1bf215546Sopenharmony_ci/* 2bf215546Sopenharmony_ci * Copyright (C) 2014 Rob Clark <robclark@freedesktop.org> 3bf215546Sopenharmony_ci * 4bf215546Sopenharmony_ci * Permission is hereby granted, free of charge, to any person obtaining a 5bf215546Sopenharmony_ci * copy of this software and associated documentation files (the "Software"), 6bf215546Sopenharmony_ci * to deal in the Software without restriction, including without limitation 7bf215546Sopenharmony_ci * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8bf215546Sopenharmony_ci * and/or sell copies of the Software, and to permit persons to whom the 9bf215546Sopenharmony_ci * Software is furnished to do so, subject to the following conditions: 10bf215546Sopenharmony_ci * 11bf215546Sopenharmony_ci * The above copyright notice and this permission notice (including the next 12bf215546Sopenharmony_ci * paragraph) shall be included in all copies or substantial portions of the 13bf215546Sopenharmony_ci * Software. 14bf215546Sopenharmony_ci * 15bf215546Sopenharmony_ci * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16bf215546Sopenharmony_ci * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17bf215546Sopenharmony_ci * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18bf215546Sopenharmony_ci * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19bf215546Sopenharmony_ci * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20bf215546Sopenharmony_ci * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21bf215546Sopenharmony_ci * SOFTWARE. 22bf215546Sopenharmony_ci * 23bf215546Sopenharmony_ci * Authors: 24bf215546Sopenharmony_ci * Rob Clark <robclark@freedesktop.org> 25bf215546Sopenharmony_ci */ 26bf215546Sopenharmony_ci 27bf215546Sopenharmony_ci#include "util/ralloc.h" 28bf215546Sopenharmony_ci#include "util/u_math.h" 29bf215546Sopenharmony_ci 30bf215546Sopenharmony_ci#include "ir3.h" 31bf215546Sopenharmony_ci#include "ir3_shader.h" 32bf215546Sopenharmony_ci 33bf215546Sopenharmony_ci/* 34bf215546Sopenharmony_ci * Legalize: 35bf215546Sopenharmony_ci * 36bf215546Sopenharmony_ci * The legalize pass handles ensuring sufficient nop's and sync flags for 37bf215546Sopenharmony_ci * correct execution. 38bf215546Sopenharmony_ci * 39bf215546Sopenharmony_ci * 1) Iteratively determine where sync ((sy)/(ss)) flags are needed, 40bf215546Sopenharmony_ci * based on state flowing out of predecessor blocks until there is 41bf215546Sopenharmony_ci * no further change. In some cases this requires inserting nops. 42bf215546Sopenharmony_ci * 2) Mark (ei) on last varying input 43bf215546Sopenharmony_ci * 3) Final nop scheduling for instruction latency 44bf215546Sopenharmony_ci * 4) Resolve jumps and schedule blocks, marking potential convergence 45bf215546Sopenharmony_ci * points with (jp) 46bf215546Sopenharmony_ci */ 47bf215546Sopenharmony_ci 48bf215546Sopenharmony_cistruct ir3_legalize_ctx { 49bf215546Sopenharmony_ci struct ir3_compiler *compiler; 50bf215546Sopenharmony_ci struct ir3_shader_variant *so; 51bf215546Sopenharmony_ci gl_shader_stage type; 52bf215546Sopenharmony_ci int max_bary; 53bf215546Sopenharmony_ci bool early_input_release; 54bf215546Sopenharmony_ci bool has_inputs; 55bf215546Sopenharmony_ci}; 56bf215546Sopenharmony_ci 57bf215546Sopenharmony_cistruct ir3_legalize_state { 58bf215546Sopenharmony_ci regmask_t needs_ss; 59bf215546Sopenharmony_ci regmask_t needs_ss_war; /* write after read */ 60bf215546Sopenharmony_ci regmask_t needs_sy; 61bf215546Sopenharmony_ci}; 62bf215546Sopenharmony_ci 63bf215546Sopenharmony_cistruct ir3_legalize_block_data { 64bf215546Sopenharmony_ci bool valid; 65bf215546Sopenharmony_ci struct ir3_legalize_state state; 66bf215546Sopenharmony_ci}; 67bf215546Sopenharmony_ci 68bf215546Sopenharmony_ci/* We want to evaluate each block from the position of any other 69bf215546Sopenharmony_ci * predecessor block, in order that the flags set are the union of 70bf215546Sopenharmony_ci * all possible program paths. 71bf215546Sopenharmony_ci * 72bf215546Sopenharmony_ci * To do this, we need to know the output state (needs_ss/ss_war/sy) 73bf215546Sopenharmony_ci * of all predecessor blocks. The tricky thing is loops, which mean 74bf215546Sopenharmony_ci * that we can't simply recursively process each predecessor block 75bf215546Sopenharmony_ci * before legalizing the current block. 76bf215546Sopenharmony_ci * 77bf215546Sopenharmony_ci * How we handle that is by looping over all the blocks until the 78bf215546Sopenharmony_ci * results converge. If the output state of a given block changes 79bf215546Sopenharmony_ci * in a given pass, this means that all successor blocks are not 80bf215546Sopenharmony_ci * yet fully legalized. 81bf215546Sopenharmony_ci */ 82bf215546Sopenharmony_ci 83bf215546Sopenharmony_cistatic bool 84bf215546Sopenharmony_cilegalize_block(struct ir3_legalize_ctx *ctx, struct ir3_block *block) 85bf215546Sopenharmony_ci{ 86bf215546Sopenharmony_ci struct ir3_legalize_block_data *bd = block->data; 87bf215546Sopenharmony_ci 88bf215546Sopenharmony_ci if (bd->valid) 89bf215546Sopenharmony_ci return false; 90bf215546Sopenharmony_ci 91bf215546Sopenharmony_ci struct ir3_instruction *last_n = NULL; 92bf215546Sopenharmony_ci struct list_head instr_list; 93bf215546Sopenharmony_ci struct ir3_legalize_state prev_state = bd->state; 94bf215546Sopenharmony_ci struct ir3_legalize_state *state = &bd->state; 95bf215546Sopenharmony_ci bool last_input_needs_ss = false; 96bf215546Sopenharmony_ci bool has_tex_prefetch = false; 97bf215546Sopenharmony_ci bool mergedregs = ctx->so->mergedregs; 98bf215546Sopenharmony_ci 99bf215546Sopenharmony_ci /* our input state is the OR of all predecessor blocks' state: */ 100bf215546Sopenharmony_ci for (unsigned i = 0; i < block->predecessors_count; i++) { 101bf215546Sopenharmony_ci struct ir3_block *predecessor = block->predecessors[i]; 102bf215546Sopenharmony_ci struct ir3_legalize_block_data *pbd = predecessor->data; 103bf215546Sopenharmony_ci struct ir3_legalize_state *pstate = &pbd->state; 104bf215546Sopenharmony_ci 105bf215546Sopenharmony_ci /* Our input (ss)/(sy) state is based on OR'ing the output 106bf215546Sopenharmony_ci * state of all our predecessor blocks 107bf215546Sopenharmony_ci */ 108bf215546Sopenharmony_ci regmask_or(&state->needs_ss, &state->needs_ss, &pstate->needs_ss); 109bf215546Sopenharmony_ci regmask_or(&state->needs_ss_war, &state->needs_ss_war, 110bf215546Sopenharmony_ci &pstate->needs_ss_war); 111bf215546Sopenharmony_ci regmask_or(&state->needs_sy, &state->needs_sy, &pstate->needs_sy); 112bf215546Sopenharmony_ci } 113bf215546Sopenharmony_ci 114bf215546Sopenharmony_ci /* We need to take phsyical-only edges into account when tracking shared 115bf215546Sopenharmony_ci * registers. 