1/************************************************************************** 2 * 3 * Copyright 2008-2021 VMware, Inc. 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR 22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28/** 29 * @file 30 * SSE intrinsics portability header. 31 * 32 * Although the SSE intrinsics are support by all modern x86 and x86-64 33 * compilers, there are some intrisincs missing in some implementations 34 * (especially older MSVC versions). This header abstracts that away. 35 */ 36 37#ifndef U_SSE_H_ 38#define U_SSE_H_ 39 40#include "pipe/p_config.h" 41#include "pipe/p_compiler.h" 42#include "util/u_debug.h" 43 44#if defined(PIPE_ARCH_SSE) 45 46#include <emmintrin.h> 47 48 49union m128i { 50 __m128i m; 51 ubyte ub[16]; 52 ushort us[8]; 53 uint ui[4]; 54}; 55 56static inline void u_print_epi8(const char *name, __m128i r) 57{ 58 union { __m128i m; ubyte ub[16]; } u; 59 u.m = r; 60 61 debug_printf("%s: " 62 "%02x/" 63 "%02x/" 64 "%02x/" 65 "%02x/" 66 "%02x/" 67 "%02x/" 68 "%02x/" 69 "%02x/" 70 "%02x/" 71 "%02x/" 72 "%02x/" 73 "%02x/" 74 "%02x/" 75 "%02x/" 76 "%02x/" 77 "%02x\n", 78 name, 79 u.ub[0], u.ub[1], u.ub[2], u.ub[3], 80 u.ub[4], u.ub[5], u.ub[6], u.ub[7], 81 u.ub[8], u.ub[9], u.ub[10], u.ub[11], 82 u.ub[12], u.ub[13], u.ub[14], u.ub[15]); 83} 84 85static inline void u_print_epi16(const char *name, __m128i r) 86{ 87 union { __m128i m; ushort us[8]; } u; 88 u.m = r; 89 90 debug_printf("%s: " 91 "%04x/" 92 "%04x/" 93 "%04x/" 94 "%04x/" 95 "%04x/" 96 "%04x/" 97 "%04x/" 98 "%04x\n", 99 name, 100 u.us[0], u.us[1], u.us[2], u.us[3], 101 u.us[4], u.us[5], u.us[6], u.us[7]); 102} 103 104static inline void u_print_epi32(const char *name, __m128i r) 105{ 106 union { __m128i m; uint ui[4]; } u; 107 u.m = r; 108 109 debug_printf("%s: " 110 "%08x/" 111 "%08x/" 112 "%08x/" 113 "%08x\n", 114 name, 115 u.ui[0], u.ui[1], u.ui[2], u.ui[3]); 116} 117 118static inline void u_print_ps(const char *name, __m128 r) 119{ 120 union { __m128 m; float f[4]; } u; 121 u.m = r; 122 123 debug_printf("%s: " 124 "%f/" 125 "%f/" 126 "%f/" 127 "%f\n", 128 name, 129 u.f[0], u.f[1], u.f[2], u.f[3]); 130} 131 132 133#define U_DUMP_EPI32(a) u_print_epi32(#a, a) 134#define U_DUMP_EPI16(a) u_print_epi16(#a, a) 135#define U_DUMP_EPI8(a) u_print_epi8(#a, a) 136#define U_DUMP_PS(a) u_print_ps(#a, a) 137 138/* 139 * Provide an SSE implementation of _mm_mul_epi32() in terms of 140 * _mm_mul_epu32(). 141 * 142 * Basically, albeit surprising at first (and second, and third...) look 143 * if a * b is done signed instead of unsigned, can just 144 * subtract b from the high bits of the result if a is negative 145 * (and the same for a if b is negative). Modular arithmetic at its best! 146 * 147 * So for int32 a,b in crude pseudo-code ("*" here denoting a widening mul) 148 * fixupb = (signmask(b) & a) << 32ULL 149 * fixupa = (signmask(a) & b) << 32ULL 150 * a * b = (unsigned)a * (unsigned)b - fixupb - fixupa 151 * = (unsigned)a * (unsigned)b -(fixupb + fixupa) 152 * 153 * This does both lo (dwords 0/2) and hi parts (1/3) at the same time due 154 * to some optimization potential. 