format doesn't have floating set
1893     * here (and actually has width set to 32 too) so special case this. */
1894    (format == PIPE_FORMAT_R11G11B10_FLOAT));
1895}
1896
1897
1898/**
1899 * Convert from memory format to blending format
1900 *
1901 * e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending
1902 */
1903static void
1904convert_to_blend_type(struct gallivm_state *gallivm,
1905                      unsigned block_size,
1906                      const struct util_format_description *src_fmt,
1907                      struct lp_type src_type,
1908                      struct lp_type dst_type,
1909                      LLVMValueRef* src, // and dst
1910                      unsigned num_srcs)
1911{
1912   LLVMValueRef *dst = src;
1913   LLVMBuilderRef builder = gallivm->builder;
1914   struct lp_type blend_type;
1915   struct lp_type mem_type;
1916   unsigned i, j;
1917   unsigned pixels = block_size / num_srcs;
1918   bool is_arith;
1919
1920   /*
1921    * full custom path for packed floats and srgb formats - none of the later
1922    * functions would do anything useful, and given the lp_type representation they
1923    * can't be fixed. Should really have some SoA blend path for these kind of
1924    * formats rather than hacking them in here.
1925    */
1926   if (format_expands_to_float_soa(src_fmt)) {
1927      LLVMValueRef tmpsrc[4];
1928      /*
1929       * This is pretty suboptimal for this case blending in SoA would be much
1930       * better, since conversion gets us SoA values so need to convert back.
1931       */
1932      assert(src_type.width == 32 || src_type.width == 16);
1933      assert(dst_type.floating);
1934      assert(dst_type.width == 32);
1935      assert(dst_type.length % 4 == 0);
1936      assert(num_srcs % 4 == 0);
1937
1938      if (src_type.width == 16) {
1939         /* expand 4x16bit values to 4x32bit */
1940         struct lp_type type32x4 = src_type;
1941         LLVMTypeRef ltype32x4;
1942         unsigned num_fetch = dst_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1943         type32x4.width = 32;
1944         ltype32x4 = lp_build_vec_type(gallivm, type32x4);
1945         for (i = 0; i < num_fetch; i++) {
1946            src[i] = LLVMBuildZExt(builder, src[i], ltype32x4, "");
1947         }
1948         src_type.width = 32;
1949      }
1950      for (i = 0; i < 4; i++) {
1951         tmpsrc[i] = src[i];
1952      }
1953      for (i = 0; i < num_srcs / 4; i++) {
1954         LLVMValueRef tmpsoa[4];
1955         LLVMValueRef tmps = tmpsrc[i];
1956         if (dst_type.length == 8) {
1957            LLVMValueRef shuffles[8];
1958            unsigned j;
1959            /* fetch was 4 values but need 8-wide output values */
1960            tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2);
1961            /*
1962             * for 8-wide aos transpose would give us wrong order not matching
1963             * incoming converted fs values and mask. ARGH.
1964             */
1965            for (j = 0; j < 4; j++) {
1966               shuffles[j] = lp_build_const_int32(gallivm, j * 2);
1967               shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1);
1968            }
1969            tmps = LLVMBuildShuffleVector(builder, tmps, tmps,
1970                                          LLVMConstVector(shuffles, 8), "");
1971         }
1972         if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1973            lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa);
1974         }
1975         else {
1976            lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa);
1977         }
1978         lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]);
1979      }
1980      return;
1981   }
1982
1983   lp_mem_type_from_format_desc(src_fmt, &mem_type);
1984   lp_blend_type_from_format_desc(src_fmt, &blend_type);
1985
1986   /* Is the format arithmetic */
1987   is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length;
1988   is_arith &= !(mem_type.width == 16 && mem_type.floating);
1989
1990   /* Pad if necessary */
1991   if (!is_arith && src_type.length < dst_type.length) {
1992      for (i = 0; i < num_srcs; ++i) {
1993         dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length);
1994      }
1995
1996      src_type.length = dst_type.length;
1997   }
1998
1999   /* Special case for half-floats */
2000   if (mem_type.width == 16 && mem_type.floating) {
2001      assert(blend_type.width == 32 && blend_type.floating);
2002      lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
2003      is_arith = false;
2004   }
2005
2006   if (!is_arith) {
2007      return;
2008   }
2009
2010   src_type.width = blend_type.width * blend_type.length;
2011   blend_type.length *= pixels;
2012   src_type.length *= pixels / (src_type.length / mem_type.length);
2013
2014   for (i = 0; i < num_srcs; ++i) {
2015      LLVMValueRef chans;
2016      LLVMValueRef res = NULL;
2017
2018      dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
2019
2020      for (j = 0; j < src_fmt->nr_channels; ++j) {
2021         unsigned mask = 0;
2022         unsigned sa = src_fmt->channel[j].shift;
2023#if UTIL_ARCH_LITTLE_ENDIAN
2024         unsigned from_lsb = j;
2025#else
2026         unsigned from_lsb = (blend_type.length / pixels) - j - 1;
2027#endif
2028
2029         mask = (1 << src_fmt->channel[j].size) - 1;
2030
2031         /* Extract bits from source */
2032         chans = LLVMBuildLShr(builder,
2033                               dst[i],
2034                               lp_build_const_int_vec(gallivm, src_type, sa),
2035                               "");
2036
2037         chans = LLVMBuildAnd(builder,
2038                              chans,
2039                              lp_build_const_int_vec(gallivm, src_type, mask),
2040                              "");
2041
2042         /* Scale bits */
2043         if (src_type.norm) {
2044            chans = scale_bits(gallivm, src_fmt->channel[j].size,
2045                               blend_type.width, chans, src_type);
2046         }
2047
2048         /* Insert bits into correct position */
2049         chans = LLVMBuildShl(builder,
2050                              chans,
2051                              lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
2052                              "");
2053
2054         if (j == 0) {
2055            res = chans;
2056         } else {
2057            res = LLVMBuildOr(builder, res, chans, "");
2058         }
2059      }
2060
2061      dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), "");
2062   }
2063}
2064
2065
2066/**
2067 * Convert from blending format to memory format
2068 *
2069 * e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory
2070 */
2071static void
2072convert_from_blend_type(struct gallivm_state *gallivm,
2073                        unsigned block_size,
2074                        const struct util_format_description *src_fmt,
2075                        struct lp_type src_type,
2076                        struct lp_type dst_type,
2077                        LLVMValueRef* src, // and dst
2078                        unsigned num_srcs)
2079{
2080   LLVMValueRef* dst = src;
2081   unsigned i, j, k;
2082   struct lp_type mem_type;
2083   struct lp_type blend_type;
2084   LLVMBuilderRef builder = gallivm->builder;
2085   unsigned pixels = block_size / num_srcs;
2086   bool is_arith;
2087
2088   /*
2089    * full custom path for packed floats and srgb formats - none of the later
2090    * functions would do anything useful, and given the lp_type representation they
2091    * can't be fixed. Should really have some SoA blend path for these kind of
2092    * formats rather than hacking them in here.
2093    */
2094   if (format_expands_to_float_soa(src_fmt)) {
2095      /*
2096       * This is pretty suboptimal for this case blending in SoA would be much
2097       * better - we need to transpose the AoS values back to SoA values for
2098       * conversion/packing.
2099       */
2100      assert(src_type.floating);
2101      assert(src_type.width == 32);
2102      assert(src_type.length % 4 == 0);
2103      assert(dst_type.width == 32 || dst_type.width == 16);
2104
2105      for (i = 0; i < num_srcs / 4; i++) {
2106         LLVMValueRef tmpsoa[4], tmpdst;
2107         lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa);
2108         /* really really need SoA here */
2109
2110         if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
2111            tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa);
2112         }
2113         else {
2114            tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt,
2115                                                   src_type, tmpsoa);
2116         }
2117
2118         if (src_type.length == 8) {
2119            LLVMValueRef tmpaos, shuffles[8];
2120            unsigned j;
2121            /*
2122             * for 8-wide aos transpose has given us wrong order not matching
2123             * output order. HMPF. Also need to split the output values manually.
2124             */
2125            for (j = 0; j < 4; j++) {
2126               shuffles[j * 2] = lp_build_const_int32(gallivm, j);
2127               shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4);
2128            }
2129            tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst,
2130                                            LLVMConstVector(shuffles, 8), "");
2131            src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4);
2132            src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4);
2133         }
2134         else {
2135            src[i] = tmpdst;
2136         }
2137      }
2138      if (dst_type.width == 16) {
2139         struct lp_type type16x8 = dst_type;
2140         struct lp_type type32x4 = dst_type;
2141         LLVMTypeRef ltype16x4, ltypei64, ltypei128;
2142         unsigned num_fetch = src_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
2143         type16x8.length = 8;
2144         type32x4.width = 32;
2145         ltypei128 = LLVMIntTypeInContext(gallivm->context, 128);
2146         ltypei64 = LLVMIntTypeInContext(gallivm->context, 64);
2147         ltype16x4 = lp_build_vec_type(gallivm, dst_type);
2148         /* We could do vector truncation but it doesn't generate very good code */
2149         for (i = 0; i < num_fetch; i++) {
2150            src[i] = lp_build_pack2(gallivm, type32x4, type16x8,
2151                                    src[i], lp_build_zero(gallivm, type32x4));
2152            src[i] = LLVMBuildBitCast(builder, src[i], ltypei128, "");
2153            src[i] = LLVMBuildTrunc(builder, src[i], ltypei64, "");
2154            src[i] = LLVMBuildBitCast(builder, src[i], ltype16x4, "");
2155         }
2156      }
2157      return;
2158   }
2159
2160   lp_mem_type_from_format_desc(src_fmt, &mem_type);
2161   lp_blend_type_from_format_desc(src_fmt, &blend_type);
2162
2163   is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length);
2164
2165   /* Special case for half-floats */
2166   if (mem_type.width == 16 && mem_type.floating) {
2167      int length = dst_type.length;
2168      assert(blend_type.width == 32 && blend_type.floating);
2169
2170      dst_type.length = src_type.length;
2171
2172      lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
2173
2174      dst_type.length = length;
2175      is_arith = false;
2176   }
2177
2178   /* Remove any padding */
2179   if (!is_arith && (src_type.length % mem_type.length)) {
2180      src_type.length -= (src_type.length % mem_type.length);
2181
2182      for (i = 0; i < num_srcs; ++i) {
2183         dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length);
2184      }
2185   }
2186
2187   /* No bit arithmetic to do */
2188   if (!is_arith) {
2189      return;
2190   }
2191
2192   src_type.length = pixels;
2193   src_type.width = blend_type.length * blend_type.width;
2194   dst_type.length = pixels;
2195
2196   for (i = 0; i < num_srcs; ++i) {
2197      LLVMValueRef chans;
2198      LLVMValueRef res = NULL;
2199
2200      dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
2201
2202      for (j = 0; j < src_fmt->nr_channels; ++j) {
2203         unsigned mask = 0;
2204         unsigned sa = src_fmt->channel[j].shift;
2205         unsigned sz_a = src_fmt->channel[j].size;
2206#if UTIL_ARCH_LITTLE_ENDIAN
2207         unsigned from_lsb = j;
2208#else
2209         unsigned from_lsb = blend_type.length - j - 1;
2210#endif
2211
2212         assert(blend_type.width > src_fmt->channel[j].size);
2213
2214         for (k = 0; k < blend_type.width; ++k) {
2215            mask |= 1 << k;
2216         }
2217
2218         /* Extract bits */
2219         chans = LLVMBuildLShr(builder,
2220                               dst[i],
2221                               lp_build_const_int_vec(gallivm, src_type,
2222                                                      from_lsb * blend_type.width),
2223                               "");
2224
2225         chans = LLVMBuildAnd(builder,
2226                              chans,
2227                              lp_build_const_int_vec(gallivm, src_type, mask),
2228                              "");
2229
2230         /* Scale down bits */
2231         if (src_type.norm) {
2232            chans = scale_bits(gallivm, blend_type.width,
2233                               src_fmt->channel[j].size, chans, src_type);
2234         } else if (!src_type.floating && sz_a < blend_type.width) {
2235            LLVMValueRef mask_val = lp_build_const_int_vec(gallivm, src_type, (1UL << sz_a) - 1);
2236            LLVMValueRef mask = LLVMBuildICmp(builder, LLVMIntUGT, chans, mask_val, "");
2237            chans = LLVMBuildSelect(builder, mask, mask_val, chans, "");
2238         }
2239
2240         /* Insert bits */
2241         chans = LLVMBuildShl(builder,
2242                              chans,
2243                              lp_build_const_int_vec(gallivm, src_type, sa),
2244                              "");
2245
2246         sa += src_fmt->channel[j].size;
2247
2248         if (j == 0) {
2249            res = chans;
2250         } else {
2251            res = LLVMBuildOr(builder, res, chans, "");
2252         }
2253      }
2254
2255      assert (dst_type.width != 24);
2256
2257      dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), "");
2258   }
2259}
2260
2261
2262/**
2263 * Convert alpha to same blend type as src
2264 */
2265static void
2266convert_alpha(struct gallivm_state *gallivm,
2267              struct lp_type row_type,
2268              struct lp_type alpha_type,
2269              const unsigned block_size,
2270              const unsigned block_height,
2271              const unsigned src_count,
