1/**************************************************************************
2 *
3 * Copyright 2008-2021 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28/**
29 * @file
30 * SSE intrinsics portability header.
31 *
32 * Although the SSE intrinsics are support by all modern x86 and x86-64
33 * compilers, there are some intrisincs missing in some implementations
34 * (especially older MSVC versions). This header abstracts that away.
35 */
36
37#ifndef U_SSE_H_
38#define U_SSE_H_
39
40#include "pipe/p_config.h"
41#include "pipe/p_compiler.h"
42#include "util/u_debug.h"
43
44#if defined(PIPE_ARCH_SSE)
45
46#include <emmintrin.h>
47
48
49union m128i {
50   __m128i m;
51   ubyte ub[16];
52   ushort us[8];
53   uint ui[4];
54};
55
56static inline void u_print_epi8(const char *name, __m128i r)
57{
58   union { __m128i m; ubyte ub[16]; } u;
59   u.m = r;
60
61   debug_printf("%s: "
62                "%02x/"
63                "%02x/"
64                "%02x/"
65                "%02x/"
66                "%02x/"
67                "%02x/"
68                "%02x/"
69                "%02x/"
70                "%02x/"
71                "%02x/"
72                "%02x/"
73                "%02x/"
74                "%02x/"
75                "%02x/"
76                "%02x/"
77                "%02x\n",
78                name,
79                u.ub[0],  u.ub[1],  u.ub[2],  u.ub[3],
80                u.ub[4],  u.ub[5],  u.ub[6],  u.ub[7],
81                u.ub[8],  u.ub[9],  u.ub[10], u.ub[11],
82                u.ub[12], u.ub[13], u.ub[14], u.ub[15]);
83}
84
85static inline void u_print_epi16(const char *name, __m128i r)
86{
87   union { __m128i m; ushort us[8]; } u;
88   u.m = r;
89
90   debug_printf("%s: "
91                "%04x/"
92                "%04x/"
93                "%04x/"
94                "%04x/"
95                "%04x/"
96                "%04x/"
97                "%04x/"
98                "%04x\n",
99                name,
100                u.us[0],  u.us[1],  u.us[2],  u.us[3],
101                u.us[4],  u.us[5],  u.us[6],  u.us[7]);
102}
103
104static inline void u_print_epi32(const char *name, __m128i r)
105{
106   union { __m128i m; uint ui[4]; } u;
107   u.m = r;
108
109   debug_printf("%s: "
110                "%08x/"
111                "%08x/"
112                "%08x/"
113                "%08x\n",
114                name,
115                u.ui[0],  u.ui[1],  u.ui[2],  u.ui[3]);
116}
117
118static inline void u_print_ps(const char *name, __m128 r)
119{
120   union { __m128 m; float f[4]; } u;
121   u.m = r;
122
123   debug_printf("%s: "
124                "%f/"
125                "%f/"
126                "%f/"
127                "%f\n",
128                name,
129                u.f[0],  u.f[1],  u.f[2],  u.f[3]);
130}
131
132
133#define U_DUMP_EPI32(a) u_print_epi32(#a, a)
134#define U_DUMP_EPI16(a) u_print_epi16(#a, a)
135#define U_DUMP_EPI8(a)  u_print_epi8(#a, a)
136#define U_DUMP_PS(a)    u_print_ps(#a, a)
137
138/*
139 * Provide an SSE implementation of _mm_mul_epi32() in terms of
140 * _mm_mul_epu32().
141 *
142 * Basically, albeit surprising at first (and second, and third...) look
143 * if a * b is done signed instead of unsigned, can just
144 * subtract b from the high bits of the result if a is negative
145 * (and the same for a if b is negative). Modular arithmetic at its best!
146 *
147 * So for int32 a,b in crude pseudo-code ("*" here denoting a widening mul)
148 * fixupb = (signmask(b) & a) << 32ULL
149 * fixupa = (signmask(a) & b) << 32ULL
150 * a * b = (unsigned)a * (unsigned)b - fixupb - fixupa
151 * = (unsigned)a * (unsigned)b -(fixupb + fixupa)
152 *
153 * This does both lo (dwords 0/2) and hi parts (1/3) at the same time due
154 * to some optimization potential.
