1/**************************************************************************
2 *
3 * Copyright 2007-2008 VMware, Inc.
4 * All Rights Reserved.
5 * Copyright 2009-2010 VMware, Inc.  All rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29/**
30 * TGSI interpreter/executor.
31 *
32 * Flow control information:
33 *
34 * Since we operate on 'quads' (4 pixels or 4 vertices in parallel)
35 * flow control statements (IF/ELSE/ENDIF, LOOP/ENDLOOP) require special
36 * care since a condition may be true for some quad components but false
37 * for other components.
38 *
39 * We basically execute all statements (even if they're in the part of
40 * an IF/ELSE clause that's "not taken") and use a special mask to
41 * control writing to destination registers.  This is the ExecMask.
42 * See store_dest().
43 *
44 * The ExecMask is computed from three other masks (CondMask, LoopMask and
45 * ContMask) which are controlled by the flow control instructions (namely:
46 * (IF/ELSE/ENDIF, LOOP/ENDLOOP and CONT).
47 *
48 *
49 * Authors:
50 *   Michal Krol
51 *   Brian Paul
52 */
53
54#include "pipe/p_compiler.h"
55#include "pipe/p_state.h"
56#include "pipe/p_shader_tokens.h"
57#include "tgsi/tgsi_dump.h"
58#include "tgsi/tgsi_parse.h"
59#include "tgsi/tgsi_util.h"
60#include "tgsi_exec.h"
61#include "util/compiler.h"
62#include "util/half_float.h"
63#include "util/u_memory.h"
64#include "util/u_math.h"
65#include "util/rounding.h"
66
67
68#define DEBUG_EXECUTION 0
69
70
71#define TILE_TOP_LEFT     0
72#define TILE_TOP_RIGHT    1
73#define TILE_BOTTOM_LEFT  2
74#define TILE_BOTTOM_RIGHT 3
75
76union tgsi_double_channel {
77   double d[TGSI_QUAD_SIZE];
78   unsigned u[TGSI_QUAD_SIZE][2];
79   uint64_t u64[TGSI_QUAD_SIZE];
80   int64_t i64[TGSI_QUAD_SIZE];
81} ALIGN16;
82
83struct ALIGN16 tgsi_double_vector {
84   union tgsi_double_channel xy;
85   union tgsi_double_channel zw;
86};
87
88static void
89micro_abs(union tgsi_exec_channel *dst,
90          const union tgsi_exec_channel *src)
91{
92   dst->f[0] = fabsf(src->f[0]);
93   dst->f[1] = fabsf(src->f[1]);
94   dst->f[2] = fabsf(src->f[2]);
95   dst->f[3] = fabsf(src->f[3]);
96}
97
98static void
99micro_arl(union tgsi_exec_channel *dst,
100          const union tgsi_exec_channel *src)
101{
102   dst->i[0] = (int)floorf(src->f[0]);
103   dst->i[1] = (int)floorf(src->f[1]);
104   dst->i[2] = (int)floorf(src->f[2]);
105   dst->i[3] = (int)floorf(src->f[3]);
106}
107
108static void
109micro_arr(union tgsi_exec_channel *dst,
110          const union tgsi_exec_channel *src)
111{
112   dst->i[0] = (int)floorf(src->f[0] + 0.5f);
113   dst->i[1] = (int)floorf(src->f[1] + 0.5f);
114   dst->i[2] = (int)floorf(src->f[2] + 0.5f);
115   dst->i[3] = (int)floorf(src->f[3] + 0.5f);
116}
117
118static void
119micro_ceil(union tgsi_exec_channel *dst,
120           const union tgsi_exec_channel *src)
121{
122   dst->f[0] = ceilf(src->f[0]);
123   dst->f[1] = ceilf(src->f[1]);
124   dst->f[2] = ceilf(src->f[2]);
125   dst->f[3] = ceilf(src->f[3]);
126}
127
128static void
129micro_cmp(union tgsi_exec_channel *dst,
130          const union tgsi_exec_channel *src0,
131          const union tgsi_exec_channel *src1,
132          const union tgsi_exec_channel *src2)
133{
134   dst->f[0] = src0->f[0] < 0.0f ? src1->f[0] : src2->f[0];
135   dst->f[1] = src0->f[1] < 0.0f ? src1->f[1] : src2->f[1];
136   dst->f[2] = src0->f[2] < 0.0f ? src1->f[2] : src2->f[2];
137   dst->f[3] = src0->f[3] < 0.0f ? src1->f[3] : src2->f[3];
138}
139
140static void
141micro_cos(union tgsi_exec_channel *dst,
142          const union tgsi_exec_channel *src)
143{
144   dst->f[0] = cosf(src->f[0]);
145   dst->f[1] = cosf(src->f[1]);
146   dst->f[2] = cosf(src->f[2]);
147   dst->f[3] = cosf(src->f[3]);
148}
149
150static void
151micro_d2f(union tgsi_exec_channel *dst,
152          const union tgsi_double_channel *src)
153{
154   dst->f[0] = (float)src->d[0];
155   dst->f[1] = (float)src->d[1];
156   dst->f[2] = (float)src->d[2];
157   dst->f[3] = (float)src->d[3];
158}
159
160static void
161micro_d2i(union tgsi_exec_channel *dst,
162          const union tgsi_double_channel *src)
163{
164   dst->i[0] = (int)src->d[0];
165   dst->i[1] = (int)src->d[1];
166   dst->i[2] = (int)src->d[2];
167   dst->i[3] = (int)src->d[3];
168}
169
170static void
171micro_d2u(union tgsi_exec_channel *dst,
172          const union tgsi_double_channel *src)
173{
174   dst->u[0] = (unsigned)src->d[0];
175   dst->u[1] = (unsigned)src->d[1];
176   dst->u[2] = (unsigned)src->d[2];
177   dst->u[3] = (unsigned)src->d[3];
178}
179static void
180micro_dabs(union tgsi_double_channel *dst,
181           const union tgsi_double_channel *src)
182{
183   dst->d[0] = src->d[0] >= 0.0 ? src->d[0] : -src->d[0];
184   dst->d[1] = src->d[1] >= 0.0 ? src->d[1] : -src->d[1];
185   dst->d[2] = src->d[2] >= 0.0 ? src->d[2] : -src->d[2];
186   dst->d[3] = src->d[3] >= 0.0 ? src->d[3] : -src->d[3];
187}
188
189static void
190micro_dadd(union tgsi_double_channel *dst,
191          const union tgsi_double_channel *src)
192{
193   dst->d[0] = src[0].d[0] + src[1].d[0];
194   dst->d[1] = src[0].d[1] + src[1].d[1];
195   dst->d[2] = src[0].d[2] + src[1].d[2];
196   dst->d[3] = src[0].d[3] + src[1].d[3];
197}
198
199static void
200micro_ddiv(union tgsi_double_channel *dst,
201          const union tgsi_double_channel *src)
202{
203   dst->d[0] = src[0].d[0] / src[1].d[0];
204   dst->d[1] = src[0].d[1] / src[1].d[1];
205   dst->d[2] = src[0].d[2] / src[1].d[2];
206   dst->d[3] = src[0].d[3] / src[1].d[3];
207}
208
209static void
210micro_ddx(union tgsi_exec_channel *dst,
211          const union tgsi_exec_channel *src)
212{
213   dst->f[0] =
214   dst->f[1] =
215   dst->f[2] =
216   dst->f[3] = src->f[TILE_BOTTOM_RIGHT] - src->f[TILE_BOTTOM_LEFT];
217}
218
219static void
220micro_ddx_fine(union tgsi_exec_channel *dst,
221          const union tgsi_exec_channel *src)
222{
223   dst->f[0] =
224   dst->f[1] = src->f[TILE_TOP_RIGHT] - src->f[TILE_TOP_LEFT];
225   dst->f[2] =
226   dst->f[3] = src->f[TILE_BOTTOM_RIGHT] - src->f[TILE_BOTTOM_LEFT];
227}
228
229
230static void
231micro_ddy(union tgsi_exec_channel *dst,
232          const union tgsi_exec_channel *src)
233{
234   dst->f[0] =
235   dst->f[1] =
236   dst->f[2] =
237   dst->f[3] = src->f[TILE_BOTTOM_LEFT] - src->f[TILE_TOP_LEFT];
238}
239
240static void
241micro_ddy_fine(union tgsi_exec_channel *dst,
242          const union tgsi_exec_channel *src)
243{
244   dst->f[0] =
245   dst->f[2] = src->f[TILE_BOTTOM_LEFT] - src->f[TILE_TOP_LEFT];
246   dst->f[1] =
247   dst->f[3] = src->f[TILE_BOTTOM_RIGHT] - src->f[TILE_TOP_RIGHT];
248}
249
250static void
251micro_dmul(union tgsi_double_channel *dst,
252           const union tgsi_double_channel *src)
253{
254   dst->d[0] = src[0].d[0] * src[1].d[0];
255   dst->d[1] = src[0].d[1] * src[1].d[1];
256   dst->d[2] = src[0].d[2] * src[1].d[2];
257   dst->d[3] = src[0].d[3] * src[1].d[3];
258}
259
260static void
261micro_dmax(union tgsi_double_channel *dst,
262           const union tgsi_double_channel *src)
263{
264   dst->d[0] = fmax(src[0].d[0], src[1].d[0]);
265   dst->d[1] = fmax(src[0].d[1], src[1].d[1]);
266   dst->d[2] = fmax(src[0].d[2], src[1].d[2]);
267   dst->d[3] = fmax(src[0].d[3], src[1].d[3]);
268}
269
270static void
271micro_dmin(union tgsi_double_channel *dst,
272           const union tgsi_double_channel *src)
273{
274   dst->d[0] = fmin(src[0].d[0], src[1].d[0]);
275   dst->d[1] = fmin(src[0].d[1], src[1].d[1]);
276   dst->d[2] = fmin(src[0].d[2], src[1].d[2]);
277   dst->d[3] = fmin(src[0].d[3], src[1].d[3]);
278}
279
280static void
281micro_dneg(union tgsi_double_channel *dst,
282           const union tgsi_double_channel *src)
283{
284   dst->d[0] = -src->d[0];
285   dst->d[1] = -src->d[1];
286   dst->d[2] = -src->d[2];
287   dst->d[3] = -src->d[3];
288}
289
290static void
291micro_dslt(union tgsi_double_channel *dst,
292           const union tgsi_double_channel *src)
293{
294   dst->u[0][0] = src[0].d[0] < src[1].d[0] ? ~0U : 0U;
295   dst->u[1][0] = src[0].d[1] < src[1].d[1] ? ~0U : 0U;
296   dst->u[2][0] = src[0].d[2] < src[1].d[2] ? ~0U : 0U;
297   dst->u[3][0] = src[0].d[3] < src[1].d[3] ? ~0U : 0U;
298}
299
300static void
301micro_dsne(union tgsi_double_channel *dst,
302           const union tgsi_double_channel *src)
303{
304   dst->u[0][0] = src[0].d[0] != src[1].d[0] ? ~0U : 0U;
305   dst->u[1][0] = src[0].d[1] != src[1].d[1] ? ~0U : 0U;
306   dst->u[2][0] = src[0].d[2] != src[1].d[2] ? ~0U : 0U;
307   dst->u[3][0] = src[0].d[3] != src[1].d[3] ? ~0U : 0U;
308}
309
310static void
311micro_dsge(union tgsi_double_channel *dst,
312           const union tgsi_double_channel *src)
313{
314   dst->u[0][0] = src[0].d[0] >= src[1].d[0] ? ~0U : 0U;
315   dst->u[1][0] = src[0].d[1] >= src[1].d[1] ? ~0U : 0U;
316   dst->u[2][0] = src[0].d[2] >= src[1].d[2] ? ~0U : 0U;
317   dst->u[3][0] = src[0].d[3] >= src[1].d[3] ? ~0U : 0U;
318}
319
320static void
321micro_dseq(union tgsi_double_channel *dst,
322           const union tgsi_double_channel *src)
323{
324   dst->u[0][0] = src[0].d[0] == src[1].d[0] ? ~0U : 0U;
325   dst->u[1][0] = src[0].d[1] == src[1].d[1] ? ~0U : 0U;
326   dst->u[2][0] = src[0].d[2] == src[1].d[2] ? ~0U : 0U;
327   dst->u[3][0] = src[0].d[3] == src[1].d[3] ? ~0U : 0U;
328}
329
330static void
331micro_drcp(union tgsi_double_channel *dst,
332           const union tgsi_double_channel *src)
333{
334   dst->d[0] = 1.0 / src->d[0];
335   dst->d[1] = 1.0 / src->d[1];
336   dst->d[2] = 1.0 / src->d[2];
337   dst->d[3] = 1.0 / src->d[3];
338}
339
340static void
341micro_dsqrt(union tgsi_double_channel *dst,
342            const union tgsi_double_channel *src)
343{
344   dst->d[0] = sqrt(src->d[0]);
345   dst->d[1] = sqrt(src->d[1]);
346   dst->d[2] = sqrt(src->d[2]);
347   dst->d[3] = sqrt(src->d[3]);
348}
349
350static void
351micro_drsq(union tgsi_double_channel *dst,
352          const union tgsi_double_channel *src)
353{
354   dst->d[0] = 1.0 / sqrt(src->d[0]);
355   dst->d[1] = 1.0 / sqrt(src->d[1]);
356   dst->d[2] = 1.0 / sqrt(src->d[2]);
357   dst->d[3] = 1.0 / sqrt(src->d[3]);
358}
359
360static void
361micro_dmad(union tgsi_double_channel *dst,
362           const union tgsi_double_channel *src)
363{
364   dst->d[0] = src[0].d[0] * src[1].d[0] + src[2].d[0];
365   dst->d[1] = src[0].d[1] * src[1].d[1] + src[2].d[1];
366   dst->d[2] = src[0].d[2] * src[1].d[2] + src[2].d[2];
367   dst->d[3] = src[0].d[3] * src[1].d[3] + src[2].d[3];
368}
369
370static void
371micro_dfrac(union tgsi_double_channel *dst,
372            const union tgsi_double_channel *src)
373{
374   dst->d[0] = src->d[0] - floor(src->d[0]);
375   dst->d[1] = src->d[1] - floor(src->d[1]);
376   dst->d[2] = src->d[2] - floor(src->d[2]);
377   dst->d[3] = src->d[3] - floor(src->d[3]);
378}
379
380static void
381micro_dflr(union tgsi_double_channel *dst,
382           const union tgsi_double_channel *src)
383{
384   dst->d[0] = floor(src->d[0]);
385   dst->d[1] = floor(src->d[1]);
386   dst->d[2] = floor(src->d[2]);
387   dst->d[3] = floor(src->d[3]);
388}
389
390static void
391micro_dldexp(union tgsi_double_channel *dst,
392             const union tgsi_double_channel *src0,
393             union tgsi_exec_channel *src1)
394{
395   dst->d[0] = ldexp(src0->d[0], src1->i[0]);
396   dst->d[1] = ldexp(src0->d[1], src1->i[1]);
397   dst->d[2] = ldexp(src0->d[2], src1->i[2]);
398   dst->d[3] = ldexp(src0->d[3], src1->i[3]);
399}
400
401static void
402micro_dfracexp(union tgsi_double_channel *dst,
403               union tgsi_exec_channel *dst_exp,
404               const union tgsi_double_channel *src)
405{
406   dst->d[0] = frexp(src->d[0], &dst_exp->i[0]);
407   dst->d[1] = frexp(src->d[1], &dst_exp->i[1]);
408   dst->d[2] = frexp(src->d[2], &dst_exp->i[2]);
409   dst->d[3] = frexp(src->d[3], &dst_exp->i[3]);
410}
411
412static void
413micro_exp2(union tgsi_exec_channel *dst,
414           const union tgsi_exec_channel *src)
415{
416#if DEBUG
417   /* Inf is okay for this instruction, so clamp it to silence assertions. */
418   uint i;
419   union tgsi_exec_channel clamped;
420
421   for (i = 0; i < 4; i++) {
422      if (src->f[i] > 127.99999f) {
423         clamped.f[i] = 127.99999f;
424      } else if (src->f[i] < -126.99999f) {
425         clamped.f[i] = -126.99999f;
426      } else {
427         clamped.f[i] = src->f[i];
428      }
429   }
430   src = &clamped;
431#endif /* DEBUG */
432
433   dst->f[0] = powf(2.0f, src->f[0]);
434   dst->f[1] = powf(2.0f, src->f[1]);
435   dst->f[2] = powf(2.0f, src->f[2]);
436   dst->f[3] = powf(2.0f, src->f[3]);
437}
438
439static void
440micro_f2d(union tgsi_double_channel *dst,
441          const union tgsi_exec_channel *src)
442{
443   dst->d[0] = (double)src->f[0];
444   dst->d[1] = (double)src->f[1];
445   dst->d[2] = (double)src->f[2];
446   dst->d[3] = (double)src->f[3];
447}
448
449static void
450micro_flr(union tgsi_exec_channel *dst,
451          const union tgsi_exec_channel *src)
452{
453   dst->f[0] = floorf(src->f[0]);
454   dst->f[1] = floorf(src->f[1]);
455   dst->f[2] = floorf(src->f[2]);
456   dst->f[3] = floorf(src->f[3]);
457}
458
459static void
460micro_frc(union tgsi_exec_channel *dst,
461          const union tgsi_exec_channel *src)
462{
463   dst->f[0] = src->f[0] - floorf(src->f[0]);
464   dst->f[1] = src->f[1] - floorf(src->f[1]);
465   dst->f[2] = src->f[2] - floorf(src->f[2]);
466   dst->f[3] = src->f[3] - floorf(src->f[3]);
467}
468
469static void
470micro_i2d(union tgsi_double_channel *dst,
471          const union tgsi_exec_channel *src)
472{
473   dst->d[0] = (double)src->i[0];
474   dst->d[1] = (double)src->i[1];
475   dst->d[2] = (double)src->i[2];
476   dst->d[3] = (double)src->i[3];
477}
478
479static void
480micro_iabs(union tgsi_exec_channel *dst,
481           const union tgsi_exec_channel *src)
482{
483   dst->i[0] = src->i[0] >= 0 ? src->i[0] : -src->i[0];
484   dst->i[1] = src->i[1] >= 0 ? src->i[1] : -src->i[1];
485   dst->i[2] = src->i[2] >= 0 ? src->i[2] : -src->i[2];
486   dst->i[3] = src->i[3] >= 0 ? src->i[3] : -src->i[3];
487}
488
489static void
490micro_ineg(union tgsi_exec_channel *dst,
491           const union tgsi_exec_channel *src)
492{
493   dst->i[0] = -src->i[0];
494   dst->i[1] = -src->i[1];
495   dst->i[2] = -src->i[2];
496   dst->i[3] = -src->i[3];
497}
498
499static void
500micro_lg2(union tgsi_exec_channel *dst,
501          const union tgsi_exec_channel *src)
502{
503   dst->f[0] = logf(src->f[0]) * 1.442695f;
504   dst->f[1] = logf(src->f[1]) * 1.442695f;
505   dst->f[2] = logf(src->f[2]) * 1.442695f;
506   dst->f[3] = logf(src->f[3]) * 1.442695f;
507}
508
509static void
510micro_lrp(union tgsi_exec_channel *dst,
511          const union tgsi_exec_channel *src0,
512          const union tgsi_exec_channel *src1,
513          const union tgsi_exec_channel *src2)
514{
515   dst->f[0] = src0->f[0] * (src1->f[0] - src2->f[0]) + src2->f[0];
516   dst->f[1] = src0->f[1] * (src1->f[1] - src2->f[1]) + src2->f[1];
517   dst->f[2] = src0->f[2] * (src1->f[2] - src2->f[2]) + src2->f[2];
518   dst->f[3] = src0->f[3] * (src1->f[3] - src2->f[3]) + src2->f[3];
519}
520
521static void
522micro_mad(union tgsi_exec_channel *dst,
523          const union tgsi_exec_channel *src0,
524          const union tgsi_exec_channel *src1,
525          const union tgsi_exec_channel *src2)
526{
527   dst->f[0] = src0->f[0] * src1->f[0] + src2->f[0];
528   dst->f[1] = src0->f[1] * src1->f[1] + src2->f[1];
529   dst->f[2] = src0->f[2] * src1->f[2] + src2->f[2];
530   dst->f[3] = src0->f[3] * src1->f[3] + src2->f[3];
531}
532
533static void
534micro_mov(union tgsi_exec_channel *dst,
535          const union tgsi_exec_channel *src)
536{
537   dst->u[0] = src->u[0];
538   dst->u[1] = src->u[1];
539   dst->u[2] = src->u[2];
540   dst->u[3] = src->u[3];
541}
542
543static void
544micro_rcp(union tgsi_exec_channel *dst,
545          const union tgsi_exec_channel *src)
546{
547#if 0 /* for debugging */
548   assert(src->f[0] != 0.0f);
549   assert(src->f[1] != 0.0f);
550   assert(src->f[2] != 0.0f);
551   assert(src->f[3] != 0.0f);
552#endif
553   dst->f[0] = 1.0f / src->f[0];
554   dst->f[1] = 1.0f / src->f[1];
555   dst->f[2] = 1.0f / src->f[2];
556   dst->f[3] = 1.0f / src->f[3];
557}
558
559static void
560micro_rnd(union tgsi_exec_channel *dst,
561          const union tgsi_exec_channel *src)
562{
563   dst->f[0] = _mesa_roundevenf(src->f[0]);
564   dst->f[1] = _mesa_roundevenf(src->f[1]);
565   dst->f[2] = _mesa_roundevenf(src->f[2]);
566   dst->f[3] = _mesa_roundevenf(src->f[3]);
567}
568
569static void
570micro_rsq(union tgsi_exec_channel *dst,
571          const union tgsi_exec_channel *src)
572{
573#if 0 /* for debugging */
574   assert(src->f[0] != 0.0f);
575   assert(src->f[1] != 0.0f);
576   assert(src->f[2] != 0.0f);
577   assert(src->f[3] != 0.0f);
578#endif
579   dst->f[0] = 1.0f / sqrtf(src->f[0]);
580   dst->f[1] = 1.0f / sqrtf(src->f[1]);
581   dst->f[2] = 1.0f / sqrtf(src->f[2]);
582   dst->f[3] = 1.0f / sqrtf(src->f[3]);
583}
584
585static void
586micro_sqrt(union tgsi_exec_channel *dst,
587           const union tgsi_exec_channel *src)
588{
589   dst->f[0] = sqrtf(src->f[0]);
590   dst->f[1] = sqrtf(src->f[1]);
591   dst->f[2] = sqrtf(src->f[2]);
592   dst->f[3] = sqrtf(src->f[3]);
593}
594
595static void
596micro_seq(union tgsi_exec_channel *dst,
597          const union tgsi_exec_channel *src0,
598          const union tgsi_exec_channel *src1)
599{
600   dst->f[0] = src0->f[0] == src1->f[0] ? 1.0f : 0.0f;
601   dst->f[1] = src0->f[1] == src1->f[1] ? 1.0f : 0.0f;
602   dst->f[2] = src0->f[2] == src1->f[2] ? 1.0f : 0.0f;
603   dst->f[3] = src0->f[3] == src1->f[3] ? 1.0f : 0.0f;
604}
605
606static void
607micro_sge(union tgsi_exec_channel *dst,
608          const union tgsi_exec_channel *src0,
609          const union tgsi_exec_channel *src1)
610{
611   dst->f[0] = src0->f[0] >= src1->f[0] ? 1.0f : 0.0f;
612   dst->f[1] = src0->f[1] >= src1->f[1] ? 1.0f : 0.0f;
613   dst->f[2] = src0->f[2] >= src1->f[2] ? 1.0f : 0.0f;
614   dst->f[3] = src0->f[3] >= src1->f[3] ? 1.0f : 0.0f;
615}
616
617static void
618micro_sgn(union tgsi_exec_channel *dst,
619          const union tgsi_exec_channel *src)
620{
621   dst->f[0] = src->f[0] < 0.0f ? -1.0f : src->f[0] > 0.0f ? 1.0f : 0.0f;
622   dst->f[1] = src->f[1] < 0.0f ? -1.0f : src->f[1] > 0.0f ? 1.0f : 0.0f;
623   dst->f[2] = src->f[2] < 0.0f ? -1.0f : src->f[2] > 0.0f ? 1.0f : 0.0f;
624   dst->f[3] = src->f[3] < 0.0f ? -1.0f : src->f[3] > 0.0f ? 1.0f : 0.0f;
625}
626
627static void
628micro_isgn(union tgsi_exec_channel *dst,
629          const union tgsi_exec_channel *src)
630{
631   dst->i[0] = src->i[0] < 0 ? -1 : src->i[0] > 0 ? 1 : 0;
632   dst->i[1] = src->i[1] < 0 ? -1 : src->i[1] > 0 ? 1 : 0;
633   dst->i[2] = src->i[2] < 0 ? -1 : src->i[2] > 0 ? 1 : 0;
634   dst->i[3] = src->i[3] < 0 ? -1 : src->i[3] > 0 ? 1 : 0;
635}
636
637static void
638micro_sgt(union tgsi_exec_channel *dst,
639          const union tgsi_exec_channel *src0,
640          const union tgsi_exec_channel *src1)
641{
642   dst->f[0] = src0->f[0] > src1->f[0] ? 1.0f : 0.0f;
643   dst->f[1] = src0->f[1] > src1->f[1] ? 1.0f : 0.0f;
644   dst->f[2] = src0->f[2] > src1->f[2] ? 1.0f : 0.0f;
645   dst->f[3] = src0->f[3] > src1->f[3] ? 1.0f : 0.0f;
646}
647
648static void
649micro_sin(union tgsi_exec_channel *dst,
650          const union tgsi_exec_channel *src)
651{
652   dst->f[0] = sinf(src->f[0]);
653   dst->f[1] = sinf(src->f[1]);
654   dst->f[2] = sinf(src->f[2]);
655   dst->f[3] = sinf(src->f[3]);
656}
657
658static void
659micro_sle(union tgsi_exec_channel *dst,
660          const union tgsi_exec_channel *src0,
661          const union tgsi_exec_channel *src1)
662{
663   dst->f[0] = src0->f[0] <= src1->f[0] ? 1.0f : 0.0f;
664   dst->f[1] = src0->f[1] <= src1->f[1] ? 1.0f : 0.0f;
665   dst->f[2] = src0->f[2] <= src1->f[2] ? 1.0f : 0.0f;
666   dst->f[3] = src0->f[3] <= src1->f[3] ? 1.0f : 0.0f;
667}
668
669static void
670micro_slt(union tgsi_exec_channel *dst,
671          const union tgsi_exec_channel *src0,
672          const union tgsi_exec_channel *src1)
673{
674   dst->f[0] = src0->f[0] < src1->f[0] ? 1.0f : 0.0f;
675   dst->f[1] = src0->f[1] < src1->f[1] ? 1.0f : 0.0f;
676   dst->f[2] = src0->f[2] < src1->f[2] ? 1.0f : 0.0f;
677   dst->f[3] = src0->f[3] < src1->f[3] ? 1.0f : 0.0f;
678}
679
680static void
681micro_sne(union tgsi_exec_channel *dst,
682          const union tgsi_exec_channel *src0,
683          const union tgsi_exec_channel *src1)
684{
685   dst->f[0] = src0->f[0] != src1->f[0] ? 1.0f : 0.0f;
686   dst->f[1] = src0->f[1] != src1->f[1] ? 1.0f : 0.0f;
687   dst->f[2] = src0->f[2] != src1->f[2] ? 1.0f : 0.0f;
688   dst->f[3] = src0->f[3] != src1->f[3] ? 1.0f : 0.0f;
689}
690
691static void
692micro_trunc(union tgsi_exec_channel *dst,
693            const union tgsi_exec_channel *src)
694{
695   dst->f[0] = truncf(src->f[0]);
696   dst->f[1] = truncf(src->f[1]);
697   dst->f[2] = truncf(src->f[2]);
698   dst->f[3] = truncf(src->f[3]);
699}
700
701static void
702micro_u2d(union tgsi_double_channel *dst,
703          const union tgsi_exec_channel *src)
704{
705   dst->d[0] = (double)src->u[0];
706   dst->d[1] = (double)src->u[1];
707   dst->d[2] = (double)src->u[2];
708   dst->d[3] = (double)src->u[3];
709}
710
711static void
712micro_i64abs(union tgsi_double_channel *dst,
713             const union tgsi_double_channel *src)
714{
715   dst->i64[0] = src->i64[0] >= 0.0 ? src->i64[0] : -src->i64[0];
716   dst->i64[1] = src->i64[1] >= 0.0 ? src->i64[1] : -src->i64[1];
717   dst->i64[2] = src->i64[2] >= 0.0 ? src->i64[2] : -src->i64[2];
718   dst->i64[3] = src->i64[3] >= 0.0 ? src->i64[3] : -src->i64[3];
719}
720
721static void
722micro_i64sgn(union tgsi_double_channel *dst,
723             const union tgsi_double_channel *src)
724{
725   dst->i64[0] = src->i64[0] < 0 ? -1 : src->i64[0] > 0 ? 1 : 0;
726   dst->i64[1] = src->i64[1] < 0 ? -1 : src->i64[1] > 0 ? 1 : 0;
727   dst->i64[2] = src->i64[2] < 0 ? -1 : src->i64[2] > 0 ? 1 : 0;
728   dst->i64[3] = src->i64[3] < 0 ? -1 : src->i64[3] > 0 ? 1 : 0;
729}
730
731static void
732micro_i64neg(union tgsi_double_channel *dst,
733             const union tgsi_double_channel *src)
734{
735   dst->i64[0] = -src->i64[0];
736   dst->i64[1] = -src->i64[1];
737   dst->i64[2] = -src->i64[2];
738   dst->i64[3] = -src->i64[3];
739}
740
741static void
742micro_u64seq(union tgsi_double_channel *dst,
743           const union tgsi_double_channel *src)
744{
745   dst->u[0][0] = src[0].u64[0] == src[1].u64[0] ? ~0U : 0U;
746   dst->u[1][0] = src[0].u64[1] == src[1].u64[1] ? ~0U : 0U;
747   dst->u[2][0] = src[0].u64[2] == src[1].u64[2] ? ~0U : 0U;
748   dst->u[3][0] = src[0].u64[3] == src[1].u64[3] ? ~0U : 0U;
749}
750
751static void
752micro_u64sne(union tgsi_double_channel *dst,
753             const union tgsi_double_channel *src)
754{
755   dst->u[0][0] = src[0].u64[0] != src[1].u64[0] ? ~0U : 0U;
756   dst->u[1][0] = src[0].u64[1] != src[1].u64[1] ? ~0U : 0U;
757   dst->u[2][0] = src[0].u64[2] != src[1].u64[2] ? ~0U : 0U;
758   dst->u[3][0] = src[0].u64[3] != src[1].u64[3] ? ~0U : 0U;
759}
760
761static void
762micro_i64slt(union tgsi_double_channel *dst,
763             const union tgsi_double_channel *src)
764{
765   dst->u[0][0] = src[0].i64[0] < src[1].i64[0] ? ~0U : 0U;
766   dst->u[1][0] = src[0].i64[1] < src[1].i64[1] ? ~0U : 0U;
767   dst->u[2][0] = src[0].i64[2] < src[1].i64[2] ? ~0U : 0U;
768   dst->u[3][0] = src[0].i64[3] < src[1].i64[3] ? ~0U : 0U;
769}
770
771static void
772micro_u64slt(union tgsi_double_channel *dst,
773             const union tgsi_double_channel *src)
774{
775   dst->u[0][0] = src[0].u64[0] < src[1].u64[0] ? ~0U : 0U;
776   dst->u[1][0] = src[0].u64[1] < src[1].u64[1] ? ~0U : 0U;
777   dst->u[2][0] = src[0].u64[2] < src[1].u64[2] ? ~0U : 0U;
778   dst->u[3][0] = src[0].u64[3] < src[1].u64[3] ? ~0U : 0U;
779}
780
781static void
782micro_i64sge(union tgsi_double_channel *dst,
783           const union tgsi_double_channel *src)
784{
785   dst->u[0][0] = src[0].i64[0] >= src[1].i64[0] ? ~0U : 0U;
786   dst->u[1][0] = src[0].i64[1] >= src[1].i64[1] ? ~0U : 0U;
787   dst->u[2][0] = src[0].i64[2] >= src[1].i64[2] ? ~0U : 0U;
788   dst->u[3][0] = src[0].i64[3] >= src[1].i64[3] ? ~0U : 0U;
789}
790
791static void
792micro_u64sge(union tgsi_double_channel *dst,