2272              const unsigned dst_channels,
2273              const bool pad_inline,
2274              LLVMValueRef* src_alpha)
2275{
2276   LLVMBuilderRef builder = gallivm->builder;
2277   unsigned i, j;
2278   unsigned length = row_type.length;
2279   row_type.length = alpha_type.length;
2280
2281   /* Twiddle the alpha to match pixels */
2282   lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha);
2283
2284   /*
2285    * TODO this should use single lp_build_conv call for
2286    * src_count == 1 && dst_channels == 1 case (dropping the concat below)
2287    */
2288   for (i = 0; i < block_height; ++i) {
2289      lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1);
2290   }
2291
2292   alpha_type = row_type;
2293   row_type.length = length;
2294
2295   /* If only one channel we can only need the single alpha value per pixel */
2296   if (src_count == 1 && dst_channels == 1) {
2297
2298      lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count);
2299   } else {
2300      /* If there are more srcs than rows then we need to split alpha up */
2301      if (src_count > block_height) {
2302         for (i = src_count; i > 0; --i) {
2303            unsigned pixels = block_size / src_count;
2304            unsigned idx = i - 1;
2305
2306            src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4],
2307                                                    (idx * pixels) % 4, pixels);
2308         }
2309      }
2310
2311      /* If there is a src for each pixel broadcast the alpha across whole row */
2312      if (src_count == block_size) {
2313         for (i = 0; i < src_count; ++i) {
2314            src_alpha[i] = lp_build_broadcast(gallivm,
2315                              lp_build_vec_type(gallivm, row_type), src_alpha[i]);
2316         }
2317      } else {
2318         unsigned pixels = block_size / src_count;
2319         unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels;
2320         unsigned alpha_span = 1;
2321         LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
2322
2323         /* Check if we need 2 src_alphas for our shuffles */
2324         if (pixels > alpha_type.length) {
2325            alpha_span = 2;
2326         }
2327
2328         /* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */
2329         for (j = 0; j < row_type.length; ++j) {
2330            if (j < pixels * channels) {
2331               shuffles[j] = lp_build_const_int32(gallivm, j / channels);
2332            } else {
2333               shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
2334            }
2335         }
2336
2337         for (i = 0; i < src_count; ++i) {
2338            unsigned idx1 = i, idx2 = i;
2339
2340            if (alpha_span > 1){
2341               idx1 *= alpha_span;
2342               idx2 = idx1 + 1;
2343            }
2344
2345            src_alpha[i] = LLVMBuildShuffleVector(builder,
2346                                                  src_alpha[idx1],
2347                                                  src_alpha[idx2],
2348                                                  LLVMConstVector(shuffles, row_type.length),
2349                                                  "");
2350         }
2351      }
2352   }
2353}
2354
2355
2356/**
2357 * Generates the blend function for unswizzled colour buffers
2358 * Also generates the read & write from colour buffer
2359 */
2360static void
2361generate_unswizzled_blend(struct gallivm_state *gallivm,
2362                          unsigned rt,
2363                          struct lp_fragment_shader_variant *variant,
2364                          enum pipe_format out_format,
2365                          unsigned int num_fs,
2366                          struct lp_type fs_type,
2367                          LLVMValueRef* fs_mask,
2368                          LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],
2369                          LLVMValueRef context_ptr,
2370                          LLVMValueRef color_ptr,
2371                          LLVMValueRef stride,
2372                          unsigned partial_mask,
2373                          boolean do_branch)
2374{
2375   const unsigned alpha_channel = 3;
2376   const unsigned block_width = LP_RASTER_BLOCK_SIZE;
2377   const unsigned block_height = LP_RASTER_BLOCK_SIZE;
2378   const unsigned block_size = block_width * block_height;
2379   const unsigned lp_integer_vector_width = 128;
2380
2381   LLVMBuilderRef builder = gallivm->builder;
2382   LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS];
2383   LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS];
2384   LLVMValueRef src_alpha[4 * 4];
2385   LLVMValueRef src1_alpha[4 * 4] = { NULL };
2386   LLVMValueRef src_mask[4 * 4];
2387   LLVMValueRef src[4 * 4];
2388   LLVMValueRef src1[4 * 4];
2389   LLVMValueRef dst[4 * 4];
2390   LLVMValueRef blend_color;
2391   LLVMValueRef blend_alpha;
2392   LLVMValueRef i32_zero;
2393   LLVMValueRef check_mask;
2394   LLVMValueRef undef_src_val;
2395
2396   struct lp_build_mask_context mask_ctx;
2397   struct lp_type mask_type;
2398   struct lp_type blend_type;
2399   struct lp_type row_type;
2400   struct lp_type dst_type;
2401   struct lp_type ls_type;
2402
2403   unsigned char swizzle[TGSI_NUM_CHANNELS];
2404   unsigned vector_width;
2405   unsigned src_channels = TGSI_NUM_CHANNELS;
2406   unsigned dst_channels;
2407   unsigned dst_count;
2408   unsigned src_count;
2409
2410   const struct util_format_description* out_format_desc = util_format_description(out_format);
2411
2412   unsigned dst_alignment;
2413
2414   bool pad_inline = is_arithmetic_format(out_format_desc);
2415   bool has_alpha = false;
2416   const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable &&
2417                                     util_blend_state_is_dual(&variant->key.blend, 0);
2418
2419   const boolean is_1d = variant->key.resource_1d;
2420   boolean twiddle_after_convert = FALSE;
2421   unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs;
2422   LLVMValueRef fpstate = 0;
2423
2424   /* Get type from output format */
2425   lp_blend_type_from_format_desc(out_format_desc, &row_type);
2426   lp_mem_type_from_format_desc(out_format_desc, &dst_type);
2427
2428   /*
2429    * Technically this code should go into lp_build_smallfloat_to_float
2430    * and lp_build_float_to_smallfloat but due to the
2431    * http://llvm.org/bugs/show_bug.cgi?id=6393
2432    * llvm reorders the mxcsr intrinsics in a way that breaks the code.
2433    * So the ordering is important here and there shouldn't be any
2434    * llvm ir instrunctions in this function before
2435    * this, otherwise half-float format conversions won't work
2436    * (again due to llvm bug #6393).
2437    */
2438   if (have_smallfloat_format(dst_type, out_format)) {
2439      /* We need to make sure that denorms are ok for half float
2440         conversions */
2441      fpstate = lp_build_fpstate_get(gallivm);
2442      lp_build_fpstate_set_denorms_zero(gallivm, FALSE);
2443   }
2444
2445   mask_type = lp_int32_vec4_type();
2446   mask_type.length = fs_type.length;
2447
2448   for (unsigned i = num_fs; i < num_fullblock_fs; i++) {
2449      fs_mask[i] = lp_build_zero(gallivm, mask_type);
2450   }
2451
2452   /* Do not bother executing code when mask is empty.. */
2453   if (do_branch) {
2454      check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type));
2455
2456      for (unsigned i = 0; i < num_fullblock_fs; ++i) {
2457         check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], "");
2458      }
2459
2460      lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask);
2461      lp_build_mask_check(&mask_ctx);
2462   }
2463
2464   partial_mask |= !variant->opaque;
2465   i32_zero = lp_build_const_int32(gallivm, 0);
2466
2467   undef_src_val = lp_build_undef(gallivm, fs_type);
2468
2469   row_type.length = fs_type.length;
2470   vector_width    = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width;
2471
2472   /* Compute correct swizzle and count channels */
2473   memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS);
2474   dst_channels = 0;
2475
2476   for (unsigned i = 0; i < TGSI_NUM_CHANNELS; ++i) {
2477      /* Ensure channel is used */
2478      if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) {
2479         continue;
2480      }
2481
2482      /* Ensure not already written to (happens in case with GL_ALPHA) */
2483      if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) {
2484         continue;
2485      }
2486
2487      /* Ensure we haven't already found all channels */
2488      if (dst_channels >= out_format_desc->nr_channels) {
2489         continue;
2490      }
2491
2492      swizzle[out_format_desc->swizzle[i]] = i;
2493      ++dst_channels;
2494
2495      if (i == alpha_channel) {
2496         has_alpha = true;
2497      }
2498   }
2499
2500   if (format_expands_to_float_soa(out_format_desc)) {
2501      /*
2502       * the code above can't work for layout_other
2503       * for srgb it would sort of work but we short-circuit swizzles, etc.
2504       * as that is done as part of unpack / pack.
2505       */
2506      dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */
2507      has_alpha = true;
2508      swizzle[0] = 0;
2509      swizzle[1] = 1;
2510      swizzle[2] = 2;
2511      swizzle[3] = 3;
2512      pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */
2513   }
2514
2515   /* If 3 channels then pad to include alpha for 4 element transpose */
2516   if (dst_channels == 3) {
2517      assert (!has_alpha);
2518      for (unsigned i = 0; i < TGSI_NUM_CHANNELS; i++) {
2519         if (swizzle[i] > TGSI_NUM_CHANNELS)
2520            swizzle[i] = 3;
2521      }
2522      if (out_format_desc->nr_channels == 4) {
2523         dst_channels = 4;
2524         /*
2525          * We use alpha from the color conversion, not separate one.
2526          * We had to include it for transpose, hence it will get converted
2527          * too (albeit when doing transpose after conversion, that would
2528          * no longer be the case necessarily).
2529          * (It works only with 4 channel dsts, e.g. rgbx formats, because
2530          * otherwise we really have padding, not alpha, included.)
2531          */
2532         has_alpha = true;
2533      }
2534   }
2535
2536   /*
2537    * Load shader output
2538    */
2539   for (unsigned i = 0; i < num_fullblock_fs; ++i) {
2540      /* Always load alpha for use in blending */
2541      LLVMValueRef alpha;
2542      if (i < num_fs) {
2543         alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], "");
2544      }
2545      else {
2546         alpha = undef_src_val;
2547      }
2548
2549      /* Load each channel */
2550      for (unsigned j = 0; j < dst_channels; ++j) {
2551         assert(swizzle[j] < 4);
2552         if (i < num_fs) {
2553            fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], "");
2554         }
2555         else {
2556            fs_src[i][j] = undef_src_val;
2557         }
2558      }
2559
2560      /* If 3 channels then pad to include alpha for 4 element transpose */
2561      /*
2562       * XXX If we include that here maybe could actually use it instead of
2563       * separate alpha for blending?
2564       * (Difficult though we actually convert pad channels, not alpha.)
2565       */
2566      if (dst_channels == 3 && !has_alpha) {
2567         fs_src[i][3] = alpha;
2568      }
2569
2570      /* We split the row_mask and row_alpha as we want 128bit interleave */
2571      if (fs_type.length == 8) {
2572         src_mask[i*2 + 0]  = lp_build_extract_range(gallivm, fs_mask[i],
2573                                                     0, src_channels);
2574         src_mask[i*2 + 1]  = lp_build_extract_range(gallivm, fs_mask[i],
2575                                                     src_channels, src_channels);
2576
2577         src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
2578         src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
2579                                                     src_channels, src_channels);
2580      } else {
2581         src_mask[i] = fs_mask[i];
2582         src_alpha[i] = alpha;
2583      }
2584   }
2585   if (dual_source_blend) {
2586      /* same as above except different src/dst, skip masks and comments... */
2587      for (unsigned i = 0; i < num_fullblock_fs; ++i) {
2588         LLVMValueRef alpha;
2589         if (i < num_fs) {
2590            alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], "");
2591         }
2592         else {
2593            alpha = undef_src_val;
2594         }
2595
2596         for (unsigned j = 0; j < dst_channels; ++j) {
2597            assert(swizzle[j] < 4);
2598            if (i < num_fs) {
2599               fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], "");
2600            }
2601            else {
2602               fs_src1[i][j] = undef_src_val;
2603            }
2604         }
2605         if (dst_channels == 3 && !has_alpha) {
2606            fs_src1[i][3] = alpha;
2607         }
2608         if (fs_type.length == 8) {
2609            src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
2610            src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
2611                                                         src_channels, src_channels);
2612         } else {
2613            src1_alpha[i] = alpha;
2614         }
2615      }
2616   }
2617
2618   if (util_format_is_pure_integer(out_format)) {
2619      /*
2620       * In this case fs_type was really ints or uints disguised as floats,
2621       * fix that up now.
2622       */
2623      fs_type.floating = 0;
2624      fs_type.sign = dst_type.sign;
2625      for (unsigned i = 0; i < num_fullblock_fs; ++i) {
2626         for (unsigned j = 0; j < dst_channels; ++j) {
2627            fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j],
2628                                            lp_build_vec_type(gallivm, fs_type), "");
2629         }
2630         if (dst_channels == 3 && !has_alpha) {
2631            fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3],
2632                                            lp_build_vec_type(gallivm, fs_type), "");
2633         }
2634      }
2635   }
2636
2637   /*
2638    * We actually should generally do conversion first (for non-1d cases)
2639    * when the blend format is 8 or 16 bits. The reason is obvious,
2640    * there's 2 or 4 times less vectors to deal with for the interleave...
2641    * Albeit for the AVX (not AVX2) case there's no benefit with 16 bit
2642    * vectors (as it can do 32bit unpack with 256bit vectors, but 8/16bit
2643    * unpack only with 128bit vectors).
