1/*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23/**
24 * @file crocus_bufmgr.c
25 *
26 * The crocus buffer manager.
27 *
28 * XXX: write better comments
29 * - BOs
30 * - Explain BO cache
31 * - main interface to GEM in the kernel
32 */
33
34#ifdef HAVE_CONFIG_H
35#include "config.h"
36#endif
37
38#include <xf86drm.h>
39#include <util/u_atomic.h>
40#include <fcntl.h>
41#include <stdio.h>
42#include <stdlib.h>
43#include <string.h>
44#include <unistd.h>
45#include <assert.h>
46#include <sys/ioctl.h>
47#include <sys/mman.h>
48#include <sys/stat.h>
49#include <sys/types.h>
50#include <stdbool.h>
51#include <time.h>
52
53#include "errno.h"
54#include "common/intel_clflush.h"
55#include "dev/intel_debug.h"
56#include "common/intel_gem.h"
57#include "dev/intel_device_info.h"
58#include "util/debug.h"
59#include "util/macros.h"
60#include "util/hash_table.h"
61#include "util/list.h"
62#include "util/os_file.h"
63#include "util/u_dynarray.h"
64#include "util/vma.h"
65#include "crocus_bufmgr.h"
66#include "crocus_context.h"
67#include "string.h"
68
69#include "drm-uapi/i915_drm.h"
70
71#ifdef HAVE_VALGRIND
72#include <valgrind.h>
73#include <memcheck.h>
74#define VG(x) x
75#else
76#define VG(x)
77#endif
78
79/**
80 * For debugging purposes, this returns a time in seconds.
81 */
82static double
83get_time(void)
84{
85   struct timespec tp;
86
87   clock_gettime(CLOCK_MONOTONIC, &tp);
88
89   return tp.tv_sec + tp.tv_nsec / 1000000000.0;
90}
91
92/* VALGRIND_FREELIKE_BLOCK unfortunately does not actually undo the earlier
93 * VALGRIND_MALLOCLIKE_BLOCK but instead leaves vg convinced the memory is
94 * leaked. All because it does not call VG(cli_free) from its
95 * VG_USERREQ__FREELIKE_BLOCK handler. Instead of treating the memory like
96 * and allocation, we mark it available for use upon mmapping and remove
97 * it upon unmapping.
98 */
99#define VG_DEFINED(ptr, size) VG(VALGRIND_MAKE_MEM_DEFINED(ptr, size))
100#define VG_NOACCESS(ptr, size) VG(VALGRIND_MAKE_MEM_NOACCESS(ptr, size))
101
102#define PAGE_SIZE 4096
103
104#define WARN_ONCE(cond, fmt...) do {                            \
105   if (unlikely(cond)) {                                        \
106      static bool _warned = false;                              \
107      if (!_warned) {                                           \
108         fprintf(stderr, "WARNING: ");                          \
109         fprintf(stderr, fmt);                                  \
110         _warned = true;                                        \
111      }                                                         \
112   }                                                            \
113} while (0)
114
115#define FILE_DEBUG_FLAG DEBUG_BUFMGR
116
117struct bo_cache_bucket {
118   /** List of cached BOs. */
119   struct list_head head;
120
121   /** Size of this bucket, in bytes. */
122   uint64_t size;
123};
124
125struct bo_export {
126   /** File descriptor associated with a handle export. */
127   int drm_fd;
128
129   /** GEM handle in drm_fd */
130   uint32_t gem_handle;
131
132   struct list_head link;
133};
134
135struct crocus_bufmgr {
136   /**
137    * List into the list of bufmgr.
138    */
139   struct list_head link;
140
141   uint32_t refcount;
142
143   int fd;
144
145   simple_mtx_t lock;
146
147   /** Array of lists of cached gem objects of power-of-two sizes */
148   struct bo_cache_bucket cache_bucket[14 * 4];
149   int num_buckets;
150   time_t time;
151
152   struct hash_table *name_table;
153   struct hash_table *handle_table;
154
155   /**
156    * List of BOs which we've effectively freed, but are hanging on to
157    * until they're idle before closing and returning the VMA.
158    */
159   struct list_head zombie_list;
160
161   bool has_llc:1;
162   bool has_mmap_offset:1;
163   bool has_tiling_uapi:1;
164   bool bo_reuse:1;
165};
166
167static simple_mtx_t global_bufmgr_list_mutex = _SIMPLE_MTX_INITIALIZER_NP;
168static struct list_head global_bufmgr_list = {
169   .next = &global_bufmgr_list,
170   .prev = &global_bufmgr_list,
171};
172
173static int bo_set_tiling_internal(struct crocus_bo *bo, uint32_t tiling_mode,
174                                  uint32_t stride);
175
176static void bo_free(struct crocus_bo *bo);
177
178static uint32_t
179key_hash_uint(const void *key)
180{
181   return _mesa_hash_data(key, 4);
182}
183
184static bool
185key_uint_equal(const void *a, const void *b)
186{
187   return *((unsigned *) a) == *((unsigned *) b);
188}
189
190static struct crocus_bo *
191find_and_ref_external_bo(struct hash_table *ht, unsigned int key)
192{
193   struct hash_entry *entry = _mesa_hash_table_search(ht, &key);
194   struct crocus_bo *bo = entry ? entry->data : NULL;
195
196   if (bo) {
197      assert(bo->external);
198      assert(!bo->reusable);
199
200      /* Being non-reusable, the BO cannot be in the cache lists, but it
201       * may be in the zombie list if it had reached zero references, but
202       * we hadn't yet closed it...and then reimported the same BO.  If it
203       * is, then remove it since it's now been resurrected.
204       */
205      if (bo->head.prev || bo->head.next)
206         list_del(&bo->head);
207
208      crocus_bo_reference(bo);
209   }
210
211   return bo;
212}
213
214/**
215 * This function finds the correct bucket fit for the input size.
216 * The function works with O(1) complexity when the requested size
217 * was queried instead of iterating the size through all the buckets.
218 */
219static struct bo_cache_bucket *
220bucket_for_size(struct crocus_bufmgr *bufmgr, uint64_t size)
221{
222   /* Calculating the pages and rounding up to the page size. */
223   const unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
224
225   /* Row  Bucket sizes    clz((x-1) | 3)   Row    Column
226    *        in pages                      stride   size
227    *   0:   1  2  3  4 -> 30 30 30 30        4       1
228    *   1:   5  6  7  8 -> 29 29 29 29        4       1
229    *   2:  10 12 14 16 -> 28 28 28 28        8       2
230    *   3:  20 24 28 32 -> 27 27 27 27       16       4
231    */
232   const unsigned row = 30 - __builtin_clz((pages - 1) | 3);
233   const unsigned row_max_pages = 4 << row;
234
235   /* The '& ~2' is the special case for row 1. In row 1, max pages /
236    * 2 is 2, but the previous row maximum is zero (because there is
237    * no previous row). All row maximum sizes are power of 2, so that
238    * is the only case where that bit will be set.
239    */
240   const unsigned prev_row_max_pages = (row_max_pages / 2) & ~2;
241   int col_size_log2 = row - 1;
242   col_size_log2 += (col_size_log2 < 0);
243
244   const unsigned col = (pages - prev_row_max_pages +
245                         ((1 << col_size_log2) - 1)) >> col_size_log2;
246
247   /* Calculating the index based on the row and column. */
248   const unsigned index = (row * 4) + (col - 1);
249
250   return (index < bufmgr->num_buckets) ?