793             const union tgsi_double_channel *src)
794{
795   dst->u[0][0] = src[0].u64[0] >= src[1].u64[0] ? ~0U : 0U;
796   dst->u[1][0] = src[0].u64[1] >= src[1].u64[1] ? ~0U : 0U;
797   dst->u[2][0] = src[0].u64[2] >= src[1].u64[2] ? ~0U : 0U;
798   dst->u[3][0] = src[0].u64[3] >= src[1].u64[3] ? ~0U : 0U;
799}
800
801static void
802micro_u64max(union tgsi_double_channel *dst,
803             const union tgsi_double_channel *src)
804{
805   dst->u64[0] = src[0].u64[0] > src[1].u64[0] ? src[0].u64[0] : src[1].u64[0];
806   dst->u64[1] = src[0].u64[1] > src[1].u64[1] ? src[0].u64[1] : src[1].u64[1];
807   dst->u64[2] = src[0].u64[2] > src[1].u64[2] ? src[0].u64[2] : src[1].u64[2];
808   dst->u64[3] = src[0].u64[3] > src[1].u64[3] ? src[0].u64[3] : src[1].u64[3];
809}
810
811static void
812micro_i64max(union tgsi_double_channel *dst,
813             const union tgsi_double_channel *src)
814{
815   dst->i64[0] = src[0].i64[0] > src[1].i64[0] ? src[0].i64[0] : src[1].i64[0];
816   dst->i64[1] = src[0].i64[1] > src[1].i64[1] ? src[0].i64[1] : src[1].i64[1];
817   dst->i64[2] = src[0].i64[2] > src[1].i64[2] ? src[0].i64[2] : src[1].i64[2];
818   dst->i64[3] = src[0].i64[3] > src[1].i64[3] ? src[0].i64[3] : src[1].i64[3];
819}
820
821static void
822micro_u64min(union tgsi_double_channel *dst,
823             const union tgsi_double_channel *src)
824{
825   dst->u64[0] = src[0].u64[0] < src[1].u64[0] ? src[0].u64[0] : src[1].u64[0];
826   dst->u64[1] = src[0].u64[1] < src[1].u64[1] ? src[0].u64[1] : src[1].u64[1];
827   dst->u64[2] = src[0].u64[2] < src[1].u64[2] ? src[0].u64[2] : src[1].u64[2];
828   dst->u64[3] = src[0].u64[3] < src[1].u64[3] ? src[0].u64[3] : src[1].u64[3];
829}
830
831static void
832micro_i64min(union tgsi_double_channel *dst,
833             const union tgsi_double_channel *src)
834{
835   dst->i64[0] = src[0].i64[0] < src[1].i64[0] ? src[0].i64[0] : src[1].i64[0];
836   dst->i64[1] = src[0].i64[1] < src[1].i64[1] ? src[0].i64[1] : src[1].i64[1];
837   dst->i64[2] = src[0].i64[2] < src[1].i64[2] ? src[0].i64[2] : src[1].i64[2];
838   dst->i64[3] = src[0].i64[3] < src[1].i64[3] ? src[0].i64[3] : src[1].i64[3];
839}
840
841static void
842micro_u64add(union tgsi_double_channel *dst,
843             const union tgsi_double_channel *src)
844{
845   dst->u64[0] = src[0].u64[0] + src[1].u64[0];
846   dst->u64[1] = src[0].u64[1] + src[1].u64[1];
847   dst->u64[2] = src[0].u64[2] + src[1].u64[2];
848   dst->u64[3] = src[0].u64[3] + src[1].u64[3];
849}
850
851static void
852micro_u64mul(union tgsi_double_channel *dst,
853             const union tgsi_double_channel *src)
854{
855   dst->u64[0] = src[0].u64[0] * src[1].u64[0];
856   dst->u64[1] = src[0].u64[1] * src[1].u64[1];
857   dst->u64[2] = src[0].u64[2] * src[1].u64[2];
858   dst->u64[3] = src[0].u64[3] * src[1].u64[3];
859}
860
861static void
862micro_u64div(union tgsi_double_channel *dst,
863             const union tgsi_double_channel *src)
864{
865   dst->u64[0] = src[1].u64[0] ? src[0].u64[0] / src[1].u64[0] : ~0ull;
866   dst->u64[1] = src[1].u64[1] ? src[0].u64[1] / src[1].u64[1] : ~0ull;
867   dst->u64[2] = src[1].u64[2] ? src[0].u64[2] / src[1].u64[2] : ~0ull;
868   dst->u64[3] = src[1].u64[3] ? src[0].u64[3] / src[1].u64[3] : ~0ull;
869}
870
871static void
872micro_i64div(union tgsi_double_channel *dst,
873             const union tgsi_double_channel *src)
874{
875   dst->i64[0] = src[1].i64[0] ? src[0].i64[0] / src[1].i64[0] : 0;
876   dst->i64[1] = src[1].i64[1] ? src[0].i64[1] / src[1].i64[1] : 0;
877   dst->i64[2] = src[1].i64[2] ? src[0].i64[2] / src[1].i64[2] : 0;
878   dst->i64[3] = src[1].i64[3] ? src[0].i64[3] / src[1].i64[3] : 0;
879}
880
881static void
882micro_u64mod(union tgsi_double_channel *dst,
883             const union tgsi_double_channel *src)
884{
885   dst->u64[0] = src[1].u64[0] ? src[0].u64[0] % src[1].u64[0] : ~0ull;
886   dst->u64[1] = src[1].u64[1] ? src[0].u64[1] % src[1].u64[1] : ~0ull;
887   dst->u64[2] = src[1].u64[2] ? src[0].u64[2] % src[1].u64[2] : ~0ull;
888   dst->u64[3] = src[1].u64[3] ? src[0].u64[3] % src[1].u64[3] : ~0ull;
889}
890
891static void
892micro_i64mod(union tgsi_double_channel *dst,
893             const union tgsi_double_channel *src)
894{
895   dst->i64[0] = src[1].i64[0] ? src[0].i64[0] % src[1].i64[0] : ~0ll;
896   dst->i64[1] = src[1].i64[1] ? src[0].i64[1] % src[1].i64[1] : ~0ll;
897   dst->i64[2] = src[1].i64[2] ? src[0].i64[2] % src[1].i64[2] : ~0ll;
898   dst->i64[3] = src[1].i64[3] ? src[0].i64[3] % src[1].i64[3] : ~0ll;
899}
900
901static void
902micro_u64shl(union tgsi_double_channel *dst,
903             const union tgsi_double_channel *src0,
904             union tgsi_exec_channel *src1)
905{
906   unsigned masked_count;
907   masked_count = src1->u[0] & 0x3f;
908   dst->u64[0] = src0->u64[0] << masked_count;
909   masked_count = src1->u[1] & 0x3f;
910   dst->u64[1] = src0->u64[1] << masked_count;
911   masked_count = src1->u[2] & 0x3f;
912   dst->u64[2] = src0->u64[2] << masked_count;
913   masked_count = src1->u[3] & 0x3f;
914   dst->u64[3] = src0->u64[3] << masked_count;
915}
916
917static void
918micro_i64shr(union tgsi_double_channel *dst,
919             const union tgsi_double_channel *src0,
920             union tgsi_exec_channel *src1)
921{
922   unsigned masked_count;
923   masked_count = src1->u[0] & 0x3f;
924   dst->i64[0] = src0->i64[0] >> masked_count;
925   masked_count = src1->u[1] & 0x3f;
926   dst->i64[1] = src0->i64[1] >> masked_count;
927   masked_count = src1->u[2] & 0x3f;
928   dst->i64[2] = src0->i64[2] >> masked_count;
929   masked_count = src1->u[3] & 0x3f;
930   dst->i64[3] = src0->i64[3] >> masked_count;
931}
932
933static void
934micro_u64shr(union tgsi_double_channel *dst,
935             const union tgsi_double_channel *src0,
936             union tgsi_exec_channel *src1)
937{
938   unsigned masked_count;
939   masked_count = src1->u[0] & 0x3f;
940   dst->u64[0] = src0->u64[0] >> masked_count;
941   masked_count = src1->u[1] & 0x3f;
942   dst->u64[1] = src0->u64[1] >> masked_count;
943   masked_count = src1->u[2] & 0x3f;
944   dst->u64[2] = src0->u64[2] >> masked_count;
945   masked_count = src1->u[3] & 0x3f;
946   dst->u64[3] = src0->u64[3] >> masked_count;
947}
948
949enum tgsi_exec_datatype {
950   TGSI_EXEC_DATA_FLOAT,
951   TGSI_EXEC_DATA_INT,
952   TGSI_EXEC_DATA_UINT,
953   TGSI_EXEC_DATA_DOUBLE,
954   TGSI_EXEC_DATA_INT64,
955   TGSI_EXEC_DATA_UINT64,
956};
957
958/** The execution mask depends on the conditional mask and the loop mask */
959#define UPDATE_EXEC_MASK(MACH) \
960      MACH->ExecMask = MACH->CondMask & MACH->LoopMask & MACH->ContMask & MACH->Switch.mask & MACH->FuncMask
961
962
963static const union tgsi_exec_channel ZeroVec =
964   { { 0.0, 0.0, 0.0, 0.0 } };
965
966static const union tgsi_exec_channel OneVec = {
967   {1.0f, 1.0f, 1.0f, 1.0f}
968};
969
970static const union tgsi_exec_channel P128Vec = {
971   {128.0f, 128.0f, 128.0f, 128.0f}
972};
973
974static const union tgsi_exec_channel M128Vec = {
975   {-128.0f, -128.0f, -128.0f, -128.0f}
976};
977
978#ifdef DEBUG
979static void
980print_chan(const char *msg, const union tgsi_exec_channel *chan)
981{
982   debug_printf("%s = {%f, %f, %f, %f}\n",
983                msg, chan->f[0], chan->f[1], chan->f[2], chan->f[3]);
984}
985#endif
986
987
988#ifdef DEBUG
989static void
990print_temp(const struct tgsi_exec_machine *mach, uint index)
991{
992   const struct tgsi_exec_vector *tmp = &mach->Temps[index];
993   int i;
994   debug_printf("Temp[%u] =\n", index);
995   for (i = 0; i < 4; i++) {
996      debug_printf("  %c: { %f, %f, %f, %f }\n",
997                   "XYZW"[i],
998                   tmp->xyzw[i].f[0],
999                   tmp->xyzw[i].f[1],
1000                   tmp->xyzw[i].f[2],
1001                   tmp->xyzw[i].f[3]);
1002   }
1003}
1004#endif
1005
1006
1007void
1008tgsi_exec_set_constant_buffers(struct tgsi_exec_machine *mach,
1009                               unsigned num_bufs,
1010                               const void **bufs,
1011                               const unsigned *buf_sizes)
1012{
1013   unsigned i;
1014
1015   for (i = 0; i < num_bufs; i++) {
1016      mach->Consts[i] = bufs[i];
1017      mach->ConstsSize[i] = buf_sizes[i];
1018   }
1019}
1020
1021/**
1022 * Initialize machine state by expanding tokens to full instructions,
1023 * allocating temporary storage, setting up constants, etc.
1024 * After this, we can call tgsi_exec_machine_run() many times.
1025 */
1026void
1027tgsi_exec_machine_bind_shader(
1028   struct tgsi_exec_machine *mach,
1029   const struct tgsi_token *tokens,
1030   struct tgsi_sampler *sampler,
1031   struct tgsi_image *image,
1032   struct tgsi_buffer *buffer)
1033{
1034   uint k;
1035   struct tgsi_parse_context parse;
1036   struct tgsi_full_instruction *instructions;
1037   struct tgsi_full_declaration *declarations;
1038   uint maxInstructions = 10, numInstructions = 0;
1039   uint maxDeclarations = 10, numDeclarations = 0;
1040
1041#if 0
1042   tgsi_dump(tokens, 0);
1043#endif
1044
1045   mach->Tokens = tokens;
1046   mach->Sampler = sampler;
1047   mach->Image = image;
1048   mach->Buffer = buffer;
1049
1050   if (!tokens) {
1051      /* unbind and free all */
1052      FREE(mach->Declarations);
1053      mach->Declarations = NULL;
1054      mach->NumDeclarations = 0;
1055
1056      FREE(mach->Instructions);
1057      mach->Instructions = NULL;
1058      mach->NumInstructions = 0;
1059
1060      return;
1061   }
1062
1063   k = tgsi_parse_init (&parse, mach->Tokens);
1064   if (k != TGSI_PARSE_OK) {
1065      debug_printf( "Problem parsing!\n" );
1066      return;
1067   }
1068
1069   mach->ImmLimit = 0;
1070   mach->NumOutputs = 0;
1071
1072   for (k = 0; k < TGSI_SEMANTIC_COUNT; k++)
1073      mach->SysSemanticToIndex[k] = -1;
1074
1075   if (mach->ShaderType == PIPE_SHADER_GEOMETRY &&
1076       !mach->UsedGeometryShader) {
1077      struct tgsi_exec_vector *inputs;
1078      struct tgsi_exec_vector *outputs;
1079
1080      inputs = align_malloc(sizeof(struct tgsi_exec_vector) *
1081                            TGSI_MAX_PRIM_VERTICES * PIPE_MAX_SHADER_INPUTS,
1082                            16);
1083
1084      if (!inputs)
1085         return;
1086
1087      outputs = align_malloc(sizeof(struct tgsi_exec_vector) *
1088                             TGSI_MAX_TOTAL_VERTICES, 16);
1089
1090      if (!outputs) {
1091         align_free(inputs);
1092         return;
1093      }
1094
1095      align_free(mach->Inputs);
1096      align_free(mach->Outputs);
1097
1098      mach->Inputs = inputs;
1099      mach->Outputs = outputs;
1100      mach->UsedGeometryShader = TRUE;
1101   }
1102
1103   declarations = (struct tgsi_full_declaration *)
1104      MALLOC( maxDeclarations * sizeof(struct tgsi_full_declaration) );
1105
1106   if (!declarations) {
1107      return;
1108   }
1109
1110   instructions = (struct tgsi_full_instruction *)
1111      MALLOC( maxInstructions * sizeof(struct tgsi_full_instruction) );
1112
1113   if (!instructions) {
1114      FREE( declarations );
1115      return;
1116   }
1117
1118   while( !tgsi_parse_end_of_tokens( &parse ) ) {
1119      uint i;
1120
1121      tgsi_parse_token( &parse );
1122      switch( parse.FullToken.Token.Type ) {
1123      case TGSI_TOKEN_TYPE_DECLARATION:
1124         /* save expanded declaration */
1125         if (numDeclarations == maxDeclarations) {
1126            declarations = REALLOC(declarations,
1127                                   maxDeclarations
1128                                   * sizeof(struct tgsi_full_declaration),
1129                                   (maxDeclarations + 10)
1130                                   * sizeof(struct tgsi_full_declaration));
1131            maxDeclarations += 10;
1132         }
1133         if (parse.FullToken.FullDeclaration.Declaration.File == TGSI_FILE_OUTPUT)
1134            mach->NumOutputs = MAX2(mach->NumOutputs, parse.FullToken.FullDeclaration.Range.Last + 1);
1135         else if (parse.FullToken.FullDeclaration.Declaration.File == TGSI_FILE_SYSTEM_VALUE) {
1136            const struct tgsi_full_declaration *decl = &parse.FullToken.FullDeclaration;
1137            mach->SysSemanticToIndex[decl->Semantic.Name] = decl->Range.First;
1138         }
1139
1140         memcpy(declarations + numDeclarations,
1141                &parse.FullToken.FullDeclaration,
1142                sizeof(declarations[0]));
1143         numDeclarations++;
1144         break;
1145
1146      case TGSI_TOKEN_TYPE_IMMEDIATE:
1147         {
1148            uint size = parse.FullToken.FullImmediate.Immediate.NrTokens - 1;
1149            assert( size <= 4 );
1150            if (mach->ImmLimit >= mach->ImmsReserved) {
1151               unsigned newReserved = mach->ImmsReserved ? 2 * mach->ImmsReserved : 128;
1152               float4 *imms = REALLOC(mach->Imms, mach->ImmsReserved, newReserved * sizeof(float4));
1153               if (imms) {
1154                  mach->ImmsReserved = newReserved;
1155                  mach->Imms = imms;
1156               } else {
1157                  debug_printf("Unable to (re)allocate space for immidiate constants\n");
1158                  break;
1159               }
1160            }
1161
1162            for( i = 0; i < size; i++ ) {
1163               mach->Imms[mach->ImmLimit][i] =
1164		  parse.FullToken.FullImmediate.u[i].Float;
1165            }
1166            mach->ImmLimit += 1;
1167         }
1168         break;
1169
1170      case TGSI_TOKEN_TYPE_INSTRUCTION:
1171
1172         /* save expanded instruction */
1173         if (numInstructions == maxInstructions) {
1174            instructions = REALLOC(instructions,
1175                                   maxInstructions
1176                                   * sizeof(struct tgsi_full_instruction),
1177                                   (maxInstructions + 10)
1178                                   * sizeof(struct tgsi_full_instruction));
1179            maxInstructions += 10;
1180         }
1181
1182         memcpy(instructions + numInstructions,
1183                &parse.FullToken.FullInstruction,
1184                sizeof(instructions[0]));
1185
1186         numInstructions++;
1187         break;
1188
1189      case TGSI_TOKEN_TYPE_PROPERTY:
1190         if (mach->ShaderType == PIPE_SHADER_GEOMETRY) {
1191            if (parse.FullToken.FullProperty.Property.PropertyName == TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES) {
1192               mach->MaxOutputVertices = parse.FullToken.FullProperty.u[0].Data;
1193            }
1194         }
1195         break;
1196
1197      default:
1198         assert( 0 );
1199      }
1200   }
1201   tgsi_parse_free (&parse);
1202
1203   FREE(mach->Declarations);
1204   mach->Declarations = declarations;
1205   mach->NumDeclarations = numDeclarations;
1206
1207   FREE(mach->Instructions);
1208   mach->Instructions = instructions;
1209   mach->NumInstructions = numInstructions;
1210}
1211
1212
1213struct tgsi_exec_machine *
1214tgsi_exec_machine_create(enum pipe_shader_type shader_type)
1215{
1216   struct tgsi_exec_machine *mach;
1217
1218   mach = align_malloc( sizeof *mach, 16 );
1219   if (!mach)
1220      goto fail;
1221
1222   memset(mach, 0, sizeof(*mach));
1223
1224   mach->ShaderType = shader_type;
1225
1226   if (shader_type != PIPE_SHADER_COMPUTE) {
1227      mach->Inputs = align_malloc(sizeof(struct tgsi_exec_vector) * PIPE_MAX_SHADER_INPUTS, 16);
1228      mach->Outputs = align_malloc(sizeof(struct tgsi_exec_vector) * PIPE_MAX_SHADER_OUTPUTS, 16);
1229      if (!mach->Inputs || !mach->Outputs)
1230         goto fail;
1231   }
1232
1233   if (shader_type == PIPE_SHADER_FRAGMENT) {
1234      mach->InputSampleOffsetApply = align_malloc(sizeof(apply_sample_offset_func) * PIPE_MAX_SHADER_INPUTS, 16);
1235      if (!mach->InputSampleOffsetApply)
1236         goto fail;
1237   }
1238
1239#ifdef DEBUG
1240   /* silence warnings */
1241   (void) print_chan;
1242   (void) print_temp;
1243#endif
1244
1245   return mach;
1246
1247fail:
1248   if (mach) {
1249      align_free(mach->InputSampleOffsetApply);
1250      align_free(mach->Inputs);
1251      align_free(mach->Outputs);
1252      align_free(mach);
1253   }
1254   return NULL;
1255}
1256
1257
1258void
1259tgsi_exec_machine_destroy(struct tgsi_exec_machine *mach)
1260{
1261   if (mach) {
1262      FREE(mach->Instructions);
1263      FREE(mach->Declarations);
1264      FREE(mach->Imms);
1265
1266      align_free(mach->InputSampleOffsetApply);
1267      align_free(mach->Inputs);
1268      align_free(mach->Outputs);
1269
1270      align_free(mach);
1271   }
1272}
1273
1274static void
1275micro_add(union tgsi_exec_channel *dst,
1276          const union tgsi_exec_channel *src0,
1277          const union tgsi_exec_channel *src1)
1278{
1279   dst->f[0] = src0->f[0] + src1->f[0];
1280   dst->f[1] = src0->f[1] + src1->f[1];
1281   dst->f[2] = src0->f[2] + src1->f[2];
1282   dst->f[3] = src0->f[3] + src1->f[3];
1283}
1284
1285static void
1286micro_div(
1287   union tgsi_exec_channel *dst,
1288   const union tgsi_exec_channel *src0,
1289   const union tgsi_exec_channel *src1 )
1290{
1291   dst->f[0] = src0->f[0] / src1->f[0];
1292   dst->f[1] = src0->f[1] / src1->f[1];
1293   dst->f[2] = src0->f[2] / src1->f[2];
1294   dst->f[3] = src0->f[3] / src1->f[3];
1295}
1296
1297static void
1298micro_lt(
1299   union tgsi_exec_channel *dst,
1300   const union tgsi_exec_channel *src0,
1301   const union tgsi_exec_channel *src1,
1302   const union tgsi_exec_channel *src2,
1303   const union tgsi_exec_channel *src3 )
1304{
1305   dst->f[0] = src0->f[0] < src1->f[0] ? src2->f[0] : src3->f[0];
1306   dst->f[1] = src0->f[1] < src1->f[1] ? src2->f[1] : src3->f[1];
1307   dst->f[2] = src0->f[2] < src1->f[2] ? src2->f[2] : src3->f[2];
1308   dst->f[3] = src0->f[3] < src1->f[3] ? src2->f[3] : src3->f[3];
1309}
1310
1311static void
1312micro_max(union tgsi_exec_channel *dst,
1313          const union tgsi_exec_channel *src0,
1314          const union tgsi_exec_channel *src1)
1315{
1316   dst->f[0] = fmaxf(src0->f[0], src1->f[0]);
1317   dst->f[1] = fmaxf(src0->f[1], src1->f[1]);
1318   dst->f[2] = fmaxf(src0->f[2], src1->f[2]);
1319   dst->f[3] = fmaxf(src0->f[3], src1->f[3]);
1320}
1321
1322static void
1323micro_min(union tgsi_exec_channel *dst,
1324          const union tgsi_exec_channel *src0,
1325          const union tgsi_exec_channel *src1)
1326{
1327   dst->f[0] = fminf(src0->f[0], src1->f[0]);
1328   dst->f[1] = fminf(src0->f[1], src1->f[1]);
1329   dst->f[2] = fminf(src0->f[2], src1->f[2]);
1330   dst->f[3] = fminf(src0->f[3], src1->f[3]);
1331}
1332
1333static void
1334micro_mul(union tgsi_exec_channel *dst,
1335          const union tgsi_exec_channel *src0,
1336          const union tgsi_exec_channel *src1)
1337{
1338   dst->f[0] = src0->f[0] * src1->f[0];
1339   dst->f[1] = src0->f[1] * src1->f[1];
1340   dst->f[2] = src0->f[2] * src1->f[2];
1341   dst->f[3] = src0->f[3] * src1->f[3];
1342}
1343
1344static void
1345micro_neg(
1346   union tgsi_exec_channel *dst,
1347   const union tgsi_exec_channel *src )
1348{
1349   dst->f[0] = -src->f[0];
1350   dst->f[1] = -src->f[1];
1351   dst->f[2] = -src->f[2];
1352   dst->f[3] = -src->f[3];
1353}
1354
1355static void
1356micro_pow(
1357   union tgsi_exec_channel *dst,
1358   const union tgsi_exec_channel *src0,
1359   const union tgsi_exec_channel *src1 )
1360{
1361   dst->f[0] = powf( src0->f[0], src1->f[0] );
1362   dst->f[1] = powf( src0->f[1], src1->f[1] );
1363   dst->f[2] = powf( src0->f[2], src1->f[2] );
1364   dst->f[3] = powf( src0->f[3], src1->f[3] );
1365}
1366
1367static void
1368micro_ldexp(union tgsi_exec_channel *dst,
1369            const union tgsi_exec_channel *src0,
1370            const union tgsi_exec_channel *src1)
1371{
1372   dst->f[0] = ldexpf(src0->f[0], src1->i[0]);
1373   dst->f[1] = ldexpf(src0->f[1], src1->i[1]);
1374   dst->f[2] = ldexpf(src0->f[2], src1->i[2]);
1375   dst->f[3] = ldexpf(src0->f[3], src1->i[3]);
1376}
1377
1378static void
1379micro_sub(union tgsi_exec_channel *dst,
1380          const union tgsi_exec_channel *src0,
1381          const union tgsi_exec_channel *src1)
1382{
1383   dst->f[0] = src0->f[0] - src1->f[0];
1384   dst->f[1] = src0->f[1] - src1->f[1];
1385   dst->f[2] = src0->f[2] - src1->f[2];
1386   dst->f[3] = src0->f[3] - src1->f[3];
1387}
1388
1389static void
1390fetch_src_file_channel(const struct tgsi_exec_machine *mach,
1391                       const uint file,
1392                       const uint swizzle,
1393                       const union tgsi_exec_channel *index,
1394                       const union tgsi_exec_channel *index2D,
1395                       union tgsi_exec_channel *chan)
1396{
1397   uint i;
1398
1399   assert(swizzle < 4);
1400
1401   switch (file) {
1402   case TGSI_FILE_CONSTANT:
1403      for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1404         /* NOTE: copying the const value as a uint instead of float */
1405         const uint constbuf = index2D->i[i];
1406         const unsigned pos = index->i[i] * 4 + swizzle;
1407         /* const buffer bounds check */
1408         if (pos >= mach->ConstsSize[constbuf] / 4) {
1409            if (0) {
1410               /* Debug: print warning */
1411               static int count = 0;
1412               if (count++ < 100)
1413                  debug_printf("TGSI Exec: const buffer index %d"
1414                                 " out of bounds\n", pos);
1415            }
1416            chan->u[i] = 0;
1417         } else {
1418            const uint *buf = (const uint *)mach->Consts[constbuf];
1419            chan->u[i] = buf[pos];
1420         }
1421      }
1422      break;
1423
1424   case TGSI_FILE_INPUT:
1425      for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1426         /*
1427         if (PIPE_SHADER_GEOMETRY == mach->ShaderType) {
1428            debug_printf("Fetching Input[%d] (2d=%d, 1d=%d)\n",
1429                         index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i],
1430                         index2D->i[i], index->i[i]);
1431                         }*/
1432         int pos = index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i];
1433         assert(pos >= 0);
1434         assert(pos < TGSI_MAX_PRIM_VERTICES * PIPE_MAX_ATTRIBS);
1435         chan->u[i] = mach->Inputs[pos].xyzw[swizzle].u[i];
1436      }
1437      break;
1438
1439   case TGSI_FILE_SYSTEM_VALUE:
1440      for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1441         chan->u[i] = mach->SystemValue[index->i[i]].xyzw[swizzle].u[i];
1442      }
1443      break;
1444
1445   case TGSI_FILE_TEMPORARY:
1446      for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1447         assert(index->i[i] < TGSI_EXEC_NUM_TEMPS);
1448         assert(index2D->i[i] == 0);
1449
1450         chan->u[i] = mach->Temps[index->i[i]].xyzw[swizzle].u[i];
1451      }
1452      break;
1453
1454   case TGSI_FILE_IMMEDIATE:
1455      for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1456         assert(index->i[i] >= 0 && index->i[i] < (int)mach->ImmLimit);
1457         assert(index2D->i[i] == 0);
1458
1459         chan->f[i] = mach->Imms[index->i[i]][swizzle];
1460      }
1461      break;
1462
1463   case TGSI_FILE_ADDRESS:
1464      for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1465         assert(index->i[i] >= 0 && index->i[i] < ARRAY_SIZE(mach->Addrs));
1466         assert(index2D->i[i] == 0);
1467
1468         chan->u[i] = mach->Addrs[index->i[i]].xyzw[swizzle].u[i];
1469      }
1470      break;
1471
1472   case TGSI_FILE_OUTPUT:
1473      /* vertex/fragment output vars can be read too */
1474      for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1475         assert(index->i[i] >= 0);
1476         assert(index2D->i[i] == 0);
1477
1478         chan->u[i] = mach->Outputs[index->i[i]].xyzw[swizzle].u[i];
1479      }
1480      break;
1481
1482   default:
1483      assert(0);
1484      for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1485         chan->u[i] = 0;
1486      }
1487   }
1488}
1489
1490static void
1491get_index_registers(const struct tgsi_exec_machine *mach,
1492                    const struct tgsi_full_src_register *reg,
1493                    union tgsi_exec_channel *index,
1494                    union tgsi_exec_channel *index2D)
1495{
1496   /* We start with a direct index into a register file.