155 */
156static inline __m128i
157mm_mullohi_epi32(const __m128i a, const __m128i b, __m128i *res13)
158{
159   __m128i a13, b13, mul02, mul13;
160   __m128i anegmask, bnegmask, fixup, fixup02, fixup13;
161   a13 = _mm_shuffle_epi32(a, _MM_SHUFFLE(2,3,0,1));
162   b13 = _mm_shuffle_epi32(b, _MM_SHUFFLE(2,3,0,1));
163   anegmask = _mm_srai_epi32(a, 31);
164   bnegmask = _mm_srai_epi32(b, 31);
165   fixup = _mm_add_epi32(_mm_and_si128(anegmask, b),
166                         _mm_and_si128(bnegmask, a));
167   mul02 = _mm_mul_epu32(a, b);
168   mul13 = _mm_mul_epu32(a13, b13);
169   fixup02 = _mm_slli_epi64(fixup, 32);
170   fixup13 = _mm_and_si128(fixup, _mm_set_epi32(-1,0,-1,0));
171   *res13 = _mm_sub_epi64(mul13, fixup13);
172   return _mm_sub_epi64(mul02, fixup02);
173}
174
175
176/* Provide an SSE2 implementation of _mm_mullo_epi32() in terms of
177 * _mm_mul_epu32().
178 *
179 * This always works regardless the signs of the operands, since
180 * the high bits (which would be different) aren't used.
181 *
182 * This seems close enough to the speed of SSE4 and the real
183 * _mm_mullo_epi32() intrinsic as to not justify adding an sse4
184 * dependency at this point.
185 */
186static inline __m128i mm_mullo_epi32(const __m128i a, const __m128i b)
187{
188   __m128i a4   = _mm_srli_epi64(a, 32);  /* shift by one dword */
189   __m128i b4   = _mm_srli_epi64(b, 32);  /* shift by one dword */
190   __m128i ba   = _mm_mul_epu32(b, a);   /* multply dwords 0, 2 */
191   __m128i b4a4 = _mm_mul_epu32(b4, a4); /* multiply dwords 1, 3 */
192
193   /* Interleave the results, either with shuffles or (slightly
194    * faster) direct bit operations:
195    * XXX: might be only true for some cpus (in particular 65nm
196    * Core 2). On most cpus (including that Core 2, but not Nehalem...)
197    * using _mm_shuffle_ps/_mm_shuffle_epi32 might also be faster
198    * than using the 3 instructions below. But logic should be fine
199    * as well, we can't have optimal solution for all cpus (if anything,
200    * should just use _mm_mullo_epi32() if sse41 is available...).
201    */
202#if 0
203   __m128i ba8             = _mm_shuffle_epi32(ba, 8);
204   __m128i b4a48           = _mm_shuffle_epi32(b4a4, 8);
205   __m128i result          = _mm_unpacklo_epi32(ba8, b4a48);
206#else
207   __m128i mask            = _mm_setr_epi32(~0,0,~0,0);
208   __m128i ba_mask         = _mm_and_si128(ba, mask);
209   __m128i b4a4_mask_shift = _mm_slli_epi64(b4a4, 32);
210   __m128i result          = _mm_or_si128(ba_mask, b4a4_mask_shift);
211#endif
212
213   return result;
214}
215
216
217static inline void
218transpose4_epi32(const __m128i * restrict a,
219                 const __m128i * restrict b,
220                 const __m128i * restrict c,
221                 const __m128i * restrict d,
222                 __m128i * restrict o,
223                 __m128i * restrict p,
224                 __m128i * restrict q,
225                 __m128i * restrict r)
226{
227   __m128i t0 = _mm_unpacklo_epi32(*a, *b);
228   __m128i t1 = _mm_unpacklo_epi32(*c, *d);
229   __m128i t2 = _mm_unpackhi_epi32(*a, *b);
230   __m128i t3 = _mm_unpackhi_epi32(*c, *d);
231
232   *o = _mm_unpacklo_epi64(t0, t1);
233   *p = _mm_unpackhi_epi64(t0, t1);
234   *q = _mm_unpacklo_epi64(t2, t3);
235   *r = _mm_unpackhi_epi64(t2, t3);
236}
237
238
239/*
240 * Same as above, except the first two values are already interleaved
241 * (i.e. contain 64bit values).