155 */ 156static inline __m128i 157mm_mullohi_epi32(const __m128i a, const __m128i b, __m128i *res13) 158{ 159 __m128i a13, b13, mul02, mul13; 160 __m128i anegmask, bnegmask, fixup, fixup02, fixup13; 161 a13 = _mm_shuffle_epi32(a, _MM_SHUFFLE(2,3,0,1)); 162 b13 = _mm_shuffle_epi32(b, _MM_SHUFFLE(2,3,0,1)); 163 anegmask = _mm_srai_epi32(a, 31); 164 bnegmask = _mm_srai_epi32(b, 31); 165 fixup = _mm_add_epi32(_mm_and_si128(anegmask, b), 166 _mm_and_si128(bnegmask, a)); 167 mul02 = _mm_mul_epu32(a, b); 168 mul13 = _mm_mul_epu32(a13, b13); 169 fixup02 = _mm_slli_epi64(fixup, 32); 170 fixup13 = _mm_and_si128(fixup, _mm_set_epi32(-1,0,-1,0)); 171 *res13 = _mm_sub_epi64(mul13, fixup13); 172 return _mm_sub_epi64(mul02, fixup02); 173} 174 175 176/* Provide an SSE2 implementation of _mm_mullo_epi32() in terms of 177 * _mm_mul_epu32(). 178 * 179 * This always works regardless the signs of the operands, since 180 * the high bits (which would be different) aren't used. 181 * 182 * This seems close enough to the speed of SSE4 and the real 183 * _mm_mullo_epi32() intrinsic as to not justify adding an sse4 184 * dependency at this point. 185 */ 186static inline __m128i mm_mullo_epi32(const __m128i a, const __m128i b) 187{ 188 __m128i a4 = _mm_srli_epi64(a, 32); /* shift by one dword */ 189 __m128i b4 = _mm_srli_epi64(b, 32); /* shift by one dword */ 190 __m128i ba = _mm_mul_epu32(b, a); /* multply dwords 0, 2 */ 191 __m128i b4a4 = _mm_mul_epu32(b4, a4); /* multiply dwords 1, 3 */ 192 193 /* Interleave the results, either with shuffles or (slightly 194 * faster) direct bit operations: 195 * XXX: might be only true for some cpus (in particular 65nm 196 * Core 2). On most cpus (including that Core 2, but not Nehalem...) 197 * using _mm_shuffle_ps/_mm_shuffle_epi32 might also be faster 198 * than using the 3 instructions below. But logic should be fine 199 * as well, we can't have optimal solution for all cpus (if anything, 200 * should just use _mm_mullo_epi32() if sse41 is available...). 201 */ 202#if 0 203 __m128i ba8 = _mm_shuffle_epi32(ba, 8); 204 __m128i b4a48 = _mm_shuffle_epi32(b4a4, 8); 205 __m128i result = _mm_unpacklo_epi32(ba8, b4a48); 206#else 207 __m128i mask = _mm_setr_epi32(~0,0,~0,0); 208 __m128i ba_mask = _mm_and_si128(ba, mask); 209 __m128i b4a4_mask_shift = _mm_slli_epi64(b4a4, 32); 210 __m128i result = _mm_or_si128(ba_mask, b4a4_mask_shift); 211#endif 212 213 return result; 214} 215 216 217static inline void 218transpose4_epi32(const __m128i * restrict a, 219 const __m128i * restrict b, 220 const __m128i * restrict c, 221 const __m128i * restrict d, 222 __m128i * restrict o, 223 __m128i * restrict p, 224 __m128i * restrict q, 225 __m128i * restrict r) 226{ 227 __m128i t0 = _mm_unpacklo_epi32(*a, *b); 228 __m128i t1 = _mm_unpacklo_epi32(*c, *d); 229 __m128i t2 = _mm_unpackhi_epi32(*a, *b); 230 __m128i t3 = _mm_unpackhi_epi32(*c, *d); 231 232 *o = _mm_unpacklo_epi64(t0, t1); 233 *p = _mm_unpackhi_epi64(t0, t1); 234 *q = _mm_unpacklo_epi64(t2, t3); 235 *r = _mm_unpackhi_epi64(t2, t3); 236} 237 238 239/* 240 * Same as above, except the first two values are already interleaved 241 * (i.e. contain 64bit values). 