1497    *
1498    *    file[1],
1499    *    where:
1500    *       file = Register.File
1501    *       [1] = Register.Index
1502    */
1503   index->i[0] =
1504   index->i[1] =
1505   index->i[2] =
1506   index->i[3] = reg->Register.Index;
1507
1508   /* There is an extra source register that indirectly subscripts
1509    * a register file. The direct index now becomes an offset
1510    * that is being added to the indirect register.
1511    *
1512    *    file[ind[2].x+1],
1513    *    where:
1514    *       ind = Indirect.File
1515    *       [2] = Indirect.Index
1516    *       .x = Indirect.SwizzleX
1517    */
1518   if (reg->Register.Indirect) {
1519      const uint execmask = mach->ExecMask;
1520
1521      assert(reg->Indirect.File == TGSI_FILE_ADDRESS);
1522      const union tgsi_exec_channel *addr = &mach->Addrs[reg->Indirect.Index].xyzw[reg->Indirect.Swizzle];
1523      for (int i = 0; i < TGSI_QUAD_SIZE; i++)
1524         index->i[i] += addr->u[i];
1525
1526      /* for disabled execution channels, zero-out the index to
1527       * avoid using a potential garbage value.
1528       */
1529      for (int i = 0; i < TGSI_QUAD_SIZE; i++) {
1530         if ((execmask & (1 << i)) == 0)
1531            index->i[i] = 0;
1532      }
1533   }
1534
1535   /* There is an extra source register that is a second
1536    * subscript to a register file. Effectively it means that
1537    * the register file is actually a 2D array of registers.
1538    *
1539    *    file[3][1],
1540    *    where:
1541    *       [3] = Dimension.Index
1542    */
1543   if (reg->Register.Dimension) {
1544      index2D->i[0] =
1545      index2D->i[1] =
1546      index2D->i[2] =
1547      index2D->i[3] = reg->Dimension.Index;
1548
1549      /* Again, the second subscript index can be addressed indirectly
1550       * identically to the first one.
1551       * Nothing stops us from indirectly addressing the indirect register,
1552       * but there is no need for that, so we won't exercise it.
1553       *
1554       *    file[ind[4].y+3][1],
1555       *    where:
1556       *       ind = DimIndirect.File
1557       *       [4] = DimIndirect.Index
1558       *       .y = DimIndirect.SwizzleX
1559       */
1560      if (reg->Dimension.Indirect) {
1561         const uint execmask = mach->ExecMask;
1562
1563         assert(reg->DimIndirect.File == TGSI_FILE_ADDRESS);
1564         const union tgsi_exec_channel *addr = &mach->Addrs[reg->DimIndirect.Index].xyzw[reg->DimIndirect.Swizzle];
1565         for (int i = 0; i < TGSI_QUAD_SIZE; i++)
1566            index2D->i[i] += addr->u[i];
1567
1568         /* for disabled execution channels, zero-out the index to
1569          * avoid using a potential garbage value.
1570          */
1571         for (int i = 0; i < TGSI_QUAD_SIZE; i++) {
1572            if ((execmask & (1 << i)) == 0) {
1573               index2D->i[i] = 0;
1574            }
1575         }
1576      }
1577
1578      /* If by any chance there was a need for a 3D array of register
1579       * files, we would have to check whether Dimension is followed
1580       * by a dimension register and continue the saga.
1581       */
1582   } else {
1583      index2D->i[0] =
1584      index2D->i[1] =
1585      index2D->i[2] =
1586      index2D->i[3] = 0;
1587   }
1588}
1589
1590
1591static void
1592fetch_source_d(const struct tgsi_exec_machine *mach,
1593               union tgsi_exec_channel *chan,
1594               const struct tgsi_full_src_register *reg,
1595	       const uint chan_index)
1596{
1597   union tgsi_exec_channel index;
1598   union tgsi_exec_channel index2D;
1599   uint swizzle;
1600
1601   get_index_registers(mach, reg, &index, &index2D);
1602
1603
1604   swizzle = tgsi_util_get_full_src_register_swizzle( reg, chan_index );
1605   fetch_src_file_channel(mach,
1606                          reg->Register.File,
1607                          swizzle,
1608                          &index,
1609                          &index2D,
1610                          chan);
1611}
1612
1613static void
1614fetch_source(const struct tgsi_exec_machine *mach,
1615             union tgsi_exec_channel *chan,
1616             const struct tgsi_full_src_register *reg,
1617             const uint chan_index,
1618             enum tgsi_exec_datatype src_datatype)
1619{
1620   fetch_source_d(mach, chan, reg, chan_index);
1621
1622   if (reg->Register.Absolute) {
1623      assert(src_datatype == TGSI_EXEC_DATA_FLOAT);
1624      micro_abs(chan, chan);
1625   }
1626
1627   if (reg->Register.Negate) {
1628      if (src_datatype == TGSI_EXEC_DATA_FLOAT) {
1629         micro_neg(chan, chan);
1630      } else {
1631         micro_ineg(chan, chan);
1632      }
1633   }
1634}
1635
1636static union tgsi_exec_channel *
1637store_dest_dstret(struct tgsi_exec_machine *mach,
1638                 const union tgsi_exec_channel *chan,
1639                 const struct tgsi_full_dst_register *reg,
1640                 uint chan_index)
1641{
1642   static union tgsi_exec_channel null;
1643   union tgsi_exec_channel *dst;
1644   int offset = 0;  /* indirection offset */
1645   int index;
1646
1647
1648   /* There is an extra source register that indirectly subscripts
1649    * a register file. The direct index now becomes an offset
1650    * that is being added to the indirect register.
1651    *
1652    *    file[ind[2].x+1],
1653    *    where:
1654    *       ind = Indirect.File
1655    *       [2] = Indirect.Index
1656    *       .x = Indirect.SwizzleX
1657    */
1658   if (reg->Register.Indirect) {
1659      union tgsi_exec_channel index;
1660      union tgsi_exec_channel indir_index;
1661      uint swizzle;
1662
1663      /* which address register (always zero for now) */
1664      index.i[0] =
1665      index.i[1] =
1666      index.i[2] =
1667      index.i[3] = reg->Indirect.Index;
1668
1669      /* get current value of address register[swizzle] */
1670      swizzle = reg->Indirect.Swizzle;
1671
1672      /* fetch values from the address/indirection register */
1673      fetch_src_file_channel(mach,
1674                             reg->Indirect.File,
1675                             swizzle,
1676                             &index,
1677                             &ZeroVec,
1678                             &indir_index);
1679
1680      /* save indirection offset */
1681      offset = indir_index.i[0];
1682   }
1683
1684   switch (reg->Register.File) {
1685   case TGSI_FILE_NULL:
1686      dst = &null;
1687      break;
1688
1689   case TGSI_FILE_OUTPUT:
1690      index = mach->OutputVertexOffset + reg->Register.Index;
1691      dst = &mach->Outputs[offset + index].xyzw[chan_index];
1692#if 0
1693      debug_printf("NumOutputs = %d, TEMP_O_C/I = %d, redindex = %d\n",
1694                   mach->NumOutputs, mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0],
1695                   reg->Register.Index);
1696      if (PIPE_SHADER_GEOMETRY == mach->ShaderType) {
1697         debug_printf("STORING OUT[%d] mask(%d), = (", offset + index, execmask);
1698         for (i = 0; i < TGSI_QUAD_SIZE; i++)
1699            if (execmask & (1 << i))
1700               debug_printf("%f, ", chan->f[i]);
1701         debug_printf(")\n");
1702      }
1703#endif
1704      break;
1705
1706   case TGSI_FILE_TEMPORARY:
1707      index = reg->Register.Index;
1708      assert( index < TGSI_EXEC_NUM_TEMPS );
1709      dst = &mach->Temps[offset + index].xyzw[chan_index];
1710      break;
1711
1712   case TGSI_FILE_ADDRESS:
1713      index = reg->Register.Index;
1714      assert(index >= 0 && index < ARRAY_SIZE(mach->Addrs));
1715      dst = &mach->Addrs[index].xyzw[chan_index];
1716      break;
1717
1718   default:
1719      unreachable("Bad destination file");
1720   }
1721
1722   return dst;
1723}
1724
1725static void
1726store_dest_double(struct tgsi_exec_machine *mach,
1727                 const union tgsi_exec_channel *chan,
1728                 const struct tgsi_full_dst_register *reg,
1729                 uint chan_index)
1730{
1731   union tgsi_exec_channel *dst;
1732   const uint execmask = mach->ExecMask;
1733   int i;
1734
1735   dst = store_dest_dstret(mach, chan, reg, chan_index);
1736   if (!dst)
1737      return;
1738
1739   /* doubles path */
1740   for (i = 0; i < TGSI_QUAD_SIZE; i++)
1741      if (execmask & (1 << i))
1742         dst->i[i] = chan->i[i];
1743}
1744
1745static void
1746store_dest(struct tgsi_exec_machine *mach,
1747           const union tgsi_exec_channel *chan,
1748           const struct tgsi_full_dst_register *reg,
1749           const struct tgsi_full_instruction *inst,
1750           uint chan_index)
1751{
1752   union tgsi_exec_channel *dst;
1753   const uint execmask = mach->ExecMask;
1754   int i;
1755
1756   dst = store_dest_dstret(mach, chan, reg, chan_index);
1757   if (!dst)
1758      return;
1759
1760   if (!inst->Instruction.Saturate) {
1761      for (i = 0; i < TGSI_QUAD_SIZE; i++)
1762         if (execmask & (1 << i))
1763            dst->i[i] = chan->i[i];
1764   }
1765   else {
1766      for (i = 0; i < TGSI_QUAD_SIZE; i++)
1767         if (execmask & (1 << i))
1768            dst->f[i] = fminf(fmaxf(chan->f[i], 0.0f), 1.0f);
1769   }
1770}
1771
1772#define FETCH(VAL,INDEX,CHAN)\
1773    fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_FLOAT)
1774
1775#define IFETCH(VAL,INDEX,CHAN)\
1776    fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_INT)
1777
1778
1779/**
1780 * Execute ARB-style KIL which is predicated by a src register.
1781 * Kill fragment if any of the four values is less than zero.
1782 */
1783static void
1784exec_kill_if(struct tgsi_exec_machine *mach,
1785             const struct tgsi_full_instruction *inst)
1786{
1787   uint uniquemask;
1788   uint chan_index;
1789   uint kilmask = 0; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
1790   union tgsi_exec_channel r[1];
1791
1792   /* This mask stores component bits that were already tested. */
1793   uniquemask = 0;
1794
1795   for (chan_index = 0; chan_index < 4; chan_index++)
1796   {
1797      uint swizzle;
1798      uint i;
1799
1800      /* unswizzle channel */
1801      swizzle = tgsi_util_get_full_src_register_swizzle (
1802                        &inst->Src[0],
1803                        chan_index);
1804
1805      /* check if the component has not been already tested */
1806      if (uniquemask & (1 << swizzle))
1807         continue;
1808      uniquemask |= 1 << swizzle;
1809
1810      FETCH(&r[0], 0, chan_index);
1811      for (i = 0; i < 4; i++)
1812         if (r[0].f[i] < 0.0f)
1813            kilmask |= 1 << i;
1814   }
1815
1816   /* restrict to fragments currently executing */
1817   kilmask &= mach->ExecMask;
1818
1819   mach->KillMask |= kilmask;
1820}
1821
1822/**
1823 * Unconditional fragment kill/discard.
1824 */
1825static void
1826exec_kill(struct tgsi_exec_machine *mach)
1827{
1828   /* kill fragment for all fragments currently executing.
1829    * bit 0 = pixel 0, bit 1 = pixel 1, etc.
1830    */
1831   mach->KillMask |= mach->ExecMask;
1832}
1833
1834static void
1835emit_vertex(struct tgsi_exec_machine *mach,
1836            const struct tgsi_full_instruction *inst)
1837{
1838   union tgsi_exec_channel r[1];
1839   unsigned stream_id;
1840   unsigned prim_count;
1841   /* FIXME: check for exec mask correctly
1842   unsigned i;
1843   for (i = 0; i < TGSI_QUAD_SIZE; ++i) {
1844         if ((mach->ExecMask & (1 << i)))
1845   */
1846   IFETCH(&r[0], 0, TGSI_CHAN_X);
1847   stream_id = r[0].u[0];
1848   prim_count = mach->OutputPrimCount[stream_id];
1849   if (mach->ExecMask) {
1850      if (mach->Primitives[stream_id][prim_count] >= mach->MaxOutputVertices)
1851         return;
1852
1853      if (mach->Primitives[stream_id][prim_count] == 0)
1854         mach->PrimitiveOffsets[stream_id][prim_count] = mach->OutputVertexOffset;
1855      mach->OutputVertexOffset += mach->NumOutputs;
1856      mach->Primitives[stream_id][prim_count]++;
1857   }
1858}
1859
1860static void
1861emit_primitive(struct tgsi_exec_machine *mach,
1862               const struct tgsi_full_instruction *inst)
1863{
1864   unsigned *prim_count;
1865   union tgsi_exec_channel r[1];
1866   unsigned stream_id = 0;
1867   /* FIXME: check for exec mask correctly
1868   unsigned i;
1869   for (i = 0; i < TGSI_QUAD_SIZE; ++i) {
1870         if ((mach->ExecMask & (1 << i)))
1871   */
1872   if (inst) {
1873      IFETCH(&r[0], 0, TGSI_CHAN_X);
1874      stream_id = r[0].u[0];
1875   }
1876   prim_count = &mach->OutputPrimCount[stream_id];
1877   if (mach->ExecMask) {
1878      ++(*prim_count);
1879      assert((*prim_count * mach->NumOutputs) < TGSI_MAX_TOTAL_VERTICES);
1880      mach->Primitives[stream_id][*prim_count] = 0;
1881   }
1882}
1883
1884static void
1885conditional_emit_primitive(struct tgsi_exec_machine *mach)
1886{
1887   if (PIPE_SHADER_GEOMETRY == mach->ShaderType) {
1888      int emitted_verts = mach->Primitives[0][mach->OutputPrimCount[0]];
1889      if (emitted_verts) {
1890         emit_primitive(mach, NULL);
1891      }
1892   }
1893}
1894
1895
1896/*
1897 * Fetch four texture samples using STR texture coordinates.
1898 */
1899static void
1900fetch_texel( struct tgsi_sampler *sampler,
1901             const unsigned sview_idx,
1902             const unsigned sampler_idx,
1903             const union tgsi_exec_channel *s,
1904             const union tgsi_exec_channel *t,
1905             const union tgsi_exec_channel *p,
1906             const union tgsi_exec_channel *c0,
1907             const union tgsi_exec_channel *c1,
1908             float derivs[3][2][TGSI_QUAD_SIZE],
1909             const int8_t offset[3],
1910             enum tgsi_sampler_control control,
1911             union tgsi_exec_channel *r,
1912             union tgsi_exec_channel *g,
1913             union tgsi_exec_channel *b,
1914             union tgsi_exec_channel *a )
1915{
1916   uint j;
1917   float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
1918
1919   /* FIXME: handle explicit derivs, offsets */
1920   sampler->get_samples(sampler, sview_idx, sampler_idx,
1921                        s->f, t->f, p->f, c0->f, c1->f, derivs, offset, control, rgba);
1922
1923   for (j = 0; j < 4; j++) {
1924      r->f[j] = rgba[0][j];
1925      g->f[j] = rgba[1][j];
1926      b->f[j] = rgba[2][j];
1927      a->f[j] = rgba[3][j];
1928   }
1929}
1930
1931
1932#define TEX_MODIFIER_NONE           0
1933#define TEX_MODIFIER_PROJECTED      1
1934#define TEX_MODIFIER_LOD_BIAS       2
1935#define TEX_MODIFIER_EXPLICIT_LOD   3
1936#define TEX_MODIFIER_LEVEL_ZERO     4
1937#define TEX_MODIFIER_GATHER         5
1938
1939/*
1940 * Fetch all 3 (for s,t,r coords) texel offsets, put them into int array.
1941 */
1942static void
1943fetch_texel_offsets(struct tgsi_exec_machine *mach,
1944                    const struct tgsi_full_instruction *inst,
1945                    int8_t offsets[3])
1946{
1947   if (inst->Texture.NumOffsets == 1) {
1948      union tgsi_exec_channel index;
1949      union tgsi_exec_channel offset[3];
1950      index.i[0] = index.i[1] = index.i[2] = index.i[3] = inst->TexOffsets[0].Index;
1951      fetch_src_file_channel(mach, inst->TexOffsets[0].File,
1952                             inst->TexOffsets[0].SwizzleX, &index, &ZeroVec, &offset[0]);
1953      fetch_src_file_channel(mach, inst->TexOffsets[0].File,
1954                             inst->TexOffsets[0].SwizzleY, &index, &ZeroVec, &offset[1]);
1955      fetch_src_file_channel(mach, inst->TexOffsets[0].File,
1956                             inst->TexOffsets[0].SwizzleZ, &index, &ZeroVec, &offset[2]);
1957     offsets[0] = offset[0].i[0];
1958     offsets[1] = offset[1].i[0];
1959     offsets[2] = offset[2].i[0];
1960   } else {
1961     assert(inst->Texture.NumOffsets == 0);
1962     offsets[0] = offsets[1] = offsets[2] = 0;
1963   }
1964}
1965
1966
1967/*
1968 * Fetch dx and dy values for one channel (s, t or r).
1969 * Put dx values into one float array, dy values into another.
1970 */
1971static void
1972fetch_assign_deriv_channel(struct tgsi_exec_machine *mach,
1973                           const struct tgsi_full_instruction *inst,
1974                           unsigned regdsrcx,
1975                           unsigned chan,
1976                           float derivs[2][TGSI_QUAD_SIZE])
1977{
1978   union tgsi_exec_channel d;
1979   FETCH(&d, regdsrcx, chan);
1980   derivs[0][0] = d.f[0];
1981   derivs[0][1] = d.f[1];
1982   derivs[0][2] = d.f[2];
1983   derivs[0][3] = d.f[3];
1984   FETCH(&d, regdsrcx + 1, chan);
1985   derivs[1][0] = d.f[0];
1986   derivs[1][1] = d.f[1];
1987   derivs[1][2] = d.f[2];
1988   derivs[1][3] = d.f[3];
1989}
1990
1991static uint
1992fetch_sampler_unit(struct tgsi_exec_machine *mach,
1993                   const struct tgsi_full_instruction *inst,
1994                   uint sampler)
1995{
1996   uint unit = 0;
1997   int i;
1998   if (inst->Src[sampler].Register.Indirect) {
1999      const struct tgsi_full_src_register *reg = &inst->Src[sampler];
2000      union tgsi_exec_channel indir_index, index2;
2001      const uint execmask = mach->ExecMask;
2002      index2.i[0] =
2003      index2.i[1] =
2004      index2.i[2] =
2005      index2.i[3] = reg->Indirect.Index;
2006
2007      fetch_src_file_channel(mach,
2008                             reg->Indirect.File,
2009                             reg->Indirect.Swizzle,
2010                             &index2,
2011                             &ZeroVec,
2012                             &indir_index);
2013      for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2014         if (execmask & (1 << i)) {
2015            unit = inst->Src[sampler].Register.Index + indir_index.i[i];
2016            break;
2017         }
2018      }
2019
2020   } else {
2021      unit = inst->Src[sampler].Register.Index;
2022   }
2023   return unit;
2024}
2025
2026/*
2027 * execute a texture instruction.
2028 *
2029 * modifier is used to control the channel routing for the
2030 * instruction variants like proj, lod, and texture with lod bias.
2031 * sampler indicates which src register the sampler is contained in.