2644    * Note: for 16bit sizes really need matching pack conversion code
2645    */
2646   if (!is_1d && dst_channels != 3 && dst_type.width == 8) {
2647      twiddle_after_convert = TRUE;
2648   }
2649
2650   /*
2651    * Pixel twiddle from fragment shader order to memory order
2652    */
2653   if (!twiddle_after_convert) {
2654      src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs,
2655                                      dst_channels, fs_src, src, pad_inline);
2656      if (dual_source_blend) {
2657         generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels,
2658                             fs_src1, src1, pad_inline);
2659      }
2660   } else {
2661      src_count = num_fullblock_fs * dst_channels;
2662      /*
2663       * We reorder things a bit here, so the cases for 4-wide and 8-wide
2664       * (AVX) turn out the same later when untwiddling/transpose (albeit
2665       * for true AVX2 path untwiddle needs to be different).
2666       * For now just order by colors first (so we can use unpack later).
2667       */
2668      for (unsigned j = 0; j < num_fullblock_fs; j++) {
2669         for (unsigned i = 0; i < dst_channels; i++) {
2670            src[i*num_fullblock_fs + j] = fs_src[j][i];
2671            if (dual_source_blend) {
2672               src1[i*num_fullblock_fs + j] = fs_src1[j][i];
2673            }
2674         }
2675      }
2676   }
2677
2678   src_channels = dst_channels < 3 ? dst_channels : 4;
2679   if (src_count != num_fullblock_fs * src_channels) {
2680      unsigned ds = src_count / (num_fullblock_fs * src_channels);
2681      row_type.length /= ds;
2682      fs_type.length = row_type.length;
2683   }
2684
2685   blend_type = row_type;
2686   mask_type.length = 4;
2687
2688   /* Convert src to row_type */
2689   if (dual_source_blend) {
2690      struct lp_type old_row_type = row_type;
2691      lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2692      src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1);
2693   }
2694   else {
2695      src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2696   }
2697
2698   /* If the rows are not an SSE vector, combine them to become SSE size! */
2699   if ((row_type.width * row_type.length) % 128) {
2700      unsigned bits = row_type.width * row_type.length;
2701      unsigned combined;
2702
2703      assert(src_count >= (vector_width / bits));
2704
2705      dst_count = src_count / (vector_width / bits);
2706
2707      combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count);
2708      if (dual_source_blend) {
2709         lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count);
2710      }
2711
2712      row_type.length *= combined;
2713      src_count /= combined;
2714
2715      bits = row_type.width * row_type.length;
2716      assert(bits == 128 || bits == 256);
2717   }
2718
2719   if (twiddle_after_convert) {
2720      fs_twiddle_transpose(gallivm, row_type, src, src_count, src);
2721      if (dual_source_blend) {
2722         fs_twiddle_transpose(gallivm, row_type, src1, src_count, src1);
2723      }
2724   }
2725
2726   /*
2727    * Blend Colour conversion
2728    */
2729   blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr);
2730   blend_color = LLVMBuildPointerCast(builder, blend_color,
2731                    LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), "");
2732   blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color,
2733                               &i32_zero, 1, ""), "");
2734
2735   /* Convert */
2736   lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1);
2737
2738   if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
2739      /*
2740       * since blending is done with floats, there was no conversion.
2741       * However, the rules according to fixed point renderbuffers still
2742       * apply, that is we must clamp inputs to 0.0/1.0.
2743       * (This would apply to separate alpha conversion too but we currently
2744       * force has_alpha to be true.)
2745       * TODO: should skip this with "fake" blend, since post-blend conversion
2746       * will clamp anyway.
2747       * TODO: could also skip this if fragment color clamping is enabled.
2748       * We don't support it natively so it gets baked into the shader
2749       * however, so can't really tell here.
2750       */
2751      struct lp_build_context f32_bld;
2752      assert(row_type.floating);
2753      lp_build_context_init(&f32_bld, gallivm, row_type);
2754      for (unsigned i = 0; i < src_count; i++) {
2755         src[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src[i]);
2756      }
2757      if (dual_source_blend) {
2758         for (unsigned i = 0; i < src_count; i++) {
2759            src1[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src1[i]);
2760         }
2761      }
2762      /* probably can't be different than row_type but better safe than sorry... */
2763      lp_build_context_init(&f32_bld, gallivm, blend_type);
2764      blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one);
2765   }
2766
2767   /* Extract alpha */
2768   blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3));
2769
2770   /* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */
2771   pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width;
2772   if (pad_inline) {
2773      /* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */
2774      blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length);
2775   } else {
2776      /* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */
2777      blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length);
2778   }
2779
2780   /*
2781    * Mask conversion
2782    */
2783   lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]);
2784
2785   if (src_count < block_height) {
2786      lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count);
2787   } else if (src_count > block_height) {
2788      for (unsigned i = src_count; i > 0; --i) {
2789         unsigned pixels = block_size / src_count;
2790         unsigned idx = i - 1;
2791
2792         src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4],
2793                                                (idx * pixels) % 4, pixels);
2794      }
2795   }
2796
2797   assert(mask_type.width == 32);
2798
2799   for (unsigned i = 0; i < src_count; ++i) {
2800      unsigned pixels = block_size / src_count;
2801      unsigned pixel_width = row_type.width * dst_channels;
2802
2803      if (pixel_width == 24) {
2804         mask_type.width = 8;
2805         mask_type.length = vector_width / mask_type.width;
2806      } else {
2807         mask_type.length = pixels;
2808         mask_type.width = row_type.width * dst_channels;
2809
2810         /*
2811          * If mask_type width is smaller than 32bit, this doesn't quite
2812          * generate the most efficient code (could use some pack).
2813          */
2814         src_mask[i] = LLVMBuildIntCast(builder, src_mask[i],
2815                                        lp_build_int_vec_type(gallivm, mask_type), "");
2816
2817         mask_type.length *= dst_channels;
2818         mask_type.width /= dst_channels;
2819      }
2820
2821      src_mask[i] = LLVMBuildBitCast(builder, src_mask[i],
2822                                     lp_build_int_vec_type(gallivm, mask_type), "");
2823      src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length);
2824   }
2825
2826   /*
2827    * Alpha conversion
2828    */
2829   if (!has_alpha) {
2830      struct lp_type alpha_type = fs_type;
2831      alpha_type.length = 4;
2832      convert_alpha(gallivm, row_type, alpha_type,
2833                    block_size, block_height,
2834                    src_count, dst_channels,
2835                    pad_inline, src_alpha);
2836      if (dual_source_blend) {
2837         convert_alpha(gallivm, row_type, alpha_type,
2838                       block_size, block_height,
2839                       src_count, dst_channels,
2840                       pad_inline, src1_alpha);
2841      }
2842   }
2843
2844
2845   /*
2846    * Load dst from memory
2847    */
2848   if (src_count < block_height) {
2849      dst_count = block_height;
2850   } else {
2851      dst_count = src_count;
2852   }
2853
2854   dst_type.length *= block_size / dst_count;
2855
2856   if (format_expands_to_float_soa(out_format_desc)) {
2857      /*
2858       * we need multiple values at once for the conversion, so can as well
2859       * load them vectorized here too instead of concatenating later.
2860       * (Still need concatenation later for 8-wide vectors).
2861       */
2862      dst_count = block_height;
2863      dst_type.length = block_width;
2864   }
2865
2866   /*
2867    * Compute the alignment of the destination pointer in bytes
2868    * We fetch 1-4 pixels, if the format has pot alignment then those fetches
2869    * are always aligned by MIN2(16, fetch_width) except for buffers (not
2870    * 1d tex but can't distinguish here) so need to stick with per-pixel
2871    * alignment in this case.
2872    */
2873   if (is_1d) {
2874      dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
2875   }
2876   else {
2877      dst_alignment = dst_type.length * dst_type.width / 8;
2878   }
2879   /* Force power-of-two alignment by extracting only the least-significant-bit */
2880   dst_alignment = 1 << (ffs(dst_alignment) - 1);
2881   /*
2882    * Resource base and stride pointers are aligned to 16 bytes, so that's
2883    * the maximum alignment we can guarantee
2884    */
2885   dst_alignment = MIN2(16, dst_alignment);
2886
2887   ls_type = dst_type;
2888
2889   if (dst_count > src_count) {
2890      if ((dst_type.width == 8 || dst_type.width == 16) &&
2891          util_is_power_of_two_or_zero(dst_type.length) &&
2892          dst_type.length * dst_type.width < 128) {
2893         /*
2894          * Never try to load values as 4xi8 which we will then
2895          * concatenate to larger vectors. This gives llvm a real
2896          * headache (the problem is the type legalizer (?) will
2897          * try to load that as 4xi8 zext to 4xi32 to fill the vector,
2898          * then the shuffles to concatenate are more or less impossible
2899          * - llvm is easily capable of generating a sequence of 32
2900          * pextrb/pinsrb instructions for that. Albeit it appears to
2901          * be fixed in llvm 4.0. So, load and concatenate with 32bit
2902          * width to avoid the trouble (16bit seems not as bad, llvm
2903          * probably recognizes the load+shuffle as only one shuffle
2904          * is necessary, but we can do just the same anyway).
2905          */
2906         ls_type.length = dst_type.length * dst_type.width / 32;
2907         ls_type.width = 32;
2908      }
2909   }
2910
2911   if (is_1d) {
2912      load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2913                            dst, ls_type, dst_count / 4, dst_alignment);
2914      for (unsigned i = dst_count / 4; i < dst_count; i++) {
2915         dst[i] = lp_build_undef(gallivm, ls_type);
2916      }
2917
2918   }
2919   else {
2920      load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2921                            dst, ls_type, dst_count, dst_alignment);
2922   }
2923
2924
2925   /*
2926    * Convert from dst/output format to src/blending format.
2927    *
2928    * This is necessary as we can only read 1 row from memory at a time,
2929    * so the minimum dst_count will ever be at this point is 4.
2930    *
2931    * With, for example, R8 format you can have all 16 pixels in a 128 bit
2932    * vector, this will take the 4 dsts and combine them into 1 src so we can
2933    * perform blending on all 16 pixels in that single vector at once.
2934    */
2935   if (dst_count > src_count) {
2936      if (ls_type.length != dst_type.length && ls_type.length == 1) {
2937         LLVMTypeRef elem_type = lp_build_elem_type(gallivm, ls_type);
2938         LLVMTypeRef ls_vec_type = LLVMVectorType(elem_type, 1);
2939         for (unsigned i = 0; i < dst_count; i++) {
2940            dst[i] = LLVMBuildBitCast(builder, dst[i], ls_vec_type, "");
2941         }
2942      }
2943
2944      lp_build_concat_n(gallivm, ls_type, dst, 4, dst, src_count);
2945
2946      if (ls_type.length != dst_type.length) {
2947         struct lp_type tmp_type = dst_type;
2948         tmp_type.length = dst_type.length * 4 / src_count;
2949         for (unsigned i = 0; i < src_count; i++) {
2950            dst[i] = LLVMBuildBitCast(builder, dst[i],
2951                                      lp_build_vec_type(gallivm, tmp_type), "");
2952         }
2953      }
2954   }
2955
2956   /*
2957    * Blending
2958    */
2959   /* XXX this is broken for RGB8 formats -
2960    * they get expanded from 12 to 16 elements (to include alpha)
2961    * by convert_to_blend_type then reduced to 15 instead of 12
2962    * by convert_from_blend_type (a simple fix though breaks A8...).
2963    * R16G16B16 also crashes differently however something going wrong
2964    * inside llvm handling npot vector sizes seemingly.
2965    * It seems some cleanup could be done here (like skipping conversion/blend
2966    * when not needed).
2967    */
2968   convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type,
2969                         row_type, dst, src_count);
2970
2971   /*
2972    * FIXME: Really should get logic ops / masks out of generic blend / row
2973    * format. Logic ops will definitely not work on the blend float format
2974    * used for SRGB here and I think OpenGL expects this to work as expected
2975    * (that is incoming values converted to srgb then logic op applied).
2976    */
2977   for (unsigned i = 0; i < src_count; ++i) {
2978      dst[i] = lp_build_blend_aos(gallivm,
2979                                  &variant->key.blend,
2980                                  out_format,
2981                                  row_type,
2982                                  rt,
2983                                  src[i],
2984                                  has_alpha ? NULL : src_alpha[i],
2985                                  src1[i],
2986                                  has_alpha ? NULL : src1_alpha[i],
2987                                  dst[i],
2988                                  partial_mask ? src_mask[i] : NULL,
2989                                  blend_color,
2990                                  has_alpha ? NULL : blend_alpha,
2991                                  swizzle,
2992                                  pad_inline ? 4 : dst_channels);
2993   }
2994
2995   convert_from_blend_type(gallivm, block_size, out_format_desc,
2996                           row_type, dst_type, dst, src_count);
2997
2998   /* Split the blend rows back to memory rows */
2999   if (dst_count > src_count) {
3000      row_type.length = dst_type.length * (dst_count / src_count);
3001
3002      if (src_count == 1) {
3003         dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
3004         dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
3005
3006         row_type.length /= 2;
3007         src_count *= 2;
3008      }
3009
3010      dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2);
3011      dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2);
3012      dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
3013      dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
3014
3015      row_type.length /= 2;
3016      src_count *= 2;
3017   }
3018
3019   /*
3020    * Store blend result to memory
3021    */
3022   if (is_1d) {
3023      store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
3024                             dst, dst_type, dst_count / 4, dst_alignment);
3025   }
3026   else {
3027      store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
3028                             dst, dst_type, dst_count, dst_alignment);
3029   }
3030
3031   if (have_smallfloat_format(dst_type, out_format)) {
3032      lp_build_fpstate_set(gallivm, fpstate);
3033   }
3034
3035   if (do_branch) {
3036      lp_build_mask_end(&mask_ctx);
3037   }
3038}
3039
3040
3041/**
3042 * Generate the runtime callable function for the whole fragment pipeline.