251          &bufmgr->cache_bucket[index] : NULL;
252}
253
254
255int
256crocus_bo_busy(struct crocus_bo *bo)
257{
258   struct crocus_bufmgr *bufmgr = bo->bufmgr;
259   struct drm_i915_gem_busy busy = { .handle = bo->gem_handle };
260
261   int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
262   if (ret == 0) {
263      bo->idle = !busy.busy;
264      return busy.busy;
265   }
266   return false;
267}
268
269int
270crocus_bo_madvise(struct crocus_bo *bo, int state)
271{
272   struct drm_i915_gem_madvise madv = {
273      .handle = bo->gem_handle,
274      .madv = state,
275      .retained = 1,
276   };
277
278   intel_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
279
280   return madv.retained;
281}
282
283static struct crocus_bo *
284bo_calloc(void)
285{
286   struct crocus_bo *bo = calloc(1, sizeof(*bo));
287   if (!bo)
288      return NULL;
289
290   list_inithead(&bo->exports);
291   bo->hash = _mesa_hash_pointer(bo);
292   return bo;
293}
294
295static struct crocus_bo *
296alloc_bo_from_cache(struct crocus_bufmgr *bufmgr,
297                    struct bo_cache_bucket *bucket,
298                    uint32_t alignment,
299                    unsigned flags)
300{
301   if (!bucket)
302      return NULL;
303
304   struct crocus_bo *bo = NULL;
305
306   list_for_each_entry_safe(struct crocus_bo, cur, &bucket->head, head) {
307      /* If the last BO in the cache is busy, there are no idle BOs.  Bail,
308       * either falling back to a non-matching memzone, or if that fails,
309       * allocating a fresh buffer.
310       */
311      if (crocus_bo_busy(cur))
312         return NULL;
313
314      list_del(&cur->head);
315
316      /* Tell the kernel we need this BO.  If it still exists, we're done! */
317      if (crocus_bo_madvise(cur, I915_MADV_WILLNEED)) {
318         bo = cur;
319         break;
320      }
321
322      /* This BO was purged, throw it out and keep looking. */
323      bo_free(cur);
324   }
325
326   if (!bo)
327      return NULL;
328
329   /* Zero the contents if necessary.  If this fails, fall back to
330    * allocating a fresh BO, which will always be zeroed by the kernel.
331    */
332   if (flags & BO_ALLOC_ZEROED) {
333      void *map = crocus_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
334      if (map) {
335         memset(map, 0, bo->size);
336      } else {
337         bo_free(bo);
338         return NULL;
339      }
340   }
341
342   return bo;
343}
344
345static struct crocus_bo *
346alloc_fresh_bo(struct crocus_bufmgr *bufmgr, uint64_t bo_size)
347{
348   struct crocus_bo *bo = bo_calloc();
349   if (!bo)
350      return NULL;
351
352   struct drm_i915_gem_create create = { .size = bo_size };
353
354   /* All new BOs we get from the kernel are zeroed, so we don't need to
355    * worry about that here.
356    */
357   if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE, &create) != 0) {
358      free(bo);
359      return NULL;
360   }
361
362   bo->gem_handle = create.handle;
363   bo->bufmgr = bufmgr;
364   bo->size = bo_size;
365   bo->idle = true;
366   bo->tiling_mode = I915_TILING_NONE;
367   bo->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
368   bo->stride = 0;
369
370   /* Calling set_domain() will allocate pages for the BO outside of the
371    * struct mutex lock in the kernel, which is more efficient than waiting
372    * to create them during the first execbuf that uses the BO.
373    */
374   struct drm_i915_gem_set_domain sd = {
375      .handle = bo->gem_handle,
376      .read_domains = I915_GEM_DOMAIN_CPU,
377      .write_domain = 0,
378   };
379
380   if (intel_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd) != 0) {
381      bo_free(bo);
382      return NULL;
383   }
384
385   return bo;
386}
387
388static struct crocus_bo *
389bo_alloc_internal(struct crocus_bufmgr *bufmgr,
390                  const char *name,
391                  uint64_t size,
392                  uint32_t alignment,
393                  unsigned flags,
394                  uint32_t tiling_mode,
395                  uint32_t stride)
396{
397   struct crocus_bo *bo;
398   unsigned int page_size = getpagesize();
399   struct bo_cache_bucket *bucket = bucket_for_size(bufmgr, size);
400
401   /* Round the size up to the bucket size, or if we don't have caching
402    * at this size, a multiple of the page size.
403    */
404   uint64_t bo_size =
405      bucket ? bucket->size : MAX2(ALIGN(size, page_size), page_size);
406
407   simple_mtx_lock(&bufmgr->lock);
408
409   /* Get a buffer out of the cache if available.  First, we try to find
410    * one with a matching memory zone so we can avoid reallocating VMA.
411    */
412   bo = alloc_bo_from_cache(bufmgr, bucket, alignment, flags);
413
414   simple_mtx_unlock(&bufmgr->lock);
415
416   if (!bo) {
417      bo = alloc_fresh_bo(bufmgr, bo_size);
418      if (!bo)
419         return NULL;
420   }
421
422   if (bo_set_tiling_internal(bo, tiling_mode, stride))
423      goto err_free;
424
425   bo->name = name;
426   p_atomic_set(&bo->refcount, 1);
427   bo->reusable = bucket && bufmgr->bo_reuse;
428   bo->cache_coherent = bufmgr->has_llc;
429   bo->index = -1;
430   bo->kflags = 0;
431
432   if (flags & BO_ALLOC_SCANOUT)
433      bo->scanout = 1;
434
435   if ((flags & BO_ALLOC_COHERENT) && !bo->cache_coherent) {
436      struct drm_i915_gem_caching arg = {
437         .handle = bo->gem_handle,
438         .caching = 1,
439      };
440      if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_CACHING, &arg) == 0) {
441         bo->cache_coherent = true;
442         bo->reusable = false;
443      }
444   }
445
446   DBG("bo_create: buf %d (%s) %llub\n", bo->gem_handle,
447       bo->name, (unsigned long long) size);
448
449   return bo;
450
451err_free:
452   bo_free(bo);
453   return NULL;
454}
455
456struct crocus_bo *
457crocus_bo_alloc(struct crocus_bufmgr *bufmgr,
458                const char *name,
459                uint64_t size)
460{
461   return bo_alloc_internal(bufmgr, name, size, 1,
462                            0, I915_TILING_NONE, 0);
463}
464
465struct crocus_bo *
466crocus_bo_alloc_tiled(struct crocus_bufmgr *bufmgr, const char *name,
467                      uint64_t size, uint32_t alignment,
468                      uint32_t tiling_mode, uint32_t pitch, unsigned flags)
469{
470   return bo_alloc_internal(bufmgr, name, size, alignment,
471                            flags, tiling_mode, pitch);
472}
473
474struct crocus_bo *
475crocus_bo_create_userptr(struct crocus_bufmgr *bufmgr, const char *name,
476                         void *ptr, size_t size)
477{
478   struct crocus_bo *bo;
479
480   bo = bo_calloc();
481   if (!bo)
482      return NULL;
483
484   struct drm_i915_gem_userptr arg = {
485      .user_ptr = (uintptr_t)ptr,
486      .user_size = size,
487   };
488   if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_USERPTR, &arg))
489      goto err_free;
490   bo->gem_handle = arg.handle;
491
492   /* Check the buffer for validity before we try and use it in a batch */
493   struct drm_i915_gem_set_domain sd = {
494      .handle = bo->gem_handle,
495      .read_domains = I915_GEM_DOMAIN_CPU,
496   };
497   if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd))
498      goto err_close;
499
500   bo->name = name;
501   bo->size = size;
502   bo->map_cpu = ptr;
503
504   bo->bufmgr = bufmgr;
505   bo->kflags = 0;
506
507   p_atomic_set(&bo->refcount, 1);
508   bo->userptr = true;
509   bo->cache_coherent = true;
510   bo->index = -1;
511   bo->idle = true;
512
513   return bo;
514
515err_close:
516   intel_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &bo->gem_handle);
517err_free:
518   free(bo);
519   return NULL;
520}
521
522/**
523 * Returns a crocus_bo wrapping the given buffer object handle.