242 */
243static inline void
244transpose2_64_2_32(const __m128i * restrict a01,
245                   const __m128i * restrict a23,
246                   const __m128i * restrict c,
247                   const __m128i * restrict d,
248                   __m128i * restrict o,
249                   __m128i * restrict p,
250                   __m128i * restrict q,
251                   __m128i * restrict r)
252{
253   __m128i t0 = *a01;
254   __m128i t1 = _mm_unpacklo_epi32(*c, *d);
255   __m128i t2 = *a23;
256   __m128i t3 = _mm_unpackhi_epi32(*c, *d);
257
258   *o = _mm_unpacklo_epi64(t0, t1);
259   *p = _mm_unpackhi_epi64(t0, t1);
260   *q = _mm_unpacklo_epi64(t2, t3);
261   *r = _mm_unpackhi_epi64(t2, t3);
262}
263
264
265#define SCALAR_EPI32(m, i) _mm_shuffle_epi32((m), _MM_SHUFFLE(i,i,i,i))
266
267
268/*
269 * Implements (1-w)*a + w*b = a - wa + wb = w(b-a) + a
270 * ((b-a)*w >> 8) + a
271 * The math behind negative sub results (logic shift/mask) is tricky.
272 *
273 * w -- weight values
274 * a -- src0 values
275 * b -- src1 values
276 */
277static ALWAYS_INLINE __m128i
278util_sse2_lerp_epi16(__m128i w, __m128i a, __m128i b)
279{
280   __m128i res;
281
282   res = _mm_sub_epi16(b, a);
283   res = _mm_mullo_epi16(res, w);
284   res = _mm_srli_epi16(res, 8);
285   /* use add_epi8 instead of add_epi16 so no need to mask off upper bits */
286   res = _mm_add_epi8(res, a);
287
288   return res;
289}
290
291
292/* Apply premultiplied-alpha blending on two pixels simultaneously.
293 * All parameters are packed as 8.8 fixed point values in __m128i SSE
294 * registers, with the upper 8 bits all zero.
295 *
296 * a -- src alpha values
297 * d -- dst color values
298 * s -- src color values
299 */
300static inline __m128i
301util_sse2_premul_blend_epi16( __m128i a, __m128i d, __m128i s)
302{
303   __m128i da, d_sub_da, tmp;
304   tmp      = _mm_mullo_epi16(d, a);
305   da       = _mm_srli_epi16(tmp, 8);
306   d_sub_da = _mm_sub_epi16(d, da);
307
308   return  _mm_add_epi16(s, d_sub_da);
309}
310
311
312/* Apply premultiplied-alpha blending on four pixels in packed BGRA
313 * format (one/inv_src_alpha blend mode).
314 *
315 * src    -- four pixels (bgra8 format)
316 * dst    -- four destination pixels (bgra8)
317 * return -- blended pixels (bgra8)
318 */
319static ALWAYS_INLINE __m128i
320util_sse2_blend_premul_4(const __m128i src,
321                         const __m128i dst)
322{
323
324   __m128i al, ah, dl, dh, sl, sh, rl, rh;
325   __m128i zero = _mm_setzero_si128();
326
327   /* Blend first two pixels:
328    */
329   sl = _mm_unpacklo_epi8(src, zero);
330   dl = _mm_unpacklo_epi8(dst, zero);
331
332   al = _mm_shufflehi_epi16(sl, 0xff);
333   al = _mm_shufflelo_epi16(al, 0xff);
334
335   rl = util_sse2_premul_blend_epi16(al, dl, sl);
336
337   /* Blend second two pixels:
338    */
339   sh = _mm_unpackhi_epi8(src, zero);
340   dh = _mm_unpackhi_epi8(dst, zero);
341
342   ah = _mm_shufflehi_epi16(sh, 0xff);
343   ah = _mm_shufflelo_epi16(ah, 0xff);
344
345   rh = util_sse2_premul_blend_epi16(ah, dh, sh);
346
347   /* Pack the results down to four bgra8 pixels:
348    */
349   return _mm_packus_epi16(rl, rh);
350}
351
352
353/* Apply src-alpha blending on four pixels in packed BGRA
354 * format (srcalpha/inv_src_alpha blend mode).