3043 * Note that the function which we generate operates on a block of 16
3044 * pixels at at time.  The block contains 2x2 quads.  Each quad contains
3045 * 2x2 pixels.
3046 */
3047static void
3048generate_fragment(struct llvmpipe_context *lp,
3049                  struct lp_fragment_shader *shader,
3050                  struct lp_fragment_shader_variant *variant,
3051                  unsigned partial_mask)
3052{
3053   assert(partial_mask == RAST_WHOLE ||
3054          partial_mask == RAST_EDGE_TEST);
3055
3056   struct gallivm_state *gallivm = variant->gallivm;
3057   struct lp_fragment_shader_variant_key *key = &variant->key;
3058   struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
3059   LLVMTypeRef fs_elem_type;
3060   LLVMTypeRef blend_vec_type;
3061   LLVMTypeRef arg_types[15];
3062   LLVMTypeRef func_type;
3063   LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
3064   LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
3065   LLVMValueRef context_ptr;
3066   LLVMValueRef x;
3067   LLVMValueRef y;
3068   LLVMValueRef a0_ptr;
3069   LLVMValueRef dadx_ptr;
3070   LLVMValueRef dady_ptr;
3071   LLVMValueRef color_ptr_ptr;
3072   LLVMValueRef stride_ptr;
3073   LLVMValueRef color_sample_stride_ptr;
3074   LLVMValueRef depth_ptr;
3075   LLVMValueRef depth_stride;
3076   LLVMValueRef depth_sample_stride;
3077   LLVMValueRef mask_input;
3078   LLVMValueRef thread_data_ptr;
3079   LLVMBasicBlockRef block;
3080   LLVMBuilderRef builder;
3081   struct lp_build_interp_soa_context interp;
3082   LLVMValueRef fs_mask[(16 / 4) * LP_MAX_SAMPLES];
3083   LLVMValueRef fs_out_color[LP_MAX_SAMPLES][PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
3084   LLVMValueRef function;
3085   LLVMValueRef facing;
3086   boolean cbuf0_write_all;
3087   const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
3088                                     util_blend_state_is_dual(&key->blend, 0);
3089
3090   assert(lp_native_vector_width / 32 >= 4);
3091
3092   /* Adjust color input interpolation according to flatshade state:
3093    */
3094   memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
3095   for (unsigned i = 0; i < shader->info.base.num_inputs; i++) {
3096      if (inputs[i].interp == LP_INTERP_COLOR) {
3097         if (key->flatshade)
3098            inputs[i].interp = LP_INTERP_CONSTANT;
3099         else
3100            inputs[i].interp = LP_INTERP_PERSPECTIVE;
3101      }
3102   }
3103
3104   /* check if writes to cbuf[0] are to be copied to all cbufs */
3105   cbuf0_write_all =
3106     shader->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS];
3107
3108   /* TODO: actually pick these based on the fs and color buffer
3109    * characteristics. */
3110
3111   struct lp_type fs_type;
3112   memset(&fs_type, 0, sizeof fs_type);
3113   fs_type.floating = TRUE;      /* floating point values */
3114   fs_type.sign = TRUE;          /* values are signed */
3115   fs_type.norm = FALSE;         /* values are not limited to [0,1] or [-1,1] */
3116   fs_type.width = 32;           /* 32-bit float */
3117   fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
3118
3119   struct lp_type blend_type;
3120   memset(&blend_type, 0, sizeof blend_type);
3121   blend_type.floating = FALSE; /* values are integers */
3122   blend_type.sign = FALSE;     /* values are unsigned */
3123   blend_type.norm = TRUE;      /* values are in [0,1] or [-1,1] */
3124   blend_type.width = 8;        /* 8-bit ubyte values */
3125   blend_type.length = 16;      /* 16 elements per vector */
3126
3127   /*
3128    * Generate the function prototype. Any change here must be reflected in
3129    * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
3130    */
3131
3132   fs_elem_type = lp_build_elem_type(gallivm, fs_type);
3133
3134   blend_vec_type = lp_build_vec_type(gallivm, blend_type);
3135
3136   char func_name[64];
3137   snprintf(func_name, sizeof(func_name), "fs_variant_%s",
3138            partial_mask ? "partial" : "whole");
3139
3140   arg_types[0] = variant->jit_context_ptr_type;       /* context */
3141   arg_types[1] = int32_type;                          /* x */
3142   arg_types[2] = int32_type;                          /* y */
3143   arg_types[3] = int32_type;                          /* facing */
3144   arg_types[4] = LLVMPointerType(fs_elem_type, 0);    /* a0 */
3145   arg_types[5] = LLVMPointerType(fs_elem_type, 0);    /* dadx */
3146   arg_types[6] = LLVMPointerType(fs_elem_type, 0);    /* dady */
3147   arg_types[7] = LLVMPointerType(LLVMPointerType(int8_type, 0), 0);  /* color */
3148   arg_types[8] = LLVMPointerType(int8_type, 0);       /* depth */
3149   arg_types[9] = LLVMInt64TypeInContext(gallivm->context);  /* mask_input */
3150   arg_types[10] = variant->jit_thread_data_ptr_type;  /* per thread data */
3151   arg_types[11] = LLVMPointerType(int32_type, 0);     /* stride */
3152   arg_types[12] = int32_type;                         /* depth_stride */
3153   arg_types[13] = LLVMPointerType(int32_type, 0);     /* color sample strides */
3154   arg_types[14] = int32_type;                         /* depth sample stride */
3155
3156   func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
3157                                arg_types, ARRAY_SIZE(arg_types), 0);
3158
3159   function = LLVMAddFunction(gallivm->module, func_name, func_type);
3160   LLVMSetFunctionCallConv(function, LLVMCCallConv);
3161
3162   variant->function[partial_mask] = function;
3163
3164   /* XXX: need to propagate noalias down into color param now we are
3165    * passing a pointer-to-pointer?
3166    */
3167   for (unsigned i = 0; i < ARRAY_SIZE(arg_types); ++i)
3168      if (LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
3169         lp_add_function_attr(function, i + 1, LP_FUNC_ATTR_NOALIAS);
3170
3171   if (variant->gallivm->cache->data_size)
3172      return;
3173
3174   context_ptr  = LLVMGetParam(function, 0);
3175   x            = LLVMGetParam(function, 1);
3176   y            = LLVMGetParam(function, 2);
3177   facing       = LLVMGetParam(function, 3);
3178   a0_ptr       = LLVMGetParam(function, 4);
3179   dadx_ptr     = LLVMGetParam(function, 5);
3180   dady_ptr     = LLVMGetParam(function, 6);
3181   color_ptr_ptr = LLVMGetParam(function, 7);
3182   depth_ptr    = LLVMGetParam(function, 8);
3183   mask_input   = LLVMGetParam(function, 9);
3184   thread_data_ptr  = LLVMGetParam(function, 10);
3185   stride_ptr   = LLVMGetParam(function, 11);
3186   depth_stride = LLVMGetParam(function, 12);
3187   color_sample_stride_ptr = LLVMGetParam(function, 13);
3188   depth_sample_stride = LLVMGetParam(function, 14);
3189
3190   lp_build_name(context_ptr, "context");
3191   lp_build_name(x, "x");
3192   lp_build_name(y, "y");
3193   lp_build_name(a0_ptr, "a0");
3194   lp_build_name(dadx_ptr, "dadx");
3195   lp_build_name(dady_ptr, "dady");
3196   lp_build_name(color_ptr_ptr, "color_ptr_ptr");
3197   lp_build_name(depth_ptr, "depth");
3198   lp_build_name(mask_input, "mask_input");
3199   lp_build_name(thread_data_ptr, "thread_data");
3200   lp_build_name(stride_ptr, "stride_ptr");
3201   lp_build_name(depth_stride, "depth_stride");
3202   lp_build_name(color_sample_stride_ptr, "color_sample_stride_ptr");
3203   lp_build_name(depth_sample_stride, "depth_sample_stride");
3204
3205   /*
3206    * Function body
3207    */
3208
3209   block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
3210   builder = gallivm->builder;
3211   assert(builder);
3212   LLVMPositionBuilderAtEnd(builder, block);
3213
3214   /*
3215    * Must not count ps invocations if there's a null shader.
3216    * (It would be ok to count with null shader if there's d/s tests,
3217    * but only if there's d/s buffers too, which is different
3218    * to implicit rasterization disable which must not depend
3219    * on the d/s buffers.)
3220    * Could use popcount on mask, but pixel accuracy is not required.
3221    * Could disable if there's no stats query, but maybe not worth it.
3222    */
3223   if (shader->info.base.num_instructions > 1) {
3224      LLVMValueRef invocs, val;
3225      invocs = lp_jit_thread_data_invocations(gallivm, thread_data_ptr);
3226      val = LLVMBuildLoad(builder, invocs, "");
3227      val = LLVMBuildAdd(builder, val,
3228                         LLVMConstInt(LLVMInt64TypeInContext(gallivm->context), 1, 0),
3229                         "invoc_count");
3230      LLVMBuildStore(builder, val, invocs);
3231   }
3232
3233   /* code generated texture sampling */
3234   struct lp_build_sampler_soa *sampler =
3235      lp_llvm_sampler_soa_create(lp_fs_variant_key_samplers(key),
3236                                 MAX2(key->nr_samplers,
3237                                      key->nr_sampler_views));
3238   struct lp_build_image_soa *image =
3239      lp_llvm_image_soa_create(lp_fs_variant_key_images(key), key->nr_images);
3240
3241   unsigned num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
3242   /* for 1d resources only run "upper half" of stamp */
3243   if (key->resource_1d)
3244      num_fs /= 2;
3245
3246   {
3247      LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
3248      LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
3249      LLVMValueRef num_loop_samp =
3250         lp_build_const_int32(gallivm, num_fs * key->coverage_samples);
3251      LLVMValueRef mask_store =
3252         lp_build_array_alloca(gallivm, mask_type,
3253                               num_loop_samp, "mask_store");
3254      LLVMTypeRef flt_type = LLVMFloatTypeInContext(gallivm->context);
3255      LLVMValueRef glob_sample_pos =
3256         LLVMAddGlobal(gallivm->module,
3257                       LLVMArrayType(flt_type, key->coverage_samples * 2), "");
3258      LLVMValueRef sample_pos_array;
3259
3260      if (key->multisample && key->coverage_samples == 4) {
3261         LLVMValueRef sample_pos_arr[8];
3262         for (unsigned i = 0; i < 4; i++) {
3263            sample_pos_arr[i * 2] = LLVMConstReal(flt_type, lp_sample_pos_4x[i][0]);
3264            sample_pos_arr[i * 2 + 1] = LLVMConstReal(flt_type, lp_sample_pos_4x[i][1]);
3265         }
3266         sample_pos_array = LLVMConstArray(LLVMFloatTypeInContext(gallivm->context), sample_pos_arr, 8);
3267      } else {
3268         LLVMValueRef sample_pos_arr[2];
3269         sample_pos_arr[0] = LLVMConstReal(flt_type, 0.5);
3270         sample_pos_arr[1] = LLVMConstReal(flt_type, 0.5);
3271         sample_pos_array = LLVMConstArray(LLVMFloatTypeInContext(gallivm->context), sample_pos_arr, 2);
3272      }
3273      LLVMSetInitializer(glob_sample_pos, sample_pos_array);
3274
3275      LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
3276      boolean pixel_center_integer =
3277         shader->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
3278
3279      /*
3280       * The shader input interpolation info is not explicitely baked in the
3281       * shader key, but everything it derives from (TGSI, and flatshade) is
3282       * already included in the shader key.
3283       */
3284      lp_build_interp_soa_init(&interp,
3285                               gallivm,
3286                               shader->info.base.num_inputs,
3287                               inputs,
3288                               pixel_center_integer,
3289                               key->coverage_samples, glob_sample_pos,
3290                               num_loop,
3291                               builder, fs_type,
3292                               a0_ptr, dadx_ptr, dady_ptr,
3293                               x, y);
3294
3295      for (unsigned i = 0; i < num_fs; i++) {
3296         if (key->multisample) {
3297            LLVMValueRef smask_val = LLVMBuildLoad(builder, lp_jit_context_sample_mask(gallivm, context_ptr), "");
3298
3299            /*
3300             * For multisampling, extract the per-sample mask from the
3301             * incoming 64-bit mask, store to the per sample mask storage. Or
3302             * all of them together to generate the fragment shader
3303             * mask. (sample shading TODO).  Take the incoming state coverage
3304             * mask into account.