524 *
525 * This can be used when one application needs to pass a buffer object
526 * to another.
527 */
528struct crocus_bo *
529crocus_bo_gem_create_from_name(struct crocus_bufmgr *bufmgr,
530                               const char *name, unsigned int handle)
531{
532   struct crocus_bo *bo;
533
534   /* At the moment most applications only have a few named bo.
535    * For instance, in a DRI client only the render buffers passed
536    * between X and the client are named. And since X returns the
537    * alternating names for the front/back buffer a linear search
538    * provides a sufficiently fast match.
539    */
540   simple_mtx_lock(&bufmgr->lock);
541   bo = find_and_ref_external_bo(bufmgr->name_table, handle);
542   if (bo)
543      goto out;
544
545   struct drm_gem_open open_arg = { .name = handle };
546   int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_GEM_OPEN, &open_arg);
547   if (ret != 0) {
548      DBG("Couldn't reference %s handle 0x%08x: %s\n",
549          name, handle, strerror(errno));
550      bo = NULL;
551      goto out;
552   }
553   /* Now see if someone has used a prime handle to get this
554    * object from the kernel before by looking through the list
555    * again for a matching gem_handle
556    */
557   bo = find_and_ref_external_bo(bufmgr->handle_table, open_arg.handle);
558   if (bo)
559      goto out;
560
561   bo = bo_calloc();
562   if (!bo)
563      goto out;
564
565   p_atomic_set(&bo->refcount, 1);
566
567   bo->size = open_arg.size;
568   bo->gtt_offset = 0;
569   bo->bufmgr = bufmgr;
570   bo->gem_handle = open_arg.handle;
571   bo->name = name;
572   bo->global_name = handle;
573   bo->reusable = false;
574   bo->external = true;
575   bo->kflags = 0;
576
577   _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
578   _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
579
580   struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
581   ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling);
582   if (ret != 0)
583      goto err_unref;
584
585   bo->tiling_mode = get_tiling.tiling_mode;
586   bo->swizzle_mode = get_tiling.swizzle_mode;
587   /* XXX stride is unknown */
588   DBG("bo_create_from_handle: %d (%s)\n", handle, bo->name);
589
590out:
591   simple_mtx_unlock(&bufmgr->lock);
592   return bo;
593
594err_unref:
595   bo_free(bo);
596   simple_mtx_unlock(&bufmgr->lock);
597   return NULL;
598}
599
600static void
601bo_close(struct crocus_bo *bo)
602{
603   struct crocus_bufmgr *bufmgr = bo->bufmgr;
604
605   if (bo->external) {
606      struct hash_entry *entry;
607
608      if (bo->global_name) {
609         entry = _mesa_hash_table_search(bufmgr->name_table, &bo->global_name);
610         _mesa_hash_table_remove(bufmgr->name_table, entry);
611      }
612
613      entry = _mesa_hash_table_search(bufmgr->handle_table, &bo->gem_handle);
614      _mesa_hash_table_remove(bufmgr->handle_table, entry);
615
616      list_for_each_entry_safe(struct bo_export, export, &bo->exports, link) {
617         struct drm_gem_close close = { .handle = export->gem_handle };
618         intel_ioctl(export->drm_fd, DRM_IOCTL_GEM_CLOSE, &close);
619
620         list_del(&export->link);
621         free(export);
622      }
623   } else {
624      assert(list_is_empty(&bo->exports));
625   }
626
627   /* Close this object */
628   struct drm_gem_close close = { .handle = bo->gem_handle };
629   int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close);
630   if (ret != 0) {
631      DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
632          bo->gem_handle, bo->name, strerror(errno));
633   }
634
635   free(bo);
636}
637
638static void
639bo_free(struct crocus_bo *bo)
640{
641   struct crocus_bufmgr *bufmgr = bo->bufmgr;
642
643   if (bo->map_cpu && !bo->userptr) {
644      VG_NOACCESS(bo->map_cpu, bo->size);
645      munmap(bo->map_cpu, bo->size);
646   }
647   if (bo->map_wc) {
648      VG_NOACCESS(bo->map_wc, bo->size);
649      munmap(bo->map_wc, bo->size);
650   }
651   if (bo->map_gtt) {
652      VG_NOACCESS(bo->map_gtt, bo->size);
653      munmap(bo->map_gtt, bo->size);
654   }
655
656   if (bo->idle) {
657      bo_close(bo);
658   } else {
659      /* Defer closing the GEM BO and returning the VMA for reuse until the
660       * BO is idle.  Just move it to the dead list for now.
661       */
662      list_addtail(&bo->head, &bufmgr->zombie_list);
663   }
664}
665
666/** Frees all cached buffers significantly older than @time. */
667static void
668cleanup_bo_cache(struct crocus_bufmgr *bufmgr, time_t time)
669{
670   int i;
671
672   if (bufmgr->time == time)
673      return;
674
675   for (i = 0; i < bufmgr->num_buckets; i++) {
676      struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
677
678      list_for_each_entry_safe(struct crocus_bo, bo, &bucket->head, head) {
679         if (time - bo->free_time <= 1)
680            break;
681
682         list_del(&bo->head);
683
684         bo_free(bo);
685      }
686   }
687
688   list_for_each_entry_safe(struct crocus_bo, bo, &bufmgr->zombie_list, head) {
689      /* Stop once we reach a busy BO - all others past this point were
690       * freed more recently so are likely also busy.