242 */ 243static inline void 244transpose2_64_2_32(const __m128i * restrict a01, 245 const __m128i * restrict a23, 246 const __m128i * restrict c, 247 const __m128i * restrict d, 248 __m128i * restrict o, 249 __m128i * restrict p, 250 __m128i * restrict q, 251 __m128i * restrict r) 252{ 253 __m128i t0 = *a01; 254 __m128i t1 = _mm_unpacklo_epi32(*c, *d); 255 __m128i t2 = *a23; 256 __m128i t3 = _mm_unpackhi_epi32(*c, *d); 257 258 *o = _mm_unpacklo_epi64(t0, t1); 259 *p = _mm_unpackhi_epi64(t0, t1); 260 *q = _mm_unpacklo_epi64(t2, t3); 261 *r = _mm_unpackhi_epi64(t2, t3); 262} 263 264 265#define SCALAR_EPI32(m, i) _mm_shuffle_epi32((m), _MM_SHUFFLE(i,i,i,i)) 266 267 268/* 269 * Implements (1-w)*a + w*b = a - wa + wb = w(b-a) + a 270 * ((b-a)*w >> 8) + a 271 * The math behind negative sub results (logic shift/mask) is tricky. 272 * 273 * w -- weight values 274 * a -- src0 values 275 * b -- src1 values 276 */ 277static ALWAYS_INLINE __m128i 278util_sse2_lerp_epi16(__m128i w, __m128i a, __m128i b) 279{ 280 __m128i res; 281 282 res = _mm_sub_epi16(b, a); 283 res = _mm_mullo_epi16(res, w); 284 res = _mm_srli_epi16(res, 8); 285 /* use add_epi8 instead of add_epi16 so no need to mask off upper bits */ 286 res = _mm_add_epi8(res, a); 287 288 return res; 289} 290 291 292/* Apply premultiplied-alpha blending on two pixels simultaneously. 293 * All parameters are packed as 8.8 fixed point values in __m128i SSE 294 * registers, with the upper 8 bits all zero. 295 * 296 * a -- src alpha values 297 * d -- dst color values 298 * s -- src color values 299 */ 300static inline __m128i 301util_sse2_premul_blend_epi16( __m128i a, __m128i d, __m128i s) 302{ 303 __m128i da, d_sub_da, tmp; 304 tmp = _mm_mullo_epi16(d, a); 305 da = _mm_srli_epi16(tmp, 8); 306 d_sub_da = _mm_sub_epi16(d, da); 307 308 return _mm_add_epi16(s, d_sub_da); 309} 310 311 312/* Apply premultiplied-alpha blending on four pixels in packed BGRA 313 * format (one/inv_src_alpha blend mode). 314 * 315 * src -- four pixels (bgra8 format) 316 * dst -- four destination pixels (bgra8) 317 * return -- blended pixels (bgra8) 318 */ 319static ALWAYS_INLINE __m128i 320util_sse2_blend_premul_4(const __m128i src, 321 const __m128i dst) 322{ 323 324 __m128i al, ah, dl, dh, sl, sh, rl, rh; 325 __m128i zero = _mm_setzero_si128(); 326 327 /* Blend first two pixels: 328 */ 329 sl = _mm_unpacklo_epi8(src, zero); 330 dl = _mm_unpacklo_epi8(dst, zero); 331 332 al = _mm_shufflehi_epi16(sl, 0xff); 333 al = _mm_shufflelo_epi16(al, 0xff); 334 335 rl = util_sse2_premul_blend_epi16(al, dl, sl); 336 337 /* Blend second two pixels: 338 */ 339 sh = _mm_unpackhi_epi8(src, zero); 340 dh = _mm_unpackhi_epi8(dst, zero); 341 342 ah = _mm_shufflehi_epi16(sh, 0xff); 343 ah = _mm_shufflelo_epi16(ah, 0xff); 344 345 rh = util_sse2_premul_blend_epi16(ah, dh, sh); 346 347 /* Pack the results down to four bgra8 pixels: 348 */ 349 return _mm_packus_epi16(rl, rh); 350} 351 352 353/* Apply src-alpha blending on four pixels in packed BGRA 354 * format (srcalpha/inv_src_alpha blend mode). 