3305             */
3306            for (unsigned s = 0; s < key->coverage_samples; s++) {
3307               LLVMValueRef sindexi = lp_build_const_int32(gallivm, i + (s * num_fs));
3308               LLVMValueRef sample_mask_ptr = LLVMBuildGEP(builder, mask_store,
3309                                                           &sindexi, 1, "sample_mask_ptr");
3310               LLVMValueRef s_mask = generate_quad_mask(gallivm, fs_type,
3311                                                        i*fs_type.length/4, s, mask_input);
3312
3313               LLVMValueRef smask_bit = LLVMBuildAnd(builder, smask_val, lp_build_const_int32(gallivm, (1 << s)), "");
3314               LLVMValueRef cmp = LLVMBuildICmp(builder, LLVMIntNE, smask_bit, lp_build_const_int32(gallivm, 0), "");
3315               smask_bit = LLVMBuildSExt(builder, cmp, int32_type, "");
3316               smask_bit = lp_build_broadcast(gallivm, mask_type, smask_bit);
3317
3318               s_mask = LLVMBuildAnd(builder, s_mask, smask_bit, "");
3319               LLVMBuildStore(builder, s_mask, sample_mask_ptr);
3320            }
3321         } else {
3322            LLVMValueRef mask;
3323            LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
3324            LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
3325                                                 &indexi, 1, "mask_ptr");
3326
3327            if (partial_mask) {
3328               mask = generate_quad_mask(gallivm, fs_type,
3329                                         i*fs_type.length/4, 0, mask_input);
3330            }
3331            else {
3332               mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
3333            }
3334            LLVMBuildStore(builder, mask, mask_ptr);
3335         }
3336      }
3337
3338      generate_fs_loop(gallivm,
3339                       shader, key,
3340                       builder,
3341                       fs_type,
3342                       context_ptr,
3343                       glob_sample_pos,
3344                       num_loop,
3345                       &interp,
3346                       sampler,
3347                       image,
3348                       mask_store, /* output */
3349                       color_store,
3350                       depth_ptr,
3351                       depth_stride,
3352                       depth_sample_stride,
3353                       color_ptr_ptr,
3354                       stride_ptr,
3355                       color_sample_stride_ptr,
3356                       facing,
3357                       thread_data_ptr);
3358
3359      for (unsigned i = 0; i < num_fs; i++) {
3360         LLVMValueRef ptr;
3361         for (unsigned s = 0; s < key->coverage_samples; s++) {
3362            int idx = (i + (s * num_fs));
3363            LLVMValueRef sindexi = lp_build_const_int32(gallivm, idx);
3364            ptr = LLVMBuildGEP(builder, mask_store, &sindexi, 1, "");
3365
3366            fs_mask[idx] = LLVMBuildLoad(builder, ptr, "smask");
3367         }
3368
3369         for (unsigned s = 0; s < key->min_samples; s++) {
3370            /* This is fucked up need to reorganize things */
3371            int idx = s * num_fs + i;
3372            LLVMValueRef sindexi = lp_build_const_int32(gallivm, idx);
3373            for (unsigned cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
3374               for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
3375                  ptr = LLVMBuildGEP(builder,
3376                                     color_store[cbuf * !cbuf0_write_all][chan],
3377                                     &sindexi, 1, "");
3378                  fs_out_color[s][cbuf][chan][i] = ptr;
3379               }
3380            }
3381            if (dual_source_blend) {
3382               /* only support one dual source blend target hence always use output 1 */
3383               for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
3384                  ptr = LLVMBuildGEP(builder,
3385                                     color_store[1][chan],
3386                                     &sindexi, 1, "");
3387                  fs_out_color[s][1][chan][i] = ptr;
3388               }
3389            }
3390         }
3391      }
3392   }
3393
3394   sampler->destroy(sampler);
3395   image->destroy(image);
3396
3397   /* Loop over color outputs / color buffers to do blending */
3398   for (unsigned cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
3399      if (key->cbuf_format[cbuf] != PIPE_FORMAT_NONE) {
3400         LLVMValueRef color_ptr;
3401         LLVMValueRef stride;
3402         LLVMValueRef sample_stride = NULL;
3403         LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
3404
3405         boolean do_branch = ((key->depth.enabled
3406                               || key->stencil[0].enabled
3407                               || key->alpha.enabled)
3408                              && !shader->info.base.uses_kill);
3409
3410         color_ptr = LLVMBuildLoad(builder,
3411                                   LLVMBuildGEP(builder, color_ptr_ptr,
3412                                                &index, 1, ""),
3413                                   "");
3414
3415         stride = LLVMBuildLoad(builder,
3416                                LLVMBuildGEP(builder, stride_ptr,
3417                                             &index, 1, ""),
3418                                "");
3419
3420         if (key->cbuf_nr_samples[cbuf] > 1)
3421            sample_stride = LLVMBuildLoad(builder,
3422                                          LLVMBuildGEP(builder,
3423                                                       color_sample_stride_ptr,
3424                                                       &index, 1, ""), "");
3425
3426         for (unsigned s = 0; s < key->cbuf_nr_samples[cbuf]; s++) {
3427            unsigned mask_idx = num_fs * (key->multisample ? s : 0);
3428            unsigned out_idx = key->min_samples == 1 ? 0 : s;
3429            LLVMValueRef out_ptr = color_ptr;;
3430
3431            if (sample_stride) {
3432               LLVMValueRef sample_offset =
3433                  LLVMBuildMul(builder, sample_stride,
3434                               lp_build_const_int32(gallivm, s), "");
3435               out_ptr = LLVMBuildGEP(builder, out_ptr, &sample_offset, 1, "");
3436            }
3437            out_ptr = LLVMBuildBitCast(builder, out_ptr,
3438                                       LLVMPointerType(blend_vec_type, 0), "");
3439
3440            lp_build_name(out_ptr, "color_ptr%d", cbuf);
3441
3442            generate_unswizzled_blend(gallivm, cbuf, variant,
3443                                      key->cbuf_format[cbuf],
3444                                      num_fs, fs_type, &fs_mask[mask_idx],
3445                                      fs_out_color[out_idx],
3446                                      context_ptr, out_ptr, stride,
3447                                      partial_mask, do_branch);
3448         }
3449      }
3450   }
3451
3452   LLVMBuildRetVoid(builder);
3453
3454   gallivm_verify_function(gallivm, function);
3455}
3456
3457
3458static void
3459dump_fs_variant_key(struct lp_fragment_shader_variant_key *key)
3460{
3461   debug_printf("fs variant %p:\n", (void *) key);
3462
3463   if (key->flatshade) {
3464      debug_printf("flatshade = 1\n");
3465   }
3466   if (key->depth_clamp)
3467      debug_printf("depth_clamp = 1\n");
3468
3469   if (key->restrict_depth_values)
3470      debug_printf("restrict_depth_values = 1\n");
3471
3472   if (key->multisample) {
3473      debug_printf("multisample = 1\n");
3474      debug_printf("coverage samples = %d\n", key->coverage_samples);
3475      debug_printf("min samples = %d\n", key->min_samples);
3476   }
3477   for (unsigned i = 0; i < key->nr_cbufs; ++i) {
3478      debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
3479      debug_printf("cbuf nr_samples[%u] = %d\n", i, key->cbuf_nr_samples[i]);
3480   }
3481   if (key->depth.enabled || key->stencil[0].enabled) {
3482      debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
3483      debug_printf("depth nr_samples = %d\n", key->zsbuf_nr_samples);
3484   }
3485   if (key->depth.enabled) {
3486      debug_printf("depth.func = %s\n", util_str_func(key->depth.func, TRUE));
3487      debug_printf("depth.writemask = %u\n", key->depth.writemask);
3488   }
3489
3490   for (unsigned i = 0; i < 2; ++i) {
3491      if (key->stencil[i].enabled) {
3492         debug_printf("stencil[%u].func = %s\n", i, util_str_func(key->stencil[i].func, TRUE));
3493         debug_printf("stencil[%u].fail_op = %s\n", i, util_str_stencil_op(key->stencil[i].fail_op, TRUE));
3494         debug_printf("stencil[%u].zpass_op = %s\n", i, util_str_stencil_op(key->stencil[i].zpass_op, TRUE));
3495         debug_printf("stencil[%u].zfail_op = %s\n", i, util_str_stencil_op(key->stencil[i].zfail_op, TRUE));
3496         debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
3497         debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
3498      }
3499   }
3500
3501   if (key->alpha.enabled) {
3502      debug_printf("alpha.func = %s\n", util_str_func(key->alpha.func, TRUE));
3503   }
3504
3505   if (key->occlusion_count) {
3506      debug_printf("occlusion_count = 1\n");
3507   }
3508
3509   if (key->blend.logicop_enable) {
3510      debug_printf("blend.logicop_func = %s\n", util_str_logicop(key->blend.logicop_func, TRUE));
3511   }
3512   else if (key->blend.rt[0].blend_enable) {
3513      debug_printf("blend.rgb_func = %s\n",   util_str_blend_func  (key->blend.rt[0].rgb_func, TRUE));
3514      debug_printf("blend.rgb_src_factor = %s\n",   util_str_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
3515      debug_printf("blend.rgb_dst_factor = %s\n",   util_str_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
3516      debug_printf("blend.alpha_func = %s\n",       util_str_blend_func  (key->blend.rt[0].alpha_func, TRUE));
3517      debug_printf("blend.alpha_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
3518      debug_printf("blend.alpha_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
3519   }
3520   debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
3521   if (key->blend.alpha_to_coverage) {
3522      debug_printf("blend.alpha_to_coverage is enabled\n");
3523   }
3524   for (unsigned i = 0; i < key->nr_samplers; ++i) {
3525      const struct lp_sampler_static_state *samplers = lp_fs_variant_key_samplers(key);
3526      const struct lp_static_sampler_state *sampler = &samplers[i].sampler_state;
3527      debug_printf("sampler[%u] = \n", i);
3528      debug_printf("  .wrap = %s %s %s\n",
3529                   util_str_tex_wrap(sampler->wrap_s, TRUE),
3530                   util_str_tex_wrap(sampler->wrap_t, TRUE),
3531                   util_str_tex_wrap(sampler->wrap_r, TRUE));
3532      debug_printf("  .min_img_filter = %s\n",
3533                   util_str_tex_filter(sampler->min_img_filter, TRUE));
3534      debug_printf("  .min_mip_filter = %s\n",
3535                   util_str_tex_mipfilter(sampler->min_mip_filter, TRUE));
3536      debug_printf("  .mag_img_filter = %s\n",
3537                   util_str_tex_filter(sampler->mag_img_filter, TRUE));
3538      if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE)
3539         debug_printf("  .compare_func = %s\n", util_str_func(sampler->compare_func, TRUE));
3540      debug_printf("  .normalized_coords = %u\n", sampler->normalized_coords);
3541      debug_printf("  .min_max_lod_equal = %u\n", sampler->min_max_lod_equal);
3542      debug_printf("  .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero);
3543      debug_printf("  .apply_min_lod = %u\n", sampler->apply_min_lod);
3544      debug_printf("  .apply_max_lod = %u\n", sampler->apply_max_lod);
3545      debug_printf("  .reduction_mode = %u\n", sampler->reduction_mode);
3546      debug_printf("  .aniso = %u\n", sampler->aniso);
3547   }
3548   for (unsigned i = 0; i < key->nr_sampler_views; ++i) {
3549      const struct lp_sampler_static_state *samplers = lp_fs_variant_key_samplers(key);
3550      const struct lp_static_texture_state *texture = &samplers[i].texture_state;
3551      debug_printf("texture[%u] = \n", i);
3552      debug_printf("  .format = %s\n",
3553                   util_format_name(texture->format));
3554      debug_printf("  .target = %s\n",
3555                   util_str_tex_target(texture->target, TRUE));
3556      debug_printf("  .level_zero_only = %u\n",
3557                   texture->level_zero_only);
3558      debug_printf("  .pot = %u %u %u\n",
3559                   texture->pot_width,
3560                   texture->pot_height,
3561                   texture->pot_depth);
3562   }
3563   struct lp_image_static_state *images = lp_fs_variant_key_images(key);
3564   for (unsigned i = 0; i < key->nr_images; ++i) {
3565      const struct lp_static_texture_state *image = &images[i].image_state;
3566      debug_printf("image[%u] = \n", i);
3567      debug_printf("  .format = %s\n",
3568                   util_format_name(image->format));
3569      debug_printf("  .target = %s\n",
3570                   util_str_tex_target(image->target, TRUE));
3571      debug_printf("  .level_zero_only = %u\n",
3572                   image->level_zero_only);
3573      debug_printf("  .pot = %u %u %u\n",
3574                   image->pot_width,
3575                   image->pot_height,
3576                   image->pot_depth);
3577   }
3578}
3579
3580
3581const char *
3582lp_debug_fs_kind(enum lp_fs_kind kind)
3583{
3584   switch (kind) {
3585   case LP_FS_KIND_GENERAL:
3586      return "GENERAL";
3587   case LP_FS_KIND_BLIT_RGBA:
3588      return "BLIT_RGBA";
3589   case LP_FS_KIND_BLIT_RGB1:
3590      return "BLIT_RGB1";
3591   case LP_FS_KIND_AERO_MINIFICATION:
3592      return "AERO_MINIFICATION";
3593   case LP_FS_KIND_LLVM_LINEAR:
3594      return "LLVM_LINEAR";
3595   default:
3596      return "unknown";
3597   }
3598}
3599
3600
3601void
3602lp_debug_fs_variant(struct lp_fragment_shader_variant *variant)
3603{
3604   debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
3605                variant->shader->no, variant->no);
3606   if (variant->shader->base.type == PIPE_SHADER_IR_TGSI)
3607      tgsi_dump(variant->shader->base.tokens, 0);
3608   else
3609      nir_print_shader(variant->shader->base.ir.nir, stderr);
3610   dump_fs_variant_key(&variant->key);
3611   debug_printf("variant->opaque = %u\n", variant->opaque);
3612   debug_printf("variant->potentially_opaque = %u\n", variant->potentially_opaque);
3613   debug_printf("variant->blit = %u\n", variant->blit);
3614   debug_printf("shader->kind = %s\n", lp_debug_fs_kind(variant->shader->kind));
3615   debug_printf("\n");
3616}
3617
3618
3619static void
3620lp_fs_get_ir_cache_key(struct lp_fragment_shader_variant *variant,
3621                       unsigned char ir_sha1_cache_key[20])
3622{
3623   struct blob blob = { 0 };
3624   unsigned ir_size;
3625   void *ir_binary;
3626
3627   blob_init(&blob);
3628   nir_serialize(&blob, variant->shader->base.ir.nir, true);
3629   ir_binary = blob.data;
3630   ir_size = blob.size;
3631
3632   struct mesa_sha1 ctx;
3633   _mesa_sha1_init(&ctx);
3634   _mesa_sha1_update(&ctx, &variant->key, variant->shader->variant_key_size);
3635   _mesa_sha1_update(&ctx, ir_binary, ir_size);
3636   _mesa_sha1_final(&ctx, ir_sha1_cache_key);
3637
3638   blob_finish(&blob);
3639}
3640
3641
3642/**
3643 * Generate a new fragment shader variant from the shader code and
3644 * other state indicated by the key.