691       */
692      if (!bo->idle && crocus_bo_busy(bo))
693         break;
694
695      list_del(&bo->head);
696      bo_close(bo);
697   }
698
699   bufmgr->time = time;
700}
701
702static void
703bo_unreference_final(struct crocus_bo *bo, time_t time)
704{
705   struct crocus_bufmgr *bufmgr = bo->bufmgr;
706   struct bo_cache_bucket *bucket;
707
708   DBG("bo_unreference final: %d (%s)\n", bo->gem_handle, bo->name);
709
710   bucket = NULL;
711   if (bo->reusable)
712      bucket = bucket_for_size(bufmgr, bo->size);
713   /* Put the buffer into our internal cache for reuse if we can. */
714   if (bucket && crocus_bo_madvise(bo, I915_MADV_DONTNEED)) {
715      bo->free_time = time;
716      bo->name = NULL;
717
718      list_addtail(&bo->head, &bucket->head);
719   } else {
720      bo_free(bo);
721   }
722}
723
724void
725__crocus_bo_unreference(struct crocus_bo *bo)
726{
727   struct crocus_bufmgr *bufmgr = bo->bufmgr;
728   struct timespec time;
729
730   clock_gettime(CLOCK_MONOTONIC, &time);
731
732   simple_mtx_lock(&bufmgr->lock);
733
734   if (p_atomic_dec_zero(&bo->refcount)) {
735      bo_unreference_final(bo, time.tv_sec);
736      cleanup_bo_cache(bufmgr, time.tv_sec);
737   }
738
739   simple_mtx_unlock(&bufmgr->lock);
740}
741
742static void
743bo_wait_with_stall_warning(struct util_debug_callback *dbg,
744                           struct crocus_bo *bo,
745                           const char *action)
746{
747   bool busy = dbg && !bo->idle;
748   double elapsed = unlikely(busy) ? -get_time() : 0.0;
749
750   crocus_bo_wait_rendering(bo);
751
752   if (unlikely(busy)) {
753      elapsed += get_time();
754      if (elapsed > 1e-5) /* 0.01ms */ {
755         perf_debug(dbg, "%s a busy \"%s\" BO stalled and took %.03f ms.\n",
756                    action, bo->name, elapsed * 1000);
757      }
758   }
759}
760
761static void
762print_flags(unsigned flags)
763{
764   if (flags & MAP_READ)
765      DBG("READ ");
766   if (flags & MAP_WRITE)
767      DBG("WRITE ");
768   if (flags & MAP_ASYNC)
769      DBG("ASYNC ");
770   if (flags & MAP_PERSISTENT)
771      DBG("PERSISTENT ");
772   if (flags & MAP_COHERENT)
773      DBG("COHERENT ");
774   if (flags & MAP_RAW)
775      DBG("RAW ");
776   DBG("\n");
777}
778
779static void *
780crocus_bo_gem_mmap_legacy(struct util_debug_callback *dbg,
781                          struct crocus_bo *bo, bool wc)
782{
783   struct crocus_bufmgr *bufmgr = bo->bufmgr;
784
785   struct drm_i915_gem_mmap mmap_arg = {
786      .handle = bo->gem_handle,
787      .size = bo->size,
788      .flags = wc ? I915_MMAP_WC : 0,
789   };
790
791   int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
792   if (ret != 0) {
793      DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
794          __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
795      return NULL;
796   }
797   void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
798
799   return map;
800}
801
802static void *
803crocus_bo_gem_mmap_offset(struct util_debug_callback *dbg, struct crocus_bo *bo,
804                          bool wc)
805{
806   struct crocus_bufmgr *bufmgr = bo->bufmgr;
807
808   struct drm_i915_gem_mmap_offset mmap_arg = {
809      .handle = bo->gem_handle,
810      .flags = wc ? I915_MMAP_OFFSET_WC : I915_MMAP_OFFSET_WB,
811   };
812
813   /* Get the fake offset back */
814   int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_OFFSET, &mmap_arg);
815   if (ret != 0) {
816      DBG("%s:%d: Error preparing buffer %d (%s): %s .\n",
817          __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
818      return NULL;
819   }
820
821   /* And map it */
822   void *map = mmap(0, bo->size, PROT_READ | PROT_WRITE, MAP_SHARED,
823                    bufmgr->fd, mmap_arg.offset);
824   if (map == MAP_FAILED) {
825      DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
826          __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
827      return NULL;
828   }
829
830   return map;
831}
832
833static void *
834crocus_bo_gem_mmap(struct util_debug_callback *dbg, struct crocus_bo *bo, bool wc)
835{
836   struct crocus_bufmgr *bufmgr = bo->bufmgr;
837
838   if (bufmgr->has_mmap_offset)
839      return crocus_bo_gem_mmap_offset(dbg, bo, wc);
840   else
841      return crocus_bo_gem_mmap_legacy(dbg, bo, wc);
842}
843
844static void *
845crocus_bo_map_cpu(struct util_debug_callback *dbg,
846                  struct crocus_bo *bo, unsigned flags)
847{
848   /* We disallow CPU maps for writing to non-coherent buffers, as the
849    * CPU map can become invalidated when a batch is flushed out, which
850    * can happen at unpredictable times.  You should use WC maps instead.
851    */
852   assert(bo->cache_coherent || !(flags & MAP_WRITE));
853
854   if (!bo->map_cpu) {
855      DBG("crocus_bo_map_cpu: %d (%s)\n", bo->gem_handle, bo->name);
856
857      void *map = crocus_bo_gem_mmap(dbg, bo, false);
858      if (!map) {
859         return NULL;
860      }
861
862      VG_DEFINED(map, bo->size);
863
864      if (p_atomic_cmpxchg(&bo->map_cpu, NULL, map)) {
865         VG_NOACCESS(map, bo->size);
866         munmap(map, bo->size);
867      }
868   }
869   assert(bo->map_cpu);
870
871   DBG("crocus_bo_map_cpu: %d (%s) -> %p, ", bo->gem_handle, bo->name,
872       bo->map_cpu);
873   print_flags(flags);
874
875   if (!(flags & MAP_ASYNC)) {
876      bo_wait_with_stall_warning(dbg, bo, "CPU mapping");
877   }
878
879   if (!bo->cache_coherent && !bo->bufmgr->has_llc) {
880      /* If we're reusing an existing CPU mapping, the CPU caches may
881       * contain stale data from the last time we read from that mapping.
882       * (With the BO cache, it might even be data from a previous buffer!)
883       * Even if it's a brand new mapping, the kernel may have zeroed the
884       * buffer via CPU writes.
885       *
886       * We need to invalidate those cachelines so that we see the latest
887       * contents, and so long as we only read from the CPU mmap we do not
888       * need to write those cachelines back afterwards.
889       *
890       * On LLC, the emprical evidence suggests that writes from the GPU
891       * that bypass the LLC (i.e. for scanout) do *invalidate* the CPU
892       * cachelines. (Other reads, such as the display engine, bypass the
893       * LLC entirely requiring us to keep dirty pixels for the scanout
894       * out of any cache.)
895       */
896      intel_invalidate_range(bo->map_cpu, bo->size);
897   }
898
899   return bo->map_cpu;
900}
901
902static void *
903crocus_bo_map_wc(struct util_debug_callback *dbg,
904                 struct crocus_bo *bo, unsigned flags)
905{
906   if (!bo->map_wc) {
907      DBG("crocus_bo_map_wc: %d (%s)\n", bo->gem_handle, bo->name);
908
909      void *map = crocus_bo_gem_mmap(dbg, bo, true);
910      if (!map) {
911         return NULL;
912      }
913
914      VG_DEFINED(map, bo->size);
915
916      if (p_atomic_cmpxchg(&bo->map_wc, NULL, map)) {
917         VG_NOACCESS(map, bo->size);
918         munmap(map, bo->size);
919      }
920   }
921   assert(bo->map_wc);
922
923   DBG("crocus_bo_map_wc: %d (%s) -> %p\n", bo->gem_handle, bo->name, bo->map_wc);
924   print_flags(flags);
925
926   if (!(flags & MAP_ASYNC)) {
927      bo_wait_with_stall_warning(dbg, bo, "WC mapping");
928   }
929
930   return bo->map_wc;
931}
932
933/**
934 * Perform an uncached mapping via the GTT.