116bf215546Sopenharmony_ci */ 117bf215546Sopenharmony_ci for (unsigned i = 0; i < block->physical_predecessors_count; i++) { 118bf215546Sopenharmony_ci struct ir3_block *predecessor = block->physical_predecessors[i]; 119bf215546Sopenharmony_ci struct ir3_legalize_block_data *pbd = predecessor->data; 120bf215546Sopenharmony_ci struct ir3_legalize_state *pstate = &pbd->state; 121bf215546Sopenharmony_ci 122bf215546Sopenharmony_ci regmask_or_shared(&state->needs_ss, &state->needs_ss, &pstate->needs_ss); 123bf215546Sopenharmony_ci } 124bf215546Sopenharmony_ci 125bf215546Sopenharmony_ci unsigned input_count = 0; 126bf215546Sopenharmony_ci 127bf215546Sopenharmony_ci foreach_instr (n, &block->instr_list) { 128bf215546Sopenharmony_ci if (is_input(n)) { 129bf215546Sopenharmony_ci input_count++; 130bf215546Sopenharmony_ci } 131bf215546Sopenharmony_ci } 132bf215546Sopenharmony_ci 133bf215546Sopenharmony_ci unsigned inputs_remaining = input_count; 134bf215546Sopenharmony_ci 135bf215546Sopenharmony_ci /* Either inputs are in the first block or we expect inputs to be released 136bf215546Sopenharmony_ci * with the end of the program. 137bf215546Sopenharmony_ci */ 138bf215546Sopenharmony_ci assert(input_count == 0 || !ctx->early_input_release || 139bf215546Sopenharmony_ci block == ir3_after_preamble(block->shader)); 140bf215546Sopenharmony_ci 141bf215546Sopenharmony_ci /* remove all the instructions from the list, we'll be adding 142bf215546Sopenharmony_ci * them back in as we go 143bf215546Sopenharmony_ci */ 144bf215546Sopenharmony_ci list_replace(&block->instr_list, &instr_list); 145bf215546Sopenharmony_ci list_inithead(&block->instr_list); 146bf215546Sopenharmony_ci 147bf215546Sopenharmony_ci foreach_instr_safe (n, &instr_list) { 148bf215546Sopenharmony_ci unsigned i; 149bf215546Sopenharmony_ci 150bf215546Sopenharmony_ci n->flags &= ~(IR3_INSTR_SS | IR3_INSTR_SY); 151bf215546Sopenharmony_ci 152bf215546Sopenharmony_ci /* _meta::tex_prefetch instructions removed later in 153bf215546Sopenharmony_ci * collect_tex_prefetches() 154bf215546Sopenharmony_ci */ 155bf215546Sopenharmony_ci if (is_meta(n) && (n->opc != OPC_META_TEX_PREFETCH)) 156bf215546Sopenharmony_ci continue; 157bf215546Sopenharmony_ci 158bf215546Sopenharmony_ci if (is_input(n)) { 159bf215546Sopenharmony_ci struct ir3_register *inloc = n->srcs[0]; 160bf215546Sopenharmony_ci assert(inloc->flags & IR3_REG_IMMED); 161bf215546Sopenharmony_ci ctx->max_bary = MAX2(ctx->max_bary, inloc->iim_val); 162bf215546Sopenharmony_ci } 163bf215546Sopenharmony_ci 164bf215546Sopenharmony_ci if ((last_n && is_barrier(last_n)) || n->opc == OPC_SHPE) { 165bf215546Sopenharmony_ci n->flags |= IR3_INSTR_SS | IR3_INSTR_SY; 166bf215546Sopenharmony_ci last_input_needs_ss = false; 167bf215546Sopenharmony_ci regmask_init(&state->needs_ss_war, mergedregs); 168bf215546Sopenharmony_ci regmask_init(&state->needs_ss, mergedregs); 169bf215546Sopenharmony_ci regmask_init(&state->needs_sy, mergedregs); 170bf215546Sopenharmony_ci } 171bf215546Sopenharmony_ci 172bf215546Sopenharmony_ci if (last_n && (last_n->opc == OPC_PREDT)) { 173bf215546Sopenharmony_ci n->flags |= IR3_INSTR_SS; 174bf215546Sopenharmony_ci regmask_init(&state->needs_ss_war, mergedregs); 175bf215546Sopenharmony_ci regmask_init(&state->needs_ss, mergedregs); 176bf215546Sopenharmony_ci } 177bf215546Sopenharmony_ci 178bf215546Sopenharmony_ci /* NOTE: consider dst register too.. it could happen that 179bf215546Sopenharmony_ci * texture sample instruction (for example) writes some 180bf215546Sopenharmony_ci * components which are unused. A subsequent instruction 181bf215546Sopenharmony_ci * that writes the same register can race w/ the sam instr 182bf215546Sopenharmony_ci * resulting in undefined results: 183bf215546Sopenharmony_ci */ 184bf215546Sopenharmony_ci for (i = 0; i < n->dsts_count + n->srcs_count; i++) { 185bf215546Sopenharmony_ci struct ir3_register *reg; 186bf215546Sopenharmony_ci if (i < n->dsts_count) 187bf215546Sopenharmony_ci reg = n->dsts[i]; 188bf215546Sopenharmony_ci else 189bf215546Sopenharmony_ci reg = n->srcs[i - n->dsts_count]; 190bf215546Sopenharmony_ci 191bf215546Sopenharmony_ci if (reg_gpr(reg)) { 192bf215546Sopenharmony_ci 193bf215546Sopenharmony_ci /* TODO: we probably only need (ss) for alu 194bf215546Sopenharmony_ci * instr consuming sfu result.. need to make 195bf215546Sopenharmony_ci * some tests for both this and (sy).. 