3645 */
3646static struct lp_fragment_shader_variant *
3647generate_variant(struct llvmpipe_context *lp,
3648                 struct lp_fragment_shader *shader,
3649                 const struct lp_fragment_shader_variant_key *key)
3650{
3651   struct lp_fragment_shader_variant *variant =
3652      MALLOC(sizeof *variant + shader->variant_key_size - sizeof variant->key);
3653   if (!variant)
3654      return NULL;
3655
3656   memset(variant, 0, sizeof(*variant));
3657
3658   pipe_reference_init(&variant->reference, 1);
3659   lp_fs_reference(lp, &variant->shader, shader);
3660
3661   memcpy(&variant->key, key, shader->variant_key_size);
3662
3663   struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
3664   struct lp_cached_code cached = { 0 };
3665   unsigned char ir_sha1_cache_key[20];
3666   bool needs_caching = false;
3667   if (shader->base.ir.nir) {
3668      lp_fs_get_ir_cache_key(variant, ir_sha1_cache_key);
3669
3670      lp_disk_cache_find_shader(screen, &cached, ir_sha1_cache_key);
3671      if (!cached.data_size)
3672         needs_caching = true;
3673   }
3674
3675   char module_name[64];
3676   snprintf(module_name, sizeof(module_name), "fs%u_variant%u",
3677            shader->no, shader->variants_created);
3678   variant->gallivm = gallivm_create(module_name, lp->context, &cached);
3679   if (!variant->gallivm) {
3680      FREE(variant);
3681      return NULL;
3682   }
3683
3684   variant->list_item_global.base = variant;
3685   variant->list_item_local.base = variant;
3686   variant->no = shader->variants_created++;
3687
3688   /*
3689    * Determine whether we are touching all channels in the color buffer.
3690    */
3691   const struct util_format_description *cbuf0_format_desc = NULL;
3692   boolean fullcolormask = FALSE;
3693   if (key->nr_cbufs == 1) {
3694      cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
3695      fullcolormask = util_format_colormask_full(cbuf0_format_desc,
3696                                                 key->blend.rt[0].colormask);
3697   }
3698
3699   /* The scissor is ignored here as only tiles inside the scissoring
3700    * rectangle will refer to this */
3701   const boolean no_kill =
3702         fullcolormask &&
3703         !key->stencil[0].enabled &&
3704         !key->alpha.enabled &&
3705         !key->multisample &&
3706         !key->blend.alpha_to_coverage &&
3707         !key->depth.enabled &&
3708         !shader->info.base.uses_kill &&
3709         !shader->info.base.writes_samplemask &&
3710         !shader->info.base.uses_fbfetch;
3711
3712   variant->opaque =
3713         no_kill &&
3714         !key->blend.logicop_enable &&
3715         !key->blend.rt[0].blend_enable
3716         ? TRUE : FALSE;
3717
3718   variant->potentially_opaque =
3719         no_kill &&
3720         !key->blend.logicop_enable &&
3721         key->blend.rt[0].blend_enable &&
3722         key->blend.rt[0].rgb_func == PIPE_BLEND_ADD &&
3723         key->blend.rt[0].rgb_dst_factor == PIPE_BLENDFACTOR_INV_SRC_ALPHA &&
3724         key->blend.rt[0].alpha_func == key->blend.rt[0].rgb_func &&
3725         key->blend.rt[0].alpha_dst_factor == key->blend.rt[0].rgb_dst_factor &&
3726         shader->base.type == PIPE_SHADER_IR_TGSI &&
3727         /*
3728          * FIXME: for NIR, all of the fields of info.xxx (except info.base)
3729          * are zeros, hence shader analysis (here and elsewhere) using these
3730          * bits cannot work and will silently fail (cbuf is the only pointer
3731          * field, hence causing a crash).
3732          */
3733         shader->info.cbuf[0][3].file != TGSI_FILE_NULL
3734         ? TRUE : FALSE;
3735
3736   /* We only care about opaque blits for now */
3737   if (variant->opaque &&
3738       (shader->kind == LP_FS_KIND_BLIT_RGBA ||
3739        shader->kind == LP_FS_KIND_BLIT_RGB1)) {
3740      const struct lp_sampler_static_state *samp0 =
3741         lp_fs_variant_key_sampler_idx(key, 0);
3742      assert(samp0);
3743
3744      const enum pipe_format texture_format = samp0->texture_state.format;
3745      const enum pipe_texture_target target = samp0->texture_state.target;
3746      const unsigned min_img_filter = samp0->sampler_state.min_img_filter;
3747      const unsigned mag_img_filter = samp0->sampler_state.mag_img_filter;
3748
3749      unsigned min_mip_filter;
3750      if (samp0->texture_state.level_zero_only) {
3751         min_mip_filter = PIPE_TEX_MIPFILTER_NONE;
3752      } else {
3753         min_mip_filter = samp0->sampler_state.min_mip_filter;
3754      }
3755
3756      if (target == PIPE_TEXTURE_2D &&
3757          min_img_filter == PIPE_TEX_FILTER_NEAREST &&
3758          mag_img_filter == PIPE_TEX_FILTER_NEAREST &&
3759          min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
3760          ((texture_format &&
3761            util_is_format_compatible(util_format_description(texture_format),
3762                                      cbuf0_format_desc)) ||
3763           (shader->kind == LP_FS_KIND_BLIT_RGB1 &&
3764            (texture_format == PIPE_FORMAT_B8G8R8A8_UNORM ||
3765             texture_format == PIPE_FORMAT_B8G8R8X8_UNORM) &&
3766            (key->cbuf_format[0] == PIPE_FORMAT_B8G8R8A8_UNORM ||
3767             key->cbuf_format[0] == PIPE_FORMAT_B8G8R8X8_UNORM)))) {
3768         variant->blit = 1;
3769      }
3770   }
3771
3772   /* Determine whether this shader + pipeline state is a candidate for
3773    * the linear path.
3774    */
3775   const boolean linear_pipeline =
3776         !key->stencil[0].enabled &&
3777         !key->depth.enabled &&
3778         !shader->info.base.uses_kill &&
3779         !key->blend.logicop_enable &&
3780         (key->cbuf_format[0] == PIPE_FORMAT_B8G8R8A8_UNORM ||
3781          key->cbuf_format[0] == PIPE_FORMAT_B8G8R8X8_UNORM);
3782
3783   memcpy(&variant->key, key, sizeof *key);
3784
3785   if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
3786      lp_debug_fs_variant(variant);
3787   }
3788
3789   llvmpipe_fs_variant_fastpath(variant);
3790
3791   lp_jit_init_types(variant);
3792
3793   if (variant->jit_function[RAST_EDGE_TEST] == NULL)
3794      generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
3795
3796   if (variant->jit_function[RAST_WHOLE] == NULL) {
3797      if (variant->opaque) {
3798         /* Specialized shader, which doesn't need to read the color buffer. */
3799         generate_fragment(lp, shader, variant, RAST_WHOLE);
3800      }
3801   }
3802
3803   if (linear_pipeline) {
3804      /* Currently keeping both the old fastpaths and new linear path
3805       * active.  The older code is still somewhat faster for the cases
3806       * it covers.
3807       *
3808       * XXX: consider restricting this to aero-mode only.
3809       */
3810      if (fullcolormask &&
3811          !key->alpha.enabled &&
3812          !key->blend.alpha_to_coverage) {
3813         llvmpipe_fs_variant_linear_fastpath(variant);
3814      }
3815
3816      /* If the original fastpath doesn't cover this variant, try the new
3817       * code:
3818       */
3819      if (variant->jit_linear == NULL) {
3820         if (shader->kind == LP_FS_KIND_BLIT_RGBA ||
3821             shader->kind == LP_FS_KIND_BLIT_RGB1 ||
3822             shader->kind == LP_FS_KIND_LLVM_LINEAR) {
3823            llvmpipe_fs_variant_linear_llvm(lp, shader, variant);
3824         }
3825      }
3826   } else {
3827      if (LP_DEBUG & DEBUG_LINEAR) {
3828         lp_debug_fs_variant(variant);
3829         debug_printf("    ----> no linear path for this variant\n");
3830      }
3831   }
3832
3833   /*
3834    * Compile everything
3835    */
3836
3837   gallivm_compile_module(variant->gallivm);
3838
3839   variant->nr_instrs += lp_build_count_ir_module(variant->gallivm->module);
3840
3841   if (variant->function[RAST_EDGE_TEST]) {
3842      variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
3843            gallivm_jit_function(variant->gallivm,
3844                                 variant->function[RAST_EDGE_TEST]);
3845   }
3846
3847   if (variant->function[RAST_WHOLE]) {
3848      variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
3849         gallivm_jit_function(variant->gallivm,
3850                              variant->function[RAST_WHOLE]);
3851   } else if (!variant->jit_function[RAST_WHOLE]) {
3852      variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
3853         variant->jit_function[RAST_EDGE_TEST];
3854   }
3855
3856   if (linear_pipeline) {
3857      if (variant->linear_function) {
3858         variant->jit_linear_llvm = (lp_jit_linear_llvm_func)
3859            gallivm_jit_function(variant->gallivm, variant->linear_function);
3860      }
3861
3862      /*
3863       * This must be done after LLVM compilation, as it will call the JIT'ed
3864       * code to determine active inputs.
3865       */
3866      lp_linear_check_variant(variant);
3867   }
3868
3869   if (needs_caching) {
3870      lp_disk_cache_insert_shader(screen, &cached, ir_sha1_cache_key);
3871   }
3872
3873   gallivm_free_ir(variant->gallivm);
3874
3875   return variant;
3876}
3877
3878
3879static void *
3880llvmpipe_create_fs_state(struct pipe_context *pipe,
3881                         const struct pipe_shader_state *templ)
3882{
3883   struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3884
3885   struct lp_fragment_shader *shader = CALLOC_STRUCT(lp_fragment_shader);
3886   if (!shader)
3887      return NULL;
3888
3889   pipe_reference_init(&shader->reference, 1);
3890   shader->no = fs_no++;
3891   list_inithead(&shader->variants.list);
3892
3893   shader->base.type = templ->type;
3894   if (templ->type == PIPE_SHADER_IR_TGSI) {
3895      /* get/save the summary info for this shader */
3896      lp_build_tgsi_info(templ->tokens, &shader->info);
3897
3898      /* we need to keep a local copy of the tokens */
3899      shader->base.tokens = tgsi_dup_tokens(templ->tokens);
3900   } else {
3901      shader->base.ir.nir = templ->ir.nir;
3902      nir_tgsi_scan_shader(templ->ir.nir, &shader->info.base, true);
3903   }
3904
3905   shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
3906   if (shader->draw_data == NULL) {
3907      FREE((void *) shader->base.tokens);
3908      FREE(shader);
3909      return NULL;
3910   }
3911
3912   const int nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3913   const int nr_sampler_views =
3914      shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3915   const int nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1;
3916
3917   shader->variant_key_size = lp_fs_variant_key_size(MAX2(nr_samplers,
3918                                                          nr_sampler_views),
3919                                                     nr_images);
3920
3921   for (int i = 0; i < shader->info.base.num_inputs; i++) {
3922      shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
3923      shader->inputs[i].location = shader->info.base.input_interpolate_loc[i];
3924
3925      switch (shader->info.base.input_interpolate[i]) {
3926      case TGSI_INTERPOLATE_CONSTANT:
3927         shader->inputs[i].interp = LP_INTERP_CONSTANT;
3928         break;
3929      case TGSI_INTERPOLATE_LINEAR:
3930         shader->inputs[i].interp = LP_INTERP_LINEAR;
3931         break;
3932      case TGSI_INTERPOLATE_PERSPECTIVE:
3933         shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
3934         break;
3935      case TGSI_INTERPOLATE_COLOR:
3936         shader->inputs[i].interp = LP_INTERP_COLOR;
3937         break;
3938      default:
3939         assert(0);
3940         break;
3941      }
3942
3943      switch (shader->info.base.input_semantic_name[i]) {
3944      case TGSI_SEMANTIC_FACE:
3945         shader->inputs[i].interp = LP_INTERP_FACING;
3946         break;
3947      case TGSI_SEMANTIC_POSITION:
3948         /* Position was already emitted above
3949          */
3950         shader->inputs[i].interp = LP_INTERP_POSITION;
3951         shader->inputs[i].src_index = 0;
3952         continue;
3953      }
3954
3955      /* XXX this is a completely pointless index map... */
3956      shader->inputs[i].src_index = i+1;
3957   }
3958
3959   if (LP_DEBUG & DEBUG_TGSI && templ->type == PIPE_SHADER_IR_TGSI) {
3960      debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
3961                   shader->no, (void *) shader);
3962      tgsi_dump(templ->tokens, 0);
3963      debug_printf("usage masks:\n");
3964      for (unsigned attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
3965         unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
3966         debug_printf("  IN[%u].%s%s%s%s\n",
3967                      attrib,
3968                      usage_mask & TGSI_WRITEMASK_X ? "x" : "",
3969                      usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
3970                      usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
3971                      usage_mask & TGSI_WRITEMASK_W ? "w" : "");
3972      }
3973      debug_printf("\n");
3974   }
3975
3976   /* This will put a derived copy of the tokens into shader->base.tokens */
3977   if (templ->type == PIPE_SHADER_IR_TGSI)
3978     llvmpipe_fs_analyse(shader, templ->tokens);
3979   else
3980     llvmpipe_fs_analyse_nir(shader);
3981
3982   return shader;
3983}
3984
3985
3986static void
3987llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
3988{
3989   struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3990   struct lp_fragment_shader *lp_fs = (struct lp_fragment_shader *)fs;
3991   if (llvmpipe->fs == lp_fs)
3992      return;
3993
3994   draw_bind_fragment_shader(llvmpipe->draw,
3995                             (lp_fs ? lp_fs->draw_data : NULL));
3996
3997   lp_fs_reference(llvmpipe, &llvmpipe->fs, lp_fs);
3998
3999   /* invalidate the setup link, NEW_FS will make it update */
4000   lp_setup_set_fs_variant(llvmpipe->setup, NULL);
4001   llvmpipe->dirty |= LP_NEW_FS;
4002}
4003
4004
4005/**
4006 * Remove shader variant from two lists: the shader's variant list
4007 * and the context's variant list.