935 *
936 * Write access through the GTT is not quite fully coherent. On low power
937 * systems especially, like modern Atoms, we can observe reads from RAM before
938 * the write via GTT has landed. A write memory barrier that flushes the Write
939 * Combining Buffer (i.e. sfence/mfence) is not sufficient to order the later
940 * read after the write as the GTT write suffers a small delay through the GTT
941 * indirection. The kernel uses an uncached mmio read to ensure the GTT write
942 * is ordered with reads (either by the GPU, WB or WC) and unconditionally
943 * flushes prior to execbuf submission. However, if we are not informing the
944 * kernel about our GTT writes, it will not flush before earlier access, such
945 * as when using the cmdparser. Similarly, we need to be careful if we should
946 * ever issue a CPU read immediately following a GTT write.
947 *
948 * Telling the kernel about write access also has one more important
949 * side-effect. Upon receiving notification about the write, it cancels any
950 * scanout buffering for FBC/PSR and friends. Later FBC/PSR is then flushed by
951 * either SW_FINISH or DIRTYFB. The presumption is that we never write to the
952 * actual scanout via a mmaping, only to a backbuffer and so all the FBC/PSR
953 * tracking is handled on the buffer exchange instead.
954 */
955static void *
956crocus_bo_map_gtt(struct util_debug_callback *dbg,
957                  struct crocus_bo *bo, unsigned flags)
958{
959   struct crocus_bufmgr *bufmgr = bo->bufmgr;
960
961   /* If we don't support get/set_tiling, there's no support for GTT mapping
962    * either (it won't do any de-tiling for us).
963    */
964   assert(bufmgr->has_tiling_uapi);
965
966   /* Get a mapping of the buffer if we haven't before. */
967   if (bo->map_gtt == NULL) {
968      DBG("bo_map_gtt: mmap %d (%s)\n", bo->gem_handle, bo->name);
969
970      struct drm_i915_gem_mmap_gtt mmap_arg = { .handle = bo->gem_handle };
971
972      /* Get the fake offset back... */
973      int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg);
974      if (ret != 0) {
975         DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
976             __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
977         return NULL;
978      }
979
980      /* and mmap it. */
981      void *map = mmap(0, bo->size, PROT_READ | PROT_WRITE,
982                       MAP_SHARED, bufmgr->fd, mmap_arg.offset);
983      if (map == MAP_FAILED) {
984         DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
985             __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
986         return NULL;
987      }
988
989      /* We don't need to use VALGRIND_MALLOCLIKE_BLOCK because Valgrind will
990       * already intercept this mmap call. However, for consistency between
991       * all the mmap paths, we mark the pointer as defined now and mark it
992       * as inaccessible afterwards.
993       */
994      VG_DEFINED(map, bo->size);
995
996      if (p_atomic_cmpxchg(&bo->map_gtt, NULL, map)) {
997         VG_NOACCESS(map, bo->size);
998         munmap(map, bo->size);
999      }
1000   }
1001   assert(bo->map_gtt);
1002
1003   DBG("bo_map_gtt: %d (%s) -> %p, ", bo->gem_handle, bo->name, bo->map_gtt);
1004   print_flags(flags);
1005
1006   if (!(flags & MAP_ASYNC)) {
1007      bo_wait_with_stall_warning(dbg, bo, "GTT mapping");
1008   }
1009
1010   return bo->map_gtt;
1011}
1012
1013static bool
1014can_map_cpu(struct crocus_bo *bo, unsigned flags)
1015{
1016   if (bo->scanout)
1017      return false;
1018
1019   if (bo->cache_coherent)
1020      return true;
1021
1022   /* Even if the buffer itself is not cache-coherent (such as a scanout), on
1023    * an LLC platform reads always are coherent (as they are performed via the
1024    * central system agent). It is just the writes that we need to take special
1025    * care to ensure that land in main memory and not stick in the CPU cache.
1026    */
1027   if (!(flags & MAP_WRITE) && bo->bufmgr->has_llc)
1028      return true;
1029
1030   /* If PERSISTENT or COHERENT are set, the mmapping needs to remain valid
1031    * across batch flushes where the kernel will change cache domains of the
1032    * bo, invalidating continued access to the CPU mmap on non-LLC device.
1033    *
1034    * Similarly, ASYNC typically means that the buffer will be accessed via
1035    * both the CPU and the GPU simultaneously.  Batches may be executed that
1036    * use the BO even while it is mapped.  While OpenGL technically disallows
1037    * most drawing while non-persistent mappings are active, we may still use
1038    * the GPU for blits or other operations, causing batches to happen at
1039    * inconvenient times.
1040    *
1041    * If RAW is set, we expect the caller to be able to handle a WC buffer
1042    * more efficiently than the involuntary clflushes.
1043    */
1044   if (flags & (MAP_PERSISTENT | MAP_COHERENT | MAP_ASYNC | MAP_RAW))
1045      return false;
1046
1047   return !(flags & MAP_WRITE);
1048}
1049
1050void *
1051crocus_bo_map(struct util_debug_callback *dbg,
1052              struct crocus_bo *bo, unsigned flags)
1053{
1054   if (bo->tiling_mode != I915_TILING_NONE && !(flags & MAP_RAW))
1055      return crocus_bo_map_gtt(dbg, bo, flags);
1056
1057   void *map;
1058
1059   if (can_map_cpu(bo, flags))
1060      map = crocus_bo_map_cpu(dbg, bo, flags);
1061   else
1062      map = crocus_bo_map_wc(dbg, bo, flags);
1063
1064   /* Allow the attempt to fail by falling back to the GTT where necessary.
1065    *
1066    * Not every buffer can be mmaped directly using the CPU (or WC), for
1067    * example buffers that wrap stolen memory or are imported from other
1068    * devices. For those, we have little choice but to use a GTT mmapping.
1069    * However, if we use a slow GTT mmapping for reads where we expected fast
1070    * access, that order of magnitude difference in throughput will be clearly
1071    * expressed by angry users.
1072    *
1073    * We skip MAP_RAW because we want to avoid map_gtt's fence detiling.
1074    */
1075   if (!map && !(flags & MAP_RAW)) {
1076      perf_debug(dbg, "Fallback GTT mapping for %s with access flags %x\n",
1077                 bo->name, flags);
1078      map = crocus_bo_map_gtt(dbg, bo, flags);
1079   }
1080
1081   return map;
1082}
1083
1084/** Waits for all GPU rendering with the object to have completed. */
1085void
1086crocus_bo_wait_rendering(struct crocus_bo *bo)
1087{
1088   /* We require a kernel recent enough for WAIT_IOCTL support.
1089    * See intel_init_bufmgr()
1090    */
1091   crocus_bo_wait(bo, -1);
1092}
1093
1094/**
1095 * Waits on a BO for the given amount of time.
1096 *
1097 * @bo: buffer object to wait for
1098 * @timeout_ns: amount of time to wait in nanoseconds.
1099 *   If value is less than 0, an infinite wait will occur.
1100 *
1101 * Returns 0 if the wait was successful ie. the last batch referencing the
1102 * object has completed within the allotted time. Otherwise some negative return
1103 * value describes the error. Of particular interest is -ETIME when the wait has
1104 * failed to yield the desired result.
1105 *
1106 * Similar to crocus_bo_wait_rendering except a timeout parameter allows
1107 * the operation to give up after a certain amount of time. Another subtle
1108 * difference is the internal locking semantics are different (this variant does
1109 * not hold the lock for the duration of the wait). This makes the wait subject
1110 * to a larger userspace race window.
1111 *
1112 * The implementation shall wait until the object is no longer actively
1113 * referenced within a batch buffer at the time of the call. The wait will
1114 * not guarantee that the buffer is re-issued via another thread, or an flinked
1115 * handle. Userspace must make sure this race does not occur if such precision
1116 * is important.