355 *
356 * src    -- four pixels (bgra8 format)
357 * dst    -- four destination pixels (bgra8)
358 * return -- blended pixels (bgra8)
359 */
360static ALWAYS_INLINE __m128i
361util_sse2_blend_srcalpha_4(const __m128i src,
362                           const __m128i dst)
363{
364
365   __m128i al, ah, dl, dh, sl, sh, rl, rh;
366   __m128i zero = _mm_setzero_si128();
367
368   /* Blend first two pixels:
369    */
370   sl = _mm_unpacklo_epi8(src, zero);
371   dl = _mm_unpacklo_epi8(dst, zero);
372
373   al = _mm_shufflehi_epi16(sl, 0xff);
374   al = _mm_shufflelo_epi16(al, 0xff);
375
376   rl = util_sse2_lerp_epi16(al, dl, sl);
377
378   /* Blend second two pixels:
379    */
380   sh = _mm_unpackhi_epi8(src, zero);
381   dh = _mm_unpackhi_epi8(dst, zero);
382
383   ah = _mm_shufflehi_epi16(sh, 0xff);
384   ah = _mm_shufflelo_epi16(ah, 0xff);
385
386   rh = util_sse2_lerp_epi16(ah, dh, sh);
387
388   /* Pack the results down to four bgra8 pixels:
389    */
390   return _mm_packus_epi16(rl, rh);
391}
392
393
394/**
395 * premultiplies src with constant alpha then
396 * does one/inv_src_alpha blend.
397 *
398 * src 16xi8 (normalized)
399 * dst 16xi8 (normalized)
400 * cst_alpha (constant alpha (u8 value))
401 */
402static ALWAYS_INLINE __m128i
403util_sse2_blend_premul_src_4(const __m128i src,
404                             const __m128i dst,
405                             const unsigned cst_alpha)
406{
407
408   __m128i srca, d, s, rl, rh;
409   __m128i zero = _mm_setzero_si128();
410   __m128i cst_alpha_vec = _mm_set1_epi16(cst_alpha);
411
412   /* Blend first two pixels:
413    */
414   s = _mm_unpacklo_epi8(src, zero);
415   s = _mm_mullo_epi16(s, cst_alpha_vec);
416   /* the shift will cause some precision loss */
417   s = _mm_srli_epi16(s, 8);
418
419   srca = _mm_shufflehi_epi16(s, 0xff);
420   srca = _mm_shufflelo_epi16(srca, 0xff);
421
422   d = _mm_unpacklo_epi8(dst, zero);
423   rl = util_sse2_premul_blend_epi16(srca, d, s);
424
425   /* Blend second two pixels:
426    */
427   s = _mm_unpackhi_epi8(src, zero);
428   s = _mm_mullo_epi16(s, cst_alpha_vec);
429   /* the shift will cause some precision loss */
430   s = _mm_srli_epi16(s, 8);
431
432   srca = _mm_shufflehi_epi16(s, 0xff);
433   srca = _mm_shufflelo_epi16(srca, 0xff);
434
435   d = _mm_unpackhi_epi8(dst, zero);
436   rh = util_sse2_premul_blend_epi16(srca, d, s);
437
438   /* Pack the results down to four bgra8 pixels:
439    */
440   return _mm_packus_epi16(rl, rh);
441}
442
443
444/**
445 * Linear interpolation with SSE2.
446 *
447 * dst, src0, src1 are 16 x i8 vectors, with [0..255] normalized values.
448 *
449 * weight_lo and weight_hi should be a 8 x i16 vectors, in 8.8 fixed point
450 * format, for the low and high components.
451 * We'd want to pass these as values but MSVC limitation forces us to pass these
452 * as pointers since it will complain if more than 3 __m128 are passed by value.
453 */
454static ALWAYS_INLINE __m128i
455util_sse2_lerp_epi8_fixed88(__m128i src0, __m128i src1,
456                            const __m128i * restrict weight_lo,
457                            const __m128i * restrict weight_hi)
458{
459   const __m128i zero = _mm_setzero_si128();
460
461   __m128i src0_lo = _mm_unpacklo_epi8(src0, zero);
462   __m128i src0_hi = _mm_unpackhi_epi8(src0, zero);
463
464   __m128i src1_lo = _mm_unpacklo_epi8(src1, zero);
465   __m128i src1_hi = _mm_unpackhi_epi8(src1, zero);
466
467   __m128i dst_lo;
468   __m128i dst_hi;
469
470   dst_lo = util_sse2_lerp_epi16(*weight_lo, src0_lo, src1_lo);
471   dst_hi = util_sse2_lerp_epi16(*weight_hi, src0_hi, src1_hi);
472
473   return _mm_packus_epi16(dst_lo, dst_hi);
474}
475
476
477/**
478 * Linear interpolation with SSE2.