196bf215546Sopenharmony_ci */ 197bf215546Sopenharmony_ci if (regmask_get(&state->needs_ss, reg)) { 198bf215546Sopenharmony_ci n->flags |= IR3_INSTR_SS; 199bf215546Sopenharmony_ci last_input_needs_ss = false; 200bf215546Sopenharmony_ci regmask_init(&state->needs_ss_war, mergedregs); 201bf215546Sopenharmony_ci regmask_init(&state->needs_ss, mergedregs); 202bf215546Sopenharmony_ci } 203bf215546Sopenharmony_ci 204bf215546Sopenharmony_ci if (regmask_get(&state->needs_sy, reg)) { 205bf215546Sopenharmony_ci n->flags |= IR3_INSTR_SY; 206bf215546Sopenharmony_ci regmask_init(&state->needs_sy, mergedregs); 207bf215546Sopenharmony_ci } 208bf215546Sopenharmony_ci } 209bf215546Sopenharmony_ci } 210bf215546Sopenharmony_ci 211bf215546Sopenharmony_ci foreach_dst (reg, n) { 212bf215546Sopenharmony_ci if (regmask_get(&state->needs_ss_war, reg)) { 213bf215546Sopenharmony_ci n->flags |= IR3_INSTR_SS; 214bf215546Sopenharmony_ci last_input_needs_ss = false; 215bf215546Sopenharmony_ci regmask_init(&state->needs_ss_war, mergedregs); 216bf215546Sopenharmony_ci regmask_init(&state->needs_ss, mergedregs); 217bf215546Sopenharmony_ci } 218bf215546Sopenharmony_ci } 219bf215546Sopenharmony_ci 220bf215546Sopenharmony_ci /* cat5+ does not have an (ss) bit, if needed we need to 221bf215546Sopenharmony_ci * insert a nop to carry the sync flag. Would be kinda 222bf215546Sopenharmony_ci * clever if we were aware of this during scheduling, but 223bf215546Sopenharmony_ci * this should be a pretty rare case: 224bf215546Sopenharmony_ci */ 225bf215546Sopenharmony_ci if ((n->flags & IR3_INSTR_SS) && (opc_cat(n->opc) >= 5)) { 226bf215546Sopenharmony_ci struct ir3_instruction *nop; 227bf215546Sopenharmony_ci nop = ir3_NOP(block); 228bf215546Sopenharmony_ci nop->flags |= IR3_INSTR_SS; 229bf215546Sopenharmony_ci n->flags &= ~IR3_INSTR_SS; 230bf215546Sopenharmony_ci } 231bf215546Sopenharmony_ci 232bf215546Sopenharmony_ci /* need to be able to set (ss) on first instruction: */ 233bf215546Sopenharmony_ci if (list_is_empty(&block->instr_list) && (opc_cat(n->opc) >= 5)) 234bf215546Sopenharmony_ci ir3_NOP(block); 235bf215546Sopenharmony_ci 236bf215546Sopenharmony_ci if (ctx->compiler->samgq_workaround && 237bf215546Sopenharmony_ci ctx->type != MESA_SHADER_FRAGMENT && 238bf215546Sopenharmony_ci ctx->type != MESA_SHADER_COMPUTE && n->opc == OPC_SAMGQ) { 239bf215546Sopenharmony_ci struct ir3_instruction *samgp; 240bf215546Sopenharmony_ci 241bf215546Sopenharmony_ci list_delinit(&n->node); 242bf215546Sopenharmony_ci 243bf215546Sopenharmony_ci for (i = 0; i < 4; i++) { 244bf215546Sopenharmony_ci samgp = ir3_instr_clone(n); 245bf215546Sopenharmony_ci samgp->opc = OPC_SAMGP0 + i; 246bf215546Sopenharmony_ci if (i > 1) 247bf215546Sopenharmony_ci samgp->flags |= IR3_INSTR_SY; 248bf215546Sopenharmony_ci } 249bf215546Sopenharmony_ci } else { 250bf215546Sopenharmony_ci list_delinit(&n->node); 251bf215546Sopenharmony_ci list_addtail(&n->node, &block->instr_list); 252bf215546Sopenharmony_ci } 253bf215546Sopenharmony_ci 254bf215546Sopenharmony_ci if (is_sfu(n)) 255bf215546Sopenharmony_ci regmask_set(&state->needs_ss, n->dsts[0]); 256bf215546Sopenharmony_ci 257bf215546Sopenharmony_ci foreach_dst (dst, n) { 258bf215546Sopenharmony_ci if (dst->flags & IR3_REG_SHARED) 259bf215546Sopenharmony_ci regmask_set(&state->needs_ss, dst); 260bf215546Sopenharmony_ci } 261bf215546Sopenharmony_ci 262bf215546Sopenharmony_ci if (is_tex_or_prefetch(n)) { 263bf215546Sopenharmony_ci regmask_set(&state->needs_sy, n->dsts[0]); 264bf215546Sopenharmony_ci if (n->opc == OPC_META_TEX_PREFETCH) 265bf215546Sopenharmony_ci has_tex_prefetch = true; 266bf215546Sopenharmony_ci } else if (n->opc == OPC_RESINFO) { 267bf215546Sopenharmony_ci regmask_set(&state->needs_ss, n->dsts[0]); 268bf215546Sopenharmony_ci ir3_NOP(block)->flags |= IR3_INSTR_SS; 269bf215546Sopenharmony_ci last_input_needs_ss = false; 270bf215546Sopenharmony_ci } else if (is_load(n)) { 271bf215546Sopenharmony_ci if (is_local_mem_load(n)) 272bf215546Sopenharmony_ci regmask_set(&state->needs_ss, n->dsts[0]); 273bf215546Sopenharmony_ci else 274bf215546Sopenharmony_ci regmask_set(&state->needs_sy, n->dsts[0]); 275bf215546Sopenharmony_ci } else if (is_atomic(n->opc)) { 276bf215546Sopenharmony_ci if (is_bindless_atomic(n->opc)) { 277bf215546Sopenharmony_ci regmask_set(&state->needs_sy, n->srcs[2]); 278bf215546Sopenharmony_ci } else if (is_global_a3xx_atomic(n->opc) || 279bf215546Sopenharmony_ci is_global_a6xx_atomic(n->opc)) { 280bf215546Sopenharmony_ci regmask_set(&state->needs_sy, n->dsts[0]); 281bf215546Sopenharmony_ci } else { 282bf215546Sopenharmony_ci regmask_set(&state->needs_ss, n->dsts[0]); 283bf215546Sopenharmony_ci } 284bf215546Sopenharmony_ci } 285bf215546Sopenharmony_ci 286bf215546Sopenharmony_ci if (is_ssbo(n->opc) || is_global_a3xx_atomic(n->opc) || 287bf215546Sopenharmony_ci is_bindless_atomic(n->opc)) 288bf215546Sopenharmony_ci ctx->so->has_ssbo = true; 289bf215546Sopenharmony_ci 290bf215546Sopenharmony_ci /* both tex/sfu appear to not always immediately consume 291bf215546Sopenharmony_ci * their src register(s): 292bf215546Sopenharmony_ci */ 293bf215546Sopenharmony_ci if (is_tex(n) || is_sfu(n) || is_mem(n)) { 294bf215546Sopenharmony_ci foreach_src (reg, n) { 295bf215546Sopenharmony_ci regmask_set(&state->needs_ss_war, reg); 296bf215546Sopenharmony_ci } 297bf215546Sopenharmony_ci } 298bf215546Sopenharmony_ci 299bf215546Sopenharmony_ci if (ctx->early_input_release && is_input(n)) { 300bf215546Sopenharmony_ci last_input_needs_ss |= (n->opc == OPC_LDLV); 301bf215546Sopenharmony_ci 302bf215546Sopenharmony_ci assert(inputs_remaining > 0); 303bf215546Sopenharmony_ci inputs_remaining--; 304bf215546Sopenharmony_ci if (inputs_remaining == 0) { 305bf215546Sopenharmony_ci /* This is the last input. We add the (ei) flag to release 306bf215546Sopenharmony_ci * varying memory after this executes. If it's an ldlv, 307bf215546Sopenharmony_ci * however, we need to insert a dummy bary.f on which we can 308bf215546Sopenharmony_ci * set the (ei) flag. We may also need to insert an (ss) to 309bf215546Sopenharmony_ci * guarantee that all ldlv's have finished fetching their 310bf215546Sopenharmony_ci * results before releasing the varying memory. 