4008 */
4009static void
4010llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
4011                               struct lp_fragment_shader_variant *variant)
4012{
4013   if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
4014      debug_printf("llvmpipe: del fs #%u var %u v created %u v cached %u "
4015                   "v total cached %u inst %u total inst %u\n",
4016                   variant->shader->no, variant->no,
4017                   variant->shader->variants_created,
4018                   variant->shader->variants_cached,
4019                   lp->nr_fs_variants, variant->nr_instrs, lp->nr_fs_instrs);
4020   }
4021
4022   /* remove from shader's list */
4023   list_del(&variant->list_item_local.list);
4024   variant->shader->variants_cached--;
4025
4026   /* remove from context's list */
4027   list_del(&variant->list_item_global.list);
4028   lp->nr_fs_variants--;
4029   lp->nr_fs_instrs -= variant->nr_instrs;
4030}
4031
4032
4033void
4034llvmpipe_destroy_shader_variant(struct llvmpipe_context *lp,
4035                                struct lp_fragment_shader_variant *variant)
4036{
4037   gallivm_destroy(variant->gallivm);
4038   lp_fs_reference(lp, &variant->shader, NULL);
4039   FREE(variant);
4040}
4041
4042
4043void
4044llvmpipe_destroy_fs(struct llvmpipe_context *llvmpipe,
4045                    struct lp_fragment_shader *shader)
4046{
4047   /* Delete draw module's data */
4048   draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
4049
4050   if (shader->base.ir.nir)
4051      ralloc_free(shader->base.ir.nir);
4052   assert(shader->variants_cached == 0);
4053   FREE((void *) shader->base.tokens);
4054   FREE(shader);
4055}
4056
4057
4058static void
4059llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
4060{
4061   struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
4062   struct lp_fragment_shader *shader = fs;
4063   struct lp_fs_variant_list_item *li, *next;
4064
4065   /* Delete all the variants */
4066   LIST_FOR_EACH_ENTRY_SAFE(li, next, &shader->variants.list, list) {
4067      struct lp_fragment_shader_variant *variant;
4068      variant = li->base;
4069      llvmpipe_remove_shader_variant(llvmpipe, li->base);
4070      lp_fs_variant_reference(llvmpipe, &variant, NULL);
4071   }
4072
4073   lp_fs_reference(llvmpipe, &shader, NULL);
4074}
4075
4076
4077static void
4078llvmpipe_set_constant_buffer(struct pipe_context *pipe,
4079                             enum pipe_shader_type shader, uint index,
4080                             bool take_ownership,
4081                             const struct pipe_constant_buffer *cb)
4082{
4083   struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
4084   struct pipe_constant_buffer *constants = &llvmpipe->constants[shader][index];
4085
4086   assert(shader < PIPE_SHADER_TYPES);
4087   assert(index < ARRAY_SIZE(llvmpipe->constants[shader]));
4088
4089   /* note: reference counting */
4090   util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb,
4091                             take_ownership);
4092
4093   /* user_buffer is only valid until the next set_constant_buffer (at most,
4094    * possibly until shader deletion), so we need to upload it now to make sure
4095    * it doesn't get updated/freed out from under us.
4096    */
4097   if (constants->user_buffer) {
4098      u_upload_data(llvmpipe->pipe.const_uploader, 0, constants->buffer_size,
4099                    16, constants->user_buffer, &constants->buffer_offset,
4100                    &constants->buffer);
4101   }
4102   if (constants->buffer) {
4103       if (!(constants->buffer->bind & PIPE_BIND_CONSTANT_BUFFER)) {
4104         debug_printf("Illegal set constant without bind flag\n");
4105         constants->buffer->bind |= PIPE_BIND_CONSTANT_BUFFER;
4106      }
4107   }
4108
4109   if (shader == PIPE_SHADER_VERTEX ||
4110       shader == PIPE_SHADER_GEOMETRY ||
4111       shader == PIPE_SHADER_TESS_CTRL ||
4112       shader == PIPE_SHADER_TESS_EVAL) {
4113      /* Pass the constants to the 'draw' module */
4114      const unsigned size = cb ? cb->buffer_size : 0;
4115
4116      const ubyte *data = NULL;
4117      if (constants->buffer) {
4118         data = (ubyte *) llvmpipe_resource_data(constants->buffer)
4119            + constants->buffer_offset;
4120      }
4121
4122      draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
4123                                      index, data, size);
4124   } else if (shader == PIPE_SHADER_COMPUTE) {
4125      llvmpipe->cs_dirty |= LP_CSNEW_CONSTANTS;
4126   } else {
4127      llvmpipe->dirty |= LP_NEW_FS_CONSTANTS;
4128   }
4129}
4130
4131
4132static void
4133llvmpipe_set_shader_buffers(struct pipe_context *pipe,
4134                            enum pipe_shader_type shader, unsigned start_slot,
4135                            unsigned count,
4136                            const struct pipe_shader_buffer *buffers,
4137                            unsigned writable_bitmask)
4138{
4139   struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
4140
4141   unsigned i, idx;
4142   for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
4143      const struct pipe_shader_buffer *buffer = buffers ? &buffers[idx] : NULL;
4144
4145      util_copy_shader_buffer(&llvmpipe->ssbos[shader][i], buffer);
4146
4147      if (buffer && buffer->buffer) {
4148         boolean read_only = !(writable_bitmask & (1 << idx));
4149         llvmpipe_flush_resource(pipe, buffer->buffer, 0, read_only, false,
4150                                 false, "buffer");
4151      }
4152
4153      if (shader == PIPE_SHADER_VERTEX ||
4154          shader == PIPE_SHADER_GEOMETRY ||
4155          shader == PIPE_SHADER_TESS_CTRL ||
4156          shader == PIPE_SHADER_TESS_EVAL) {
4157         const unsigned size = buffer ? buffer->buffer_size : 0;
4158         const ubyte *data = NULL;
4159         if (buffer && buffer->buffer)
4160            data = (ubyte *) llvmpipe_resource_data(buffer->buffer);
4161         if (data)
4162            data += buffer->buffer_offset;
4163         draw_set_mapped_shader_buffer(llvmpipe->draw, shader,
4164                                       i, data, size);
4165      } else if (shader == PIPE_SHADER_COMPUTE) {
4166         llvmpipe->cs_dirty |= LP_CSNEW_SSBOS;
4167      } else if (shader == PIPE_SHADER_FRAGMENT) {
4168         llvmpipe->fs_ssbo_write_mask &= ~(((1 << count) - 1) << start_slot);
4169         llvmpipe->fs_ssbo_write_mask |= writable_bitmask << start_slot;
4170         llvmpipe->dirty |= LP_NEW_FS_SSBOS;
4171      }
4172   }
4173}
4174
4175
4176static void
4177llvmpipe_set_shader_images(struct pipe_context *pipe,
4178                           enum pipe_shader_type shader, unsigned start_slot,
4179                           unsigned count, unsigned unbind_num_trailing_slots,
4180                           const struct pipe_image_view *images)
4181{
4182   struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
4183   unsigned i, idx;
4184
4185   draw_flush(llvmpipe->draw);
4186   for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
4187      const struct pipe_image_view *image = images ? &images[idx] : NULL;
4188
4189      util_copy_image_view(&llvmpipe->images[shader][i], image);
4190
4191      if (image && image->resource) {
4192         bool read_only = !(image->access & PIPE_IMAGE_ACCESS_WRITE);
4193         llvmpipe_flush_resource(pipe, image->resource, 0, read_only, false,
4194                                 false, "image");
4195      }
4196   }
4197
4198   llvmpipe->num_images[shader] = start_slot + count;
4199   if (shader == PIPE_SHADER_VERTEX ||
4200       shader == PIPE_SHADER_GEOMETRY ||
4201       shader == PIPE_SHADER_TESS_CTRL ||
4202       shader == PIPE_SHADER_TESS_EVAL) {
4203      draw_set_images(llvmpipe->draw,
4204                      shader,
4205                      llvmpipe->images[shader],
4206                      start_slot + count);
4207   } else if (shader == PIPE_SHADER_COMPUTE) {
4208      llvmpipe->cs_dirty |= LP_CSNEW_IMAGES;
4209   } else {
4210      llvmpipe->dirty |= LP_NEW_FS_IMAGES;
4211   }
4212
4213   if (unbind_num_trailing_slots) {
4214      llvmpipe_set_shader_images(pipe, shader, start_slot + count,
4215                                 unbind_num_trailing_slots, 0, NULL);
4216   }
4217}
4218
4219
4220/**
4221 * Return the blend factor equivalent to a destination alpha of one.
4222 */
4223static inline enum pipe_blendfactor
4224force_dst_alpha_one(enum pipe_blendfactor factor, boolean clamped_zero)
4225{
4226   switch (factor) {
4227   case PIPE_BLENDFACTOR_DST_ALPHA:
4228      return PIPE_BLENDFACTOR_ONE;
4229   case PIPE_BLENDFACTOR_INV_DST_ALPHA:
4230      return PIPE_BLENDFACTOR_ZERO;
4231   case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
4232      if (clamped_zero)
4233         return PIPE_BLENDFACTOR_ZERO;
4234      else
4235         return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE;
4236   default:
4237      return factor;
4238   }
4239}
4240
4241
4242/**
4243 * We need to generate several variants of the fragment pipeline to match
4244 * all the combinations of the contributing state atoms.
4245 *
4246 * TODO: there is actually no reason to tie this to context state -- the
4247 * generated code could be cached globally in the screen.
4248 */
4249static struct lp_fragment_shader_variant_key *
4250make_variant_key(struct llvmpipe_context *lp,
4251                 struct lp_fragment_shader *shader,
4252                 char *store)
4253{
4254   struct lp_fragment_shader_variant_key *key =
4255      (struct lp_fragment_shader_variant_key *)store;
4256
4257   memset(key, 0, sizeof(*key));
4258
4259   if (lp->framebuffer.zsbuf) {
4260      const enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format;
4261      const struct util_format_description *zsbuf_desc =
4262         util_format_description(zsbuf_format);
4263
4264      if (lp->depth_stencil->depth_enabled &&
4265          util_format_has_depth(zsbuf_desc)) {
4266         key->zsbuf_format = zsbuf_format;
4267         key->depth.enabled = lp->depth_stencil->depth_enabled;
4268         key->depth.writemask = lp->depth_stencil->depth_writemask;
4269         key->depth.func = lp->depth_stencil->depth_func;
4270      }
4271      if (lp->depth_stencil->stencil[0].enabled &&
4272          util_format_has_stencil(zsbuf_desc)) {
4273         key->zsbuf_format = zsbuf_format;
4274         memcpy(&key->stencil, &lp->depth_stencil->stencil,
4275                sizeof key->stencil);
4276      }
4277      if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) {
4278         key->resource_1d = TRUE;
4279      }
4280      key->zsbuf_nr_samples =
4281         util_res_sample_count(lp->framebuffer.zsbuf->texture);
4282
4283      /*
4284       * Restrict depth values if the API is clamped (GL, VK with ext)
4285       * for non float Z buffer
4286       */
4287      key->restrict_depth_values =
4288         !(lp->rasterizer->unclamped_fragment_depth_values &&
4289           util_format_get_depth_only(zsbuf_format) == PIPE_FORMAT_Z32_FLOAT);
4290   }
4291
4292   /*
4293    * Propagate the depth clamp setting from the rasterizer state.