1117 *
1118 * Note that some kernels have broken the inifite wait for negative values
1119 * promise, upgrade to latest stable kernels if this is the case.
1120 */
1121int
1122crocus_bo_wait(struct crocus_bo *bo, int64_t timeout_ns)
1123{
1124   struct crocus_bufmgr *bufmgr = bo->bufmgr;
1125
1126   /* If we know it's idle, don't bother with the kernel round trip */
1127   if (bo->idle && !bo->external)
1128      return 0;
1129
1130   struct drm_i915_gem_wait wait = {
1131      .bo_handle = bo->gem_handle,
1132      .timeout_ns = timeout_ns,
1133   };
1134   int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1135   if (ret != 0)
1136      return -errno;
1137
1138   bo->idle = true;
1139
1140   return ret;
1141}
1142
1143static void
1144crocus_bufmgr_destroy(struct crocus_bufmgr *bufmgr)
1145{
1146   simple_mtx_destroy(&bufmgr->lock);
1147
1148   /* Free any cached buffer objects we were going to reuse */
1149   for (int i = 0; i < bufmgr->num_buckets; i++) {
1150      struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
1151
1152      list_for_each_entry_safe(struct crocus_bo, bo, &bucket->head, head) {
1153         list_del(&bo->head);
1154
1155         bo_free(bo);
1156      }
1157   }
1158
1159   /* Close any buffer objects on the dead list. */
1160   list_for_each_entry_safe(struct crocus_bo, bo, &bufmgr->zombie_list, head) {
1161      list_del(&bo->head);
1162      bo_close(bo);
1163   }
1164
1165   _mesa_hash_table_destroy(bufmgr->name_table, NULL);
1166   _mesa_hash_table_destroy(bufmgr->handle_table, NULL);
1167
1168   close(bufmgr->fd);
1169
1170   free(bufmgr);
1171}
1172
1173static int
1174bo_set_tiling_internal(struct crocus_bo *bo, uint32_t tiling_mode,
1175                       uint32_t stride)
1176{
1177   struct crocus_bufmgr *bufmgr = bo->bufmgr;
1178   struct drm_i915_gem_set_tiling set_tiling;
1179   int ret;
1180
1181   if (bo->global_name == 0 &&
1182       tiling_mode == bo->tiling_mode && stride == bo->stride)
1183      return 0;
1184
1185   memset(&set_tiling, 0, sizeof(set_tiling));
1186   do {
1187      /* set_tiling is slightly broken and overwrites the
1188       * input on the error path, so we have to open code
1189       * drm_ioctl.
1190       */
1191      set_tiling.handle = bo->gem_handle;
1192      set_tiling.tiling_mode = tiling_mode;
1193      set_tiling.stride = stride;
1194
1195      ret = ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling);
1196   } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
1197   if (ret == -1)
1198      return -errno;
1199
1200   bo->tiling_mode = set_tiling.tiling_mode;
1201   bo->swizzle_mode = set_tiling.swizzle_mode;
1202   bo->stride = set_tiling.stride;
1203   return 0;
1204}
1205
1206int
1207crocus_bo_get_tiling(struct crocus_bo *bo, uint32_t *tiling_mode,
1208                     uint32_t *swizzle_mode)
1209{
1210   *tiling_mode = bo->tiling_mode;
1211   *swizzle_mode = bo->swizzle_mode;
1212   return 0;
1213}
1214
1215struct crocus_bo *
1216crocus_bo_import_dmabuf(struct crocus_bufmgr *bufmgr, int prime_fd,
1217                        uint64_t modifier)
1218{
1219   uint32_t handle;
1220   struct crocus_bo *bo;
1221
1222   simple_mtx_lock(&bufmgr->lock);
1223   int ret = drmPrimeFDToHandle(bufmgr->fd, prime_fd, &handle);
1224   if (ret) {
1225      DBG("import_dmabuf: failed to obtain handle from fd: %s\n",
1226          strerror(errno));
1227      simple_mtx_unlock(&bufmgr->lock);
1228      return NULL;
1229   }
1230
1231   /*
1232    * See if the kernel has already returned this buffer to us. Just as
1233    * for named buffers, we must not create two bo's pointing at the same
1234    * kernel object
1235    */
1236   bo = find_and_ref_external_bo(bufmgr->handle_table, handle);
1237   if (bo)
1238      goto out;
1239
1240   bo = bo_calloc();
1241   if (!bo)
1242      goto out;
1243
1244   p_atomic_set(&bo->refcount, 1);
1245
1246   /* Determine size of bo.  The fd-to-handle ioctl really should
1247    * return the size, but it doesn't.  If we have kernel 3.12 or
1248    * later, we can lseek on the prime fd to get the size.  Older
1249    * kernels will just fail, in which case we fall back to the
1250    * provided (estimated or guess size). */
1251   ret = lseek(prime_fd, 0, SEEK_END);
1252   if (ret != -1)
1253      bo->size = ret;
1254
1255   bo->bufmgr = bufmgr;
1256   bo->name = "prime";
1257   bo->reusable = false;
1258   bo->external = true;
1259   bo->kflags = 0;
1260   bo->gem_handle = handle;
1261   _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1262
1263   const struct isl_drm_modifier_info *mod_info =
1264      isl_drm_modifier_get_info(modifier);
1265   if (mod_info) {
1266      bo->tiling_mode = isl_tiling_to_i915_tiling(mod_info->tiling);
1267   } else if (bufmgr->has_tiling_uapi) {
1268      struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
1269      if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling))
1270         goto err;
1271
1272      bo->tiling_mode = get_tiling.tiling_mode;
1273   } else {
1274      bo->tiling_mode = I915_TILING_NONE;
1275   }
1276
1277out:
1278   simple_mtx_unlock(&bufmgr->lock);
1279   return bo;
1280
1281err:
1282   bo_free(bo);
1283   simple_mtx_unlock(&bufmgr->lock);
1284   return NULL;
1285}
1286
1287struct crocus_bo *
1288crocus_bo_import_dmabuf_no_mods(struct crocus_bufmgr *bufmgr,
1289                                int prime_fd)
1290{
1291   uint32_t handle;
1292   struct crocus_bo *bo;
1293
1294   simple_mtx_lock(&bufmgr->lock);
1295   int ret = drmPrimeFDToHandle(bufmgr->fd, prime_fd, &handle);
1296   if (ret) {
1297      DBG("import_dmabuf: failed to obtain handle from fd: %s\n",
1298          strerror(errno));
1299      simple_mtx_unlock(&bufmgr->lock);
1300      return NULL;
1301   }
1302
1303   /*
1304    * See if the kernel has already returned this buffer to us. Just as
1305    * for named buffers, we must not create two bo's pointing at the same
1306    * kernel object
1307    */
1308   bo = find_and_ref_external_bo(bufmgr->handle_table, handle);
1309   if (bo)
1310      goto out;
1311
1312   bo = bo_calloc();
1313   if (!bo)
1314      goto out;
1315
1316   p_atomic_set(&bo->refcount, 1);
1317
1318   /* Determine size of bo.  The fd-to-handle ioctl really should
1319    * return the size, but it doesn't.  If we have kernel 3.12 or
1320    * later, we can lseek on the prime fd to get the size.  Older
1321    * kernels will just fail, in which case we fall back to the
1322    * provided (estimated or guess size). */
1323   ret = lseek(prime_fd, 0, SEEK_END);