311bf215546Sopenharmony_ci */ 312bf215546Sopenharmony_ci struct ir3_instruction *last_input = n; 313bf215546Sopenharmony_ci if (n->opc == OPC_LDLV) { 314bf215546Sopenharmony_ci struct ir3_instruction *baryf; 315bf215546Sopenharmony_ci 316bf215546Sopenharmony_ci /* (ss)bary.f (ei)r63.x, 0, r0.x */ 317bf215546Sopenharmony_ci baryf = ir3_instr_create(block, OPC_BARY_F, 1, 2); 318bf215546Sopenharmony_ci ir3_dst_create(baryf, regid(63, 0), 0); 319bf215546Sopenharmony_ci ir3_src_create(baryf, 0, IR3_REG_IMMED)->iim_val = 0; 320bf215546Sopenharmony_ci ir3_src_create(baryf, regid(0, 0), 0); 321bf215546Sopenharmony_ci 322bf215546Sopenharmony_ci last_input = baryf; 323bf215546Sopenharmony_ci } 324bf215546Sopenharmony_ci 325bf215546Sopenharmony_ci last_input->dsts[0]->flags |= IR3_REG_EI; 326bf215546Sopenharmony_ci if (last_input_needs_ss) { 327bf215546Sopenharmony_ci last_input->flags |= IR3_INSTR_SS; 328bf215546Sopenharmony_ci regmask_init(&state->needs_ss_war, mergedregs); 329bf215546Sopenharmony_ci regmask_init(&state->needs_ss, mergedregs); 330bf215546Sopenharmony_ci } 331bf215546Sopenharmony_ci } 332bf215546Sopenharmony_ci } 333bf215546Sopenharmony_ci 334bf215546Sopenharmony_ci last_n = n; 335bf215546Sopenharmony_ci } 336bf215546Sopenharmony_ci 337bf215546Sopenharmony_ci assert(inputs_remaining == 0 || !ctx->early_input_release); 338bf215546Sopenharmony_ci 339bf215546Sopenharmony_ci if (has_tex_prefetch && !ctx->has_inputs) { 340bf215546Sopenharmony_ci /* texture prefetch, but *no* inputs.. we need to insert a 341bf215546Sopenharmony_ci * dummy bary.f at the top of the shader to unblock varying 342bf215546Sopenharmony_ci * storage: 343bf215546Sopenharmony_ci */ 344bf215546Sopenharmony_ci struct ir3_instruction *baryf; 345bf215546Sopenharmony_ci 346bf215546Sopenharmony_ci /* (ss)bary.f (ei)r63.x, 0, r0.x */ 347bf215546Sopenharmony_ci baryf = ir3_instr_create(block, OPC_BARY_F, 1, 2); 348bf215546Sopenharmony_ci ir3_dst_create(baryf, regid(63, 0), 0)->flags |= IR3_REG_EI; 349bf215546Sopenharmony_ci ir3_src_create(baryf, 0, IR3_REG_IMMED)->iim_val = 0; 350bf215546Sopenharmony_ci ir3_src_create(baryf, regid(0, 0), 0); 351bf215546Sopenharmony_ci 352bf215546Sopenharmony_ci /* insert the dummy bary.f at head: */ 353bf215546Sopenharmony_ci list_delinit(&baryf->node); 354bf215546Sopenharmony_ci list_add(&baryf->node, &block->instr_list); 355bf215546Sopenharmony_ci } 356bf215546Sopenharmony_ci 357bf215546Sopenharmony_ci bd->valid = true; 358bf215546Sopenharmony_ci 359bf215546Sopenharmony_ci if (memcmp(&prev_state, state, sizeof(*state))) { 360bf215546Sopenharmony_ci /* our output state changed, this invalidates all of our 361bf215546Sopenharmony_ci * successors: 362bf215546Sopenharmony_ci */ 363bf215546Sopenharmony_ci for (unsigned i = 0; i < ARRAY_SIZE(block->successors); i++) { 364bf215546Sopenharmony_ci if (!block->successors[i]) 365bf215546Sopenharmony_ci break; 366bf215546Sopenharmony_ci struct ir3_legalize_block_data *pbd = block->successors[i]->data; 367bf215546Sopenharmony_ci pbd->valid = false; 368bf215546Sopenharmony_ci } 369bf215546Sopenharmony_ci } 370bf215546Sopenharmony_ci 371bf215546Sopenharmony_ci return true; 372bf215546Sopenharmony_ci} 373bf215546Sopenharmony_ci 374bf215546Sopenharmony_ci/* Expands dsxpp and dsypp macros to: 375bf215546Sopenharmony_ci * 376bf215546Sopenharmony_ci * dsxpp.1 dst, src 377bf215546Sopenharmony_ci * dsxpp.1.p dst, src 378bf215546Sopenharmony_ci * 379bf215546Sopenharmony_ci * We apply this after flags syncing, as we don't want to sync in between the 380bf215546Sopenharmony_ci * two (which might happen if dst == src). We do it before nop scheduling 381bf215546Sopenharmony_ci * because that needs to count actual instructions. 382bf215546Sopenharmony_ci */ 383bf215546Sopenharmony_cistatic bool 384bf215546Sopenharmony_ciapply_fine_deriv_macro(struct ir3_legalize_ctx *ctx, struct ir3_block *block) 385bf215546Sopenharmony_ci{ 386bf215546Sopenharmony_ci struct list_head instr_list; 387bf215546Sopenharmony_ci 388bf215546Sopenharmony_ci /* remove all the instructions from the list, we'll be adding 389bf215546Sopenharmony_ci * them back in as we go 390bf215546Sopenharmony_ci */ 391bf215546Sopenharmony_ci list_replace(&block->instr_list, &instr_list); 392bf215546Sopenharmony_ci list_inithead(&block->instr_list); 393bf215546Sopenharmony_ci 394bf215546Sopenharmony_ci foreach_instr_safe (n, &instr_list) { 395bf215546Sopenharmony_ci list_addtail(&n->node, &block->instr_list); 396bf215546Sopenharmony_ci 397bf215546Sopenharmony_ci if (n->opc == OPC_DSXPP_MACRO || n->opc == OPC_DSYPP_MACRO) { 398bf215546Sopenharmony_ci n->opc = (n->opc == OPC_DSXPP_MACRO) ? OPC_DSXPP_1 : OPC_DSYPP_1; 399bf215546Sopenharmony_ci 400bf215546Sopenharmony_ci struct ir3_instruction *op_p = ir3_instr_clone(n); 401bf215546Sopenharmony_ci op_p->flags = IR3_INSTR_P; 402bf215546Sopenharmony_ci 403bf215546Sopenharmony_ci ctx->so->need_fine_derivatives = true; 404bf215546Sopenharmony_ci } 405bf215546Sopenharmony_ci } 406bf215546Sopenharmony_ci 407bf215546Sopenharmony_ci return true; 408bf215546Sopenharmony_ci} 409bf215546Sopenharmony_ci 410bf215546Sopenharmony_ci/* NOTE: branch instructions are always the last instruction(s) 411bf215546Sopenharmony_ci * in the block. We take advantage of this as we resolve the 412bf215546Sopenharmony_ci * branches, since "if (foo) break;" constructs turn into 413bf215546Sopenharmony_ci * something like: 414bf215546Sopenharmony_ci * 415bf215546Sopenharmony_ci * block3 { 416bf215546Sopenharmony_ci * ... 417bf215546Sopenharmony_ci * 0029:021: mov.s32s32 r62.x, r1.y 418bf215546Sopenharmony_ci * 0082:022: br !p0.x, target=block5 419bf215546Sopenharmony_ci * 0083:023: br p0.x, target=block4 420bf215546Sopenharmony_ci * // succs: if _[0029:021: mov.s32s32] block4; else block5; 421bf215546Sopenharmony_ci * } 422bf215546Sopenharmony_ci * block4 { 423bf215546Sopenharmony_ci * 0084:024: jump, target=block6 424bf215546Sopenharmony_ci * // succs: block6; 425bf215546Sopenharmony_ci * } 426bf215546Sopenharmony_ci * block5 { 427bf215546Sopenharmony_ci * 0085:025: jump, target=block7 428bf215546Sopenharmony_ci * // succs: block7; 429bf215546Sopenharmony_ci * } 430bf215546Sopenharmony_ci * 431bf215546Sopenharmony_ci * ie. only instruction in block4/block5 is a jump, so when 432bf215546Sopenharmony_ci * resolving branches we can easily detect this by checking 433bf215546Sopenharmony_ci * that the first instruction in the target block is itself 434bf215546Sopenharmony_ci * a jump, and setup the br directly to the jump's target 435bf215546Sopenharmony_ci * (and strip back out the now unreached jump) 436bf215546Sopenharmony_ci * 437bf215546Sopenharmony_ci * TODO sometimes we end up with things like: 438bf215546Sopenharmony_ci * 439bf215546Sopenharmony_ci * br !p0.x, #2 440bf215546Sopenharmony_ci * br p0.x, #12 441bf215546Sopenharmony_ci * add.u r0.y, r0.y, 1 442bf215546Sopenharmony_ci * 443bf215546Sopenharmony_ci * If we swapped the order of the branches, we could drop one. 444bf215546Sopenharmony_ci */ 445bf215546Sopenharmony_cistatic struct ir3_block * 446bf215546Sopenharmony_ciresolve_dest_block(struct ir3_block *block) 447bf215546Sopenharmony_ci{ 448bf215546Sopenharmony_ci /* special case for last block: */ 449bf215546Sopenharmony_ci if (!block->successors[0]) 450bf215546Sopenharmony_ci return block; 451bf215546Sopenharmony_ci 452bf215546Sopenharmony_ci /* NOTE that we may or may not have inserted the jump 453bf215546Sopenharmony_ci * in the target block yet, so conditions to resolve 454bf215546Sopenharmony_ci * the dest to the dest block's successor are: 455bf215546Sopenharmony_ci * 456bf215546Sopenharmony_ci * (1) successor[1] == NULL && 457bf215546Sopenharmony_ci * (2) (block-is-empty || only-instr-is-jump) 458bf215546Sopenharmony_ci */ 459bf215546Sopenharmony_ci if (block->successors[1] == NULL) { 460bf215546Sopenharmony_ci if (list_is_empty(&block->instr_list)) { 461bf215546Sopenharmony_ci return block->successors[0]; 462bf215546Sopenharmony_ci } else if (list_length(&block->instr_list) == 1) { 463bf215546Sopenharmony_ci struct ir3_instruction *instr = 464bf215546Sopenharmony_ci list_first_entry(&block->instr_list, struct ir3_instruction, node); 465bf215546Sopenharmony_ci if (instr->opc == OPC_JUMP) { 466bf215546Sopenharmony_ci /* If this jump is backwards, then we will probably convert 467bf215546Sopenharmony_ci * the jump being resolved to a backwards jump, which will 468bf215546Sopenharmony_ci * change a loop-with-continue or loop-with-if into a 469bf215546Sopenharmony_ci * doubly-nested loop and change the convergence behavior. 470bf215546Sopenharmony_ci * Disallow this here. 471bf215546Sopenharmony_ci */ 472bf215546Sopenharmony_ci if (block->successors[0]->index <= block->index) 473bf215546Sopenharmony_ci return block; 474bf215546Sopenharmony_ci return block->successors[0]; 475bf215546Sopenharmony_ci } 476bf215546Sopenharmony_ci } 477bf215546Sopenharmony_ci } 478bf215546Sopenharmony_ci return block; 479bf215546Sopenharmony_ci} 480bf215546Sopenharmony_ci 481bf215546Sopenharmony_cistatic void 482bf215546Sopenharmony_ciremove_unused_block(struct ir3_block *old_target) 483bf215546Sopenharmony_ci{ 484bf215546Sopenharmony_ci list_delinit(&old_target->node); 485bf215546Sopenharmony_ci 486bf215546Sopenharmony_ci /* If there are any physical predecessors due to fallthroughs, then they may 487bf215546Sopenharmony_ci * fall through to any of the physical successors of this block. But we can 488bf215546Sopenharmony_ci * only fit two, so just pick the "earliest" one, i.e. the fallthrough if 489bf215546Sopenharmony_ci * possible. 490bf215546Sopenharmony_ci * 491bf215546Sopenharmony_ci * TODO: we really ought to have unlimited numbers of physical successors, 492bf215546Sopenharmony_ci * both because of this and because we currently don't model some scenarios 493bf215546Sopenharmony_ci * with nested break/continue correctly. 494bf215546Sopenharmony_ci */ 495bf215546Sopenharmony_ci struct ir3_block *new_target; 496bf215546Sopenharmony_ci if (old_target->physical_successors[1] && 497bf215546Sopenharmony_ci old_target->physical_successors[1]->start_ip < 498bf215546Sopenharmony_ci old_target->physical_successors[0]->start_ip) { 499bf215546Sopenharmony_ci new_target = old_target->physical_successors[1]; 500bf215546Sopenharmony_ci } else { 501bf215546Sopenharmony_ci new_target = old_target->physical_successors[0]; 502bf215546Sopenharmony_ci } 503bf215546Sopenharmony_ci 504bf215546Sopenharmony_ci for (unsigned i = 0; i < old_target->physical_predecessors_count; i++) { 505bf215546Sopenharmony_ci struct ir3_block *pred = old_target->physical_predecessors[i]; 506bf215546Sopenharmony_ci if (pred->physical_successors[0] == old_target) { 507bf215546Sopenharmony_ci if (!new_target) { 508bf215546Sopenharmony_ci /* If we remove a physical successor, make sure the only physical 509bf215546Sopenharmony_ci * successor is the first one. 510bf215546Sopenharmony_ci */ 511bf215546Sopenharmony_ci pred->physical_successors[0] = pred->physical_successors[1]; 512bf215546Sopenharmony_ci pred->physical_successors[1] = NULL; 513bf215546Sopenharmony_ci } else { 514bf215546Sopenharmony_ci pred->physical_successors[0] = new_target; 515bf215546Sopenharmony_ci } 516bf215546Sopenharmony_ci } else { 517bf215546Sopenharmony_ci assert(pred->physical_successors[1] == old_target); 518bf215546Sopenharmony_ci pred->physical_successors[1] = new_target; 519bf215546Sopenharmony_ci } 520bf215546Sopenharmony_ci if (new_target) 521bf215546Sopenharmony_ci ir3_block_add_physical_predecessor(new_target, pred); 522bf215546Sopenharmony_ci } 523bf215546Sopenharmony_ci 524bf215546Sopenharmony_ci /* cleanup dangling predecessors: */ 525bf215546Sopenharmony_ci for (unsigned i = 0; i < ARRAY_SIZE(old_target->successors); i++) { 526bf215546Sopenharmony_ci if (old_target->successors[i]) { 527bf215546Sopenharmony_ci struct ir3_block *succ = old_target->successors[i]; 528bf215546Sopenharmony_ci ir3_block_remove_predecessor(succ, old_target); 529bf215546Sopenharmony_ci } 530bf215546Sopenharmony_ci } 531bf215546Sopenharmony_ci 532bf215546Sopenharmony_ci for (unsigned i = 0; i < ARRAY_SIZE(old_target->physical_successors); i++) { 533bf215546Sopenharmony_ci if (old_target->physical_successors[i]) { 534bf215546Sopenharmony_ci struct ir3_block *succ = old_target->physical_successors[i]; 535bf215546Sopenharmony_ci ir3_block_remove_physical_predecessor(succ, old_target); 536bf215546Sopenharmony_ci } 537bf215546Sopenharmony_ci } 538bf215546Sopenharmony_ci} 539bf215546Sopenharmony_ci 540bf215546Sopenharmony_cistatic bool 541bf215546Sopenharmony_ciretarget_jump(struct ir3_instruction *instr, struct ir3_block *new_target) 542bf215546Sopenharmony_ci{ 543bf215546Sopenharmony_ci struct ir3_block *old_target = instr->cat0.target; 544bf215546Sopenharmony_ci struct ir3_block *cur_block = instr->block; 545bf215546Sopenharmony_ci 546bf215546Sopenharmony_ci /* update current blocks successors to reflect the retargetting: */ 547bf215546Sopenharmony_ci if (cur_block->successors[0] == old_target) { 548bf215546Sopenharmony_ci cur_block->successors[0] = new_target; 549bf215546Sopenharmony_ci } else { 550bf215546Sopenharmony_ci assert(cur_block->successors[1] == old_target); 551bf215546Sopenharmony_ci cur_block->successors[1] = new_target; 552bf215546Sopenharmony_ci } 553bf215546Sopenharmony_ci 554bf215546Sopenharmony_ci /* also update physical_successors: */ 555bf215546Sopenharmony_ci if (cur_block->physical_successors[0] == old_target) { 556bf215546Sopenharmony_ci cur_block->physical_successors[0] = new_target; 557bf215546Sopenharmony_ci } else { 558bf215546Sopenharmony_ci assert(cur_block->physical_successors[1] == old_target); 559bf215546Sopenharmony_ci cur_block->physical_successors[1] = new_target; 560bf215546Sopenharmony_ci } 561bf215546Sopenharmony_ci 562bf215546Sopenharmony_ci /* update new target's predecessors: */ 563bf215546Sopenharmony_ci ir3_block_add_predecessor(new_target, cur_block); 564bf215546Sopenharmony_ci ir3_block_add_physical_predecessor(new_target, cur_block); 565bf215546Sopenharmony_ci 566bf215546Sopenharmony_ci /* and remove old_target's predecessor: */ 567bf215546Sopenharmony_ci ir3_block_remove_predecessor(old_target, cur_block); 568bf215546Sopenharmony_ci ir3_block_remove_physical_predecessor(old_target, cur_block); 569bf215546Sopenharmony_ci 570bf215546Sopenharmony_ci instr->cat0.target = new_target; 571bf215546Sopenharmony_ci 572bf215546Sopenharmony_ci if (old_target->predecessors_count == 0) { 573bf215546Sopenharmony_ci remove_unused_block(old_target); 574bf215546Sopenharmony_ci return true; 575bf215546Sopenharmony_ci } 576bf215546Sopenharmony_ci 577bf215546Sopenharmony_ci return false; 578bf215546Sopenharmony_ci} 579bf215546Sopenharmony_ci 580bf215546Sopenharmony_cistatic bool 581bf215546Sopenharmony_ciopt_jump(struct ir3 *ir) 582bf215546Sopenharmony_ci{ 583bf215546Sopenharmony_ci bool progress = false; 584bf215546Sopenharmony_ci 585bf215546Sopenharmony_ci unsigned index = 0; 586bf215546Sopenharmony_ci foreach_block (block, &ir->block_list) 587bf215546Sopenharmony_ci block->index = index++; 588bf215546Sopenharmony_ci 589bf215546Sopenharmony_ci foreach_block (block, &ir->block_list) { 590bf215546Sopenharmony_ci foreach_instr (instr, &block->instr_list) { 591bf215546Sopenharmony_ci if (!is_flow(instr) || !instr->cat0.target) 592bf215546Sopenharmony_ci continue; 593bf215546Sopenharmony_ci 594bf215546Sopenharmony_ci struct ir3_block *tblock = resolve_dest_block(instr->cat0.target); 595bf215546Sopenharmony_ci if (tblock != instr->cat0.target) { 596bf215546Sopenharmony_ci progress = true; 597bf215546Sopenharmony_ci 598bf215546Sopenharmony_ci /* Exit early if we deleted a block to avoid iterator 599bf215546Sopenharmony_ci * weirdness/assert fails 600bf215546Sopenharmony_ci */ 601bf215546Sopenharmony_ci if (retarget_jump(instr, tblock)) 602bf215546Sopenharmony_ci return true; 603bf215546Sopenharmony_ci } 604bf215546Sopenharmony_ci } 605bf215546Sopenharmony_ci 606bf215546Sopenharmony_ci /* Detect the case where the block ends either with: 607bf215546Sopenharmony_ci * - A single unconditional jump to the next block. 608bf215546Sopenharmony_ci * - Two jump instructions with opposite conditions, and one of the 609bf215546Sopenharmony_ci * them jumps to the next block. 610bf215546Sopenharmony_ci * We can remove the one that jumps to the next block in either case. 611bf215546Sopenharmony_ci */ 612bf215546Sopenharmony_ci if (list_is_empty(&block->instr_list)) 613bf215546Sopenharmony_ci continue; 614bf215546Sopenharmony_ci 615bf215546Sopenharmony_ci struct ir3_instruction *jumps[2] = {NULL, NULL}; 616bf215546Sopenharmony_ci jumps[0] = 617bf215546Sopenharmony_ci list_last_entry(&block->instr_list, struct ir3_instruction, node); 618bf215546Sopenharmony_ci if (!list_is_singular(&block->instr_list)) 619bf215546Sopenharmony_ci jumps[1] = 620bf215546Sopenharmony_ci list_last_entry(&jumps[0]->node, struct ir3_instruction, node); 621bf215546Sopenharmony_ci 622bf215546Sopenharmony_ci if (jumps[0]->opc == OPC_JUMP) 623bf215546Sopenharmony_ci jumps[1] = NULL; 624bf215546Sopenharmony_ci else if (jumps[0]->opc != OPC_B || !jumps[1] || jumps[1]->opc != OPC_B) 625bf215546Sopenharmony_ci continue; 626bf215546Sopenharmony_ci 627bf215546Sopenharmony_ci for (unsigned i = 0; i < 2; i++) { 628bf215546Sopenharmony_ci if (!jumps[i]) 629bf215546Sopenharmony_ci continue; 630bf215546Sopenharmony_ci 631bf215546Sopenharmony_ci struct ir3_block *tblock = jumps[i]->cat0.target; 632bf215546Sopenharmony_ci if (&tblock->node == block->node.next) { 633bf215546Sopenharmony_ci list_delinit(&jumps[i]->node); 634bf215546Sopenharmony_ci progress = true; 635bf215546Sopenharmony_ci break; 636bf215546Sopenharmony_ci } 637bf215546Sopenharmony_ci } 638bf215546Sopenharmony_ci } 639bf215546Sopenharmony_ci 640bf215546Sopenharmony_ci return progress; 641bf215546Sopenharmony_ci} 642bf215546Sopenharmony_ci 643bf215546Sopenharmony_cistatic void 644bf215546Sopenharmony_ciresolve_jumps(struct ir3 *ir) 645bf215546Sopenharmony_ci{ 646bf215546Sopenharmony_ci foreach_block (block, &ir->block_list) 647bf215546Sopenharmony_ci foreach_instr (instr, &block->instr_list) 648bf215546Sopenharmony_ci if (is_flow(instr) && instr->cat0.target) { 649bf215546Sopenharmony_ci struct ir3_instruction *target = list_first_entry( 650bf215546Sopenharmony_ci &instr->cat0.target->instr_list, struct ir3_instruction, node); 651bf215546Sopenharmony_ci 652bf215546Sopenharmony_ci instr->cat0.immed = (int)target->ip - (int)instr->ip; 653bf215546Sopenharmony_ci } 654bf215546Sopenharmony_ci} 655bf215546Sopenharmony_ci 656bf215546Sopenharmony_cistatic void 657bf215546Sopenharmony_cimark_jp(struct ir3_block *block) 658bf215546Sopenharmony_ci{ 659bf215546Sopenharmony_ci /* We only call this on the end block (in kill_sched) or after retargeting 660bf215546Sopenharmony_ci * all jumps to empty blocks (in mark_xvergence_points) so there's no need to 661bf215546Sopenharmony_ci * worry about empty blocks. 