355 * 356 * src -- four pixels (bgra8 format) 357 * dst -- four destination pixels (bgra8) 358 * return -- blended pixels (bgra8) 359 */ 360static ALWAYS_INLINE __m128i 361util_sse2_blend_srcalpha_4(const __m128i src, 362 const __m128i dst) 363{ 364 365 __m128i al, ah, dl, dh, sl, sh, rl, rh; 366 __m128i zero = _mm_setzero_si128(); 367 368 /* Blend first two pixels: 369 */ 370 sl = _mm_unpacklo_epi8(src, zero); 371 dl = _mm_unpacklo_epi8(dst, zero); 372 373 al = _mm_shufflehi_epi16(sl, 0xff); 374 al = _mm_shufflelo_epi16(al, 0xff); 375 376 rl = util_sse2_lerp_epi16(al, dl, sl); 377 378 /* Blend second two pixels: 379 */ 380 sh = _mm_unpackhi_epi8(src, zero); 381 dh = _mm_unpackhi_epi8(dst, zero); 382 383 ah = _mm_shufflehi_epi16(sh, 0xff); 384 ah = _mm_shufflelo_epi16(ah, 0xff); 385 386 rh = util_sse2_lerp_epi16(ah, dh, sh); 387 388 /* Pack the results down to four bgra8 pixels: 389 */ 390 return _mm_packus_epi16(rl, rh); 391} 392 393 394/** 395 * premultiplies src with constant alpha then 396 * does one/inv_src_alpha blend. 397 * 398 * src 16xi8 (normalized) 399 * dst 16xi8 (normalized) 400 * cst_alpha (constant alpha (u8 value)) 401 */ 402static ALWAYS_INLINE __m128i 403util_sse2_blend_premul_src_4(const __m128i src, 404 const __m128i dst, 405 const unsigned cst_alpha) 406{ 407 408 __m128i srca, d, s, rl, rh; 409 __m128i zero = _mm_setzero_si128(); 410 __m128i cst_alpha_vec = _mm_set1_epi16(cst_alpha); 411 412 /* Blend first two pixels: 413 */ 414 s = _mm_unpacklo_epi8(src, zero); 415 s = _mm_mullo_epi16(s, cst_alpha_vec); 416 /* the shift will cause some precision loss */ 417 s = _mm_srli_epi16(s, 8); 418 419 srca = _mm_shufflehi_epi16(s, 0xff); 420 srca = _mm_shufflelo_epi16(srca, 0xff); 421 422 d = _mm_unpacklo_epi8(dst, zero); 423 rl = util_sse2_premul_blend_epi16(srca, d, s); 424 425 /* Blend second two pixels: 426 */ 427 s = _mm_unpackhi_epi8(src, zero); 428 s = _mm_mullo_epi16(s, cst_alpha_vec); 429 /* the shift will cause some precision loss */ 430 s = _mm_srli_epi16(s, 8); 431 432 srca = _mm_shufflehi_epi16(s, 0xff); 433 srca = _mm_shufflelo_epi16(srca, 0xff); 434 435 d = _mm_unpackhi_epi8(dst, zero); 436 rh = util_sse2_premul_blend_epi16(srca, d, s); 437 438 /* Pack the results down to four bgra8 pixels: 439 */ 440 return _mm_packus_epi16(rl, rh); 441} 442 443 444/** 445 * Linear interpolation with SSE2. 446 * 447 * dst, src0, src1 are 16 x i8 vectors, with [0..255] normalized values. 448 * 449 * weight_lo and weight_hi should be a 8 x i16 vectors, in 8.8 fixed point 450 * format, for the low and high components. 451 * We'd want to pass these as values but MSVC limitation forces us to pass these 452 * as pointers since it will complain if more than 3 __m128 are passed by value. 453 */ 454static ALWAYS_INLINE __m128i 455util_sse2_lerp_epi8_fixed88(__m128i src0, __m128i src1, 456 const __m128i * restrict weight_lo, 457 const __m128i * restrict weight_hi) 458{ 459 const __m128i zero = _mm_setzero_si128(); 460 461 __m128i src0_lo = _mm_unpacklo_epi8(src0, zero); 462 __m128i src0_hi = _mm_unpackhi_epi8(src0, zero); 463 464 __m128i src1_lo = _mm_unpacklo_epi8(src1, zero); 465 __m128i src1_hi = _mm_unpackhi_epi8(src1, zero); 466 467 __m128i dst_lo; 468 __m128i dst_hi; 469 470 dst_lo = util_sse2_lerp_epi16(*weight_lo, src0_lo, src1_lo); 471 dst_hi = util_sse2_lerp_epi16(*weight_hi, src0_hi, src1_hi); 472 473 return _mm_packus_epi16(dst_lo, dst_hi); 474} 475 476 477/** 478 * Linear interpolation with SSE2. 