479 *
480 * dst, src0, src1 are 16 x i8 vectors, with [0..255] normalized values.
481 *
482 * weight should be a 16 x i8 vector, in 0.8 fixed point values.
483 */
484static ALWAYS_INLINE __m128i
485util_sse2_lerp_epi8_fixed08(__m128i src0, __m128i src1,
486                            __m128i weight)
487{
488   const __m128i zero = _mm_setzero_si128();
489   __m128i weight_lo = _mm_unpacklo_epi8(weight, zero);
490   __m128i weight_hi = _mm_unpackhi_epi8(weight, zero);
491
492   return util_sse2_lerp_epi8_fixed88(src0, src1,
493                                      &weight_lo, &weight_hi);
494}
495
496
497/**
498 * Linear interpolation with SSE2.
499 *
500 * dst, src0, src1, and weight are 16 x i8 vectors, with [0..255] normalized
501 * values.
502 */
503static ALWAYS_INLINE __m128i
504util_sse2_lerp_unorm8(__m128i src0, __m128i src1,
505                      __m128i weight)
506{
507   const __m128i zero = _mm_setzero_si128();
508   __m128i weight_lo = _mm_unpacklo_epi8(weight, zero);
509   __m128i weight_hi = _mm_unpackhi_epi8(weight, zero);
510
511#if 0
512   /*
513    * Rescale from [0..255] to [0..256].
514    */
515   weight_lo = _mm_add_epi16(weight_lo, _mm_srli_epi16(weight_lo, 7));
516   weight_hi = _mm_add_epi16(weight_hi, _mm_srli_epi16(weight_hi, 7));
517#endif
518
519   return util_sse2_lerp_epi8_fixed88(src0, src1,
520                                      &weight_lo, &weight_hi);
521}
522
523
524/**
525 * Linear interpolation with SSE2.
526 *
527 * dst, src0, src1, src2, src3 are 16 x i8 vectors, with [0..255] normalized
528 * values.
529 *
530 * ws_lo, ws_hi, wt_lo, wt_hi should be a 8 x i16 vectors, in 8.8 fixed point
531 * format, for the low and high components.
532 * We'd want to pass these as values but MSVC limitation forces us to pass these
533 * as pointers since it will complain if more than 3 __m128 are passed by value.
534 *
535 * This uses ws_lo, ws_hi to interpolate between src0 and src1, as well as to
536 * interpolate between src2 and src3, then uses wt_lo and wt_hi to interpolate
537 * between the resulting vectors.
538 */
539static ALWAYS_INLINE __m128i
540util_sse2_lerp_2d_epi8_fixed88(__m128i src0, __m128i src1,
541                               const __m128i * restrict src2,
542                               const __m128i * restrict src3,
543                               const __m128i * restrict ws_lo,
544                               const __m128i * restrict ws_hi,
545                               const __m128i * restrict wt_lo,
546                               const __m128i * restrict wt_hi)
547{
548   const __m128i zero = _mm_setzero_si128();
549
550   __m128i src0_lo = _mm_unpacklo_epi8(src0, zero);
551   __m128i src0_hi = _mm_unpackhi_epi8(src0, zero);
552
553   __m128i src1_lo = _mm_unpacklo_epi8(src1, zero);
554   __m128i src1_hi = _mm_unpackhi_epi8(src1, zero);
555
556   __m128i src2_lo = _mm_unpacklo_epi8(*src2, zero);
557   __m128i src2_hi = _mm_unpackhi_epi8(*src2, zero);
558
559   __m128i src3_lo = _mm_unpacklo_epi8(*src3, zero);
560   __m128i src3_hi = _mm_unpackhi_epi8(*src3, zero);
561
562   __m128i dst_lo, dst01_lo, dst23_lo;
563   __m128i dst_hi, dst01_hi, dst23_hi;
564
565   dst01_lo = util_sse2_lerp_epi16(*ws_lo, src0_lo, src1_lo);
566   dst01_hi = util_sse2_lerp_epi16(*ws_hi, src0_hi, src1_hi);
567   dst23_lo = util_sse2_lerp_epi16(*ws_lo, src2_lo, src3_lo);
568   dst23_hi = util_sse2_lerp_epi16(*ws_hi, src2_hi, src3_hi);
569
570   dst_lo = util_sse2_lerp_epi16(*wt_lo, dst01_lo, dst23_lo);
571   dst_hi = util_sse2_lerp_epi16(*wt_hi, dst01_hi, dst23_hi);
572
573   return _mm_packus_epi16(dst_lo, dst_hi);
574}
575
576/**
577 * Stretch a row of pixels using linear filter.