662bf215546Sopenharmony_ci */ 663bf215546Sopenharmony_ci assert(!list_is_empty(&block->instr_list)); 664bf215546Sopenharmony_ci 665bf215546Sopenharmony_ci struct ir3_instruction *target = 666bf215546Sopenharmony_ci list_first_entry(&block->instr_list, struct ir3_instruction, node); 667bf215546Sopenharmony_ci target->flags |= IR3_INSTR_JP; 668bf215546Sopenharmony_ci} 669bf215546Sopenharmony_ci 670bf215546Sopenharmony_ci/* Mark points where control flow converges or diverges. 671bf215546Sopenharmony_ci * 672bf215546Sopenharmony_ci * Divergence points could actually be re-convergence points where 673bf215546Sopenharmony_ci * "parked" threads are recoverged with threads that took the opposite 674bf215546Sopenharmony_ci * path last time around. Possibly it is easier to think of (jp) as 675bf215546Sopenharmony_ci * "the execution mask might have changed". 676bf215546Sopenharmony_ci */ 677bf215546Sopenharmony_cistatic void 678bf215546Sopenharmony_cimark_xvergence_points(struct ir3 *ir) 679bf215546Sopenharmony_ci{ 680bf215546Sopenharmony_ci foreach_block (block, &ir->block_list) { 681bf215546Sopenharmony_ci /* We need to insert (jp) if an entry in the "branch stack" is created for 682bf215546Sopenharmony_ci * our block. This happens if there is a predecessor to our block that may 683bf215546Sopenharmony_ci * fallthrough to an earlier block in the physical CFG, either because it 684bf215546Sopenharmony_ci * ends in a non-uniform conditional branch or because there's a 685bf215546Sopenharmony_ci * fallthrough for an block in-between that also starts with (jp) and was 686bf215546Sopenharmony_ci * pushed on the branch stack already. 687bf215546Sopenharmony_ci */ 688bf215546Sopenharmony_ci for (unsigned i = 0; i < block->predecessors_count; i++) { 689bf215546Sopenharmony_ci struct ir3_block *pred = block->predecessors[i]; 690bf215546Sopenharmony_ci 691bf215546Sopenharmony_ci for (unsigned j = 0; j < ARRAY_SIZE(pred->physical_successors); j++) { 692bf215546Sopenharmony_ci if (pred->physical_successors[j] != NULL && 693bf215546Sopenharmony_ci pred->physical_successors[j]->start_ip < block->start_ip) 694bf215546Sopenharmony_ci mark_jp(block); 695bf215546Sopenharmony_ci 696bf215546Sopenharmony_ci /* If the predecessor just falls through to this block, we still 697bf215546Sopenharmony_ci * need to check if it "falls through" by jumping to the block. This 698bf215546Sopenharmony_ci * can happen if opt_jump fails and the block ends in two branches, 699bf215546Sopenharmony_ci * or if there's an empty if-statement (which currently can happen 700bf215546Sopenharmony_ci * with binning shaders after dead-code elimination) and the block 701bf215546Sopenharmony_ci * before ends with a conditional branch directly to this block. 702bf215546Sopenharmony_ci */ 703bf215546Sopenharmony_ci if (pred->physical_successors[j] == block) { 704bf215546Sopenharmony_ci foreach_instr_rev (instr, &pred->instr_list) { 705bf215546Sopenharmony_ci if (!is_flow(instr)) 706bf215546Sopenharmony_ci break; 707bf215546Sopenharmony_ci if (instr->cat0.target == block) { 708bf215546Sopenharmony_ci mark_jp(block); 709bf215546Sopenharmony_ci break; 710bf215546Sopenharmony_ci } 711bf215546Sopenharmony_ci } 712bf215546Sopenharmony_ci } 713bf215546Sopenharmony_ci } 714bf215546Sopenharmony_ci } 715bf215546Sopenharmony_ci } 716bf215546Sopenharmony_ci} 717bf215546Sopenharmony_ci 718bf215546Sopenharmony_ci/* Insert the branch/jump instructions for flow control between blocks. 719bf215546Sopenharmony_ci * Initially this is done naively, without considering if the successor 720bf215546Sopenharmony_ci * block immediately follows the current block (ie. so no jump required), 721bf215546Sopenharmony_ci * but that is cleaned up in opt_jump(). 722bf215546Sopenharmony_ci * 723bf215546Sopenharmony_ci * TODO what ensures that the last write to p0.x in a block is the 724bf215546Sopenharmony_ci * branch condition? Have we been getting lucky all this time? 725bf215546Sopenharmony_ci */ 726bf215546Sopenharmony_cistatic void 727bf215546Sopenharmony_ciblock_sched(struct ir3 *ir) 728bf215546Sopenharmony_ci{ 729bf215546Sopenharmony_ci foreach_block (block, &ir->block_list) { 730bf215546Sopenharmony_ci if (block->successors[1]) { 731bf215546Sopenharmony_ci /* if/else, conditional branches to "then" or "else": */ 732bf215546Sopenharmony_ci struct ir3_instruction *br1, *br2; 733bf215546Sopenharmony_ci 734bf215546Sopenharmony_ci if (block->brtype == IR3_BRANCH_GETONE || 735bf215546Sopenharmony_ci block->brtype == IR3_BRANCH_SHPS) { 736bf215546Sopenharmony_ci /* getone/shps can't be inverted, and it wouldn't even make sense 737bf215546Sopenharmony_ci * to follow it with an inverted branch, so follow it by an 738bf215546Sopenharmony_ci * unconditional branch. 