2032 */
2033static void
2034exec_tex(struct tgsi_exec_machine *mach,
2035         const struct tgsi_full_instruction *inst,
2036         uint modifier, uint sampler)
2037{
2038   const union tgsi_exec_channel *args[5], *proj = NULL;
2039   union tgsi_exec_channel r[5];
2040   enum tgsi_sampler_control control = TGSI_SAMPLER_LOD_NONE;
2041   uint chan;
2042   uint unit;
2043   int8_t offsets[3];
2044   int dim, shadow_ref, i;
2045
2046   unit = fetch_sampler_unit(mach, inst, sampler);
2047   /* always fetch all 3 offsets, overkill but keeps code simple */
2048   fetch_texel_offsets(mach, inst, offsets);
2049
2050   assert(modifier != TEX_MODIFIER_LEVEL_ZERO);
2051   assert(inst->Texture.Texture != TGSI_TEXTURE_BUFFER);
2052
2053   dim = tgsi_util_get_texture_coord_dim(inst->Texture.Texture);
2054   shadow_ref = tgsi_util_get_shadow_ref_src_index(inst->Texture.Texture);
2055
2056   assert(dim <= 4);
2057   if (shadow_ref >= 0)
2058      assert(shadow_ref >= dim && shadow_ref < (int)ARRAY_SIZE(args));
2059
2060   /* fetch modifier to the last argument */
2061   if (modifier != TEX_MODIFIER_NONE) {
2062      const int last = ARRAY_SIZE(args) - 1;
2063
2064      /* fetch modifier from src0.w or src1.x */
2065      if (sampler == 1) {
2066         assert(dim <= TGSI_CHAN_W && shadow_ref != TGSI_CHAN_W);
2067         FETCH(&r[last], 0, TGSI_CHAN_W);
2068      }
2069      else {
2070         FETCH(&r[last], 1, TGSI_CHAN_X);
2071      }
2072
2073      if (modifier != TEX_MODIFIER_PROJECTED) {
2074         args[last] = &r[last];
2075      }
2076      else {
2077         proj = &r[last];
2078         args[last] = &ZeroVec;
2079      }
2080
2081      /* point unused arguments to zero vector */
2082      for (i = dim; i < last; i++)
2083         args[i] = &ZeroVec;
2084
2085      if (modifier == TEX_MODIFIER_EXPLICIT_LOD)
2086         control = TGSI_SAMPLER_LOD_EXPLICIT;
2087      else if (modifier == TEX_MODIFIER_LOD_BIAS)
2088         control = TGSI_SAMPLER_LOD_BIAS;
2089      else if (modifier == TEX_MODIFIER_GATHER)
2090         control = TGSI_SAMPLER_GATHER;
2091   }
2092   else {
2093      for (i = dim; i < (int)ARRAY_SIZE(args); i++)
2094         args[i] = &ZeroVec;
2095   }
2096
2097   /* fetch coordinates */
2098   for (i = 0; i < dim; i++) {
2099      FETCH(&r[i], 0, TGSI_CHAN_X + i);
2100
2101      if (proj)
2102         micro_div(&r[i], &r[i], proj);
2103
2104      args[i] = &r[i];
2105   }
2106
2107   /* fetch reference value */
2108   if (shadow_ref >= 0) {
2109      FETCH(&r[shadow_ref], shadow_ref / 4, TGSI_CHAN_X + (shadow_ref % 4));
2110
2111      if (proj)
2112         micro_div(&r[shadow_ref], &r[shadow_ref], proj);
2113
2114      args[shadow_ref] = &r[shadow_ref];
2115   }
2116
2117   fetch_texel(mach->Sampler, unit, unit,
2118         args[0], args[1], args[2], args[3], args[4],
2119         NULL, offsets, control,
2120         &r[0], &r[1], &r[2], &r[3]);     /* R, G, B, A */
2121
2122#if 0
2123   debug_printf("fetch r: %g %g %g %g\n",
2124         r[0].f[0], r[0].f[1], r[0].f[2], r[0].f[3]);
2125   debug_printf("fetch g: %g %g %g %g\n",
2126         r[1].f[0], r[1].f[1], r[1].f[2], r[1].f[3]);
2127   debug_printf("fetch b: %g %g %g %g\n",
2128         r[2].f[0], r[2].f[1], r[2].f[2], r[2].f[3]);
2129   debug_printf("fetch a: %g %g %g %g\n",
2130         r[3].f[0], r[3].f[1], r[3].f[2], r[3].f[3]);
2131#endif
2132
2133   for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2134      if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2135         store_dest(mach, &r[chan], &inst->Dst[0], inst, chan);
2136      }
2137   }
2138}
2139
2140static void
2141exec_lodq(struct tgsi_exec_machine *mach,
2142          const struct tgsi_full_instruction *inst)
2143{
2144   uint resource_unit, sampler_unit;
2145   unsigned dim;
2146   unsigned i;
2147   union tgsi_exec_channel coords[4];
2148   const union tgsi_exec_channel *args[ARRAY_SIZE(coords)];
2149   union tgsi_exec_channel r[2];
2150
2151   resource_unit = fetch_sampler_unit(mach, inst, 1);
2152   if (inst->Instruction.Opcode == TGSI_OPCODE_LOD) {
2153      uint target = mach->SamplerViews[resource_unit].Resource;
2154      dim = tgsi_util_get_texture_coord_dim(target);
2155      sampler_unit = fetch_sampler_unit(mach, inst, 2);
2156   } else {
2157      dim = tgsi_util_get_texture_coord_dim(inst->Texture.Texture);
2158      sampler_unit = resource_unit;
2159   }
2160   assert(dim <= ARRAY_SIZE(coords));
2161   /* fetch coordinates */
2162   for (i = 0; i < dim; i++) {
2163      FETCH(&coords[i], 0, TGSI_CHAN_X + i);
2164      args[i] = &coords[i];
2165   }
2166   for (i = dim; i < ARRAY_SIZE(coords); i++) {
2167      args[i] = &ZeroVec;
2168   }
2169   mach->Sampler->query_lod(mach->Sampler, resource_unit, sampler_unit,
2170                            args[0]->f,
2171                            args[1]->f,
2172                            args[2]->f,
2173                            args[3]->f,
2174                            TGSI_SAMPLER_LOD_NONE,
2175                            r[0].f,
2176                            r[1].f);
2177
2178   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2179      store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_X);
2180   }
2181   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2182      store_dest(mach, &r[1], &inst->Dst[0], inst, TGSI_CHAN_Y);
2183   }
2184   if (inst->Instruction.Opcode == TGSI_OPCODE_LOD) {
2185      unsigned char swizzles[4];
2186      unsigned chan;
2187      swizzles[0] = inst->Src[1].Register.SwizzleX;
2188      swizzles[1] = inst->Src[1].Register.SwizzleY;
2189      swizzles[2] = inst->Src[1].Register.SwizzleZ;
2190      swizzles[3] = inst->Src[1].Register.SwizzleW;
2191
2192      for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2193         if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2194            if (swizzles[chan] >= 2) {
2195               store_dest(mach, &ZeroVec,
2196                          &inst->Dst[0], inst, chan);
2197            } else {
2198               store_dest(mach, &r[swizzles[chan]],
2199                          &inst->Dst[0], inst, chan);
2200            }
2201         }
2202      }
2203   } else {
2204      if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2205         store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_X);
2206      }
2207      if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2208         store_dest(mach, &r[1], &inst->Dst[0], inst, TGSI_CHAN_Y);
2209      }
2210   }
2211}
2212
2213static void
2214exec_txd(struct tgsi_exec_machine *mach,
2215         const struct tgsi_full_instruction *inst)
2216{
2217   union tgsi_exec_channel r[4];
2218   float derivs[3][2][TGSI_QUAD_SIZE];
2219   uint chan;
2220   uint unit;
2221   int8_t offsets[3];
2222
2223   unit = fetch_sampler_unit(mach, inst, 3);
2224   /* always fetch all 3 offsets, overkill but keeps code simple */
2225   fetch_texel_offsets(mach, inst, offsets);
2226
2227   switch (inst->Texture.Texture) {
2228   case TGSI_TEXTURE_1D:
2229      FETCH(&r[0], 0, TGSI_CHAN_X);
2230
2231      fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2232
2233      fetch_texel(mach->Sampler, unit, unit,
2234                  &r[0], &ZeroVec, &ZeroVec, &ZeroVec, &ZeroVec,   /* S, T, P, C, LOD */
2235                  derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2236                  &r[0], &r[1], &r[2], &r[3]);           /* R, G, B, A */
2237      break;
2238
2239   case TGSI_TEXTURE_SHADOW1D:
2240   case TGSI_TEXTURE_1D_ARRAY:
2241   case TGSI_TEXTURE_SHADOW1D_ARRAY:
2242      /* SHADOW1D/1D_ARRAY would not need Y/Z respectively, but don't bother */
2243      FETCH(&r[0], 0, TGSI_CHAN_X);
2244      FETCH(&r[1], 0, TGSI_CHAN_Y);
2245      FETCH(&r[2], 0, TGSI_CHAN_Z);
2246
2247      fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2248
2249      fetch_texel(mach->Sampler, unit, unit,
2250                  &r[0], &r[1], &r[2], &ZeroVec, &ZeroVec,   /* S, T, P, C, LOD */
2251                  derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2252                  &r[0], &r[1], &r[2], &r[3]);           /* R, G, B, A */
2253      break;
2254
2255   case TGSI_TEXTURE_2D:
2256   case TGSI_TEXTURE_RECT:
2257      FETCH(&r[0], 0, TGSI_CHAN_X);
2258      FETCH(&r[1], 0, TGSI_CHAN_Y);
2259
2260      fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2261      fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
2262
2263      fetch_texel(mach->Sampler, unit, unit,
2264                  &r[0], &r[1], &ZeroVec, &ZeroVec, &ZeroVec,   /* S, T, P, C, LOD */
2265                  derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2266                  &r[0], &r[1], &r[2], &r[3]);           /* R, G, B, A */
2267      break;
2268
2269
2270   case TGSI_TEXTURE_SHADOW2D:
2271   case TGSI_TEXTURE_SHADOWRECT:
2272   case TGSI_TEXTURE_2D_ARRAY:
2273   case TGSI_TEXTURE_SHADOW2D_ARRAY:
2274      /* only SHADOW2D_ARRAY actually needs W */
2275      FETCH(&r[0], 0, TGSI_CHAN_X);
2276      FETCH(&r[1], 0, TGSI_CHAN_Y);
2277      FETCH(&r[2], 0, TGSI_CHAN_Z);
2278      FETCH(&r[3], 0, TGSI_CHAN_W);
2279
2280      fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2281      fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
2282
2283      fetch_texel(mach->Sampler, unit, unit,
2284                  &r[0], &r[1], &r[2], &r[3], &ZeroVec,   /* inputs */
2285                  derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2286                  &r[0], &r[1], &r[2], &r[3]);     /* outputs */
2287      break;
2288
2289   case TGSI_TEXTURE_3D:
2290   case TGSI_TEXTURE_CUBE:
2291   case TGSI_TEXTURE_CUBE_ARRAY:
2292   case TGSI_TEXTURE_SHADOWCUBE:
2293      /* only TEXTURE_CUBE_ARRAY and TEXTURE_SHADOWCUBE actually need W */
2294      FETCH(&r[0], 0, TGSI_CHAN_X);
2295      FETCH(&r[1], 0, TGSI_CHAN_Y);
2296      FETCH(&r[2], 0, TGSI_CHAN_Z);
2297      FETCH(&r[3], 0, TGSI_CHAN_W);
2298
2299      fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2300      fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
2301      fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Z, derivs[2]);
2302
2303      fetch_texel(mach->Sampler, unit, unit,
2304                  &r[0], &r[1], &r[2], &r[3], &ZeroVec,   /* inputs */
2305                  derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2306                  &r[0], &r[1], &r[2], &r[3]);     /* outputs */
2307      break;
2308
2309   default:
2310      assert(0);
2311   }
2312
2313   for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2314      if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2315         store_dest(mach, &r[chan], &inst->Dst[0], inst, chan);
2316      }
2317   }
2318}
2319
2320
2321static void
2322exec_txf(struct tgsi_exec_machine *mach,
2323         const struct tgsi_full_instruction *inst)
2324{
2325   union tgsi_exec_channel r[4];
2326   uint chan;
2327   uint unit;
2328   float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2329   int j;
2330   int8_t offsets[3];
2331   unsigned target;
2332
2333   unit = fetch_sampler_unit(mach, inst, 1);
2334   /* always fetch all 3 offsets, overkill but keeps code simple */
2335   fetch_texel_offsets(mach, inst, offsets);
2336
2337   IFETCH(&r[3], 0, TGSI_CHAN_W);
2338
2339   if (inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I ||
2340       inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I_MS) {
2341      target = mach->SamplerViews[unit].Resource;
2342   }
2343   else {
2344      target = inst->Texture.Texture;
2345   }
2346   switch(target) {
2347   case TGSI_TEXTURE_3D:
2348   case TGSI_TEXTURE_2D_ARRAY:
2349   case TGSI_TEXTURE_SHADOW2D_ARRAY:
2350   case TGSI_TEXTURE_2D_ARRAY_MSAA:
2351      IFETCH(&r[2], 0, TGSI_CHAN_Z);
2352      FALLTHROUGH;
2353   case TGSI_TEXTURE_2D:
2354   case TGSI_TEXTURE_RECT:
2355   case TGSI_TEXTURE_SHADOW1D_ARRAY:
2356   case TGSI_TEXTURE_SHADOW2D:
2357   case TGSI_TEXTURE_SHADOWRECT:
2358   case TGSI_TEXTURE_1D_ARRAY:
2359   case TGSI_TEXTURE_2D_MSAA:
2360      IFETCH(&r[1], 0, TGSI_CHAN_Y);
2361      FALLTHROUGH;
2362   case TGSI_TEXTURE_BUFFER:
2363   case TGSI_TEXTURE_1D:
2364   case TGSI_TEXTURE_SHADOW1D:
2365      IFETCH(&r[0], 0, TGSI_CHAN_X);
2366      break;
2367   default:
2368      assert(0);
2369      break;
2370   }
2371
2372   mach->Sampler->get_texel(mach->Sampler, unit, r[0].i, r[1].i, r[2].i, r[3].i,
2373                            offsets, rgba);
2374
2375   for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2376      r[0].f[j] = rgba[0][j];
2377      r[1].f[j] = rgba[1][j];
2378      r[2].f[j] = rgba[2][j];
2379      r[3].f[j] = rgba[3][j];
2380   }
2381
2382   if (inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I ||
2383       inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I_MS) {
2384      unsigned char swizzles[4];
2385      swizzles[0] = inst->Src[1].Register.SwizzleX;
2386      swizzles[1] = inst->Src[1].Register.SwizzleY;
2387      swizzles[2] = inst->Src[1].Register.SwizzleZ;
2388      swizzles[3] = inst->Src[1].Register.SwizzleW;
2389
2390      for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2391         if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2392            store_dest(mach, &r[swizzles[chan]],
2393                       &inst->Dst[0], inst, chan);
2394         }
2395      }
2396   }
2397   else {
2398      for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2399         if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2400            store_dest(mach, &r[chan], &inst->Dst[0], inst, chan);
2401         }
2402      }
2403   }
2404}
2405
2406static void
2407exec_txq(struct tgsi_exec_machine *mach,
2408         const struct tgsi_full_instruction *inst)
2409{
2410   int result[4];
2411   union tgsi_exec_channel r[4], src;
2412   uint chan;
2413   uint unit;
2414   int i,j;
2415
2416   unit = fetch_sampler_unit(mach, inst, 1);
2417
2418   fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_INT);
2419
2420   /* XXX: This interface can't return per-pixel values */
2421   mach->Sampler->get_dims(mach->Sampler, unit, src.i[0], result);
2422
2423   for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2424      for (j = 0; j < 4; j++) {
2425         r[j].i[i] = result[j];
2426      }
2427   }
2428
2429   for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2430      if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2431         store_dest(mach, &r[chan], &inst->Dst[0], inst, chan);
2432      }
2433   }
2434}
2435
2436static void
2437exec_sample(struct tgsi_exec_machine *mach,
2438            const struct tgsi_full_instruction *inst,
2439            uint modifier, boolean compare)
2440{
2441   const uint resource_unit = inst->Src[1].Register.Index;
2442   const uint sampler_unit = inst->Src[2].Register.Index;
2443   union tgsi_exec_channel r[5], c1;
2444   const union tgsi_exec_channel *lod = &ZeroVec;
2445   enum tgsi_sampler_control control = TGSI_SAMPLER_LOD_NONE;
2446   uint chan;
2447   unsigned char swizzles[4];
2448   int8_t offsets[3];
2449
2450   /* always fetch all 3 offsets, overkill but keeps code simple */
2451   fetch_texel_offsets(mach, inst, offsets);
2452
2453   assert(modifier != TEX_MODIFIER_PROJECTED);
2454
2455   if (modifier != TEX_MODIFIER_NONE) {
2456      if (modifier == TEX_MODIFIER_LOD_BIAS) {
2457         FETCH(&c1, 3, TGSI_CHAN_X);
2458         lod = &c1;
2459         control = TGSI_SAMPLER_LOD_BIAS;
2460      }
2461      else if (modifier == TEX_MODIFIER_EXPLICIT_LOD) {
2462         FETCH(&c1, 3, TGSI_CHAN_X);
2463         lod = &c1;
2464         control = TGSI_SAMPLER_LOD_EXPLICIT;
2465      }
2466      else if (modifier == TEX_MODIFIER_GATHER) {
2467         control = TGSI_SAMPLER_GATHER;
2468      }
2469      else {
2470         assert(modifier == TEX_MODIFIER_LEVEL_ZERO);
2471         control = TGSI_SAMPLER_LOD_ZERO;
2472      }
2473   }
2474
2475   FETCH(&r[0], 0, TGSI_CHAN_X);
2476
2477   switch (mach->SamplerViews[resource_unit].Resource) {
2478   case TGSI_TEXTURE_1D:
2479      if (compare) {
2480         FETCH(&r[2], 3, TGSI_CHAN_X);
2481         fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2482                     &r[0], &ZeroVec, &r[2], &ZeroVec, lod, /* S, T, P, C, LOD */
2483                     NULL, offsets, control,
2484                     &r[0], &r[1], &r[2], &r[3]);     /* R, G, B, A */
2485      }
2486      else {
2487         fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2488                     &r[0], &ZeroVec, &ZeroVec, &ZeroVec, lod, /* S, T, P, C, LOD */
2489                     NULL, offsets, control,
2490                     &r[0], &r[1], &r[2], &r[3]);     /* R, G, B, A */
2491      }
2492      break;
2493
2494   case TGSI_TEXTURE_1D_ARRAY:
2495   case TGSI_TEXTURE_2D:
2496   case TGSI_TEXTURE_RECT:
2497      FETCH(&r[1], 0, TGSI_CHAN_Y);
2498      if (compare) {
2499         FETCH(&r[2], 3, TGSI_CHAN_X);
2500         fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2501                     &r[0], &r[1], &r[2], &ZeroVec, lod,    /* S, T, P, C, LOD */
2502                     NULL, offsets, control,
2503                     &r[0], &r[1], &r[2], &r[3]);  /* outputs */
2504      }
2505      else {
2506         fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2507                     &r[0], &r[1], &ZeroVec, &ZeroVec, lod,    /* S, T, P, C, LOD */
2508                     NULL, offsets, control,
2509                     &r[0], &r[1], &r[2], &r[3]);  /* outputs */
2510      }
2511      break;
2512
2513   case TGSI_TEXTURE_2D_ARRAY:
2514   case TGSI_TEXTURE_3D:
2515   case TGSI_TEXTURE_CUBE:
2516      FETCH(&r[1], 0, TGSI_CHAN_Y);
2517      FETCH(&r[2], 0, TGSI_CHAN_Z);
2518      if(compare) {
2519         FETCH(&r[3], 3, TGSI_CHAN_X);
2520         fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2521                     &r[0], &r[1], &r[2], &r[3], lod,
2522                     NULL, offsets, control,
2523                     &r[0], &r[1], &r[2], &r[3]);
2524      }
2525      else {
2526         fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2527                     &r[0], &r[1], &r[2], &ZeroVec, lod,
2528                     NULL, offsets, control,
2529                     &r[0], &r[1], &r[2], &r[3]);
2530      }
2531      break;
2532
2533   case TGSI_TEXTURE_CUBE_ARRAY:
2534      FETCH(&r[1], 0, TGSI_CHAN_Y);
2535      FETCH(&r[2], 0, TGSI_CHAN_Z);
2536      FETCH(&r[3], 0, TGSI_CHAN_W);
2537      if(compare) {
2538         FETCH(&r[4], 3, TGSI_CHAN_X);
2539         fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2540                     &r[0], &r[1], &r[2], &r[3], &r[4],
2541                     NULL, offsets, control,
2542                     &r[0], &r[1], &r[2], &r[3]);
2543      }
2544      else {
2545         fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2546                     &r[0], &r[1], &r[2], &r[3], lod,
2547                     NULL, offsets, control,
2548                     &r[0], &r[1], &r[2], &r[3]);
2549      }
2550      break;
2551
2552
2553   default:
2554      assert(0);
2555   }
2556
2557   swizzles[0] = inst->Src[1].Register.SwizzleX;
2558   swizzles[1] = inst->Src[1].Register.SwizzleY;
2559   swizzles[2] = inst->Src[1].Register.SwizzleZ;
2560   swizzles[3] = inst->Src[1].Register.SwizzleW;
2561
2562   for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2563      if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2564         store_dest(mach, &r[swizzles[chan]],
2565                    &inst->Dst[0], inst, chan);
2566      }
2567   }
2568}
2569
2570static void
2571exec_sample_d(struct tgsi_exec_machine *mach,
2572              const struct tgsi_full_instruction *inst)
2573{
2574   const uint resource_unit = inst->Src[1].Register.Index;
2575   const uint sampler_unit = inst->Src[2].Register.Index;
2576   union tgsi_exec_channel r[4];
2577   float derivs[3][2][TGSI_QUAD_SIZE];
2578   uint chan;
2579   unsigned char swizzles[4];
2580   int8_t offsets[3];
2581
2582   /* always fetch all 3 offsets, overkill but keeps code simple */
2583   fetch_texel_offsets(mach, inst, offsets);
2584
2585   FETCH(&r[0], 0, TGSI_CHAN_X);
2586
2587   switch (mach->SamplerViews[resource_unit].Resource) {
2588   case TGSI_TEXTURE_1D:
2589   case TGSI_TEXTURE_1D_ARRAY:
2590      /* only 1D array actually needs Y */
2591      FETCH(&r[1], 0, TGSI_CHAN_Y);
2592
2593      fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
2594
2595      fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2596                  &r[0], &r[1], &ZeroVec, &ZeroVec, &ZeroVec,   /* S, T, P, C, LOD */
2597                  derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2598                  &r[0], &r[1], &r[2], &r[3]);           /* R, G, B, A */
2599      break;
2600
2601   case TGSI_TEXTURE_2D:
2602   case TGSI_TEXTURE_RECT:
2603   case TGSI_TEXTURE_2D_ARRAY:
2604      /* only 2D array actually needs Z */
2605      FETCH(&r[1], 0, TGSI_CHAN_Y);
2606      FETCH(&r[2], 0, TGSI_CHAN_Z);
2607
2608      fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
2609      fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Y, derivs[1]);
2610
2611      fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2612                  &r[0], &r[1], &r[2], &ZeroVec, &ZeroVec,   /* inputs */
2613                  derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2614                  &r[0], &r[1], &r[2], &r[3]);     /* outputs */
2615      break;
2616
2617   case TGSI_TEXTURE_3D:
2618   case TGSI_TEXTURE_CUBE:
2619   case TGSI_TEXTURE_CUBE_ARRAY:
2620      /* only cube array actually needs W */
2621      FETCH(&r[1], 0, TGSI_CHAN_Y);
2622      FETCH(&r[2], 0, TGSI_CHAN_Z);
2623      FETCH(&r[3], 0, TGSI_CHAN_W);
2624
2625      fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
2626      fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Y, derivs[1]);
2627      fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Z, derivs[2]);
2628
2629      fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2630                  &r[0], &r[1], &r[2], &r[3], &ZeroVec,
2631                  derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2632                  &r[0], &r[1], &r[2], &r[3]);
2633      break;
2634
2635   default:
2636      assert(0);
2637   }
2638
2639   swizzles[0] = inst->Src[1].Register.SwizzleX;
2640   swizzles[1] = inst->Src[1].Register.SwizzleY;
2641   swizzles[2] = inst->Src[1].Register.SwizzleZ;
2642   swizzles[3] = inst->Src[1].Register.SwizzleW;
2643
2644   for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2645      if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2646         store_dest(mach, &r[swizzles[chan]],
2647                    &inst->Dst[0], inst, chan);
2648      }
2649   }
2650}
2651
2652
2653/**
2654 * Evaluate a constant-valued coefficient at the position of the
2655 * current quad.
2656 */
2657static void
2658eval_constant_coef(
2659   struct tgsi_exec_machine *mach,
2660   unsigned attrib,
2661   unsigned chan )
2662{
2663   unsigned i;
2664
2665   for( i = 0; i < TGSI_QUAD_SIZE; i++ ) {
2666      mach->Inputs[attrib].xyzw[chan].f[i] = mach->InterpCoefs[attrib].a0[chan];
2667   }
2668}
2669
2670static void
2671interp_constant_offset(
2672      UNUSED const struct tgsi_exec_machine *mach,
2673      UNUSED unsigned attrib,
2674      UNUSED unsigned chan,
2675      UNUSED float ofs_x,
2676      UNUSED float ofs_y,
2677      UNUSED union tgsi_exec_channel *out_chan)
2678{
2679}
2680
2681/**
2682 * Evaluate a linear-valued coefficient at the position of the
2683 * current quad.
2684 */
2685static void
2686interp_linear_offset(
2687      const struct tgsi_exec_machine *mach,
2688      unsigned attrib,
2689      unsigned chan,
2690      float ofs_x,
2691      float ofs_y,
2692      union tgsi_exec_channel *out_chan)
2693{
2694   const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2695   const float dady = mach->InterpCoefs[attrib].dady[chan];
2696   const float delta = ofs_x * dadx + ofs_y * dady;
2697   out_chan->f[0] += delta;
2698   out_chan->f[1] += delta;
2699   out_chan->f[2] += delta;
2700   out_chan->f[3] += delta;
2701}
2702
2703static void
2704eval_linear_coef(struct tgsi_exec_machine *mach,
2705                 unsigned attrib,
2706                 unsigned chan)
2707{
2708   const float x = mach->QuadPos.xyzw[0].f[0];
2709   const float y = mach->QuadPos.xyzw[1].f[0];
2710   const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2711   const float dady = mach->InterpCoefs[attrib].dady[chan];
2712   const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
2713
2714   mach->Inputs[attrib].xyzw[chan].f[0] = a0;
2715   mach->Inputs[attrib].xyzw[chan].f[1] = a0 + dadx;
2716   mach->Inputs[attrib].xyzw[chan].f[2] = a0 + dady;
2717   mach->Inputs[attrib].xyzw[chan].f[3] = a0 + dadx + dady;
2718}
2719
2720/**
2721 * Evaluate a perspective-valued coefficient at the position of the
2722 * current quad.
2723 */
2724
2725static void
2726interp_perspective_offset(
2727   const struct tgsi_exec_machine *mach,
2728   unsigned attrib,
2729   unsigned chan,
2730   float ofs_x,
2731   float ofs_y,
2732   union tgsi_exec_channel *out_chan)
2733{
2734   const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2735   const float dady = mach->InterpCoefs[attrib].dady[chan];
2736   const float *w = mach->QuadPos.xyzw[3].f;
2737   const float delta = ofs_x * dadx + ofs_y * dady;
2738   out_chan->f[0] += delta / w[0];
2739   out_chan->f[1] += delta / w[1];
2740   out_chan->f[2] += delta / w[2];
2741   out_chan->f[3] += delta / w[3];
2742}
2743
2744static void
2745eval_perspective_coef(
2746   struct tgsi_exec_machine *mach,
2747   unsigned attrib,
2748   unsigned chan )
2749{
2750   const float x = mach->QuadPos.xyzw[0].f[0];
2751   const float y = mach->QuadPos.xyzw[1].f[0];
2752   const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2753   const float dady = mach->InterpCoefs[attrib].dady[chan];
2754   const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
2755   const float *w = mach->QuadPos.xyzw[3].f;
2756   /* divide by W here */
2757   mach->Inputs[attrib].xyzw[chan].f[0] = a0 / w[0];
2758   mach->Inputs[attrib].xyzw[chan].f[1] = (a0 + dadx) / w[1];
2759   mach->Inputs[attrib].xyzw[chan].f[2] = (a0 + dady) / w[2];
2760   mach->Inputs[attrib].xyzw[chan].f[3] = (a0 + dadx + dady) / w[3];
2761}
2762
2763
2764typedef void (* eval_coef_func)(
2765   struct tgsi_exec_machine *mach,
2766   unsigned attrib,
2767   unsigned chan );
2768
2769static void
2770exec_declaration(struct tgsi_exec_machine *mach,
2771                 const struct tgsi_full_declaration *decl)
2772{
2773   if (decl->Declaration.File == TGSI_FILE_SAMPLER_VIEW) {
2774      mach->SamplerViews[decl->Range.First] = decl->SamplerView;
2775      return;
2776   }
2777
2778   if (mach->ShaderType == PIPE_SHADER_FRAGMENT) {
2779      if (decl->Declaration.File == TGSI_FILE_INPUT) {
2780         uint first, last, mask;
2781
2782         first = decl->Range.First;
2783         last = decl->Range.Last;
2784         mask = decl->Declaration.UsageMask;
2785
2786         /* XXX we could remove this special-case code since
2787          * mach->InterpCoefs[first].a0 should already have the
2788          * front/back-face value.  But we should first update the
2789          * ureg code to emit the right UsageMask value (WRITEMASK_X).
2790          * Then, we could remove the tgsi_exec_machine::Face field.