479 * 480 * dst, src0, src1 are 16 x i8 vectors, with [0..255] normalized values. 481 * 482 * weight should be a 16 x i8 vector, in 0.8 fixed point values. 483 */ 484static ALWAYS_INLINE __m128i 485util_sse2_lerp_epi8_fixed08(__m128i src0, __m128i src1, 486 __m128i weight) 487{ 488 const __m128i zero = _mm_setzero_si128(); 489 __m128i weight_lo = _mm_unpacklo_epi8(weight, zero); 490 __m128i weight_hi = _mm_unpackhi_epi8(weight, zero); 491 492 return util_sse2_lerp_epi8_fixed88(src0, src1, 493 &weight_lo, &weight_hi); 494} 495 496 497/** 498 * Linear interpolation with SSE2. 499 * 500 * dst, src0, src1, and weight are 16 x i8 vectors, with [0..255] normalized 501 * values. 502 */ 503static ALWAYS_INLINE __m128i 504util_sse2_lerp_unorm8(__m128i src0, __m128i src1, 505 __m128i weight) 506{ 507 const __m128i zero = _mm_setzero_si128(); 508 __m128i weight_lo = _mm_unpacklo_epi8(weight, zero); 509 __m128i weight_hi = _mm_unpackhi_epi8(weight, zero); 510 511#if 0 512 /* 513 * Rescale from [0..255] to [0..256]. 514 */ 515 weight_lo = _mm_add_epi16(weight_lo, _mm_srli_epi16(weight_lo, 7)); 516 weight_hi = _mm_add_epi16(weight_hi, _mm_srli_epi16(weight_hi, 7)); 517#endif 518 519 return util_sse2_lerp_epi8_fixed88(src0, src1, 520 &weight_lo, &weight_hi); 521} 522 523 524/** 525 * Linear interpolation with SSE2. 526 * 527 * dst, src0, src1, src2, src3 are 16 x i8 vectors, with [0..255] normalized 528 * values. 529 * 530 * ws_lo, ws_hi, wt_lo, wt_hi should be a 8 x i16 vectors, in 8.8 fixed point 531 * format, for the low and high components. 532 * We'd want to pass these as values but MSVC limitation forces us to pass these 533 * as pointers since it will complain if more than 3 __m128 are passed by value. 534 * 535 * This uses ws_lo, ws_hi to interpolate between src0 and src1, as well as to 536 * interpolate between src2 and src3, then uses wt_lo and wt_hi to interpolate 537 * between the resulting vectors. 538 */ 539static ALWAYS_INLINE __m128i 540util_sse2_lerp_2d_epi8_fixed88(__m128i src0, __m128i src1, 541 const __m128i * restrict src2, 542 const __m128i * restrict src3, 543 const __m128i * restrict ws_lo, 544 const __m128i * restrict ws_hi, 545 const __m128i * restrict wt_lo, 546 const __m128i * restrict wt_hi) 547{ 548 const __m128i zero = _mm_setzero_si128(); 549 550 __m128i src0_lo = _mm_unpacklo_epi8(src0, zero); 551 __m128i src0_hi = _mm_unpackhi_epi8(src0, zero); 552 553 __m128i src1_lo = _mm_unpacklo_epi8(src1, zero); 554 __m128i src1_hi = _mm_unpackhi_epi8(src1, zero); 555 556 __m128i src2_lo = _mm_unpacklo_epi8(*src2, zero); 557 __m128i src2_hi = _mm_unpackhi_epi8(*src2, zero); 558 559 __m128i src3_lo = _mm_unpacklo_epi8(*src3, zero); 560 __m128i src3_hi = _mm_unpackhi_epi8(*src3, zero); 561 562 __m128i dst_lo, dst01_lo, dst23_lo; 563 __m128i dst_hi, dst01_hi, dst23_hi; 564 565 dst01_lo = util_sse2_lerp_epi16(*ws_lo, src0_lo, src1_lo); 566 dst01_hi = util_sse2_lerp_epi16(*ws_hi, src0_hi, src1_hi); 567 dst23_lo = util_sse2_lerp_epi16(*ws_lo, src2_lo, src3_lo); 568 dst23_hi = util_sse2_lerp_epi16(*ws_hi, src2_hi, src3_hi); 569 570 dst_lo = util_sse2_lerp_epi16(*wt_lo, dst01_lo, dst23_lo); 571 dst_hi = util_sse2_lerp_epi16(*wt_hi, dst01_hi, dst23_hi); 572 573 return _mm_packus_epi16(dst_lo, dst_hi); 574} 575 576/** 577 * Stretch a row of pixels using linear filter. 