4294    */
4295   key->depth_clamp = lp->rasterizer->depth_clamp;
4296
4297   /* alpha test only applies if render buffer 0 is non-integer
4298    * (or does not exist)
4299    */
4300   if (!lp->framebuffer.nr_cbufs ||
4301       !lp->framebuffer.cbufs[0] ||
4302       !util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) {
4303      key->alpha.enabled = lp->depth_stencil->alpha_enabled;
4304   }
4305   if (key->alpha.enabled) {
4306      key->alpha.func = lp->depth_stencil->alpha_func;
4307      /* alpha.ref_value is passed in jit_context */
4308   }
4309
4310   key->flatshade = lp->rasterizer->flatshade;
4311   key->multisample = lp->rasterizer->multisample;
4312   key->no_ms_sample_mask_out = lp->rasterizer->no_ms_sample_mask_out;
4313   if (lp->active_occlusion_queries && !lp->queries_disabled) {
4314      key->occlusion_count = TRUE;
4315   }
4316
4317   memcpy(&key->blend, lp->blend, sizeof key->blend);
4318
4319   key->coverage_samples = 1;
4320   key->min_samples = 1;
4321   if (key->multisample) {
4322      key->coverage_samples =
4323         util_framebuffer_get_num_samples(&lp->framebuffer);
4324      /* Per EXT_shader_framebuffer_fetch spec:
4325       *
4326       *   "1. How is framebuffer data treated during multisample rendering?
4327       *
4328       *    RESOLVED: Reading the value of gl_LastFragData produces a different
4329       *    result for each sample. This implies that all or part of the shader be
4330       *    run once for each sample, but has no additional implications on fragment
4331       *    shader input variables which may still be interpolated per pixel by the
4332       *    implementation."
4333       *
4334       * ARM_shader_framebuffer_fetch_depth_stencil spec further says:
4335       *
4336       *   "(1) When multisampling is enabled, does the shader run per sample?
4337       *
4338       *    RESOLVED.
4339       *
4340       *    This behavior is inherited from either EXT_shader_framebuffer_fetch or
4341       *    ARM_shader_framebuffer_fetch as described in the interactions section.
4342       *    If neither extension is supported, the shader runs once per fragment."
4343       *
4344       * Therefore we should always enable per-sample shading when FB fetch is used.
4345       */
4346      if (lp->min_samples > 1 || shader->info.base.uses_fbfetch)
4347         key->min_samples = key->coverage_samples;
4348   }
4349   key->nr_cbufs = lp->framebuffer.nr_cbufs;
4350
4351   if (!key->blend.independent_blend_enable) {
4352      // we always need independent blend otherwise the fixups below won't work
4353      for (unsigned i = 1; i < key->nr_cbufs; i++) {
4354         memcpy(&key->blend.rt[i], &key->blend.rt[0],
4355                sizeof(key->blend.rt[0]));
4356      }
4357      key->blend.independent_blend_enable = 1;
4358   }
4359
4360   for (unsigned i = 0; i < lp->framebuffer.nr_cbufs; i++) {
4361      struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
4362
4363      if (lp->framebuffer.cbufs[i]) {
4364         const enum pipe_format format = lp->framebuffer.cbufs[i]->format;
4365
4366         key->cbuf_format[i] = format;
4367         key->cbuf_nr_samples[i] =
4368            util_res_sample_count(lp->framebuffer.cbufs[i]->texture);
4369
4370         /*
4371          * Figure out if this is a 1d resource. Note that OpenGL allows crazy
4372          * mixing of 2d textures with height 1 and 1d textures, so make sure
4373          * we pick 1d if any cbuf or zsbuf is 1d.
4374          */
4375         if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[i]->texture)) {
4376            key->resource_1d = TRUE;
4377         }
4378
4379         const struct util_format_description *format_desc =
4380            util_format_description(format);
4381         assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
4382                format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
4383
4384         /*
4385          * Mask out color channels not present in the color buffer.
4386          */
4387         blend_rt->colormask &= util_format_colormask(format_desc);
4388
4389         /*
4390          * Disable blend for integer formats.
4391          */
4392         if (util_format_is_pure_integer(format)) {
4393            blend_rt->blend_enable = 0;
4394         }
4395
4396         /*
4397          * Our swizzled render tiles always have an alpha channel, but the
4398          * linear render target format often does not, so force here the dst
4399          * alpha to be one.
4400          *
4401          * This is not a mere optimization. Wrong results will be produced if
4402          * the dst alpha is used, the dst format does not have alpha, and the
4403          * previous rendering was not flushed from the swizzled to linear
4404          * buffer. For example, NonPowTwo DCT.
4405          *
4406          * TODO: This should be generalized to all channels for better
4407          * performance, but only alpha causes correctness issues.
4408          *
4409          * Also, force rgb/alpha func/factors match, to make AoS blending
4410          * easier.
4411          */
4412         if (format_desc->swizzle[3] > PIPE_SWIZZLE_W ||
4413             format_desc->swizzle[3] == format_desc->swizzle[0]) {
4414            // Doesn't cover mixed snorm/unorm but can't render to them anyway
4415            boolean clamped_zero = !util_format_is_float(format) &&
4416                                   !util_format_is_snorm(format);
4417            blend_rt->rgb_src_factor =
4418               force_dst_alpha_one(blend_rt->rgb_src_factor, clamped_zero);
4419            blend_rt->rgb_dst_factor =
4420               force_dst_alpha_one(blend_rt->rgb_dst_factor, clamped_zero);
4421            blend_rt->alpha_func       = blend_rt->rgb_func;
4422            blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
4423            blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
4424         }
4425      }
4426      else {
4427         /* no color buffer for this fragment output */
4428         key->cbuf_format[i] = PIPE_FORMAT_NONE;
4429         key->cbuf_nr_samples[i] = 0;
4430         blend_rt->colormask = 0x0;
4431         blend_rt->blend_enable = 0;
4432      }
4433   }
4434
4435   /* This value will be the same for all the variants of a given shader:
4436    */
4437   key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
4438
4439   if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
4440      key->nr_sampler_views =
4441         shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
4442   }
4443
4444   struct lp_sampler_static_state *fs_sampler =
4445      lp_fs_variant_key_samplers(key);
4446
4447   memset(fs_sampler, 0,
4448          MAX2(key->nr_samplers, key->nr_sampler_views) * sizeof *fs_sampler);
4449
4450   for (unsigned i = 0; i < key->nr_samplers; ++i) {
4451      if (shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
4452         lp_sampler_static_sampler_state(&fs_sampler[i].sampler_state,
4453                                         lp->samplers[PIPE_SHADER_FRAGMENT][i]);
4454      }
4455   }
4456
4457   /*
4458    * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
4459    * are dx10-style? Can't really have mixed opcodes, at least not
4460    * if we want to skip the holes here (without rescanning tgsi).
4461    */
4462   if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
4463      for (unsigned i = 0; i < key->nr_sampler_views; ++i) {
4464         /*
4465          * Note sview may exceed what's representable by file_mask.
4466          * This will still work, the only downside is that not actually
4467          * used views may be included in the shader key.
4468          */
4469         if ((shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW]
4470              & (1u << (i & 31))) || i > 31) {
4471            lp_sampler_static_texture_state(&fs_sampler[i].texture_state,
4472                                  lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
4473         }
4474      }
4475   }
4476   else {
4477      key->nr_sampler_views = key->nr_samplers;
4478      for (unsigned i = 0; i < key->nr_sampler_views; ++i) {
4479         if ((shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) || i > 31) {
4480            lp_sampler_static_texture_state(&fs_sampler[i].texture_state,
4481                                 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
4482         }
4483      }
4484   }
4485
4486   struct lp_image_static_state *lp_image = lp_fs_variant_key_images(key);
4487   key->nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1;
4488
4489   if (key->nr_images)
4490      memset(lp_image, 0,
4491             key->nr_images * sizeof *lp_image);
4492   for (unsigned i = 0; i < key->nr_images; ++i) {
4493      if ((shader->info.base.file_mask[TGSI_FILE_IMAGE] & (1 << i)) || i > 31) {
4494         lp_sampler_static_texture_state_image(&lp_image[i].image_state,
4495                                      &lp->images[PIPE_SHADER_FRAGMENT][i]);
4496      }
4497   }
4498
4499   if (shader->kind == LP_FS_KIND_AERO_MINIFICATION) {
4500      struct lp_sampler_static_state *samp0 =
4501         lp_fs_variant_key_sampler_idx(key, 0);
4502      assert(samp0);
4503      samp0->sampler_state.min_img_filter = PIPE_TEX_FILTER_NEAREST;
4504      samp0->sampler_state.mag_img_filter = PIPE_TEX_FILTER_NEAREST;
4505   }
4506
4507   return key;
4508}
4509
4510
4511/**
4512 * Update fragment shader state.  This is called just prior to drawing
4513 * something when some fragment-related state has changed.
4514 */
4515void
4516llvmpipe_update_fs(struct llvmpipe_context *lp)
4517{
4518   struct lp_fragment_shader *shader = lp->fs;
4519
4520   char store[LP_FS_MAX_VARIANT_KEY_SIZE];
4521   const struct lp_fragment_shader_variant_key *key =
4522      make_variant_key(lp, shader, store);
4523
4524   struct lp_fragment_shader_variant *variant = NULL;
4525   struct lp_fs_variant_list_item *li;
4526   /* Search the variants for one which matches the key */
4527   LIST_FOR_EACH_ENTRY(li, &shader->variants.list, list) {
4528      if (memcmp(&li->base->key, key, shader->variant_key_size) == 0) {
4529         variant = li->base;
4530         break;
4531      }
4532   }
4533
4534   if (variant) {
4535      /* Move this variant to the head of the list to implement LRU
4536       * deletion of shader's when we have too many.
4537       */
4538      list_move_to(&variant->list_item_global.list, &lp->fs_variants_list.list);
4539   }
4540   else {
4541      /* variant not found, create it now */
4542
4543      if (LP_DEBUG & DEBUG_FS) {
4544         debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
4545                      lp->nr_fs_variants,
4546                      lp->nr_fs_instrs,
4547                      lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
4548      }
4549
4550      /* First, check if we've exceeded the max number of shader variants.
4551       * If so, free 6.25% of them (the least recently used ones).
4552       */
4553      const unsigned variants_to_cull =
4554         lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS
4555         ? LP_MAX_SHADER_VARIANTS / 16 : 0;
4556
4557      if (variants_to_cull ||
4558          lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
4559         if (gallivm_debug & GALLIVM_DEBUG_PERF) {
4560            debug_printf("Evicting FS: %u fs variants,\t%u total variants,"
4561                         "\t%u instrs,\t%u instrs/variant\n",
4562                         shader->variants_cached,
4563                         lp->nr_fs_variants, lp->nr_fs_instrs,
4564                         lp->nr_fs_instrs / lp->nr_fs_variants);
4565         }
4566
4567         /*
4568          * We need to re-check lp->nr_fs_variants because an arbitrarliy large
4569          * number of shader variants (potentially all of them) could be
4570          * pending for destruction on flush.
4571          */
4572
4573         for (unsigned i = 0;
4574              i < variants_to_cull ||
4575                 lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS;
4576              i++) {
4577            struct lp_fs_variant_list_item *item;
4578            if (list_is_empty(&lp->fs_variants_list.list)) {
4579               break;
4580            }
4581            item = list_last_entry(&lp->fs_variants_list.list,
4582                                   struct lp_fs_variant_list_item, list);
4583            assert(item);
4584            assert(item->base);
4585            llvmpipe_remove_shader_variant(lp, item->base);
4586            struct lp_fragment_shader_variant *variant = item->base;
4587            lp_fs_variant_reference(lp, &variant, NULL);
4588         }
4589      }
4590
4591      /*
4592       * Generate the new variant.
4593       */
4594      int64_t t0 = os_time_get();
4595      variant = generate_variant(lp, shader, key);
4596      int64_t t1 = os_time_get();
4597      int64_t dt = t1 - t0;
4598      LP_COUNT_ADD(llvm_compile_time, dt);
4599      LP_COUNT_ADD(nr_llvm_compiles, 2);  /* emit vs. omit in/out test */
4600
4601      /* Put the new variant into the list */
4602      if (variant) {
4603         list_add(&variant->list_item_local.list, &shader->variants.list);
4604         list_add(&variant->list_item_global.list, &lp->fs_variants_list.list);
4605         lp->nr_fs_variants++;
4606         lp->nr_fs_instrs += variant->nr_instrs;
4607         shader->variants_cached++;
4608      }
4609   }
4610
4611   /* Bind this variant */
4612   lp_setup_set_fs_variant(lp->setup, variant);
4613}
4614
4615
4616void
4617llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
4618{
4619   llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
4620   llvmpipe->pipe.bind_fs_state   = llvmpipe_bind_fs_state;
4621   llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
4622   llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
4623   llvmpipe->pipe.set_shader_buffers = llvmpipe_set_shader_buffers;
4624   llvmpipe->pipe.set_shader_images = llvmpipe_set_shader_images;
4625}
4626