2791          */
2792         /* XXX make FACE a system value */
2793         if (decl->Semantic.Name == TGSI_SEMANTIC_FACE) {
2794            uint i;
2795
2796            assert(decl->Semantic.Index == 0);
2797            assert(first == last);
2798
2799            for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2800               mach->Inputs[first].xyzw[0].f[i] = mach->Face;
2801            }
2802         } else {
2803            eval_coef_func eval;
2804            apply_sample_offset_func interp;
2805            uint i, j;
2806
2807            switch (decl->Interp.Interpolate) {
2808            case TGSI_INTERPOLATE_CONSTANT:
2809               eval = eval_constant_coef;
2810               interp = interp_constant_offset;
2811               break;
2812
2813            case TGSI_INTERPOLATE_LINEAR:
2814               eval = eval_linear_coef;
2815               interp = interp_linear_offset;
2816               break;
2817
2818            case TGSI_INTERPOLATE_PERSPECTIVE:
2819               eval = eval_perspective_coef;
2820               interp = interp_perspective_offset;
2821               break;
2822
2823            case TGSI_INTERPOLATE_COLOR:
2824               eval = mach->flatshade_color ? eval_constant_coef : eval_perspective_coef;
2825               interp = mach->flatshade_color ? interp_constant_offset : interp_perspective_offset;
2826               break;
2827
2828            default:
2829               assert(0);
2830               return;
2831            }
2832
2833            for (i = first; i <= last; i++)
2834               mach->InputSampleOffsetApply[i] = interp;
2835
2836            for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
2837               if (mask & (1 << j)) {
2838                  for (i = first; i <= last; i++) {
2839                     eval(mach, i, j);
2840                  }
2841               }
2842            }
2843         }
2844
2845         if (DEBUG_EXECUTION) {
2846            uint i, j;
2847            for (i = first; i <= last; ++i) {
2848               debug_printf("IN[%2u] = ", i);
2849               for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
2850                  if (j > 0) {
2851                     debug_printf("         ");
2852                  }
2853                  debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
2854                               mach->Inputs[i].xyzw[0].f[j], mach->Inputs[i].xyzw[0].u[j],
2855                               mach->Inputs[i].xyzw[1].f[j], mach->Inputs[i].xyzw[1].u[j],
2856                               mach->Inputs[i].xyzw[2].f[j], mach->Inputs[i].xyzw[2].u[j],
2857                               mach->Inputs[i].xyzw[3].f[j], mach->Inputs[i].xyzw[3].u[j]);
2858               }
2859            }
2860         }
2861      }
2862   }
2863
2864}
2865
2866typedef void (* micro_unary_op)(union tgsi_exec_channel *dst,
2867                                const union tgsi_exec_channel *src);
2868
2869static void
2870exec_scalar_unary(struct tgsi_exec_machine *mach,
2871                  const struct tgsi_full_instruction *inst,
2872                  micro_unary_op op,
2873                  enum tgsi_exec_datatype src_datatype)
2874{
2875   unsigned int chan;
2876   union tgsi_exec_channel src;
2877   union tgsi_exec_channel dst;
2878
2879   fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, src_datatype);
2880   op(&dst, &src);
2881   for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2882      if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2883         store_dest(mach, &dst, &inst->Dst[0], inst, chan);
2884      }
2885   }
2886}
2887
2888static void
2889exec_vector_unary(struct tgsi_exec_machine *mach,
2890                  const struct tgsi_full_instruction *inst,
2891                  micro_unary_op op,
2892                  enum tgsi_exec_datatype src_datatype)
2893{
2894   unsigned int chan;
2895   struct tgsi_exec_vector dst;
2896
2897   for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2898      if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2899         union tgsi_exec_channel src;
2900
2901         fetch_source(mach, &src, &inst->Src[0], chan, src_datatype);
2902         op(&dst.xyzw[chan], &src);
2903      }
2904   }
2905   for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2906      if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2907         store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan);
2908      }
2909   }
2910}
2911
2912typedef void (* micro_binary_op)(union tgsi_exec_channel *dst,
2913                                 const union tgsi_exec_channel *src0,
2914                                 const union tgsi_exec_channel *src1);
2915
2916static void
2917exec_scalar_binary(struct tgsi_exec_machine *mach,
2918                   const struct tgsi_full_instruction *inst,
2919                   micro_binary_op op,
2920                   enum tgsi_exec_datatype src_datatype)
2921{
2922   unsigned int chan;
2923   union tgsi_exec_channel src[2];
2924   union tgsi_exec_channel dst;
2925
2926   fetch_source(mach, &src[0], &inst->Src[0], TGSI_CHAN_X, src_datatype);
2927   fetch_source(mach, &src[1], &inst->Src[1], TGSI_CHAN_X, src_datatype);
2928   op(&dst, &src[0], &src[1]);
2929   for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2930      if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2931         store_dest(mach, &dst, &inst->Dst[0], inst, chan);
2932      }
2933   }
2934}
2935
2936static void
2937exec_vector_binary(struct tgsi_exec_machine *mach,
2938                   const struct tgsi_full_instruction *inst,
2939                   micro_binary_op op,
2940                   enum tgsi_exec_datatype src_datatype)
2941{
2942   unsigned int chan;
2943   struct tgsi_exec_vector dst;
2944
2945   for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2946      if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2947         union tgsi_exec_channel src[2];
2948
2949         fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
2950         fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
2951         op(&dst.xyzw[chan], &src[0], &src[1]);
2952      }
2953   }
2954   for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2955      if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2956         store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan);
2957      }
2958   }
2959}
2960
2961typedef void (* micro_trinary_op)(union tgsi_exec_channel *dst,
2962                                  const union tgsi_exec_channel *src0,
2963                                  const union tgsi_exec_channel *src1,
2964                                  const union tgsi_exec_channel *src2);
2965
2966static void
2967exec_vector_trinary(struct tgsi_exec_machine *mach,
2968                    const struct tgsi_full_instruction *inst,
2969                    micro_trinary_op op,
2970                    enum tgsi_exec_datatype src_datatype)
2971{
2972   unsigned int chan;
2973   struct tgsi_exec_vector dst;
2974
2975   for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2976      if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2977         union tgsi_exec_channel src[3];
2978
2979         fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
2980         fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
2981         fetch_source(mach, &src[2], &inst->Src[2], chan, src_datatype);
2982         op(&dst.xyzw[chan], &src[0], &src[1], &src[2]);
2983      }
2984   }
2985   for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2986      if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2987         store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan);
2988      }
2989   }
2990}
2991
2992typedef void (* micro_quaternary_op)(union tgsi_exec_channel *dst,
2993                                     const union tgsi_exec_channel *src0,
2994                                     const union tgsi_exec_channel *src1,
2995                                     const union tgsi_exec_channel *src2,
2996                                     const union tgsi_exec_channel *src3);
2997
2998static void
2999exec_vector_quaternary(struct tgsi_exec_machine *mach,
3000                       const struct tgsi_full_instruction *inst,
3001                       micro_quaternary_op op,
3002                       enum tgsi_exec_datatype src_datatype)
3003{
3004   unsigned int chan;
3005   struct tgsi_exec_vector dst;
3006
3007   for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3008      if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3009         union tgsi_exec_channel src[4];
3010
3011         fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
3012         fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
3013         fetch_source(mach, &src[2], &inst->Src[2], chan, src_datatype);
3014         fetch_source(mach, &src[3], &inst->Src[3], chan, src_datatype);
3015         op(&dst.xyzw[chan], &src[0], &src[1], &src[2], &src[3]);
3016      }
3017   }
3018   for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3019      if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3020         store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan);
3021      }
3022   }
3023}
3024
3025static void
3026exec_dp3(struct tgsi_exec_machine *mach,
3027         const struct tgsi_full_instruction *inst)
3028{
3029   unsigned int chan;
3030   union tgsi_exec_channel arg[3];
3031
3032   fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3033   fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3034   micro_mul(&arg[2], &arg[0], &arg[1]);
3035
3036   for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_Z; chan++) {
3037      fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
3038      fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT);
3039      micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
3040   }
3041
3042   for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3043      if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3044         store_dest(mach, &arg[2], &inst->Dst[0], inst, chan);
3045      }
3046   }
3047}
3048
3049static void
3050exec_dp4(struct tgsi_exec_machine *mach,
3051         const struct tgsi_full_instruction *inst)
3052{
3053   unsigned int chan;
3054   union tgsi_exec_channel arg[3];
3055
3056   fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3057   fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3058   micro_mul(&arg[2], &arg[0], &arg[1]);
3059
3060   for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_W; chan++) {
3061      fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
3062      fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT);
3063      micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
3064   }
3065
3066   for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3067      if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3068         store_dest(mach, &arg[2], &inst->Dst[0], inst, chan);
3069      }
3070   }
3071}
3072
3073static void
3074exec_dp2(struct tgsi_exec_machine *mach,
3075         const struct tgsi_full_instruction *inst)
3076{
3077   unsigned int chan;
3078   union tgsi_exec_channel arg[3];
3079
3080   fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3081   fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3082   micro_mul(&arg[2], &arg[0], &arg[1]);
3083
3084   fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3085   fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3086   micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
3087
3088   for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3089      if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3090         store_dest(mach, &arg[2], &inst->Dst[0], inst, chan);
3091      }
3092   }
3093}
3094
3095static void
3096exec_pk2h(struct tgsi_exec_machine *mach,
3097          const struct tgsi_full_instruction *inst)
3098{
3099   unsigned chan;
3100   union tgsi_exec_channel arg[2], dst;
3101
3102   fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3103   fetch_source(mach, &arg[1], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3104   for (chan = 0; chan < TGSI_QUAD_SIZE; chan++) {
3105      dst.u[chan] = _mesa_float_to_half(arg[0].f[chan]) |
3106         (_mesa_float_to_half(arg[1].f[chan]) << 16);
3107   }
3108   for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3109      if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3110         store_dest(mach, &dst, &inst->Dst[0], inst, chan);
3111      }
3112   }
3113}
3114
3115static void
3116exec_up2h(struct tgsi_exec_machine *mach,
3117          const struct tgsi_full_instruction *inst)
3118{
3119   unsigned chan;
3120   union tgsi_exec_channel arg, dst[2];
3121
3122   fetch_source(mach, &arg, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
3123   for (chan = 0; chan < TGSI_QUAD_SIZE; chan++) {
3124      dst[0].f[chan] = _mesa_half_to_float(arg.u[chan] & 0xffff);
3125      dst[1].f[chan] = _mesa_half_to_float(arg.u[chan] >> 16);
3126   }
3127   for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3128      if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3129         store_dest(mach, &dst[chan & 1], &inst->Dst[0], inst, chan);
3130      }
3131   }
3132}
3133
3134static void
3135micro_ucmp(union tgsi_exec_channel *dst,
3136           const union tgsi_exec_channel *src0,
3137           const union tgsi_exec_channel *src1,
3138           const union tgsi_exec_channel *src2)
3139{
3140   dst->f[0] = src0->u[0] ? src1->f[0] : src2->f[0];
3141   dst->f[1] = src0->u[1] ? src1->f[1] : src2->f[1];
3142   dst->f[2] = src0->u[2] ? src1->f[2] : src2->f[2];
3143   dst->f[3] = src0->u[3] ? src1->f[3] : src2->f[3];
3144}
3145
3146static void
3147exec_ucmp(struct tgsi_exec_machine *mach,
3148          const struct tgsi_full_instruction *inst)
3149{
3150   unsigned int chan;
3151   struct tgsi_exec_vector dst;
3152
3153   for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3154      if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3155         union tgsi_exec_channel src[3];
3156
3157         fetch_source(mach, &src[0], &inst->Src[0], chan,
3158                      TGSI_EXEC_DATA_UINT);
3159         fetch_source(mach, &src[1], &inst->Src[1], chan,
3160                      TGSI_EXEC_DATA_FLOAT);
3161         fetch_source(mach, &src[2], &inst->Src[2], chan,
3162                      TGSI_EXEC_DATA_FLOAT);
3163         micro_ucmp(&dst.xyzw[chan], &src[0], &src[1], &src[2]);
3164      }
3165   }
3166   for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3167      if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3168         store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan);
3169      }
3170   }
3171}
3172
3173static void
3174exec_dst(struct tgsi_exec_machine *mach,
3175         const struct tgsi_full_instruction *inst)
3176{
3177   union tgsi_exec_channel r[2];
3178   union tgsi_exec_channel d[4];
3179
3180   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3181      fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3182      fetch_source(mach, &r[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3183      micro_mul(&d[TGSI_CHAN_Y], &r[0], &r[1]);
3184   }
3185   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3186      fetch_source(mach, &d[TGSI_CHAN_Z], &inst->Src[0], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3187   }
3188   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3189      fetch_source(mach, &d[TGSI_CHAN_W], &inst->Src[1], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3190   }
3191
3192   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3193      store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_X);
3194   }
3195   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3196      store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y);
3197   }
3198   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3199      store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z);
3200   }
3201   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3202      store_dest(mach, &d[TGSI_CHAN_W], &inst->Dst[0], inst, TGSI_CHAN_W);
3203   }
3204}
3205
3206static void
3207exec_log(struct tgsi_exec_machine *mach,
3208         const struct tgsi_full_instruction *inst)
3209{
3210   union tgsi_exec_channel r[3];
3211
3212   fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3213   micro_abs(&r[2], &r[0]);  /* r2 = abs(r0) */
3214   micro_lg2(&r[1], &r[2]);  /* r1 = lg2(r2) */
3215   micro_flr(&r[0], &r[1]);  /* r0 = floor(r1) */
3216   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3217      store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_X);
3218   }
3219   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3220      micro_exp2(&r[0], &r[0]);       /* r0 = 2 ^ r0 */
3221      micro_div(&r[0], &r[2], &r[0]); /* r0 = r2 / r0 */
3222      store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_Y);
3223   }
3224   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3225      store_dest(mach, &r[1], &inst->Dst[0], inst, TGSI_CHAN_Z);
3226   }
3227   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3228      store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W);
3229   }
3230}
3231
3232static void
3233exec_exp(struct tgsi_exec_machine *mach,
3234         const struct tgsi_full_instruction *inst)
3235{
3236   union tgsi_exec_channel r[3];
3237
3238   fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3239   micro_flr(&r[1], &r[0]);  /* r1 = floor(r0) */
3240   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3241      micro_exp2(&r[2], &r[1]);       /* r2 = 2 ^ r1 */
3242      store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_X);
3243   }
3244   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3245      micro_sub(&r[2], &r[0], &r[1]); /* r2 = r0 - r1 */
3246      store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_Y);
3247   }
3248   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3249      micro_exp2(&r[2], &r[0]);       /* r2 = 2 ^ r0 */
3250      store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_Z);
3251   }
3252   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3253      store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W);
3254   }
3255}
3256
3257static void
3258exec_lit(struct tgsi_exec_machine *mach,
3259         const struct tgsi_full_instruction *inst)
3260{
3261   union tgsi_exec_channel r[3];
3262   union tgsi_exec_channel d[3];
3263
3264   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_YZ) {
3265      fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3266      if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3267         fetch_source(mach, &r[1], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3268         micro_max(&r[1], &r[1], &ZeroVec);
3269
3270         fetch_source(mach, &r[2], &inst->Src[0], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3271         micro_min(&r[2], &r[2], &P128Vec);
3272         micro_max(&r[2], &r[2], &M128Vec);
3273         micro_pow(&r[1], &r[1], &r[2]);
3274         micro_lt(&d[TGSI_CHAN_Z], &ZeroVec, &r[0], &r[1], &ZeroVec);
3275         store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z);
3276      }
3277      if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3278         micro_max(&d[TGSI_CHAN_Y], &r[0], &ZeroVec);
3279         store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y);
3280      }
3281   }
3282   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3283      store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_X);
3284   }
3285
3286   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3287      store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W);
3288   }
3289}
3290
3291static void
3292exec_break(struct tgsi_exec_machine *mach)
3293{
3294   if (mach->BreakType == TGSI_EXEC_BREAK_INSIDE_LOOP) {
3295      /* turn off loop channels for each enabled exec channel */
3296      mach->LoopMask &= ~mach->ExecMask;
3297      /* Todo: if mach->LoopMask == 0, jump to end of loop */
3298      UPDATE_EXEC_MASK(mach);
3299   } else {
3300      assert(mach->BreakType == TGSI_EXEC_BREAK_INSIDE_SWITCH);
3301
3302      mach->Switch.mask = 0x0;
3303
3304      UPDATE_EXEC_MASK(mach);
3305   }
3306}
3307
3308static void
3309exec_switch(struct tgsi_exec_machine *mach,
3310            const struct tgsi_full_instruction *inst)
3311{
3312   assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
3313   assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
3314
3315   mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
3316   fetch_source(mach, &mach->Switch.selector, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
3317   mach->Switch.mask = 0x0;
3318   mach->Switch.defaultMask = 0x0;
3319
3320   mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
3321   mach->BreakType = TGSI_EXEC_BREAK_INSIDE_SWITCH;
3322
3323   UPDATE_EXEC_MASK(mach);
3324}
3325
3326static void
3327exec_case(struct tgsi_exec_machine *mach,
3328          const struct tgsi_full_instruction *inst)
3329{
3330   uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
3331   union tgsi_exec_channel src;
3332   uint mask = 0;
3333
3334   fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
3335
3336   if (mach->Switch.selector.u[0] == src.u[0]) {
3337      mask |= 0x1;
3338   }
3339   if (mach->Switch.selector.u[1] == src.u[1]) {
3340      mask |= 0x2;
3341   }
3342   if (mach->Switch.selector.u[2] == src.u[2]) {
3343      mask |= 0x4;
3344   }
3345   if (mach->Switch.selector.u[3] == src.u[3]) {
3346      mask |= 0x8;
3347   }
3348
3349   mach->Switch.defaultMask |= mask;
3350
3351   mach->Switch.mask |= mask & prevMask;
3352
3353   UPDATE_EXEC_MASK(mach);
3354}
3355
3356/* FIXME: this will only work if default is last */
3357static void
3358exec_default(struct tgsi_exec_machine *mach)
3359{
3360   uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
3361
3362   mach->Switch.mask |= ~mach->Switch.defaultMask & prevMask;
3363
3364   UPDATE_EXEC_MASK(mach);
3365}
3366
3367static void
3368exec_endswitch(struct tgsi_exec_machine *mach)
3369{
3370   mach->Switch = mach->SwitchStack[--mach->SwitchStackTop];
3371   mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
3372
3373   UPDATE_EXEC_MASK(mach);
3374}
3375
3376typedef void (* micro_dop)(union tgsi_double_channel *dst,
3377                           const union tgsi_double_channel *src);
3378
3379typedef void (* micro_dop_sop)(union tgsi_double_channel *dst,
3380                               const union tgsi_double_channel *src0,
3381                               union tgsi_exec_channel *src1);
3382
3383typedef void (* micro_dop_s)(union tgsi_double_channel *dst,
3384                             const union tgsi_exec_channel *src);
3385
3386typedef void (* micro_sop_d)(union tgsi_exec_channel *dst,
3387                             const union tgsi_double_channel *src);
3388
3389static void
3390fetch_double_channel(struct tgsi_exec_machine *mach,
3391                     union tgsi_double_channel *chan,
3392                     const struct tgsi_full_src_register *reg,
3393                     uint chan_0,
3394                     uint chan_1)
3395{
3396   union tgsi_exec_channel src[2];
3397   uint i;
3398
3399   fetch_source_d(mach, &src[0], reg, chan_0);
3400   fetch_source_d(mach, &src[1], reg, chan_1);
3401
3402   for (i = 0; i < TGSI_QUAD_SIZE; i++) {
3403      chan->u[i][0] = src[0].u[i];
3404      chan->u[i][1] = src[1].u[i];
3405   }
3406   assert(!reg->Register.Absolute);
3407   assert(!reg->Register.Negate);
3408}
3409
3410static void
3411store_double_channel(struct tgsi_exec_machine *mach,
3412                     const union tgsi_double_channel *chan,
3413                     const struct tgsi_full_dst_register *reg,
3414                     const struct tgsi_full_instruction *inst,
3415                     uint chan_0,
3416                     uint chan_1)
3417{
3418   union tgsi_exec_channel dst[2];
3419   uint i;
3420   union tgsi_double_channel temp;
3421   const uint execmask = mach->ExecMask;
3422
3423   if (!inst->Instruction.Saturate) {
3424      for (i = 0; i < TGSI_QUAD_SIZE; i++)
3425         if (execmask & (1 << i)) {
3426            dst[0].u[i] = chan->u[i][0];
3427            dst[1].u[i] = chan->u[i][1];
3428         }
3429   }
3430   else {
3431      for (i = 0; i < TGSI_QUAD_SIZE; i++)
3432         if (execmask & (1 << i)) {
3433            if (chan->d[i] < 0.0 || isnan(chan->d[i]))
3434               temp.d[i] = 0.0;
3435            else if (chan->d[i] > 1.0)
3436               temp.d[i] = 1.0;
3437            else
3438               temp.d[i] = chan->d[i];
3439
3440            dst[0].u[i] = temp.u[i][0];
3441            dst[1].u[i] = temp.u[i][1];
3442         }
3443   }
3444
3445   store_dest_double(mach, &dst[0], reg, chan_0);
3446   if (chan_1 != (unsigned)-1)
3447      store_dest_double(mach, &dst[1], reg, chan_1);
3448}
3449
3450static void
3451exec_double_unary(struct tgsi_exec_machine *mach,
3452                  const struct tgsi_full_instruction *inst,
3453                  micro_dop op)
3454{
3455   union tgsi_double_channel src;
3456   union tgsi_double_channel dst;
3457
3458   if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY) {
3459      fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3460      op(&dst, &src);
3461      store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3462   }
3463   if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW) {
3464      fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3465      op(&dst, &src);
3466      store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3467   }
3468}
3469
3470static void
3471exec_double_binary(struct tgsi_exec_machine *mach,
3472                   const struct tgsi_full_instruction *inst,
3473                   micro_dop op,
3474                   enum tgsi_exec_datatype dst_datatype)
3475{
3476   union tgsi_double_channel src[2];
3477   union tgsi_double_channel dst;
3478   int first_dest_chan, second_dest_chan;
3479   int wmask;
3480
3481   wmask = inst->Dst[0].Register.WriteMask;
3482   /* these are & because of the way DSLT etc store their destinations */
3483   if (wmask & TGSI_WRITEMASK_XY) {
3484      first_dest_chan = TGSI_CHAN_X;
3485      second_dest_chan = TGSI_CHAN_Y;
3486      if (dst_datatype == TGSI_EXEC_DATA_UINT) {
3487         first_dest_chan = (wmask & TGSI_WRITEMASK_X) ? TGSI_CHAN_X : TGSI_CHAN_Y;
3488         second_dest_chan = -1;
3489      }
3490
3491      fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3492      fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_X, TGSI_CHAN_Y);
3493      op(&dst, src);
3494      store_double_channel(mach, &dst, &inst->Dst[0], inst, first_dest_chan, second_dest_chan);
3495   }
3496
3497   if (wmask & TGSI_WRITEMASK_ZW) {
3498      first_dest_chan = TGSI_CHAN_Z;
3499      second_dest_chan = TGSI_CHAN_W;
3500      if (dst_datatype == TGSI_EXEC_DATA_UINT) {
3501         first_dest_chan = (wmask & TGSI_WRITEMASK_Z) ? TGSI_CHAN_Z : TGSI_CHAN_W;
3502         second_dest_chan = -1;
3503      }
3504
3505      fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3506      fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_Z, TGSI_CHAN_W);
3507      op(&dst, src);
3508      store_double_channel(mach, &dst, &inst->Dst[0], inst, first_dest_chan, second_dest_chan);
3509   }
3510}
3511
3512static void
3513exec_double_trinary(struct tgsi_exec_machine *mach,
3514                    const struct tgsi_full_instruction *inst,
3515                    micro_dop op)
3516{
3517   union tgsi_double_channel src[3];
3518   union tgsi_double_channel dst;
3519
3520   if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY) {
3521      fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3522      fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_X, TGSI_CHAN_Y);
3523      fetch_double_channel(mach, &src[2], &inst->Src[2], TGSI_CHAN_X, TGSI_CHAN_Y);
3524      op(&dst, src);
3525      store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3526   }
3527   if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW) {
3528      fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3529      fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_Z, TGSI_CHAN_W);
3530      fetch_double_channel(mach, &src[2], &inst->Src[2], TGSI_CHAN_Z, TGSI_CHAN_W);
3531      op(&dst, src);
3532      store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3533   }
3534}
3535
3536static void
3537exec_dldexp(struct tgsi_exec_machine *mach,
3538            const struct tgsi_full_instruction *inst)
3539{
3540   union tgsi_double_channel src0;
3541   union tgsi_exec_channel src1;
3542   union tgsi_double_channel dst;
3543   int wmask;
3544
3545   wmask = inst->Dst[0].Register.WriteMask;
3546   if (wmask & TGSI_WRITEMASK_XY) {
3547      fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3548      fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_INT);
3549      micro_dldexp(&dst, &src0, &src1);
3550      store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3551   }
3552
3553   if (wmask & TGSI_WRITEMASK_ZW) {
3554      fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3555      fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_INT);
3556      micro_dldexp(&dst, &src0, &src1);
3557      store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3558   }
3559}
3560
3561static void
3562exec_dfracexp(struct tgsi_exec_machine *mach,
3563              const struct tgsi_full_instruction *inst)
3564{
3565   union tgsi_double_channel src;
3566   union tgsi_double_channel dst;
3567   union tgsi_exec_channel dst_exp;
3568
3569   fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3570   micro_dfracexp(&dst, &dst_exp, &src);
3571   if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY)
3572      store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3573   if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW)
3574      store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3575   for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3576      if (inst->Dst[1].Register.WriteMask & (1 << chan))
3577         store_dest(mach, &dst_exp, &inst->Dst[1], inst, chan);
3578   }
3579}
3580
3581static void
3582exec_arg0_64_arg1_32(struct tgsi_exec_machine *mach,
3583            const struct tgsi_full_instruction *inst,
3584            micro_dop_sop op)
3585{
3586   union tgsi_double_channel src0;
3587   union tgsi_exec_channel src1;
3588   union tgsi_double_channel dst;
3589   int wmask;
3590
3591   wmask = inst->Dst[0].Register.WriteMask;
3592   if (wmask & TGSI_WRITEMASK_XY) {
3593      fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3594      fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_INT);
3595      op(&dst, &src0, &src1);
3596      store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3597   }
3598
3599   if (wmask & TGSI_WRITEMASK_ZW) {
3600      fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3601      fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_INT);
3602      op(&dst, &src0, &src1);
3603      store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3604   }
3605}
3606
3607static int
3608get_image_coord_dim(unsigned tgsi_tex)
3609{
3610   int dim;
3611   switch (tgsi_tex) {
3612   case TGSI_TEXTURE_BUFFER:
3613   case TGSI_TEXTURE_1D:
3614      dim = 1;
3615      break;
3616   case TGSI_TEXTURE_2D:
3617   case TGSI_TEXTURE_RECT:
3618   case TGSI_TEXTURE_1D_ARRAY:
3619   case TGSI_TEXTURE_2D_MSAA:
3620      dim = 2;
3621      break;
3622   case TGSI_TEXTURE_3D:
3623   case TGSI_TEXTURE_CUBE:
3624   case TGSI_TEXTURE_2D_ARRAY:
3625   case TGSI_TEXTURE_2D_ARRAY_MSAA:
3626   case TGSI_TEXTURE_CUBE_ARRAY:
3627      dim = 3;
3628      break;
3629   default:
3630      assert(!"unknown texture target");
3631      dim = 0;
3632      break;
3633   }
3634
3635   return dim;
3636}
3637
3638static int
3639get_image_coord_sample(unsigned tgsi_tex)
3640{
3641   int sample = 0;
3642   switch (tgsi_tex) {
3643   case TGSI_TEXTURE_2D_MSAA:
3644      sample = 3;
3645      break;
3646   case TGSI_TEXTURE_2D_ARRAY_MSAA:
3647      sample = 4;
3648      break;
3649   default:
3650      break;
3651   }
3652   return sample;
3653}
3654
3655static void
3656exec_load_img(struct tgsi_exec_machine *mach,
3657              const struct tgsi_full_instruction *inst)
3658{
3659   union tgsi_exec_channel r[4], sample_r;
3660   uint unit;
3661   int sample;
3662   int i, j;
3663   int dim;
3664   uint chan;
3665   float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3666   struct tgsi_image_params params;
3667
3668   unit = fetch_sampler_unit(mach, inst, 0);
3669   dim = get_image_coord_dim(inst->Memory.Texture);
3670   sample = get_image_coord_sample(inst->Memory.Texture);
3671   assert(dim <= 3);
3672
3673   params.execmask = mach->ExecMask & mach->NonHelperMask & ~mach->KillMask;
3674   params.unit = unit;
3675   params.tgsi_tex_instr = inst->Memory.Texture;
3676   params.format = inst->Memory.Format;
3677
3678   for (i = 0; i < dim; i++) {
3679      IFETCH(&r[i], 1, TGSI_CHAN_X + i);
3680   }
3681
3682   if (sample)
3683      IFETCH(&sample_r, 1, TGSI_CHAN_X + sample);
3684
3685   mach->Image->load(mach->Image, &params,
3686                     r[0].i, r[1].i, r[2].i, sample_r.i,
3687                     rgba);
3688   for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3689      r[0].f[j] = rgba[0][j];
3690      r[1].f[j] = rgba[1][j];
3691      r[2].f[j] = rgba[2][j];
3692      r[3].f[j] = rgba[3][j];
3693   }
3694   for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3695      if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3696         store_dest(mach, &r[chan], &inst->Dst[0], inst, chan);
3697      }
3698   }
3699}
3700
3701static void
3702exec_load_membuf(struct tgsi_exec_machine *mach,
3703                 const struct tgsi_full_instruction *inst)
3704{
3705   uint32_t unit = fetch_sampler_unit(mach, inst, 0);
3706
3707   uint32_t size;
3708   const char *ptr;
3709   switch (inst->Src[0].Register.File) {
3710   case TGSI_FILE_MEMORY:
3711      ptr = mach->LocalMem;
3712      size = mach->LocalMemSize;
3713      break;
3714
3715   case TGSI_FILE_BUFFER:
3716      ptr = mach->Buffer->lookup(mach->Buffer, unit, &size);
3717      break;
3718
3719   case TGSI_FILE_CONSTANT:
3720      if (unit < ARRAY_SIZE(mach->Consts)) {
3721         ptr = mach->Consts[unit];
3722         size = mach->ConstsSize[unit];
3723      } else {
3724         ptr = NULL;
3725         size = 0;
3726      }
3727      break;
3728
3729   default:
3730      unreachable("unsupported TGSI_OPCODE_LOAD file");
3731   }
3732
3733   union tgsi_exec_channel offset;
3734   IFETCH(&offset, 1, TGSI_CHAN_X);
3735
3736   assert(inst->Dst[0].Register.WriteMask);
3737   uint32_t load_size = util_last_bit(inst->Dst[0].Register.WriteMask) * 4;
3738
3739   union tgsi_exec_channel rgba[TGSI_NUM_CHANNELS];
3740   memset(&rgba, 0, sizeof(rgba));
3741   for (int j = 0; j < TGSI_QUAD_SIZE; j++) {
3742      if (size >= load_size && offset.u[j] <= (size - load_size)) {
3743         for (int chan = 0; chan < load_size / 4; chan++)
3744            rgba[chan].u[j] = *(uint32_t *)(ptr + offset.u[j] + chan * 4);
3745      }
3746   }
3747
3748   for (int chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3749      if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3750         store_dest(mach, &rgba[chan], &inst->Dst[0], inst, chan);
3751      }
3752   }
3753}
3754
3755static void
3756exec_load(struct tgsi_exec_machine *mach,
3757          const struct tgsi_full_instruction *inst)
3758{
3759   if (inst->Src[0].Register.File == TGSI_FILE_IMAGE)
3760      exec_load_img(mach, inst);
3761   else
3762      exec_load_membuf(mach, inst);
3763}
3764
3765static uint
3766fetch_store_img_unit(struct tgsi_exec_machine *mach,
3767                     const struct tgsi_full_dst_register *dst)
3768{
3769   uint unit = 0;
3770   int i;
3771   if (dst->Register.Indirect) {
3772      union tgsi_exec_channel indir_index, index2;
3773      const uint execmask = mach->ExecMask;
3774      index2.i[0] =
3775      index2.i[1] =
3776      index2.i[2] =
3777      index2.i[3] = dst->Indirect.Index;
3778
3779      fetch_src_file_channel(mach,
3780                             dst->Indirect.File,
3781                             dst->Indirect.Swizzle,
3782                             &index2,
3783                             &ZeroVec,
3784                             &indir_index);
3785      for (i = 0; i < TGSI_QUAD_SIZE; i++) {
3786         if (execmask & (1 << i)) {
3787            unit = dst->Register.Index + indir_index.i[i];
3788            break;
3789         }
3790      }
3791   } else {
3792      unit = dst->Register.Index;
3793   }
3794   return unit;
3795}
3796
3797static void
3798exec_store_img(struct tgsi_exec_machine *mach,
3799               const struct tgsi_full_instruction *inst)
3800{
3801   union tgsi_exec_channel r[3], sample_r;
3802   union tgsi_exec_channel value[4];
3803   float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3804   struct tgsi_image_params params;
3805   int dim;
3806   int sample;
3807   int i, j;
3808   uint unit;
3809   unit = fetch_store_img_unit(mach, &inst->Dst[0]);
3810   dim = get_image_coord_dim(inst->Memory.Texture);
3811   sample = get_image_coord_sample(inst->Memory.Texture);
3812   assert(dim <= 3);
3813
3814   params.execmask = mach->ExecMask & mach->NonHelperMask & ~mach->KillMask;
3815   params.unit = unit;
3816   params.tgsi_tex_instr = inst->Memory.Texture;
3817   params.format = inst->Memory.Format;
3818
3819   for (i = 0; i < dim; i++) {
3820      IFETCH(&r[i], 0, TGSI_CHAN_X + i);
3821   }
3822
3823   for (i = 0; i < 4; i++) {
3824      FETCH(&value[i], 1, TGSI_CHAN_X + i);
3825   }
3826   if (sample)
3827      IFETCH(&sample_r, 0, TGSI_CHAN_X + sample);
3828
3829   for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3830      rgba[0][j] = value[0].f[j];
3831      rgba[1][j] = value[1].f[j];
3832      rgba[2][j] = value[2].f[j];
3833      rgba[3][j] = value[3].f[j];
3834   }
3835
3836   mach->Image->store(mach->Image, &params,
3837                      r[0].i, r[1].i, r[2].i, sample_r.i,
3838                      rgba);
3839}
3840
3841
3842static void
3843exec_store_membuf(struct tgsi_exec_machine *mach,
3844               const struct tgsi_full_instruction *inst)
3845{
3846   uint32_t unit = fetch_store_img_unit(mach, &inst->Dst[0]);
3847   uint32_t size;
3848
3849   int execmask = mach->ExecMask & mach->NonHelperMask & ~mach->KillMask;
3850
3851   const char *ptr;
3852   switch (inst->Dst[0].Register.File) {
3853   case TGSI_FILE_MEMORY:
3854      ptr = mach->LocalMem;
3855      size = mach->LocalMemSize;
3856      break;
3857
3858   case TGSI_FILE_BUFFER:
3859      ptr = mach->Buffer->lookup(mach->Buffer, unit, &size);
3860      break;
3861
3862   default:
3863      unreachable("unsupported TGSI_OPCODE_STORE file");
3864   }
3865
3866   union tgsi_exec_channel offset;
3867   IFETCH(&offset, 0, TGSI_CHAN_X);
3868
3869   union tgsi_exec_channel value[4];
3870   for (int i = 0; i < 4; i++)
3871      FETCH(&value[i], 1, TGSI_CHAN_X + i);
3872
3873   for (int j = 0; j < TGSI_QUAD_SIZE; j++) {
3874      if (!(execmask & (1 << j)))
3875         continue;
3876      if (size < offset.u[j])
3877         continue;
3878
3879      uint32_t *invocation_ptr = (uint32_t *)(ptr + offset.u[j]);
3880      uint32_t size_avail = size - offset.u[j];
3881
3882      for (int chan = 0; chan < MIN2(4, size_avail / 4); chan++) {
3883         if (inst->Dst[0].Register.WriteMask & (1 << chan))
3884            memcpy(&invocation_ptr[chan], &value[chan].u[j], 4);
3885      }
3886   }
3887}
3888
3889static void
3890exec_store(struct tgsi_exec_machine *mach,
3891           const struct tgsi_full_instruction *inst)
3892{
3893   if (inst->Dst[0].Register.File == TGSI_FILE_IMAGE)
3894      exec_store_img(mach, inst);
3895   else
3896      exec_store_membuf(mach, inst);
3897}
3898
3899static void
3900exec_atomop_img(struct tgsi_exec_machine *mach,
3901                const struct tgsi_full_instruction *inst)
3902{
3903   union tgsi_exec_channel r[4], sample_r;
3904   union tgsi_exec_channel value[4], value2[4];
3905   float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3906   float rgba2[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3907   struct tgsi_image_params params;
3908   int dim;
3909   int sample;
3910   int i, j;
3911   uint unit, chan;
3912   unit = fetch_sampler_unit(mach, inst, 0);
3913   dim = get_image_coord_dim(inst->Memory.Texture);
3914   sample = get_image_coord_sample(inst->Memory.Texture);
3915   assert(dim <= 3);
3916
3917   params.execmask = mach->ExecMask & mach->NonHelperMask & ~mach->KillMask;
3918   params.unit = unit;
3919   params.tgsi_tex_instr = inst->Memory.Texture;
3920   params.format = inst->Memory.Format;
3921
3922   for (i = 0; i < dim; i++) {
3923      IFETCH(&r[i], 1, TGSI_CHAN_X + i);
3924   }
3925
3926   for (i = 0; i < 4; i++) {
3927      FETCH(&value[i], 2, TGSI_CHAN_X + i);
3928      if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
3929         FETCH(&value2[i], 3, TGSI_CHAN_X + i);
3930   }
3931   if (sample)
3932      IFETCH(&sample_r, 1, TGSI_CHAN_X + sample);
3933
3934   for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3935      rgba[0][j] = value[0].f[j];
3936      rgba[1][j] = value[1].f[j];
3937      rgba[2][j] = value[2].f[j];
3938      rgba[3][j] = value[3].f[j];
3939   }
3940   if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
3941      for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3942         rgba2[0][j] = value2[0].f[j];
3943         rgba2[1][j] = value2[1].f[j];
3944         rgba2[2][j] = value2[2].f[j];
3945         rgba2[3][j] = value2[3].f[j];
3946      }
3947   }
3948
3949   mach->Image->op(mach->Image, &params, inst->Instruction.Opcode,
3950                   r[0].i, r[1].i, r[2].i, sample_r.i,
3951                   rgba, rgba2);
3952
3953   for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3954      r[0].f[j] = rgba[0][j];
3955      r[1].f[j] = rgba[1][j];
3956      r[2].f[j] = rgba[2][j];
3957      r[3].f[j] = rgba[3][j];
3958   }
3959   for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3960      if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3961         store_dest(mach, &r[chan], &inst->Dst[0], inst, chan);
3962      }
3963   }
3964}
3965
3966static void
3967exec_atomop_membuf(struct tgsi_exec_machine *mach,
3968                   const struct tgsi_full_instruction *inst)
3969{
3970   union tgsi_exec_channel offset, r0, r1;
3971   uint chan, i;
3972   int execmask = mach->ExecMask & mach->NonHelperMask & ~mach->KillMask;
3973   IFETCH(&offset, 1, TGSI_CHAN_X);
3974
3975   if (!(inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X))
3976      return;
3977
3978   void *ptr[TGSI_QUAD_SIZE];
3979   if (inst->Src[0].Register.File == TGSI_FILE_BUFFER) {
3980      uint32_t unit = fetch_sampler_unit(mach, inst, 0);
3981      uint32_t size;
3982      char *buffer = mach->Buffer->lookup(mach->Buffer, unit, &size);
3983      for (int i = 0; i < TGSI_QUAD_SIZE; i++) {
3984         if (likely(size >= 4 && offset.u[i] <= size - 4))
3985            ptr[i] = buffer + offset.u[i];
3986         else
3987            ptr[i] = NULL;
3988      }
3989   } else {
3990      assert(inst->Src[0].Register.File == TGSI_FILE_MEMORY);
3991
3992      for (i = 0; i < TGSI_QUAD_SIZE; i++) {
3993         if (likely(mach->LocalMemSize >= 4 && offset.u[i] <= mach->LocalMemSize - 4))
3994            ptr[i] = (char *)mach->LocalMem + offset.u[i];
3995         else
3996            ptr[i] = NULL;
3997      }
3998   }
3999
4000   FETCH(&r0, 2, TGSI_CHAN_X);
4001   if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
4002      FETCH(&r1, 3, TGSI_CHAN_X);
4003
4004   /* The load/op/store sequence has to happen inside the loop since ptr
4005    * may have the same ptr in some of the invocations.