578 *
579 * Uses Bresenham's line algorithm using 16.16 fixed point representation for
580 * the error term.
581 *
582 * @param dst_width destination width in pixels
583 * @param src_x    start x0 in 16.16 fixed point format
584 * @param src_xstep step in 16.16. fixed point format
585 *
586 * @return final src_x value (i.e., src_x + dst_width*src_xstep)
587 */
588static ALWAYS_INLINE int32_t
589util_sse2_stretch_row_8unorm(__m128i * restrict dst,
590                             int32_t dst_width,
591                             const uint32_t * restrict src,
592                             int32_t src_x,
593                             int32_t src_xstep)
594{
595   int16_t error0, error1, error2, error3;
596   __m128i error_lo, error_hi, error_step;
597
598   assert(dst_width >= 0);
599   assert(dst_width % 4 == 0);
600
601   error0 = src_x;
602   error1 = error0 + src_xstep;
603   error2 = error1 + src_xstep;
604   error3 = error2 + src_xstep;
605
606   error_lo   = _mm_setr_epi16(error0, error0, error0, error0,
607                               error1, error1, error1, error1);
608   error_hi   = _mm_setr_epi16(error2, error2, error2, error2,
609                               error3, error3, error3, error3);
610   error_step = _mm_set1_epi16(src_xstep << 2);
611
612   dst_width >>= 2;
613   while (dst_width) {
614      uint16_t src_x0;
615      uint16_t src_x1;
616      uint16_t src_x2;
617      uint16_t src_x3;
618      __m128i src0, src1;
619      __m128i weight_lo, weight_hi;
620
621      /*
622       * It is faster to re-compute the coordinates in the scalar integer unit here,
623       * than to fetch the values from the SIMD integer unit.
624       */
625
626      src_x0 = src_x >> 16;
627      src_x += src_xstep;
628      src_x1 = src_x >> 16;
629      src_x += src_xstep;
630      src_x2 = src_x >> 16;
631      src_x += src_xstep;
632      src_x3 = src_x >> 16;
633      src_x += src_xstep;
634
635      /*
636       * Fetch pairs of pixels 64bit at a time, and then swizzle them inplace.
637       */
638
639      {
640         __m128i src_00_10 = _mm_loadl_epi64((const __m128i *)&src[src_x0]);
641         __m128i src_01_11 = _mm_loadl_epi64((const __m128i *)&src[src_x1]);
642         __m128i src_02_12 = _mm_loadl_epi64((const __m128i *)&src[src_x2]);
643         __m128i src_03_13 = _mm_loadl_epi64((const __m128i *)&src[src_x3]);
644
645         __m128i src_00_01_10_11 = _mm_unpacklo_epi32(src_00_10, src_01_11);
646         __m128i src_02_03_12_13 = _mm_unpacklo_epi32(src_02_12, src_03_13);
647
648         src0 = _mm_unpacklo_epi64(src_00_01_10_11, src_02_03_12_13);
649         src1 = _mm_unpackhi_epi64(src_00_01_10_11, src_02_03_12_13);
650      }
651
652      weight_lo = _mm_srli_epi16(error_lo, 8);
653      weight_hi = _mm_srli_epi16(error_hi, 8);
654
655      *dst = util_sse2_lerp_epi8_fixed88(src0, src1,
656                                         &weight_lo, &weight_hi);
657
658      error_lo = _mm_add_epi16(error_lo, error_step);
659      error_hi = _mm_add_epi16(error_hi, error_step);
660
661      ++dst;
662      --dst_width;
663   }
664
665   return src_x;
666}
667
668
669
670#endif /* PIPE_ARCH_SSE */
671
672#endif /* U_SSE_H_ */
673