1324   if (ret != -1)
1325      bo->size = ret;
1326
1327   bo->bufmgr = bufmgr;
1328   bo->name = "prime";
1329   bo->reusable = false;
1330   bo->external = true;
1331   bo->kflags = 0;
1332   bo->gem_handle = handle;
1333   _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1334
1335out:
1336   simple_mtx_unlock(&bufmgr->lock);
1337   return bo;
1338}
1339
1340static void
1341crocus_bo_make_external_locked(struct crocus_bo *bo)
1342{
1343   if (!bo->external) {
1344      _mesa_hash_table_insert(bo->bufmgr->handle_table, &bo->gem_handle, bo);
1345      bo->external = true;
1346      bo->reusable = false;
1347   }
1348}
1349
1350static void
1351crocus_bo_make_external(struct crocus_bo *bo)
1352{
1353   struct crocus_bufmgr *bufmgr = bo->bufmgr;
1354
1355   if (bo->external) {
1356      assert(!bo->reusable);
1357      return;
1358   }
1359
1360   simple_mtx_lock(&bufmgr->lock);
1361   crocus_bo_make_external_locked(bo);
1362   simple_mtx_unlock(&bufmgr->lock);
1363}
1364
1365int
1366crocus_bo_export_dmabuf(struct crocus_bo *bo, int *prime_fd)
1367{
1368   struct crocus_bufmgr *bufmgr = bo->bufmgr;
1369
1370   crocus_bo_make_external(bo);
1371
1372   if (drmPrimeHandleToFD(bufmgr->fd, bo->gem_handle,
1373                          DRM_CLOEXEC | DRM_RDWR, prime_fd) != 0)
1374      return -errno;
1375
1376   return 0;
1377}
1378
1379uint32_t
1380crocus_bo_export_gem_handle(struct crocus_bo *bo)
1381{
1382   crocus_bo_make_external(bo);
1383
1384   return bo->gem_handle;
1385}
1386
1387int
1388crocus_bo_flink(struct crocus_bo *bo, uint32_t *name)
1389{
1390   struct crocus_bufmgr *bufmgr = bo->bufmgr;
1391
1392   if (!bo->global_name) {
1393      struct drm_gem_flink flink = { .handle = bo->gem_handle };
1394
1395      if (intel_ioctl(bufmgr->fd, DRM_IOCTL_GEM_FLINK, &flink))
1396         return -errno;
1397
1398      simple_mtx_lock(&bufmgr->lock);
1399      if (!bo->global_name) {
1400         crocus_bo_make_external_locked(bo);
1401         bo->global_name = flink.name;
1402         _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
1403      }
1404      simple_mtx_unlock(&bufmgr->lock);
1405   }
1406
1407   *name = bo->global_name;
1408   return 0;
1409}
1410
1411int
1412crocus_bo_export_gem_handle_for_device(struct crocus_bo *bo, int drm_fd,
1413                                       uint32_t *out_handle)
1414{
1415   /* Only add the new GEM handle to the list of export if it belongs to a
1416    * different GEM device. Otherwise we might close the same buffer multiple
1417    * times.
1418    */
1419   struct crocus_bufmgr *bufmgr = bo->bufmgr;
1420   int ret = os_same_file_description(drm_fd, bufmgr->fd);
1421   WARN_ONCE(ret < 0,
1422             "Kernel has no file descriptor comparison support: %s\n",
1423             strerror(errno));
1424   if (ret == 0) {
1425      *out_handle = crocus_bo_export_gem_handle(bo);
1426      return 0;
1427   }
1428
1429   struct bo_export *export = calloc(1, sizeof(*export));
1430   if (!export)
1431      return -ENOMEM;
1432
1433   export->drm_fd = drm_fd;
1434
1435   int dmabuf_fd = -1;
1436   int err = crocus_bo_export_dmabuf(bo, &dmabuf_fd);
1437   if (err) {
1438      free(export);
1439      return err;
1440   }
1441
1442   simple_mtx_lock(&bufmgr->lock);
1443   err = drmPrimeFDToHandle(drm_fd, dmabuf_fd, &export->gem_handle);
1444   close(dmabuf_fd);
1445   if (err) {
1446      simple_mtx_unlock(&bufmgr->lock);
1447      free(export);
1448      return err;
1449   }
1450
1451   bool found = false;
1452   list_for_each_entry(struct bo_export, iter, &bo->exports, link) {
1453      if (iter->drm_fd != drm_fd)
1454         continue;
1455      /* Here we assume that for a given DRM fd, we'll always get back the
1456       * same GEM handle for a given buffer.
1457       */
1458      assert(iter->gem_handle == export->gem_handle);
1459      free(export);
1460      export = iter;
1461      found = true;
1462      break;
1463   }
1464   if (!found)
1465      list_addtail(&export->link, &bo->exports);
1466
1467   simple_mtx_unlock(&bufmgr->lock);
1468
1469   *out_handle = export->gem_handle;
1470
1471   return 0;
1472}
1473
1474static void
1475add_bucket(struct crocus_bufmgr *bufmgr, int size)
1476{
1477   unsigned int i = bufmgr->num_buckets;
1478
1479   assert(i < ARRAY_SIZE(bufmgr->cache_bucket));
1480
1481   list_inithead(&bufmgr->cache_bucket[i].head);
1482   bufmgr->cache_bucket[i].size = size;
1483   bufmgr->num_buckets++;
1484
1485   assert(bucket_for_size(bufmgr, size) == &bufmgr->cache_bucket[i]);
1486   assert(bucket_for_size(bufmgr, size - 2048) == &bufmgr->cache_bucket[i]);
1487   assert(bucket_for_size(bufmgr, size + 1) != &bufmgr->cache_bucket[i]);
1488}
1489
1490static void
1491init_cache_buckets(struct crocus_bufmgr *bufmgr)
1492{
1493   uint64_t size, cache_max_size = 64 * 1024 * 1024;
1494
1495   /* OK, so power of two buckets was too wasteful of memory.
1496    * Give 3 other sizes between each power of two, to hopefully
1497    * cover things accurately enough.  (The alternative is
1498    * probably to just go for exact matching of sizes, and assume
1499    * that for things like composited window resize the tiled
1500    * width/height alignment and rounding of sizes to pages will
1501    * get us useful cache hit rates anyway)
1502    */
1503   add_bucket(bufmgr, PAGE_SIZE);
1504   add_bucket(bufmgr, PAGE_SIZE * 2);
1505   add_bucket(bufmgr, PAGE_SIZE * 3);
1506
1507   /* Initialize the linked lists for BO reuse cache. */
1508   for (size = 4 * PAGE_SIZE; size <= cache_max_size; size *= 2) {
1509      add_bucket(bufmgr, size);
1510
1511      add_bucket(bufmgr, size + size * 1 / 4);
1512      add_bucket(bufmgr, size + size * 2 / 4);
1513      add_bucket(bufmgr, size + size * 3 / 4);
1514   }
1515}
1516
1517uint32_t
1518crocus_create_hw_context(struct crocus_bufmgr *bufmgr)
1519{
1520   struct drm_i915_gem_context_create create = { };
1521   int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
1522   if (ret != 0) {
1523      DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n", strerror(errno));
1524      return 0;
1525   }
1526
1527   /* Upon declaring a GPU hang, the kernel will zap the guilty context
1528    * back to the default logical HW state and attempt to continue on to
1529    * our next submitted batchbuffer.  However, our render batches assume
1530    * the previous GPU state is preserved, and only emit commands needed
1531    * to incrementally change that state.  In particular, we inherit the
1532    * STATE_BASE_ADDRESS and PIPELINE_SELECT settings, which are critical.