4006    */
4007   for (int i = 0; i < TGSI_QUAD_SIZE; i++) {
4008      if (!(execmask & (1 << i)))
4009         continue;
4010
4011      uint32_t val = 0;
4012      if (ptr[i]) {
4013         memcpy(&val, ptr[i], sizeof(val));
4014
4015         uint32_t result;
4016         switch (inst->Instruction.Opcode) {
4017         case TGSI_OPCODE_ATOMUADD:
4018            result = val + r0.u[i];
4019            break;
4020         case TGSI_OPCODE_ATOMXOR:
4021            result = val ^ r0.u[i];
4022            break;
4023         case TGSI_OPCODE_ATOMOR:
4024            result = val | r0.u[i];
4025            break;
4026         case TGSI_OPCODE_ATOMAND:
4027            result = val & r0.u[i];
4028            break;
4029         case TGSI_OPCODE_ATOMUMIN:
4030            result = MIN2(val, r0.u[i]);
4031            break;
4032         case TGSI_OPCODE_ATOMUMAX:
4033            result = MAX2(val, r0.u[i]);
4034            break;
4035         case TGSI_OPCODE_ATOMIMIN:
4036            result = MIN2((int32_t)val, r0.i[i]);
4037            break;
4038         case TGSI_OPCODE_ATOMIMAX:
4039            result = MAX2((int32_t)val, r0.i[i]);
4040            break;
4041         case TGSI_OPCODE_ATOMXCHG:
4042            result = r0.u[i];
4043            break;
4044         case TGSI_OPCODE_ATOMCAS:
4045            if (val == r0.u[i])
4046               result = r1.u[i];
4047            else
4048               result = val;
4049            break;
4050         case TGSI_OPCODE_ATOMFADD:
4051               result = fui(uif(val) + r0.f[i]);
4052            break;
4053         default:
4054            unreachable("bad atomic op");
4055         }
4056         memcpy(ptr[i], &result, sizeof(result));
4057      }
4058
4059      r0.u[i] = val;
4060   }
4061
4062   for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++)
4063      store_dest(mach, &r0, &inst->Dst[0], inst, chan);
4064}
4065
4066static void
4067exec_atomop(struct tgsi_exec_machine *mach,
4068            const struct tgsi_full_instruction *inst)
4069{
4070   if (inst->Src[0].Register.File == TGSI_FILE_IMAGE)
4071      exec_atomop_img(mach, inst);
4072   else
4073      exec_atomop_membuf(mach, inst);
4074}
4075
4076static void
4077exec_resq_img(struct tgsi_exec_machine *mach,
4078              const struct tgsi_full_instruction *inst)
4079{
4080   int result[4];
4081   union tgsi_exec_channel r[4];
4082   uint unit;
4083   int i, chan, j;
4084   struct tgsi_image_params params;
4085
4086   unit = fetch_sampler_unit(mach, inst, 0);
4087
4088   params.execmask = mach->ExecMask & mach->NonHelperMask & ~mach->KillMask;
4089   params.unit = unit;
4090   params.tgsi_tex_instr = inst->Memory.Texture;
4091   params.format = inst->Memory.Format;
4092
4093   mach->Image->get_dims(mach->Image, &params, result);
4094
4095   for (i = 0; i < TGSI_QUAD_SIZE; i++) {
4096      for (j = 0; j < 4; j++) {
4097         r[j].i[i] = result[j];
4098      }
4099   }
4100
4101   for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4102      if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4103         store_dest(mach, &r[chan], &inst->Dst[0], inst, chan);
4104      }
4105   }
4106}
4107
4108static void
4109exec_resq_buf(struct tgsi_exec_machine *mach,
4110              const struct tgsi_full_instruction *inst)
4111{
4112   uint32_t unit = fetch_sampler_unit(mach, inst, 0);
4113   uint32_t size;
4114   (void)mach->Buffer->lookup(mach->Buffer, unit, &size);
4115
4116   union tgsi_exec_channel r;
4117   for (int i = 0; i < TGSI_QUAD_SIZE; i++)
4118      r.i[i] = size;
4119
4120   if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
4121      for (int chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4122         store_dest(mach, &r, &inst->Dst[0], inst, TGSI_CHAN_X);
4123      }
4124   }
4125}
4126
4127static void
4128exec_resq(struct tgsi_exec_machine *mach,
4129          const struct tgsi_full_instruction *inst)
4130{
4131   if (inst->Src[0].Register.File == TGSI_FILE_IMAGE)
4132      exec_resq_img(mach, inst);
4133   else
4134      exec_resq_buf(mach, inst);
4135}
4136
4137static void
4138micro_f2u64(union tgsi_double_channel *dst,
4139            const union tgsi_exec_channel *src)
4140{
4141   dst->u64[0] = (uint64_t)src->f[0];
4142   dst->u64[1] = (uint64_t)src->f[1];
4143   dst->u64[2] = (uint64_t)src->f[2];
4144   dst->u64[3] = (uint64_t)src->f[3];
4145}
4146
4147static void
4148micro_f2i64(union tgsi_double_channel *dst,
4149            const union tgsi_exec_channel *src)
4150{
4151   dst->i64[0] = (int64_t)src->f[0];
4152   dst->i64[1] = (int64_t)src->f[1];
4153   dst->i64[2] = (int64_t)src->f[2];
4154   dst->i64[3] = (int64_t)src->f[3];
4155}
4156
4157static void
4158micro_u2i64(union tgsi_double_channel *dst,
4159            const union tgsi_exec_channel *src)
4160{
4161   dst->u64[0] = (uint64_t)src->u[0];
4162   dst->u64[1] = (uint64_t)src->u[1];
4163   dst->u64[2] = (uint64_t)src->u[2];
4164   dst->u64[3] = (uint64_t)src->u[3];
4165}
4166
4167static void
4168micro_i2i64(union tgsi_double_channel *dst,
4169            const union tgsi_exec_channel *src)
4170{
4171   dst->i64[0] = (int64_t)src->i[0];
4172   dst->i64[1] = (int64_t)src->i[1];
4173   dst->i64[2] = (int64_t)src->i[2];
4174   dst->i64[3] = (int64_t)src->i[3];
4175}
4176
4177static void
4178micro_d2u64(union tgsi_double_channel *dst,
4179           const union tgsi_double_channel *src)
4180{
4181   dst->u64[0] = (uint64_t)src->d[0];
4182   dst->u64[1] = (uint64_t)src->d[1];
4183   dst->u64[2] = (uint64_t)src->d[2];
4184   dst->u64[3] = (uint64_t)src->d[3];
4185}
4186
4187static void
4188micro_d2i64(union tgsi_double_channel *dst,
4189           const union tgsi_double_channel *src)
4190{
4191   dst->i64[0] = (int64_t)src->d[0];
4192   dst->i64[1] = (int64_t)src->d[1];
4193   dst->i64[2] = (int64_t)src->d[2];
4194   dst->i64[3] = (int64_t)src->d[3];
4195}
4196
4197static void
4198micro_u642d(union tgsi_double_channel *dst,
4199           const union tgsi_double_channel *src)
4200{
4201   dst->d[0] = (double)src->u64[0];
4202   dst->d[1] = (double)src->u64[1];
4203   dst->d[2] = (double)src->u64[2];
4204   dst->d[3] = (double)src->u64[3];
4205}
4206
4207static void
4208micro_i642d(union tgsi_double_channel *dst,
4209           const union tgsi_double_channel *src)
4210{
4211   dst->d[0] = (double)src->i64[0];
4212   dst->d[1] = (double)src->i64[1];
4213   dst->d[2] = (double)src->i64[2];
4214   dst->d[3] = (double)src->i64[3];
4215}
4216
4217static void
4218micro_u642f(union tgsi_exec_channel *dst,
4219            const union tgsi_double_channel *src)
4220{
4221   dst->f[0] = (float)src->u64[0];
4222   dst->f[1] = (float)src->u64[1];
4223   dst->f[2] = (float)src->u64[2];
4224   dst->f[3] = (float)src->u64[3];
4225}
4226
4227static void
4228micro_i642f(union tgsi_exec_channel *dst,
4229            const union tgsi_double_channel *src)
4230{
4231   dst->f[0] = (float)src->i64[0];
4232   dst->f[1] = (float)src->i64[1];
4233   dst->f[2] = (float)src->i64[2];
4234   dst->f[3] = (float)src->i64[3];
4235}
4236
4237static void
4238exec_t_2_64(struct tgsi_exec_machine *mach,
4239          const struct tgsi_full_instruction *inst,
4240          micro_dop_s op,
4241          enum tgsi_exec_datatype src_datatype)
4242{
4243   union tgsi_exec_channel src;
4244   union tgsi_double_channel dst;
4245
4246   if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY) {
4247      fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, src_datatype);
4248      op(&dst, &src);
4249      store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
4250   }
4251   if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW) {
4252      fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_Y, src_datatype);
4253      op(&dst, &src);
4254      store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
4255   }
4256}
4257
4258static void
4259exec_64_2_t(struct tgsi_exec_machine *mach,
4260            const struct tgsi_full_instruction *inst,
4261            micro_sop_d op)
4262{
4263   union tgsi_double_channel src;
4264   union tgsi_exec_channel dst;
4265   int wm = inst->Dst[0].Register.WriteMask;
4266   int i;
4267   int bit;
4268   for (i = 0; i < 2; i++) {
4269      bit = ffs(wm);
4270      if (bit) {
4271         wm &= ~(1 << (bit - 1));
4272         if (i == 0)
4273            fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
4274         else
4275            fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
4276         op(&dst, &src);
4277         store_dest(mach, &dst, &inst->Dst[0], inst, bit - 1);
4278      }
4279   }
4280}
4281
4282static void
4283micro_i2f(union tgsi_exec_channel *dst,
4284          const union tgsi_exec_channel *src)
4285{
4286   dst->f[0] = (float)src->i[0];
4287   dst->f[1] = (float)src->i[1];
4288   dst->f[2] = (float)src->i[2];
4289   dst->f[3] = (float)src->i[3];
4290}
4291
4292static void
4293micro_not(union tgsi_exec_channel *dst,
4294          const union tgsi_exec_channel *src)
4295{
4296   dst->u[0] = ~src->u[0];
4297   dst->u[1] = ~src->u[1];
4298   dst->u[2] = ~src->u[2];
4299   dst->u[3] = ~src->u[3];
4300}
4301
4302static void
4303micro_shl(union tgsi_exec_channel *dst,
4304          const union tgsi_exec_channel *src0,
4305          const union tgsi_exec_channel *src1)
4306{
4307   unsigned masked_count;
4308   masked_count = src1->u[0] & 0x1f;
4309   dst->u[0] = src0->u[0] << masked_count;
4310   masked_count = src1->u[1] & 0x1f;
4311   dst->u[1] = src0->u[1] << masked_count;
4312   masked_count = src1->u[2] & 0x1f;
4313   dst->u[2] = src0->u[2] << masked_count;
4314   masked_count = src1->u[3] & 0x1f;
4315   dst->u[3] = src0->u[3] << masked_count;
4316}
4317
4318static void
4319micro_and(union tgsi_exec_channel *dst,
4320          const union tgsi_exec_channel *src0,
4321          const union tgsi_exec_channel *src1)
4322{
4323   dst->u[0] = src0->u[0] & src1->u[0];
4324   dst->u[1] = src0->u[1] & src1->u[1];
4325   dst->u[2] = src0->u[2] & src1->u[2];
4326   dst->u[3] = src0->u[3] & src1->u[3];
4327}
4328
4329static void
4330micro_or(union tgsi_exec_channel *dst,
4331         const union tgsi_exec_channel *src0,
4332         const union tgsi_exec_channel *src1)
4333{
4334   dst->u[0] = src0->u[0] | src1->u[0];
4335   dst->u[1] = src0->u[1] | src1->u[1];
4336   dst->u[2] = src0->u[2] | src1->u[2];
4337   dst->u[3] = src0->u[3] | src1->u[3];
4338}
4339
4340static void
4341micro_xor(union tgsi_exec_channel *dst,
4342          const union tgsi_exec_channel *src0,
4343          const union tgsi_exec_channel *src1)
4344{
4345   dst->u[0] = src0->u[0] ^ src1->u[0];
4346   dst->u[1] = src0->u[1] ^ src1->u[1];
4347   dst->u[2] = src0->u[2] ^ src1->u[2];
4348   dst->u[3] = src0->u[3] ^ src1->u[3];
4349}
4350
4351static void
4352micro_mod(union tgsi_exec_channel *dst,
4353          const union tgsi_exec_channel *src0,
4354          const union tgsi_exec_channel *src1)
4355{
4356   dst->i[0] = src1->i[0] ? src0->i[0] % src1->i[0] : ~0;
4357   dst->i[1] = src1->i[1] ? src0->i[1] % src1->i[1] : ~0;
4358   dst->i[2] = src1->i[2] ? src0->i[2] % src1->i[2] : ~0;
4359   dst->i[3] = src1->i[3] ? src0->i[3] % src1->i[3] : ~0;
4360}
4361
4362static void
4363micro_f2i(union tgsi_exec_channel *dst,
4364          const union tgsi_exec_channel *src)
4365{
4366   dst->i[0] = (int)src->f[0];
4367   dst->i[1] = (int)src->f[1];
4368   dst->i[2] = (int)src->f[2];
4369   dst->i[3] = (int)src->f[3];
4370}
4371
4372static void
4373micro_fseq(union tgsi_exec_channel *dst,
4374           const union tgsi_exec_channel *src0,
4375           const union tgsi_exec_channel *src1)
4376{
4377   dst->u[0] = src0->f[0] == src1->f[0] ? ~0 : 0;
4378   dst->u[1] = src0->f[1] == src1->f[1] ? ~0 : 0;
4379   dst->u[2] = src0->f[2] == src1->f[2] ? ~0 : 0;
4380   dst->u[3] = src0->f[3] == src1->f[3] ? ~0 : 0;
4381}
4382
4383static void
4384micro_fsge(union tgsi_exec_channel *dst,
4385           const union tgsi_exec_channel *src0,
4386           const union tgsi_exec_channel *src1)
4387{
4388   dst->u[0] = src0->f[0] >= src1->f[0] ? ~0 : 0;
4389   dst->u[1] = src0->f[1] >= src1->f[1] ? ~0 : 0;
4390   dst->u[2] = src0->f[2] >= src1->f[2] ? ~0 : 0;
4391   dst->u[3] = src0->f[3] >= src1->f[3] ? ~0 : 0;
4392}
4393
4394static void
4395micro_fslt(union tgsi_exec_channel *dst,
4396           const union tgsi_exec_channel *src0,
4397           const union tgsi_exec_channel *src1)
4398{
4399   dst->u[0] = src0->f[0] < src1->f[0] ? ~0 : 0;
4400   dst->u[1] = src0->f[1] < src1->f[1] ? ~0 : 0;
4401   dst->u[2] = src0->f[2] < src1->f[2] ? ~0 : 0;
4402   dst->u[3] = src0->f[3] < src1->f[3] ? ~0 : 0;
4403}
4404
4405static void
4406micro_fsne(union tgsi_exec_channel *dst,
4407           const union tgsi_exec_channel *src0,
4408           const union tgsi_exec_channel *src1)
4409{
4410   dst->u[0] = src0->f[0] != src1->f[0] ? ~0 : 0;
4411   dst->u[1] = src0->f[1] != src1->f[1] ? ~0 : 0;
4412   dst->u[2] = src0->f[2] != src1->f[2] ? ~0 : 0;
4413   dst->u[3] = src0->f[3] != src1->f[3] ? ~0 : 0;
4414}
4415
4416static void
4417micro_idiv(union tgsi_exec_channel *dst,
4418           const union tgsi_exec_channel *src0,
4419           const union tgsi_exec_channel *src1)
4420{
4421   dst->i[0] = src1->i[0] ? src0->i[0] / src1->i[0] : 0;
4422   dst->i[1] = src1->i[1] ? src0->i[1] / src1->i[1] : 0;
4423   dst->i[2] = src1->i[2] ? src0->i[2] / src1->i[2] : 0;
4424   dst->i[3] = src1->i[3] ? src0->i[3] / src1->i[3] : 0;
4425}
4426
4427static void
4428micro_imax(union tgsi_exec_channel *dst,
4429           const union tgsi_exec_channel *src0,
4430           const union tgsi_exec_channel *src1)
4431{
4432   dst->i[0] = src0->i[0] > src1->i[0] ? src0->i[0] : src1->i[0];
4433   dst->i[1] = src0->i[1] > src1->i[1] ? src0->i[1] : src1->i[1];
4434   dst->i[2] = src0->i[2] > src1->i[2] ? src0->i[2] : src1->i[2];
4435   dst->i[3] = src0->i[3] > src1->i[3] ? src0->i[3] : src1->i[3];
4436}
4437
4438static void
4439micro_imin(union tgsi_exec_channel *dst,
4440           const union tgsi_exec_channel *src0,
4441           const union tgsi_exec_channel *src1)
4442{
4443   dst->i[0] = src0->i[0] < src1->i[0] ? src0->i[0] : src1->i[0];
4444   dst->i[1] = src0->i[1] < src1->i[1] ? src0->i[1] : src1->i[1];
4445   dst->i[2] = src0->i[2] < src1->i[2] ? src0->i[2] : src1->i[2];
4446   dst->i[3] = src0->i[3] < src1->i[3] ? src0->i[3] : src1->i[3];
4447}
4448
4449static void
4450micro_isge(union tgsi_exec_channel *dst,
4451           const union tgsi_exec_channel *src0,
4452           const union tgsi_exec_channel *src1)
4453{
4454   dst->i[0] = src0->i[0] >= src1->i[0] ? -1 : 0;
4455   dst->i[1] = src0->i[1] >= src1->i[1] ? -1 : 0;
4456   dst->i[2] = src0->i[2] >= src1->i[2] ? -1 : 0;
4457   dst->i[3] = src0->i[3] >= src1->i[3] ? -1 : 0;
4458}
4459
4460static void
4461micro_ishr(union tgsi_exec_channel *dst,
4462           const union tgsi_exec_channel *src0,
4463           const union tgsi_exec_channel *src1)
4464{
4465   unsigned masked_count;
4466   masked_count = src1->i[0] & 0x1f;
4467   dst->i[0] = src0->i[0] >> masked_count;
4468   masked_count = src1->i[1] & 0x1f;
4469   dst->i[1] = src0->i[1] >> masked_count;
4470   masked_count = src1->i[2] & 0x1f;
4471   dst->i[2] = src0->i[2] >> masked_count;
4472   masked_count = src1->i[3] & 0x1f;
4473   dst->i[3] = src0->i[3] >> masked_count;
4474}
4475
4476static void
4477micro_islt(union tgsi_exec_channel *dst,
4478           const union tgsi_exec_channel *src0,
4479           const union tgsi_exec_channel *src1)
4480{
4481   dst->i[0] = src0->i[0] < src1->i[0] ? -1 : 0;
4482   dst->i[1] = src0->i[1] < src1->i[1] ? -1 : 0;
4483   dst->i[2] = src0->i[2] < src1->i[2] ? -1 : 0;
4484   dst->i[3] = src0->i[3] < src1->i[3] ? -1 : 0;
4485}
4486
4487static void
4488micro_f2u(union tgsi_exec_channel *dst,
4489          const union tgsi_exec_channel *src)
4490{
4491   dst->u[0] = (uint)src->f[0];
4492   dst->u[1] = (uint)src->f[1];
4493   dst->u[2] = (uint)src->f[2];
4494   dst->u[3] = (uint)src->f[3];
4495}
4496
4497static void
4498micro_u2f(union tgsi_exec_channel *dst,
4499          const union tgsi_exec_channel *src)
4500{
4501   dst->f[0] = (float)src->u[0];
4502   dst->f[1] = (float)src->u[1];
4503   dst->f[2] = (float)src->u[2];
4504   dst->f[3] = (float)src->u[3];
4505}
4506
4507static void
4508micro_uadd(union tgsi_exec_channel *dst,
4509           const union tgsi_exec_channel *src0,
4510           const union tgsi_exec_channel *src1)
4511{
4512   dst->u[0] = src0->u[0] + src1->u[0];
4513   dst->u[1] = src0->u[1] + src1->u[1];
4514   dst->u[2] = src0->u[2] + src1->u[2];
4515   dst->u[3] = src0->u[3] + src1->u[3];
4516}
4517
4518static void
4519micro_udiv(union tgsi_exec_channel *dst,
4520           const union tgsi_exec_channel *src0,
4521           const union tgsi_exec_channel *src1)
4522{
4523   dst->u[0] = src1->u[0] ? src0->u[0] / src1->u[0] : ~0u;
4524   dst->u[1] = src1->u[1] ? src0->u[1] / src1->u[1] : ~0u;
4525   dst->u[2] = src1->u[2] ? src0->u[2] / src1->u[2] : ~0u;
4526   dst->u[3] = src1->u[3] ? src0->u[3] / src1->u[3] : ~0u;
4527}
4528
4529static void
4530micro_umad(union tgsi_exec_channel *dst,
4531           const union tgsi_exec_channel *src0,
4532           const union tgsi_exec_channel *src1,
4533           const union tgsi_exec_channel *src2)
4534{
4535   dst->u[0] = src0->u[0] * src1->u[0] + src2->u[0];
4536   dst->u[1] = src0->u[1] * src1->u[1] + src2->u[1];
4537   dst->u[2] = src0->u[2] * src1->u[2] + src2->u[2];
4538   dst->u[3] = src0->u[3] * src1->u[3] + src2->u[3];
4539}
4540
4541static void
4542micro_umax(union tgsi_exec_channel *dst,
4543           const union tgsi_exec_channel *src0,
4544           const union tgsi_exec_channel *src1)
4545{
4546   dst->u[0] = src0->u[0] > src1->u[0] ? src0->u[0] : src1->u[0];
4547   dst->u[1] = src0->u[1] > src1->u[1] ? src0->u[1] : src1->u[1];
4548   dst->u[2] = src0->u[2] > src1->u[2] ? src0->u[2] : src1->u[2];
4549   dst->u[3] = src0->u[3] > src1->u[3] ? src0->u[3] : src1->u[3];
4550}
4551
4552static void
4553micro_umin(union tgsi_exec_channel *dst,
4554           const union tgsi_exec_channel *src0,
4555           const union tgsi_exec_channel *src1)
4556{
4557   dst->u[0] = src0->u[0] < src1->u[0] ? src0->u[0] : src1->u[0];
4558   dst->u[1] = src0->u[1] < src1->u[1] ? src0->u[1] : src1->u[1];
4559   dst->u[2] = src0->u[2] < src1->u[2] ? src0->u[2] : src1->u[2];
4560   dst->u[3] = src0->u[3] < src1->u[3] ? src0->u[3] : src1->u[3];
4561}
4562
4563static void
4564micro_umod(union tgsi_exec_channel *dst,
4565           const union tgsi_exec_channel *src0,
4566           const union tgsi_exec_channel *src1)
4567{
4568   dst->u[0] = src1->u[0] ? src0->u[0] % src1->u[0] : ~0u;
4569   dst->u[1] = src1->u[1] ? src0->u[1] % src1->u[1] : ~0u;
4570   dst->u[2] = src1->u[2] ? src0->u[2] % src1->u[2] : ~0u;
4571   dst->u[3] = src1->u[3] ? src0->u[3] % src1->u[3] : ~0u;
4572}
4573
4574static void
4575micro_umul(union tgsi_exec_channel *dst,
4576           const union tgsi_exec_channel *src0,
4577           const union tgsi_exec_channel *src1)
4578{
4579   dst->u[0] = src0->u[0] * src1->u[0];
4580   dst->u[1] = src0->u[1] * src1->u[1];
4581   dst->u[2] = src0->u[2] * src1->u[2];
4582   dst->u[3] = src0->u[3] * src1->u[3];
4583}
4584
4585static void
4586micro_imul_hi(union tgsi_exec_channel *dst,
4587              const union tgsi_exec_channel *src0,
4588              const union tgsi_exec_channel *src1)
4589{
4590#define I64M(x, y) ((((int64_t)x) * ((int64_t)y)) >> 32)
4591   dst->i[0] = I64M(src0->i[0], src1->i[0]);
4592   dst->i[1] = I64M(src0->i[1], src1->i[1]);
4593   dst->i[2] = I64M(src0->i[2], src1->i[2]);
4594   dst->i[3] = I64M(src0->i[3], src1->i[3]);
4595#undef I64M
4596}
4597
4598static void
4599micro_umul_hi(union tgsi_exec_channel *dst,
4600              const union tgsi_exec_channel *src0,
4601              const union tgsi_exec_channel *src1)
4602{
4603#define U64M(x, y) ((((uint64_t)x) * ((uint64_t)y)) >> 32)
4604   dst->u[0] = U64M(src0->u[0], src1->u[0]);
4605   dst->u[1] = U64M(src0->u[1], src1->u[1]);
4606   dst->u[2] = U64M(src0->u[2], src1->u[2]);
4607   dst->u[3] = U64M(src0->u[3], src1->u[3]);
4608#undef U64M
4609}
4610
4611static void
4612micro_useq(union tgsi_exec_channel *dst,
4613           const union tgsi_exec_channel *src0,
4614           const union tgsi_exec_channel *src1)
4615{
4616   dst->u[0] = src0->u[0] == src1->u[0] ? ~0 : 0;
4617   dst->u[1] = src0->u[1] == src1->u[1] ? ~0 : 0;
4618   dst->u[2] = src0->u[2] == src1->u[2] ? ~0 : 0;
4619   dst->u[3] = src0->u[3] == src1->u[3] ? ~0 : 0;
4620}
4621
4622static void
4623micro_usge(union tgsi_exec_channel *dst,
4624           const union tgsi_exec_channel *src0,
4625           const union tgsi_exec_channel *src1)
4626{
4627   dst->u[0] = src0->u[0] >= src1->u[0] ? ~0 : 0;
4628   dst->u[1] = src0->u[1] >= src1->u[1] ? ~0 : 0;
4629   dst->u[2] = src0->u[2] >= src1->u[2] ? ~0 : 0;
4630   dst->u[3] = src0->u[3] >= src1->u[3] ? ~0 : 0;
4631}
4632
4633static void
4634micro_ushr(union tgsi_exec_channel *dst,
4635           const union tgsi_exec_channel *src0,
4636           const union tgsi_exec_channel *src1)
4637{
4638   unsigned masked_count;
4639   masked_count = src1->u[0] & 0x1f;
4640   dst->u[0] = src0->u[0] >> masked_count;
4641   masked_count = src1->u[1] & 0x1f;
4642   dst->u[1] = src0->u[1] >> masked_count;
4643   masked_count = src1->u[2] & 0x1f;
4644   dst->u[2] = src0->u[2] >> masked_count;
4645   masked_count = src1->u[3] & 0x1f;
4646   dst->u[3] = src0->u[3] >> masked_count;
4647}
4648
4649static void
4650micro_uslt(union tgsi_exec_channel *dst,
4651           const union tgsi_exec_channel *src0,
4652           const union tgsi_exec_channel *src1)
4653{
4654   dst->u[0] = src0->u[0] < src1->u[0] ? ~0 : 0;
4655   dst->u[1] = src0->u[1] < src1->u[1] ? ~0 : 0;
4656   dst->u[2] = src0->u[2] < src1->u[2] ? ~0 : 0;
4657   dst->u[3] = src0->u[3] < src1->u[3] ? ~0 : 0;
4658}
4659
4660static void
4661micro_usne(union tgsi_exec_channel *dst,
4662           const union tgsi_exec_channel *src0,
4663           const union tgsi_exec_channel *src1)
4664{
4665   dst->u[0] = src0->u[0] != src1->u[0] ? ~0 : 0;
4666   dst->u[1] = src0->u[1] != src1->u[1] ? ~0 : 0;
4667   dst->u[2] = src0->u[2] != src1->u[2] ? ~0 : 0;
4668   dst->u[3] = src0->u[3] != src1->u[3] ? ~0 : 0;
4669}
4670
4671static void
4672micro_uarl(union tgsi_exec_channel *dst,
4673           const union tgsi_exec_channel *src)
4674{
4675   dst->i[0] = src->u[0];
4676   dst->i[1] = src->u[1];
4677   dst->i[2] = src->u[2];
4678   dst->i[3] = src->u[3];
4679}
4680
4681/**
4682 * Signed bitfield extract (i.e. sign-extend the extracted bits)
4683 */
4684static void
4685micro_ibfe(union tgsi_exec_channel *dst,
4686           const union tgsi_exec_channel *src0,
4687           const union tgsi_exec_channel *src1,
4688           const union tgsi_exec_channel *src2)
4689{
4690   int i;
4691   for (i = 0; i < 4; i++) {
4692      int width = src2->i[i];
4693      int offset = src1->i[i] & 0x1f;
4694      if (width == 32 && offset == 0) {
4695         dst->i[i] = src0->i[i];
4696         continue;
4697      }
4698      width &= 0x1f;
4699      if (width == 0)
4700         dst->i[i] = 0;
4701      else if (width + offset < 32)
4702         dst->i[i] = (src0->i[i] << (32 - width - offset)) >> (32 - width);
4703      else
4704         dst->i[i] = src0->i[i] >> offset;
4705   }
4706}
4707
4708/**
4709 * Unsigned bitfield extract
4710 */
4711static void
4712micro_ubfe(union tgsi_exec_channel *dst,
4713           const union tgsi_exec_channel *src0,
4714           const union tgsi_exec_channel *src1,
4715           const union tgsi_exec_channel *src2)
4716{
4717   int i;
4718   for (i = 0; i < 4; i++) {
4719      int width = src2->u[i];
4720      int offset = src1->u[i] & 0x1f;
4721      if (width == 32 && offset == 0) {
4722         dst->u[i] = src0->u[i];
4723         continue;
4724      }
4725      width &= 0x1f;
4726      if (width == 0)
4727         dst->u[i] = 0;
4728      else if (width + offset < 32)
4729         dst->u[i] = (src0->u[i] << (32 - width - offset)) >> (32 - width);
4730      else
4731         dst->u[i] = src0->u[i] >> offset;
4732   }
4733}
4734
4735/**
4736 * Bitfield insert: copy low bits from src1 into a region of src0.