578 * 579 * Uses Bresenham's line algorithm using 16.16 fixed point representation for 580 * the error term. 581 * 582 * @param dst_width destination width in pixels 583 * @param src_x start x0 in 16.16 fixed point format 584 * @param src_xstep step in 16.16. fixed point format 585 * 586 * @return final src_x value (i.e., src_x + dst_width*src_xstep) 587 */ 588static ALWAYS_INLINE int32_t 589util_sse2_stretch_row_8unorm(__m128i * restrict dst, 590 int32_t dst_width, 591 const uint32_t * restrict src, 592 int32_t src_x, 593 int32_t src_xstep) 594{ 595 int16_t error0, error1, error2, error3; 596 __m128i error_lo, error_hi, error_step; 597 598 assert(dst_width >= 0); 599 assert(dst_width % 4 == 0); 600 601 error0 = src_x; 602 error1 = error0 + src_xstep; 603 error2 = error1 + src_xstep; 604 error3 = error2 + src_xstep; 605 606 error_lo = _mm_setr_epi16(error0, error0, error0, error0, 607 error1, error1, error1, error1); 608 error_hi = _mm_setr_epi16(error2, error2, error2, error2, 609 error3, error3, error3, error3); 610 error_step = _mm_set1_epi16(src_xstep << 2); 611 612 dst_width >>= 2; 613 while (dst_width) { 614 uint16_t src_x0; 615 uint16_t src_x1; 616 uint16_t src_x2; 617 uint16_t src_x3; 618 __m128i src0, src1; 619 __m128i weight_lo, weight_hi; 620 621 /* 622 * It is faster to re-compute the coordinates in the scalar integer unit here, 623 * than to fetch the values from the SIMD integer unit. 624 */ 625 626 src_x0 = src_x >> 16; 627 src_x += src_xstep; 628 src_x1 = src_x >> 16; 629 src_x += src_xstep; 630 src_x2 = src_x >> 16; 631 src_x += src_xstep; 632 src_x3 = src_x >> 16; 633 src_x += src_xstep; 634 635 /* 636 * Fetch pairs of pixels 64bit at a time, and then swizzle them inplace. 637 */ 638 639 { 640 __m128i src_00_10 = _mm_loadl_epi64((const __m128i *)&src[src_x0]); 641 __m128i src_01_11 = _mm_loadl_epi64((const __m128i *)&src[src_x1]); 642 __m128i src_02_12 = _mm_loadl_epi64((const __m128i *)&src[src_x2]); 643 __m128i src_03_13 = _mm_loadl_epi64((const __m128i *)&src[src_x3]); 644 645 __m128i src_00_01_10_11 = _mm_unpacklo_epi32(src_00_10, src_01_11); 646 __m128i src_02_03_12_13 = _mm_unpacklo_epi32(src_02_12, src_03_13); 647 648 src0 = _mm_unpacklo_epi64(src_00_01_10_11, src_02_03_12_13); 649 src1 = _mm_unpackhi_epi64(src_00_01_10_11, src_02_03_12_13); 650 } 651 652 weight_lo = _mm_srli_epi16(error_lo, 8); 653 weight_hi = _mm_srli_epi16(error_hi, 8); 654 655 *dst = util_sse2_lerp_epi8_fixed88(src0, src1, 656 &weight_lo, &weight_hi); 657 658 error_lo = _mm_add_epi16(error_lo, error_step); 659 error_hi = _mm_add_epi16(error_hi, error_step); 660 661 ++dst; 662 --dst_width; 663 } 664 665 return src_x; 666} 667 668 669 670#endif /* PIPE_ARCH_SSE */ 671 672#endif /* U_SSE_H_ */ 673