1533    * With default base addresses, our next batches will almost certainly
1534    * cause more GPU hangs, leading to repeated hangs until we're banned
1535    * or the machine is dead.
1536    *
1537    * Here we tell the kernel not to attempt to recover our context but
1538    * immediately (on the next batchbuffer submission) report that the
1539    * context is lost, and we will do the recovery ourselves.  Ideally,
1540    * we'll have two lost batches instead of a continual stream of hangs.
1541    */
1542   struct drm_i915_gem_context_param p = {
1543      .ctx_id = create.ctx_id,
1544      .param = I915_CONTEXT_PARAM_RECOVERABLE,
1545      .value = false,
1546   };
1547   drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p);
1548
1549   return create.ctx_id;
1550}
1551
1552static int
1553crocus_hw_context_get_priority(struct crocus_bufmgr *bufmgr, uint32_t ctx_id)
1554{
1555   struct drm_i915_gem_context_param p = {
1556      .ctx_id = ctx_id,
1557      .param = I915_CONTEXT_PARAM_PRIORITY,
1558   };
1559   drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &p);
1560   return p.value; /* on error, return 0 i.e. default priority */
1561}
1562
1563int
1564crocus_hw_context_set_priority(struct crocus_bufmgr *bufmgr,
1565                               uint32_t ctx_id,
1566                               int priority)
1567{
1568   struct drm_i915_gem_context_param p = {
1569      .ctx_id = ctx_id,
1570      .param = I915_CONTEXT_PARAM_PRIORITY,
1571      .value = priority,
1572   };
1573   int err;
1574
1575   err = 0;
1576   if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p))
1577      err = -errno;
1578
1579   return err;
1580}
1581
1582uint32_t
1583crocus_clone_hw_context(struct crocus_bufmgr *bufmgr, uint32_t ctx_id)
1584{
1585   uint32_t new_ctx = crocus_create_hw_context(bufmgr);
1586
1587   if (new_ctx) {
1588      int priority = crocus_hw_context_get_priority(bufmgr, ctx_id);
1589      crocus_hw_context_set_priority(bufmgr, new_ctx, priority);
1590   }
1591
1592   return new_ctx;
1593}
1594
1595void
1596crocus_destroy_hw_context(struct crocus_bufmgr *bufmgr, uint32_t ctx_id)
1597{
1598   struct drm_i915_gem_context_destroy d = { .ctx_id = ctx_id };
1599
1600   if (ctx_id != 0 &&
1601       intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, &d) != 0) {
1602      fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
1603              strerror(errno));
1604   }
1605}
1606
1607int
1608crocus_reg_read(struct crocus_bufmgr *bufmgr, uint32_t offset, uint64_t *result)
1609{
1610   struct drm_i915_reg_read reg_read = { .offset = offset };
1611   int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
1612
1613   *result = reg_read.val;
1614   return ret;
1615}
1616
1617static int
1618gem_param(int fd, int name)
1619{
1620   int v = -1; /* No param uses (yet) the sign bit, reserve it for errors */
1621
1622   struct drm_i915_getparam gp = { .param = name, .value = &v };
1623   if (intel_ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp))
1624      return -1;
1625
1626   return v;
1627}
1628
1629/**
1630 * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
1631 * and manage map buffer objections.
1632 *
1633 * \param fd File descriptor of the opened DRM device.
1634 */
1635static struct crocus_bufmgr *
1636crocus_bufmgr_create(struct intel_device_info *devinfo, int fd, bool bo_reuse)
1637{
1638   struct crocus_bufmgr *bufmgr = calloc(1, sizeof(*bufmgr));
1639   if (bufmgr == NULL)
1640      return NULL;
1641
1642   /* Handles to buffer objects belong to the device fd and are not
1643    * reference counted by the kernel.  If the same fd is used by
1644    * multiple parties (threads sharing the same screen bufmgr, or
1645    * even worse the same device fd passed to multiple libraries)
1646    * ownership of those handles is shared by those independent parties.
1647    *
1648    * Don't do this! Ensure that each library/bufmgr has its own device
1649    * fd so that its namespace does not clash with another.
1650    */
1651   bufmgr->fd = os_dupfd_cloexec(fd);
1652
1653   p_atomic_set(&bufmgr->refcount, 1);
1654
1655   simple_mtx_init(&bufmgr->lock, mtx_plain);
1656
1657   list_inithead(&bufmgr->zombie_list);
1658
1659   bufmgr->has_llc = devinfo->has_llc;
1660   bufmgr->has_tiling_uapi = devinfo->has_tiling_uapi;
1661   bufmgr->bo_reuse = bo_reuse;
1662   bufmgr->has_mmap_offset = gem_param(fd, I915_PARAM_MMAP_GTT_VERSION) >= 4;
1663
1664   init_cache_buckets(bufmgr);
1665
1666   bufmgr->name_table =
1667      _mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal);
1668   bufmgr->handle_table =
1669      _mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal);
1670
1671   return bufmgr;
1672}
1673
1674static struct crocus_bufmgr *
1675crocus_bufmgr_ref(struct crocus_bufmgr *bufmgr)
1676{
1677   p_atomic_inc(&bufmgr->refcount);
1678   return bufmgr;
1679}
1680
1681void
1682crocus_bufmgr_unref(struct crocus_bufmgr *bufmgr)
1683{
1684   simple_mtx_lock(&global_bufmgr_list_mutex);
1685   if (p_atomic_dec_zero(&bufmgr->refcount)) {
1686      list_del(&bufmgr->link);
1687      crocus_bufmgr_destroy(bufmgr);
1688   }
1689   simple_mtx_unlock(&global_bufmgr_list_mutex);
1690}
1691
1692/**
1693 * Gets an already existing GEM buffer manager or create a new one.
1694 *
1695 * \param fd File descriptor of the opened DRM device.
1696 */
1697struct crocus_bufmgr *
1698crocus_bufmgr_get_for_fd(struct intel_device_info *devinfo, int fd, bool bo_reuse)
1699{
1700   struct stat st;
1701
1702   if (fstat(fd, &st))
1703      return NULL;
1704
1705   struct crocus_bufmgr *bufmgr = NULL;
1706
1707   simple_mtx_lock(&global_bufmgr_list_mutex);
1708   list_for_each_entry(struct crocus_bufmgr, iter_bufmgr, &global_bufmgr_list, link) {
1709      struct stat iter_st;
1710      if (fstat(iter_bufmgr->fd, &iter_st))
1711         continue;
1712
1713      if (st.st_rdev == iter_st.st_rdev) {
1714         assert(iter_bufmgr->bo_reuse == bo_reuse);
1715         bufmgr = crocus_bufmgr_ref(iter_bufmgr);
1716         goto unlock;
1717      }
1718   }
1719
1720   bufmgr = crocus_bufmgr_create(devinfo, fd, bo_reuse);
1721   if (bufmgr)
1722      list_addtail(&bufmgr->link, &global_bufmgr_list);
1723
1724 unlock:
1725   simple_mtx_unlock(&global_bufmgr_list_mutex);
1726
1727   return bufmgr;
1728}
1729
1730int
1731crocus_bufmgr_get_fd(struct crocus_bufmgr *bufmgr)
1732{
1733   return bufmgr->fd;
1734}
1735