4737 */
4738static void
4739micro_bfi(union tgsi_exec_channel *dst,
4740          const union tgsi_exec_channel *src0,
4741          const union tgsi_exec_channel *src1,
4742          const union tgsi_exec_channel *src2,
4743          const union tgsi_exec_channel *src3)
4744{
4745   int i;
4746   for (i = 0; i < 4; i++) {
4747      int width = src3->u[i];
4748      int offset = src2->u[i] & 0x1f;
4749      if (width == 32) {
4750         dst->u[i] = src1->u[i];
4751      } else {
4752         int bitmask = ((1 << width) - 1) << offset;
4753         dst->u[i] = ((src1->u[i] << offset) & bitmask) | (src0->u[i] & ~bitmask);
4754      }
4755   }
4756}
4757
4758static void
4759micro_brev(union tgsi_exec_channel *dst,
4760           const union tgsi_exec_channel *src)
4761{
4762   dst->u[0] = util_bitreverse(src->u[0]);
4763   dst->u[1] = util_bitreverse(src->u[1]);
4764   dst->u[2] = util_bitreverse(src->u[2]);
4765   dst->u[3] = util_bitreverse(src->u[3]);
4766}
4767
4768static void
4769micro_popc(union tgsi_exec_channel *dst,
4770           const union tgsi_exec_channel *src)
4771{
4772   dst->u[0] = util_bitcount(src->u[0]);
4773   dst->u[1] = util_bitcount(src->u[1]);
4774   dst->u[2] = util_bitcount(src->u[2]);
4775   dst->u[3] = util_bitcount(src->u[3]);
4776}
4777
4778static void
4779micro_lsb(union tgsi_exec_channel *dst,
4780          const union tgsi_exec_channel *src)
4781{
4782   dst->i[0] = ffs(src->u[0]) - 1;
4783   dst->i[1] = ffs(src->u[1]) - 1;
4784   dst->i[2] = ffs(src->u[2]) - 1;
4785   dst->i[3] = ffs(src->u[3]) - 1;
4786}
4787
4788static void
4789micro_imsb(union tgsi_exec_channel *dst,
4790           const union tgsi_exec_channel *src)
4791{
4792   dst->i[0] = util_last_bit_signed(src->i[0]) - 1;
4793   dst->i[1] = util_last_bit_signed(src->i[1]) - 1;
4794   dst->i[2] = util_last_bit_signed(src->i[2]) - 1;
4795   dst->i[3] = util_last_bit_signed(src->i[3]) - 1;
4796}
4797
4798static void
4799micro_umsb(union tgsi_exec_channel *dst,
4800           const union tgsi_exec_channel *src)
4801{
4802   dst->i[0] = util_last_bit(src->u[0]) - 1;
4803   dst->i[1] = util_last_bit(src->u[1]) - 1;
4804   dst->i[2] = util_last_bit(src->u[2]) - 1;
4805   dst->i[3] = util_last_bit(src->u[3]) - 1;
4806}
4807
4808
4809static void
4810exec_interp_at_sample(struct tgsi_exec_machine *mach,
4811                      const struct tgsi_full_instruction *inst)
4812{
4813   union tgsi_exec_channel index;
4814   union tgsi_exec_channel index2D;
4815   union tgsi_exec_channel result[TGSI_NUM_CHANNELS];
4816   const struct tgsi_full_src_register *reg = &inst->Src[0];
4817
4818   assert(reg->Register.File == TGSI_FILE_INPUT);
4819   assert(inst->Src[1].Register.File == TGSI_FILE_IMMEDIATE);
4820
4821   get_index_registers(mach, reg, &index, &index2D);
4822   float sample = mach->Imms[inst->Src[1].Register.Index][inst->Src[1].Register.SwizzleX];
4823
4824   /* Short cut: sample 0 is like a normal fetch */
4825   for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4826      if (!(inst->Dst[0].Register.WriteMask & (1 << chan)))
4827         continue;
4828
4829      fetch_src_file_channel(mach, TGSI_FILE_INPUT, chan, &index, &index2D,
4830                             &result[chan]);
4831      if (sample != 0.0f) {
4832
4833      /* TODO: define the samples > 0, but so far we only do fake MSAA */
4834         float x = 0;
4835         float y = 0;
4836
4837         unsigned pos = index2D.i[chan] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index.i[chan];
4838         assert(pos >= 0);
4839         assert(pos < TGSI_MAX_PRIM_VERTICES * PIPE_MAX_ATTRIBS);
4840         mach->InputSampleOffsetApply[pos](mach, pos, chan, x, y, &result[chan]);
4841      }
4842      store_dest(mach, &result[chan], &inst->Dst[0], inst, chan);
4843   }
4844}
4845
4846
4847static void
4848exec_interp_at_offset(struct tgsi_exec_machine *mach,
4849                      const struct tgsi_full_instruction *inst)
4850{
4851   union tgsi_exec_channel index;
4852   union tgsi_exec_channel index2D;
4853   union tgsi_exec_channel ofsx;
4854   union tgsi_exec_channel ofsy;
4855   const struct tgsi_full_src_register *reg = &inst->Src[0];
4856
4857   assert(reg->Register.File == TGSI_FILE_INPUT);
4858
4859   get_index_registers(mach, reg, &index, &index2D);
4860   unsigned pos = index2D.i[0] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index.i[0];
4861
4862   fetch_source(mach, &ofsx, &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
4863   fetch_source(mach, &ofsy, &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
4864
4865   for (int chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4866      if (!(inst->Dst[0].Register.WriteMask & (1 << chan)))
4867         continue;
4868      union tgsi_exec_channel result;
4869      fetch_src_file_channel(mach, TGSI_FILE_INPUT, chan, &index, &index2D, &result);
4870      mach->InputSampleOffsetApply[pos](mach, pos, chan, ofsx.f[chan], ofsy.f[chan], &result);
4871      store_dest(mach, &result, &inst->Dst[0], inst, chan);
4872   }
4873}
4874
4875
4876static void
4877exec_interp_at_centroid(struct tgsi_exec_machine *mach,
4878                        const struct tgsi_full_instruction *inst)
4879{
4880   union tgsi_exec_channel index;
4881   union tgsi_exec_channel index2D;
4882   union tgsi_exec_channel result[TGSI_NUM_CHANNELS];
4883   const struct tgsi_full_src_register *reg = &inst->Src[0];
4884
4885   assert(reg->Register.File == TGSI_FILE_INPUT);
4886   get_index_registers(mach, reg, &index, &index2D);
4887
4888   for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4889      if (!(inst->Dst[0].Register.WriteMask & (1 << chan)))
4890         continue;
4891
4892      /* Here we should add the change to use a sample that lies within the
4893       * primitive (Section 15.2):
4894       *
4895       * "When interpolating variables declared using centroid in ,
4896       * the variable is sampled at a location within the pixel covered
4897       * by the primitive generating the fragment.
4898       * ...
4899       * The built-in functions interpolateAtCentroid ... will sample
4900       * variables as though they were declared with the centroid ...
4901       * qualifier[s]."
4902       *
4903       * Since we only support 1 sample currently, this is just a pass-through.
4904       */
4905      fetch_src_file_channel(mach, TGSI_FILE_INPUT, chan, &index, &index2D,
4906                             &result[chan]);
4907      store_dest(mach, &result[chan], &inst->Dst[0], inst, chan);
4908   }
4909
4910}
4911
4912
4913/**
4914 * Execute a TGSI instruction.
4915 * Returns TRUE if a barrier instruction is hit,
4916 * otherwise FALSE.
4917 */
4918static boolean
4919exec_instruction(
4920   struct tgsi_exec_machine *mach,
4921   const struct tgsi_full_instruction *inst,
4922   int *pc )
4923{
4924   union tgsi_exec_channel r[10];
4925
4926   (*pc)++;
4927
4928   switch (inst->Instruction.Opcode) {
4929   case TGSI_OPCODE_ARL:
4930      exec_vector_unary(mach, inst, micro_arl, TGSI_EXEC_DATA_FLOAT);
4931      break;
4932
4933   case TGSI_OPCODE_MOV:
4934      exec_vector_unary(mach, inst, micro_mov, TGSI_EXEC_DATA_FLOAT);
4935      break;
4936
4937   case TGSI_OPCODE_LIT:
4938      exec_lit(mach, inst);
4939      break;
4940
4941   case TGSI_OPCODE_RCP:
4942      exec_scalar_unary(mach, inst, micro_rcp, TGSI_EXEC_DATA_FLOAT);
4943      break;
4944
4945   case TGSI_OPCODE_RSQ:
4946      exec_scalar_unary(mach, inst, micro_rsq, TGSI_EXEC_DATA_FLOAT);
4947      break;
4948
4949   case TGSI_OPCODE_EXP:
4950      exec_exp(mach, inst);
4951      break;
4952
4953   case TGSI_OPCODE_LOG:
4954      exec_log(mach, inst);
4955      break;
4956
4957   case TGSI_OPCODE_MUL:
4958      exec_vector_binary(mach, inst, micro_mul, TGSI_EXEC_DATA_FLOAT);
4959      break;
4960
4961   case TGSI_OPCODE_ADD:
4962      exec_vector_binary(mach, inst, micro_add, TGSI_EXEC_DATA_FLOAT);
4963      break;
4964
4965   case TGSI_OPCODE_DP3:
4966      exec_dp3(mach, inst);
4967      break;
4968
4969   case TGSI_OPCODE_DP4:
4970      exec_dp4(mach, inst);
4971      break;
4972
4973   case TGSI_OPCODE_DST:
4974      exec_dst(mach, inst);
4975      break;
4976
4977   case TGSI_OPCODE_MIN:
4978      exec_vector_binary(mach, inst, micro_min, TGSI_EXEC_DATA_FLOAT);
4979      break;
4980
4981   case TGSI_OPCODE_MAX:
4982      exec_vector_binary(mach, inst, micro_max, TGSI_EXEC_DATA_FLOAT);
4983      break;
4984
4985   case TGSI_OPCODE_SLT:
4986      exec_vector_binary(mach, inst, micro_slt, TGSI_EXEC_DATA_FLOAT);
4987      break;
4988
4989   case TGSI_OPCODE_SGE:
4990      exec_vector_binary(mach, inst, micro_sge, TGSI_EXEC_DATA_FLOAT);
4991      break;
4992
4993   case TGSI_OPCODE_MAD:
4994      exec_vector_trinary(mach, inst, micro_mad, TGSI_EXEC_DATA_FLOAT);
4995      break;
4996
4997   case TGSI_OPCODE_LRP:
4998      exec_vector_trinary(mach, inst, micro_lrp, TGSI_EXEC_DATA_FLOAT);
4999      break;
5000
5001   case TGSI_OPCODE_SQRT:
5002      exec_scalar_unary(mach, inst, micro_sqrt, TGSI_EXEC_DATA_FLOAT);
5003      break;
5004
5005   case TGSI_OPCODE_FRC:
5006      exec_vector_unary(mach, inst, micro_frc, TGSI_EXEC_DATA_FLOAT);
5007      break;
5008
5009   case TGSI_OPCODE_FLR:
5010      exec_vector_unary(mach, inst, micro_flr, TGSI_EXEC_DATA_FLOAT);
5011      break;
5012
5013   case TGSI_OPCODE_ROUND:
5014      exec_vector_unary(mach, inst, micro_rnd, TGSI_EXEC_DATA_FLOAT);
5015      break;
5016
5017   case TGSI_OPCODE_EX2:
5018      exec_scalar_unary(mach, inst, micro_exp2, TGSI_EXEC_DATA_FLOAT);
5019      break;
5020
5021   case TGSI_OPCODE_LG2:
5022      exec_scalar_unary(mach, inst, micro_lg2, TGSI_EXEC_DATA_FLOAT);
5023      break;
5024
5025   case TGSI_OPCODE_POW:
5026      exec_scalar_binary(mach, inst, micro_pow, TGSI_EXEC_DATA_FLOAT);
5027      break;
5028
5029   case TGSI_OPCODE_LDEXP:
5030      exec_vector_binary(mach, inst, micro_ldexp, TGSI_EXEC_DATA_FLOAT);
5031      break;
5032
5033   case TGSI_OPCODE_COS:
5034      exec_scalar_unary(mach, inst, micro_cos, TGSI_EXEC_DATA_FLOAT);
5035      break;
5036
5037   case TGSI_OPCODE_DDX_FINE:
5038      exec_vector_unary(mach, inst, micro_ddx_fine, TGSI_EXEC_DATA_FLOAT);
5039      break;
5040
5041   case TGSI_OPCODE_DDX:
5042      exec_vector_unary(mach, inst, micro_ddx, TGSI_EXEC_DATA_FLOAT);
5043      break;
5044
5045   case TGSI_OPCODE_DDY_FINE:
5046      exec_vector_unary(mach, inst, micro_ddy_fine, TGSI_EXEC_DATA_FLOAT);
5047      break;
5048
5049   case TGSI_OPCODE_DDY:
5050      exec_vector_unary(mach, inst, micro_ddy, TGSI_EXEC_DATA_FLOAT);
5051      break;
5052
5053   case TGSI_OPCODE_KILL:
5054      exec_kill (mach);
5055      break;
5056
5057   case TGSI_OPCODE_KILL_IF:
5058      exec_kill_if (mach, inst);
5059      break;
5060
5061   case TGSI_OPCODE_PK2H:
5062      exec_pk2h(mach, inst);
5063      break;
5064
5065   case TGSI_OPCODE_PK2US:
5066      assert (0);
5067      break;
5068
5069   case TGSI_OPCODE_PK4B:
5070      assert (0);
5071      break;
5072
5073   case TGSI_OPCODE_PK4UB:
5074      assert (0);
5075      break;
5076
5077   case TGSI_OPCODE_SEQ:
5078      exec_vector_binary(mach, inst, micro_seq, TGSI_EXEC_DATA_FLOAT);
5079      break;
5080
5081   case TGSI_OPCODE_SGT:
5082      exec_vector_binary(mach, inst, micro_sgt, TGSI_EXEC_DATA_FLOAT);
5083      break;
5084
5085   case TGSI_OPCODE_SIN:
5086      exec_scalar_unary(mach, inst, micro_sin, TGSI_EXEC_DATA_FLOAT);
5087      break;
5088
5089   case TGSI_OPCODE_SLE:
5090      exec_vector_binary(mach, inst, micro_sle, TGSI_EXEC_DATA_FLOAT);
5091      break;
5092
5093   case TGSI_OPCODE_SNE:
5094      exec_vector_binary(mach, inst, micro_sne, TGSI_EXEC_DATA_FLOAT);
5095      break;
5096
5097   case TGSI_OPCODE_TEX:
5098      /* simple texture lookup */
5099      /* src[0] = texcoord */
5100      /* src[1] = sampler unit */
5101      exec_tex(mach, inst, TEX_MODIFIER_NONE, 1);
5102      break;
5103
5104   case TGSI_OPCODE_TXB:
5105      /* Texture lookup with lod bias */
5106      /* src[0] = texcoord (src[0].w = LOD bias) */
5107      /* src[1] = sampler unit */
5108      exec_tex(mach, inst, TEX_MODIFIER_LOD_BIAS, 1);
5109      break;
5110
5111   case TGSI_OPCODE_TXD:
5112      /* Texture lookup with explict partial derivatives */
5113      /* src[0] = texcoord */
5114      /* src[1] = d[strq]/dx */
5115      /* src[2] = d[strq]/dy */
5116      /* src[3] = sampler unit */
5117      exec_txd(mach, inst);
5118      break;
5119
5120   case TGSI_OPCODE_TXL:
5121      /* Texture lookup with explit LOD */
5122      /* src[0] = texcoord (src[0].w = LOD) */
5123      /* src[1] = sampler unit */
5124      exec_tex(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, 1);
5125      break;
5126
5127   case TGSI_OPCODE_TXP:
5128      /* Texture lookup with projection */
5129      /* src[0] = texcoord (src[0].w = projection) */
5130      /* src[1] = sampler unit */
5131      exec_tex(mach, inst, TEX_MODIFIER_PROJECTED, 1);
5132      break;
5133
5134   case TGSI_OPCODE_TG4:
5135      /* src[0] = texcoord */
5136      /* src[1] = component */
5137      /* src[2] = sampler unit */
5138      exec_tex(mach, inst, TEX_MODIFIER_GATHER, 2);
5139      break;
5140
5141   case TGSI_OPCODE_LODQ:
5142      /* src[0] = texcoord */
5143      /* src[1] = sampler unit */
5144      exec_lodq(mach, inst);
5145      break;
5146
5147   case TGSI_OPCODE_UP2H:
5148      exec_up2h(mach, inst);
5149      break;
5150
5151   case TGSI_OPCODE_UP2US:
5152      assert (0);
5153      break;
5154
5155   case TGSI_OPCODE_UP4B:
5156      assert (0);
5157      break;
5158
5159   case TGSI_OPCODE_UP4UB:
5160      assert (0);
5161      break;
5162
5163   case TGSI_OPCODE_ARR:
5164      exec_vector_unary(mach, inst, micro_arr, TGSI_EXEC_DATA_FLOAT);
5165      break;
5166
5167   case TGSI_OPCODE_CAL:
5168      /* skip the call if no execution channels are enabled */
5169      if (mach->ExecMask) {
5170         /* do the call */
5171
5172         /* First, record the depths of the execution stacks.
5173          * This is important for deeply nested/looped return statements.
5174          * We have to unwind the stacks by the correct amount.  For a
5175          * real code generator, we could determine the number of entries
5176          * to pop off each stack with simple static analysis and avoid
5177          * implementing this data structure at run time.
5178          */
5179         mach->CallStack[mach->CallStackTop].CondStackTop = mach->CondStackTop;
5180         mach->CallStack[mach->CallStackTop].LoopStackTop = mach->LoopStackTop;
5181         mach->CallStack[mach->CallStackTop].ContStackTop = mach->ContStackTop;
5182         mach->CallStack[mach->CallStackTop].SwitchStackTop = mach->SwitchStackTop;
5183         mach->CallStack[mach->CallStackTop].BreakStackTop = mach->BreakStackTop;
5184         /* note that PC was already incremented above */
5185         mach->CallStack[mach->CallStackTop].ReturnAddr = *pc;
5186
5187         mach->CallStackTop++;
5188
5189         /* Second, push the Cond, Loop, Cont, Func stacks */
5190         assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
5191         assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5192         assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5193         assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
5194         assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
5195         assert(mach->FuncStackTop < TGSI_EXEC_MAX_CALL_NESTING);
5196
5197         mach->CondStack[mach->CondStackTop++] = mach->CondMask;
5198         mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
5199         mach->ContStack[mach->ContStackTop++] = mach->ContMask;
5200         mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
5201         mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
5202         mach->FuncStack[mach->FuncStackTop++] = mach->FuncMask;
5203
5204         /* Finally, jump to the subroutine.  The label is a pointer
5205          * (an instruction number) to the BGNSUB instruction.
5206          */
5207         *pc = inst->Label.Label;
5208         assert(mach->Instructions[*pc].Instruction.Opcode
5209                == TGSI_OPCODE_BGNSUB);
5210      }
5211      break;
5212
5213   case TGSI_OPCODE_RET:
5214      mach->FuncMask &= ~mach->ExecMask;
5215      UPDATE_EXEC_MASK(mach);
5216
5217      if (mach->FuncMask == 0x0) {
5218         /* really return now (otherwise, keep executing */
5219
5220         if (mach->CallStackTop == 0) {
5221            /* returning from main() */
5222            mach->CondStackTop = 0;
5223            mach->LoopStackTop = 0;
5224            mach->ContStackTop = 0;
5225            mach->LoopLabelStackTop = 0;
5226            mach->SwitchStackTop = 0;
5227            mach->BreakStackTop = 0;
5228            *pc = -1;
5229            return FALSE;
5230         }
5231
5232         assert(mach->CallStackTop > 0);
5233         mach->CallStackTop--;
5234
5235         mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
5236         mach->CondMask = mach->CondStack[mach->CondStackTop];
5237
5238         mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
5239         mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
5240
5241         mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
5242         mach->ContMask = mach->ContStack[mach->ContStackTop];
5243
5244         mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
5245         mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
5246
5247         mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
5248         mach->BreakType = mach->BreakStack[mach->BreakStackTop];
5249
5250         assert(mach->FuncStackTop > 0);
5251         mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
5252
5253         *pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
5254
5255         UPDATE_EXEC_MASK(mach);
5256      }
5257      break;
5258
5259   case TGSI_OPCODE_SSG:
5260      exec_vector_unary(mach, inst, micro_sgn, TGSI_EXEC_DATA_FLOAT);
5261      break;
5262
5263   case TGSI_OPCODE_CMP:
5264      exec_vector_trinary(mach, inst, micro_cmp, TGSI_EXEC_DATA_FLOAT);
5265      break;
5266
5267   case TGSI_OPCODE_DIV:
5268      exec_vector_binary(mach, inst, micro_div, TGSI_EXEC_DATA_FLOAT);
5269      break;
5270
5271   case TGSI_OPCODE_DP2:
5272      exec_dp2(mach, inst);
5273      break;
5274
5275   case TGSI_OPCODE_IF:
5276      /* push CondMask */
5277      assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
5278      mach->CondStack[mach->CondStackTop++] = mach->CondMask;
5279      FETCH( &r[0], 0, TGSI_CHAN_X );
5280      for (int i = 0; i < TGSI_QUAD_SIZE; i++) {
5281         if (!r[0].f[i])
5282            mach->CondMask &= ~(1 << i);
5283      }
5284      UPDATE_EXEC_MASK(mach);
5285      /* If no channels are taking the then branch, jump to ELSE. */
5286      if (!mach->CondMask)
5287         *pc = inst->Label.Label;
5288      break;
5289
5290   case TGSI_OPCODE_UIF:
5291      /* push CondMask */
5292      assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
5293      mach->CondStack[mach->CondStackTop++] = mach->CondMask;
5294      IFETCH( &r[0], 0, TGSI_CHAN_X );
5295      for (int i = 0; i < TGSI_QUAD_SIZE; i++) {
5296         if (!r[0].u[i])
5297            mach->CondMask &= ~(1 << i);
5298      }
5299      UPDATE_EXEC_MASK(mach);
5300      /* If no channels are taking the then branch, jump to ELSE. */
5301      if (!mach->CondMask)
5302         *pc = inst->Label.Label;
5303      break;
5304
5305   case TGSI_OPCODE_ELSE:
5306      /* invert CondMask wrt previous mask */
5307      {
5308         uint prevMask;
5309         assert(mach->CondStackTop > 0);
5310         prevMask = mach->CondStack[mach->CondStackTop - 1];
5311         mach->CondMask = ~mach->CondMask & prevMask;
5312         UPDATE_EXEC_MASK(mach);
5313
5314         /* If no channels are taking ELSE, jump to ENDIF */
5315         if (!mach->CondMask)
5316            *pc = inst->Label.Label;
5317      }
5318      break;
5319
5320   case TGSI_OPCODE_ENDIF:
5321      /* pop CondMask */
5322      assert(mach->CondStackTop > 0);
5323      mach->CondMask = mach->CondStack[--mach->CondStackTop];
5324      UPDATE_EXEC_MASK(mach);
5325      break;
5326
5327   case TGSI_OPCODE_END:
5328      /* make sure we end primitives which haven't
5329       * been explicitly emitted */
5330      conditional_emit_primitive(mach);
5331      /* halt execution */
5332      *pc = -1;
5333      break;
5334
5335   case TGSI_OPCODE_CEIL:
5336      exec_vector_unary(mach, inst, micro_ceil, TGSI_EXEC_DATA_FLOAT);
5337      break;
5338
5339   case TGSI_OPCODE_I2F:
5340      exec_vector_unary(mach, inst, micro_i2f, TGSI_EXEC_DATA_INT);
5341      break;
5342
5343   case TGSI_OPCODE_NOT:
5344      exec_vector_unary(mach, inst, micro_not, TGSI_EXEC_DATA_UINT);
5345      break;
5346
5347   case TGSI_OPCODE_TRUNC:
5348      exec_vector_unary(mach, inst, micro_trunc, TGSI_EXEC_DATA_FLOAT);
5349      break;
5350
5351   case TGSI_OPCODE_SHL:
5352      exec_vector_binary(mach, inst, micro_shl, TGSI_EXEC_DATA_UINT);
5353      break;
5354
5355   case TGSI_OPCODE_AND:
5356      exec_vector_binary(mach, inst, micro_and, TGSI_EXEC_DATA_UINT);
5357      break;
5358
5359   case TGSI_OPCODE_OR:
5360      exec_vector_binary(mach, inst, micro_or, TGSI_EXEC_DATA_UINT);
5361      break;
5362
5363   case TGSI_OPCODE_MOD:
5364      exec_vector_binary(mach, inst, micro_mod, TGSI_EXEC_DATA_INT);
5365      break;
5366
5367   case TGSI_OPCODE_XOR:
5368      exec_vector_binary(mach, inst, micro_xor, TGSI_EXEC_DATA_UINT);
5369      break;
5370
5371   case TGSI_OPCODE_TXF:
5372      exec_txf(mach, inst);
5373      break;
5374
5375   case TGSI_OPCODE_TXQ:
5376      exec_txq(mach, inst);
5377      break;
5378
5379   case TGSI_OPCODE_EMIT:
5380      emit_vertex(mach, inst);
5381      break;
5382
5383   case TGSI_OPCODE_ENDPRIM:
5384      emit_primitive(mach, inst);
5385      break;
5386
5387   case TGSI_OPCODE_BGNLOOP:
5388      /* push LoopMask and ContMasks */
5389      assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5390      assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5391      assert(mach->LoopLabelStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5392      assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
5393
5394      mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
5395      mach->ContStack[mach->ContStackTop++] = mach->ContMask;
5396      mach->LoopLabelStack[mach->LoopLabelStackTop++] = *pc - 1;
5397      mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
5398      mach->BreakType = TGSI_EXEC_BREAK_INSIDE_LOOP;
5399      break;
5400
5401   case TGSI_OPCODE_ENDLOOP:
5402      /* Restore ContMask, but don't pop */
5403      assert(mach->ContStackTop > 0);
5404      mach->ContMask = mach->ContStack[mach->ContStackTop - 1];
5405      UPDATE_EXEC_MASK(mach);
5406      if (mach->ExecMask) {
5407         /* repeat loop: jump to instruction just past BGNLOOP */
5408         assert(mach->LoopLabelStackTop > 0);
5409         *pc = mach->LoopLabelStack[mach->LoopLabelStackTop - 1] + 1;
5410      }
5411      else {
5412         /* exit loop: pop LoopMask */
5413         assert(mach->LoopStackTop > 0);
5414         mach->LoopMask = mach->LoopStack[--mach->LoopStackTop];
5415         /* pop ContMask */
5416         assert(mach->ContStackTop > 0);
5417         mach->ContMask = mach->ContStack[--mach->ContStackTop];
5418         assert(mach->LoopLabelStackTop > 0);
5419         --mach->LoopLabelStackTop;
5420
5421         mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
5422      }
5423      UPDATE_EXEC_MASK(mach);
5424      break;
5425
5426   case TGSI_OPCODE_BRK:
5427      exec_break(mach);
5428      break;
5429
5430   case TGSI_OPCODE_CONT:
5431      /* turn off cont channels for each enabled exec channel */
5432      mach->ContMask &= ~mach->ExecMask;
5433      /* Todo: if mach->LoopMask == 0, jump to end of loop */
5434      UPDATE_EXEC_MASK(mach);
5435      break;
5436
5437   case TGSI_OPCODE_BGNSUB:
5438      /* no-op */
5439      break;
5440
5441   case TGSI_OPCODE_ENDSUB:
5442      /*
5443       * XXX: This really should be a no-op. We should never reach this opcode.
5444       */
5445
5446      assert(mach->CallStackTop > 0);
5447      mach->CallStackTop--;
5448
5449      mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
5450      mach->CondMask = mach->CondStack[mach->CondStackTop];
5451
5452      mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
5453      mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
5454
5455      mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
5456      mach->ContMask = mach->ContStack[mach->ContStackTop];
5457
5458      mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
5459      mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
5460
5461      mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
5462      mach->BreakType = mach->BreakStack[mach->BreakStackTop];
5463
5464      assert(mach->FuncStackTop > 0);
5465      mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
5466
5467      *pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
5468
5469      UPDATE_EXEC_MASK(mach);
5470      break;
5471
5472   case TGSI_OPCODE_NOP:
5473      break;
5474
5475   case TGSI_OPCODE_F2I:
5476      exec_vector_unary(mach, inst, micro_f2i, TGSI_EXEC_DATA_FLOAT);
5477      break;
5478
5479   case TGSI_OPCODE_FSEQ:
5480      exec_vector_binary(mach, inst, micro_fseq, TGSI_EXEC_DATA_FLOAT);
5481      break;
5482
5483   case TGSI_OPCODE_FSGE:
5484      exec_vector_binary(mach, inst, micro_fsge, TGSI_EXEC_DATA_FLOAT);
5485      break;
5486
5487   case TGSI_OPCODE_FSLT:
5488      exec_vector_binary(mach, inst, micro_fslt, TGSI_EXEC_DATA_FLOAT);
5489      break;
5490
5491   case TGSI_OPCODE_FSNE:
5492      exec_vector_binary(mach, inst, micro_fsne, TGSI_EXEC_DATA_FLOAT);
5493      break;
5494
5495   case TGSI_OPCODE_IDIV:
5496      exec_vector_binary(mach, inst, micro_idiv, TGSI_EXEC_DATA_INT);
5497      break;
5498
5499   case TGSI_OPCODE_IMAX:
5500      exec_vector_binary(mach, inst, micro_imax, TGSI_EXEC_DATA_INT);
5501      break;
5502
5503   case TGSI_OPCODE_IMIN:
5504      exec_vector_binary(mach, inst, micro_imin, TGSI_EXEC_DATA_INT);
5505      break;
5506
5507   case TGSI_OPCODE_INEG:
5508      exec_vector_unary(mach, inst, micro_ineg, TGSI_EXEC_DATA_INT);
5509      break;
5510
5511   case TGSI_OPCODE_ISGE:
5512      exec_vector_binary(mach, inst, micro_isge, TGSI_EXEC_DATA_INT);
5513      break;
5514
5515   case TGSI_OPCODE_ISHR:
5516      exec_vector_binary(mach, inst, micro_ishr, TGSI_EXEC_DATA_INT);
5517      break;
5518
5519   case TGSI_OPCODE_ISLT:
5520      exec_vector_binary(mach, inst, micro_islt, TGSI_EXEC_DATA_INT);
5521      break;
5522
5523   case TGSI_OPCODE_F2U:
5524      exec_vector_unary(mach, inst, micro_f2u, TGSI_EXEC_DATA_FLOAT);
5525      break;
5526
5527   case TGSI_OPCODE_U2F:
5528      exec_vector_unary(mach, inst, micro_u2f, TGSI_EXEC_DATA_UINT);
5529      break;
5530
5531   case TGSI_OPCODE_UADD:
5532      exec_vector_binary(mach, inst, micro_uadd, TGSI_EXEC_DATA_INT);
5533      break;
5534
5535   case TGSI_OPCODE_UDIV:
5536      exec_vector_binary(mach, inst, micro_udiv, TGSI_EXEC_DATA_UINT);
5537      break;
5538
5539   case TGSI_OPCODE_UMAD:
5540      exec_vector_trinary(mach, inst, micro_umad, TGSI_EXEC_DATA_UINT);
5541      break;
5542
5543   case TGSI_OPCODE_UMAX:
5544      exec_vector_binary(mach, inst, micro_umax, TGSI_EXEC_DATA_UINT);
5545      break;
5546
5547   case TGSI_OPCODE_UMIN:
5548      exec_vector_binary(mach, inst, micro_umin, TGSI_EXEC_DATA_UINT);
5549      break;
5550
5551   case TGSI_OPCODE_UMOD:
5552      exec_vector_binary(mach, inst, micro_umod, TGSI_EXEC_DATA_UINT);
5553      break;
5554
5555   case TGSI_OPCODE_UMUL:
5556      exec_vector_binary(mach, inst, micro_umul, TGSI_EXEC_DATA_UINT);
5557      break;
5558
5559   case TGSI_OPCODE_IMUL_HI:
5560      exec_vector_binary(mach, inst, micro_imul_hi, TGSI_EXEC_DATA_INT);
5561      break;
5562
5563   case TGSI_OPCODE_UMUL_HI:
5564      exec_vector_binary(mach, inst, micro_umul_hi, TGSI_EXEC_DATA_UINT);
5565      break;
5566
5567   case TGSI_OPCODE_USEQ:
5568      exec_vector_binary(mach, inst, micro_useq, TGSI_EXEC_DATA_UINT);
5569      break;
5570
5571   case TGSI_OPCODE_USGE:
5572      exec_vector_binary(mach, inst, micro_usge, TGSI_EXEC_DATA_UINT);
5573      break;
5574
5575   case TGSI_OPCODE_USHR:
5576      exec_vector_binary(mach, inst, micro_ushr, TGSI_EXEC_DATA_UINT);
5577      break;
5578
5579   case TGSI_OPCODE_USLT:
5580      exec_vector_binary(mach, inst, micro_uslt, TGSI_EXEC_DATA_UINT);
5581      break;
5582
5583   case TGSI_OPCODE_USNE:
5584      exec_vector_binary(mach, inst, micro_usne, TGSI_EXEC_DATA_UINT);
5585      break;
5586
5587   case TGSI_OPCODE_SWITCH:
5588      exec_switch(mach, inst);
5589      break;
5590
5591   case TGSI_OPCODE_CASE:
5592      exec_case(mach, inst);
5593      break;
5594
5595   case TGSI_OPCODE_DEFAULT:
5596      exec_default(mach);
5597      break;
5598
5599   case TGSI_OPCODE_ENDSWITCH:
5600      exec_endswitch(mach);
5601      break;
5602
5603   case TGSI_OPCODE_SAMPLE_I:
5604      exec_txf(mach, inst);
5605      break;
5606
5607   case TGSI_OPCODE_SAMPLE_I_MS:
5608      exec_txf(mach, inst);
5609      break;
5610
5611   case TGSI_OPCODE_SAMPLE:
5612      exec_sample(mach, inst, TEX_MODIFIER_NONE, FALSE);
5613      break;
5614
5615   case TGSI_OPCODE_SAMPLE_B:
5616      exec_sample(mach, inst, TEX_MODIFIER_LOD_BIAS, FALSE);
5617      break;
5618
5619   case TGSI_OPCODE_SAMPLE_C:
5620      exec_sample(mach, inst, TEX_MODIFIER_NONE, TRUE);
5621      break;
5622
5623   case TGSI_OPCODE_SAMPLE_C_LZ:
5624      exec_sample(mach, inst, TEX_MODIFIER_LEVEL_ZERO, TRUE);
5625      break;
5626
5627   case TGSI_OPCODE_SAMPLE_D:
5628      exec_sample_d(mach, inst);
5629      break;
5630
5631   case TGSI_OPCODE_SAMPLE_L:
5632      exec_sample(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, FALSE);
5633      break;
5634
5635   case TGSI_OPCODE_GATHER4:
5636      exec_sample(mach, inst, TEX_MODIFIER_GATHER, FALSE);
5637      break;
5638
5639   case TGSI_OPCODE_SVIEWINFO:
5640      exec_txq(mach, inst);
5641      break;
5642
5643   case TGSI_OPCODE_SAMPLE_POS:
5644      assert(0);
5645      break;
5646
5647   case TGSI_OPCODE_SAMPLE_INFO:
5648      assert(0);
5649      break;
5650
5651   case TGSI_OPCODE_LOD:
5652      exec_lodq(mach, inst);
5653      break;
5654
5655   case TGSI_OPCODE_UARL:
5656      exec_vector_unary(mach, inst, micro_uarl, TGSI_EXEC_DATA_UINT);
5657      break;
5658
5659   case TGSI_OPCODE_UCMP:
5660      exec_ucmp(mach, inst);
5661      break;
5662
5663   case TGSI_OPCODE_IABS:
5664      exec_vector_unary(mach, inst, micro_iabs, TGSI_EXEC_DATA_INT);
5665      break;
5666
5667   case TGSI_OPCODE_ISSG:
5668      exec_vector_unary(mach, inst, micro_isgn, TGSI_EXEC_DATA_INT);
5669      break;
5670
5671   case TGSI_OPCODE_TEX2:
5672      /* simple texture lookup */
5673      /* src[0] = texcoord */
5674      /* src[1] = compare */
5675      /* src[2] = sampler unit */
5676      exec_tex(mach, inst, TEX_MODIFIER_NONE, 2);
5677      break;
5678   case TGSI_OPCODE_TXB2:
5679      /* simple texture lookup */
5680      /* src[0] = texcoord */
5681      /* src[1] = bias */
5682      /* src[2] = sampler unit */
5683      exec_tex(mach, inst, TEX_MODIFIER_LOD_BIAS, 2);
5684      break;
5685   case TGSI_OPCODE_TXL2:
5686      /* simple texture lookup */
5687      /* src[0] = texcoord */
5688      /* src[1] = lod */
5689      /* src[2] = sampler unit */
5690      exec_tex(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, 2);
5691      break;
5692
5693   case TGSI_OPCODE_IBFE:
5694      exec_vector_trinary(mach, inst, micro_ibfe, TGSI_EXEC_DATA_INT);
5695      break;
5696   case TGSI_OPCODE_UBFE:
5697      exec_vector_trinary(mach, inst, micro_ubfe, TGSI_EXEC_DATA_UINT);
5698      break;
5699   case TGSI_OPCODE_BFI:
5700      exec_vector_quaternary(mach, inst, micro_bfi, TGSI_EXEC_DATA_UINT);
5701      break;
5702   case TGSI_OPCODE_BREV:
5703      exec_vector_unary(mach, inst, micro_brev, TGSI_EXEC_DATA_UINT);
5704      break;
5705   case TGSI_OPCODE_POPC:
5706      exec_vector_unary(mach, inst, micro_popc, TGSI_EXEC_DATA_UINT);
5707      break;
5708   case TGSI_OPCODE_LSB:
5709      exec_vector_unary(mach, inst, micro_lsb, TGSI_EXEC_DATA_UINT);
5710      break;
5711   case TGSI_OPCODE_IMSB:
5712      exec_vector_unary(mach, inst, micro_imsb, TGSI_EXEC_DATA_INT);
5713      break;
5714   case TGSI_OPCODE_UMSB:
5715      exec_vector_unary(mach, inst, micro_umsb, TGSI_EXEC_DATA_UINT);
5716      break;
5717
5718   case TGSI_OPCODE_F2D:
5719      exec_t_2_64(mach, inst, micro_f2d, TGSI_EXEC_DATA_FLOAT);
5720      break;
5721
5722   case TGSI_OPCODE_D2F:
5723      exec_64_2_t(mach, inst, micro_d2f);
5724      break;
5725
5726   case TGSI_OPCODE_DABS:
5727      exec_double_unary(mach, inst, micro_dabs);
5728      break;
5729
5730   case TGSI_OPCODE_DNEG:
5731      exec_double_unary(mach, inst, micro_dneg);
5732      break;
5733
5734   case TGSI_OPCODE_DADD:
5735      exec_double_binary(mach, inst, micro_dadd, TGSI_EXEC_DATA_DOUBLE);
5736      break;
5737
5738   case TGSI_OPCODE_DDIV:
5739      exec_double_binary(mach, inst, micro_ddiv, TGSI_EXEC_DATA_DOUBLE);
5740      break;
5741
5742   case TGSI_OPCODE_DMUL:
5743      exec_double_binary(mach, inst, micro_dmul, TGSI_EXEC_DATA_DOUBLE);
5744      break;
5745
5746   case TGSI_OPCODE_DMAX:
5747      exec_double_binary(mach, inst, micro_dmax, TGSI_EXEC_DATA_DOUBLE);
5748      break;
5749
5750   case TGSI_OPCODE_DMIN:
5751      exec_double_binary(mach, inst, micro_dmin, TGSI_EXEC_DATA_DOUBLE);
5752      break;
5753
5754   case TGSI_OPCODE_DSLT:
5755      exec_double_binary(mach, inst, micro_dslt, TGSI_EXEC_DATA_UINT);
5756      break;
5757
5758   case TGSI_OPCODE_DSGE:
5759      exec_double_binary(mach, inst, micro_dsge, TGSI_EXEC_DATA_UINT);
5760      break;
5761
5762   case TGSI_OPCODE_DSEQ:
5763      exec_double_binary(mach, inst, micro_dseq, TGSI_EXEC_DATA_UINT);
5764      break;
5765
5766   case TGSI_OPCODE_DSNE:
5767      exec_double_binary(mach, inst, micro_dsne, TGSI_EXEC_DATA_UINT);
5768      break;
5769
5770   case TGSI_OPCODE_DRCP:
5771      exec_double_unary(mach, inst, micro_drcp);
5772      break;
5773
5774   case TGSI_OPCODE_DSQRT:
5775      exec_double_unary(mach, inst, micro_dsqrt);
5776      break;
5777
5778   case TGSI_OPCODE_DRSQ:
5779      exec_double_unary(mach, inst, micro_drsq);
5780      break;
5781
5782   case TGSI_OPCODE_DMAD:
5783      exec_double_trinary(mach, inst, micro_dmad);
5784      break;
5785
5786   case TGSI_OPCODE_DFRAC:
5787      exec_double_unary(mach, inst, micro_dfrac);
5788      break;
5789
5790   case TGSI_OPCODE_DFLR:
5791      exec_double_unary(mach, inst, micro_dflr);
5792      break;
5793
5794   case TGSI_OPCODE_DLDEXP:
5795      exec_dldexp(mach, inst);
5796      break;
5797
5798   case TGSI_OPCODE_DFRACEXP:
5799      exec_dfracexp(mach, inst);
5800      break;
5801
5802   case TGSI_OPCODE_I2D:
5803      exec_t_2_64(mach, inst, micro_i2d, TGSI_EXEC_DATA_FLOAT);
5804      break;
5805
5806   case TGSI_OPCODE_D2I:
5807      exec_64_2_t(mach, inst, micro_d2i);
5808      break;
5809
5810   case TGSI_OPCODE_U2D:
5811      exec_t_2_64(mach, inst, micro_u2d, TGSI_EXEC_DATA_FLOAT);
5812      break;
5813
5814   case TGSI_OPCODE_D2U:
5815      exec_64_2_t(mach, inst, micro_d2u);
5816      break;
5817
5818   case TGSI_OPCODE_LOAD:
5819      exec_load(mach, inst);
5820      break;
5821
5822   case TGSI_OPCODE_STORE:
5823      exec_store(mach, inst);
5824      break;
5825
5826   case TGSI_OPCODE_ATOMUADD:
5827   case TGSI_OPCODE_ATOMXCHG:
5828   case TGSI_OPCODE_ATOMCAS:
5829   case TGSI_OPCODE_ATOMAND:
5830   case TGSI_OPCODE_ATOMOR:
5831   case TGSI_OPCODE_ATOMXOR:
5832   case TGSI_OPCODE_ATOMUMIN:
5833   case TGSI_OPCODE_ATOMUMAX:
5834   case TGSI_OPCODE_ATOMIMIN:
5835   case TGSI_OPCODE_ATOMIMAX:
5836   case TGSI_OPCODE_ATOMFADD:
5837      exec_atomop(mach, inst);
5838      break;
5839
5840   case TGSI_OPCODE_RESQ:
5841      exec_resq(mach, inst);
5842      break;
5843   case TGSI_OPCODE_BARRIER:
5844   case TGSI_OPCODE_MEMBAR:
5845      return TRUE;
5846      break;
5847
5848   case TGSI_OPCODE_I64ABS:
5849      exec_double_unary(mach, inst, micro_i64abs);
5850      break;
5851
5852   case TGSI_OPCODE_I64SSG:
5853      exec_double_unary(mach, inst, micro_i64sgn);
5854      break;
5855
5856   case TGSI_OPCODE_I64NEG:
5857      exec_double_unary(mach, inst, micro_i64neg);
5858      break;
5859
5860   case TGSI_OPCODE_U64SEQ:
5861      exec_double_binary(mach, inst, micro_u64seq, TGSI_EXEC_DATA_UINT);
5862      break;
5863
5864   case TGSI_OPCODE_U64SNE:
5865      exec_double_binary(mach, inst, micro_u64sne, TGSI_EXEC_DATA_UINT);
5866      break;
5867
5868   case TGSI_OPCODE_I64SLT:
5869      exec_double_binary(mach, inst, micro_i64slt, TGSI_EXEC_DATA_UINT);
5870      break;
5871   case TGSI_OPCODE_U64SLT:
5872      exec_double_binary(mach, inst, micro_u64slt, TGSI_EXEC_DATA_UINT);
5873      break;
5874
5875   case TGSI_OPCODE_I64SGE:
5876      exec_double_binary(mach, inst, micro_i64sge, TGSI_EXEC_DATA_UINT);
5877      break;
5878   case TGSI_OPCODE_U64SGE:
5879      exec_double_binary(mach, inst, micro_u64sge, TGSI_EXEC_DATA_UINT);
5880      break;
5881
5882   case TGSI_OPCODE_I64MIN:
5883      exec_double_binary(mach, inst, micro_i64min, TGSI_EXEC_DATA_INT64);
5884      break;
5885   case TGSI_OPCODE_U64MIN:
5886      exec_double_binary(mach, inst, micro_u64min, TGSI_EXEC_DATA_UINT64);
5887      break;
5888   case TGSI_OPCODE_I64MAX:
5889      exec_double_binary(mach, inst, micro_i64max, TGSI_EXEC_DATA_INT64);
5890      break;
5891   case TGSI_OPCODE_U64MAX:
5892      exec_double_binary(mach, inst, micro_u64max, TGSI_EXEC_DATA_UINT64);
5893      break;
5894   case TGSI_OPCODE_U64ADD:
5895      exec_double_binary(mach, inst, micro_u64add, TGSI_EXEC_DATA_UINT64);
5896      break;
5897   case TGSI_OPCODE_U64MUL:
5898      exec_double_binary(mach, inst, micro_u64mul, TGSI_EXEC_DATA_UINT64);
5899      break;
5900   case TGSI_OPCODE_U64SHL:
5901      exec_arg0_64_arg1_32(mach, inst, micro_u64shl);
5902      break;
5903   case TGSI_OPCODE_I64SHR:
5904      exec_arg0_64_arg1_32(mach, inst, micro_i64shr);
5905      break;
5906   case TGSI_OPCODE_U64SHR:
5907      exec_arg0_64_arg1_32(mach, inst, micro_u64shr);
5908      break;
5909   case TGSI_OPCODE_U64DIV:
5910      exec_double_binary(mach, inst, micro_u64div, TGSI_EXEC_DATA_UINT64);
5911      break;
5912   case TGSI_OPCODE_I64DIV:
5913      exec_double_binary(mach, inst, micro_i64div, TGSI_EXEC_DATA_INT64);
5914      break;
5915   case TGSI_OPCODE_U64MOD:
5916      exec_double_binary(mach, inst, micro_u64mod, TGSI_EXEC_DATA_UINT64);
5917      break;
5918   case TGSI_OPCODE_I64MOD:
5919      exec_double_binary(mach, inst, micro_i64mod, TGSI_EXEC_DATA_INT64);
5920      break;
5921
5922   case TGSI_OPCODE_F2U64:
5923      exec_t_2_64(mach, inst, micro_f2u64, TGSI_EXEC_DATA_FLOAT);
5924      break;
5925
5926   case TGSI_OPCODE_F2I64:
5927      exec_t_2_64(mach, inst, micro_f2i64, TGSI_EXEC_DATA_FLOAT);
5928      break;
5929
5930   case TGSI_OPCODE_U2I64:
5931      exec_t_2_64(mach, inst, micro_u2i64, TGSI_EXEC_DATA_INT);
5932      break;
5933   case TGSI_OPCODE_I2I64:
5934      exec_t_2_64(mach, inst, micro_i2i64, TGSI_EXEC_DATA_INT);
5935      break;
5936
5937   case TGSI_OPCODE_D2U64:
5938      exec_double_unary(mach, inst, micro_d2u64);
5939      break;
5940
5941   case TGSI_OPCODE_D2I64:
5942      exec_double_unary(mach, inst, micro_d2i64);
5943      break;
5944
5945   case TGSI_OPCODE_U642F:
5946      exec_64_2_t(mach, inst, micro_u642f);
5947      break;
5948   case TGSI_OPCODE_I642F:
5949      exec_64_2_t(mach, inst, micro_i642f);
5950      break;
5951
5952   case TGSI_OPCODE_U642D:
5953      exec_double_unary(mach, inst, micro_u642d);
5954      break;
5955   case TGSI_OPCODE_I642D:
5956      exec_double_unary(mach, inst, micro_i642d);
5957      break;
5958   case TGSI_OPCODE_INTERP_SAMPLE:
5959      exec_interp_at_sample(mach, inst);
5960      break;
5961   case TGSI_OPCODE_INTERP_OFFSET:
5962      exec_interp_at_offset(mach, inst);
5963      break;
5964   case TGSI_OPCODE_INTERP_CENTROID:
5965      exec_interp_at_centroid(mach, inst);
5966      break;
5967   default:
5968      assert( 0 );
5969   }
5970   return FALSE;
5971}
5972
5973static void
5974tgsi_exec_machine_setup_masks(struct tgsi_exec_machine *mach)
5975{
5976   uint default_mask = 0xf;
5977
5978   mach->KillMask = 0;
5979   mach->OutputVertexOffset = 0;
5980
5981   if (mach->ShaderType == PIPE_SHADER_GEOMETRY) {
5982      for (unsigned i = 0; i < TGSI_MAX_VERTEX_STREAMS; i++) {
5983         mach->OutputPrimCount[i] = 0;
5984         mach->Primitives[i][0] = 0;
5985      }
5986      /* GS runs on a single primitive for now */
5987      default_mask = 0x1;
5988   }
5989
5990   if (mach->NonHelperMask == 0)
5991      mach->NonHelperMask = default_mask;
5992   mach->CondMask = default_mask;
5993   mach->LoopMask = default_mask;
5994   mach->ContMask = default_mask;
5995   mach->FuncMask = default_mask;
5996   mach->ExecMask = default_mask;
5997
5998   mach->Switch.mask = default_mask;
5999
6000   assert(mach->CondStackTop == 0);
6001   assert(mach->LoopStackTop == 0);
6002   assert(mach->ContStackTop == 0);
6003   assert(mach->SwitchStackTop == 0);
6004   assert(mach->BreakStackTop == 0);
6005   assert(mach->CallStackTop == 0);
6006}
6007
6008/**
6009 * Run TGSI interpreter.
6010 * \return bitmask of "alive" quad components
6011 */
6012uint
6013tgsi_exec_machine_run( struct tgsi_exec_machine *mach, int start_pc )
6014{
6015   uint i;
6016
6017   mach->pc = start_pc;
6018
6019   if (!start_pc) {
6020      tgsi_exec_machine_setup_masks(mach);
6021
6022      /* execute declarations (interpolants) */
6023      for (i = 0; i < mach->NumDeclarations; i++) {
6024         exec_declaration( mach, mach->Declarations+i );
6025      }
6026   }
6027
6028   {
6029#if DEBUG_EXECUTION
6030      struct tgsi_exec_vector temps[TGSI_EXEC_NUM_TEMPS];
6031      struct tgsi_exec_vector outputs[PIPE_MAX_ATTRIBS];
6032      uint inst = 1;
6033
6034      if (!start_pc) {
6035         memset(mach->Temps, 0, sizeof(temps));
6036         if (mach->Outputs)
6037            memset(mach->Outputs, 0, sizeof(outputs));
6038         memset(temps, 0, sizeof(temps));
6039         memset(outputs, 0, sizeof(outputs));
6040      }
6041#endif
6042
6043      /* execute instructions, until pc is set to -1 */
6044      while (mach->pc != -1) {
6045         boolean barrier_hit;
6046#if DEBUG_EXECUTION
6047         uint i;
6048
6049         tgsi_dump_instruction(&mach->Instructions[mach->pc], inst++);
6050#endif
6051
6052         assert(mach->pc < (int) mach->NumInstructions);
6053         barrier_hit = exec_instruction(mach, mach->Instructions + mach->pc, &mach->pc);
6054
6055         /* for compute shaders if we hit a barrier return now for later rescheduling */
6056         if (barrier_hit && mach->ShaderType == PIPE_SHADER_COMPUTE)
6057            return 0;
6058
6059#if DEBUG_EXECUTION
6060         for (i = 0; i < TGSI_EXEC_NUM_TEMPS; i++) {
6061            if (memcmp(&temps[i], &mach->Temps[i], sizeof(temps[i]))) {
6062               uint j;
6063
6064               memcpy(&temps[i], &mach->Temps[i], sizeof(temps[i]));
6065               debug_printf("TEMP[%2u] = ", i);
6066               for (j = 0; j < 4; j++) {
6067                  if (j > 0) {
6068                     debug_printf("           ");
6069                  }
6070                  debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
6071                               temps[i].xyzw[0].f[j], temps[i].xyzw[0].u[j],
6072                               temps[i].xyzw[1].f[j], temps[i].xyzw[1].u[j],
6073                               temps[i].xyzw[2].f[j], temps[i].xyzw[2].u[j],
6074                               temps[i].xyzw[3].f[j], temps[i].xyzw[3].u[j]);
6075               }
6076            }
6077         }
6078         if (mach->Outputs) {
6079            for (i = 0; i < PIPE_MAX_ATTRIBS; i++) {
6080               if (memcmp(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]))) {
6081                  uint j;
6082
6083                  memcpy(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]));
6084                  debug_printf("OUT[%2u] =  ", i);
6085                  for (j = 0; j < 4; j++) {
6086                     if (j > 0) {
6087                        debug_printf("           ");
6088                     }
6089                     debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
6090                                  outputs[i].xyzw[0].f[j], outputs[i].xyzw[0].u[j],
6091                                  outputs[i].xyzw[1].f[j], outputs[i].xyzw[1].u[j],
6092                                  outputs[i].xyzw[2].f[j], outputs[i].xyzw[2].u[j],
6093                                  outputs[i].xyzw[3].f[j], outputs[i].xyzw[3].u[j]);
6094                  }
6095               }
6096            }
6097         }
6098#endif
6099      }
6100   }
6101
6102#if 0
6103   /* we scale from floats in [0,1] to Zbuffer ints in sp_quad_depth_test.c */
6104   if (mach->ShaderType == PIPE_SHADER_FRAGMENT) {
6105      /*
6106       * Scale back depth component.
6107       */
6108      for (i = 0; i < 4; i++)
6109         mach->Outputs[0].xyzw[2].f[i] *= ctx->DrawBuffer->_DepthMaxF;
6110   }
6111#endif
6112
6113   /* Strictly speaking, these assertions aren't really needed but they
6114    * can potentially catch some bugs in the control flow code.
6115    */
6116   assert(mach->CondStackTop == 0);
6117   assert(mach->LoopStackTop == 0);
6118   assert(mach->ContStackTop == 0);
6119   assert(mach->SwitchStackTop == 0);
6120   assert(mach->BreakStackTop == 0);
6121   assert(mach->CallStackTop == 0);
6122
6123   return ~mach->KillMask;
6124}
6125