739bf215546Sopenharmony_ci */ 740bf215546Sopenharmony_ci assert(!block->condition); 741bf215546Sopenharmony_ci if (block->brtype == IR3_BRANCH_GETONE) 742bf215546Sopenharmony_ci br1 = ir3_GETONE(block); 743bf215546Sopenharmony_ci else 744bf215546Sopenharmony_ci br1 = ir3_SHPS(block); 745bf215546Sopenharmony_ci br1->cat0.target = block->successors[1]; 746bf215546Sopenharmony_ci 747bf215546Sopenharmony_ci br2 = ir3_JUMP(block); 748bf215546Sopenharmony_ci br2->cat0.target = block->successors[0]; 749bf215546Sopenharmony_ci } else { 750bf215546Sopenharmony_ci assert(block->condition); 751bf215546Sopenharmony_ci 752bf215546Sopenharmony_ci /* create "else" branch first (since "then" block should 753bf215546Sopenharmony_ci * frequently/always end up being a fall-thru): 754bf215546Sopenharmony_ci */ 755bf215546Sopenharmony_ci br1 = ir3_instr_create(block, OPC_B, 0, 1); 756bf215546Sopenharmony_ci ir3_src_create(br1, regid(REG_P0, 0), 0)->def = 757bf215546Sopenharmony_ci block->condition->dsts[0]; 758bf215546Sopenharmony_ci br1->cat0.inv1 = true; 759bf215546Sopenharmony_ci br1->cat0.target = block->successors[1]; 760bf215546Sopenharmony_ci 761bf215546Sopenharmony_ci /* "then" branch: */ 762bf215546Sopenharmony_ci br2 = ir3_instr_create(block, OPC_B, 0, 1); 763bf215546Sopenharmony_ci ir3_src_create(br2, regid(REG_P0, 0), 0)->def = 764bf215546Sopenharmony_ci block->condition->dsts[0]; 765bf215546Sopenharmony_ci br2->cat0.target = block->successors[0]; 766bf215546Sopenharmony_ci 767bf215546Sopenharmony_ci switch (block->brtype) { 768bf215546Sopenharmony_ci case IR3_BRANCH_COND: 769bf215546Sopenharmony_ci br1->cat0.brtype = br2->cat0.brtype = BRANCH_PLAIN; 770bf215546Sopenharmony_ci break; 771bf215546Sopenharmony_ci case IR3_BRANCH_ALL: 772bf215546Sopenharmony_ci br1->cat0.brtype = BRANCH_ANY; 773bf215546Sopenharmony_ci br2->cat0.brtype = BRANCH_ALL; 774bf215546Sopenharmony_ci break; 775bf215546Sopenharmony_ci case IR3_BRANCH_ANY: 776bf215546Sopenharmony_ci br1->cat0.brtype = BRANCH_ALL; 777bf215546Sopenharmony_ci br2->cat0.brtype = BRANCH_ANY; 778bf215546Sopenharmony_ci break; 779bf215546Sopenharmony_ci case IR3_BRANCH_GETONE: 780bf215546Sopenharmony_ci case IR3_BRANCH_SHPS: 781bf215546Sopenharmony_ci unreachable("can't get here"); 782bf215546Sopenharmony_ci } 783bf215546Sopenharmony_ci } 784bf215546Sopenharmony_ci } else if (block->successors[0]) { 785bf215546Sopenharmony_ci /* otherwise unconditional jump to next block: */ 786bf215546Sopenharmony_ci struct ir3_instruction *jmp; 787bf215546Sopenharmony_ci 788bf215546Sopenharmony_ci jmp = ir3_JUMP(block); 789bf215546Sopenharmony_ci jmp->cat0.target = block->successors[0]; 790bf215546Sopenharmony_ci } 791bf215546Sopenharmony_ci } 792bf215546Sopenharmony_ci} 793bf215546Sopenharmony_ci 794bf215546Sopenharmony_ci/* Here we workaround the fact that kill doesn't actually kill the thread as 795bf215546Sopenharmony_ci * GL expects. The last instruction always needs to be an end instruction, 796bf215546Sopenharmony_ci * which means that if we're stuck in a loop where kill is the only way out, 797bf215546Sopenharmony_ci * then we may have to jump out to the end. kill may also have the d3d 798bf215546Sopenharmony_ci * semantics of converting the thread to a helper thread, rather than setting 799bf215546Sopenharmony_ci * the exec mask to 0, in which case the helper thread could get stuck in an 800bf215546Sopenharmony_ci * infinite loop. 801bf215546Sopenharmony_ci * 802bf215546Sopenharmony_ci * We do this late, both to give the scheduler the opportunity to reschedule 803bf215546Sopenharmony_ci * kill instructions earlier and to avoid having to create a separate basic 804bf215546Sopenharmony_ci * block. 805bf215546Sopenharmony_ci * 806bf215546Sopenharmony_ci * TODO: Assuming that the wavefront doesn't stop as soon as all threads are 807bf215546Sopenharmony_ci * killed, we might benefit by doing this more aggressively when the remaining 808bf215546Sopenharmony_ci * part of the program after the kill is large, since that would let us 809bf215546Sopenharmony_ci * skip over the instructions when there are no non-killed threads left. 810bf215546Sopenharmony_ci */ 811bf215546Sopenharmony_cistatic void 812bf215546Sopenharmony_cikill_sched(struct ir3 *ir, struct ir3_shader_variant *so) 813bf215546Sopenharmony_ci{ 814bf215546Sopenharmony_ci /* True if we know that this block will always eventually lead to the end 815bf215546Sopenharmony_ci * block: 816bf215546Sopenharmony_ci */ 817bf215546Sopenharmony_ci bool always_ends = true; 818bf215546Sopenharmony_ci bool added = false; 819bf215546Sopenharmony_ci struct ir3_block *last_block = 820bf215546Sopenharmony_ci list_last_entry(&ir->block_list, struct ir3_block, node); 821bf215546Sopenharmony_ci 822bf215546Sopenharmony_ci foreach_block_rev (block, &ir->block_list) { 823bf215546Sopenharmony_ci for (unsigned i = 0; i < 2 && block->successors[i]; i++) { 824bf215546Sopenharmony_ci if (block->successors[i]->start_ip <= block->end_ip) 825bf215546Sopenharmony_ci always_ends = false; 826bf215546Sopenharmony_ci } 827bf215546Sopenharmony_ci 828bf215546Sopenharmony_ci if (always_ends) 829bf215546Sopenharmony_ci continue; 830bf215546Sopenharmony_ci 831bf215546Sopenharmony_ci foreach_instr_safe (instr, &block->instr_list) { 832bf215546Sopenharmony_ci if (instr->opc != OPC_KILL) 833bf215546Sopenharmony_ci continue; 834bf215546Sopenharmony_ci 835bf215546Sopenharmony_ci struct ir3_instruction *br = ir3_instr_create(block, OPC_B, 0, 1); 836bf215546Sopenharmony_ci ir3_src_create(br, instr->srcs[0]->num, instr->srcs[0]->flags)->wrmask = 837bf215546Sopenharmony_ci 1; 838bf215546Sopenharmony_ci br->cat0.target = 839bf215546Sopenharmony_ci list_last_entry(&ir->block_list, struct ir3_block, node); 840bf215546Sopenharmony_ci 841bf215546Sopenharmony_ci list_del(&br->node); 842bf215546Sopenharmony_ci list_add(&br->node, &instr->node); 843bf215546Sopenharmony_ci 844bf215546Sopenharmony_ci added = true; 845bf215546Sopenharmony_ci } 846bf215546Sopenharmony_ci } 847bf215546Sopenharmony_ci 848bf215546Sopenharmony_ci if (added) { 849bf215546Sopenharmony_ci /* I'm not entirely sure how the branchstack works, but we probably 850bf215546Sopenharmony_ci * need to add at least one entry for the divergence which is resolved 851bf215546Sopenharmony_ci * at the end: 852bf215546Sopenharmony_ci */ 853bf215546Sopenharmony_ci so->branchstack++; 854bf215546Sopenharmony_ci 855bf215546Sopenharmony_ci /* We don't update predecessors/successors, so we have to do this 856bf215546Sopenharmony_ci * manually: 857bf215546Sopenharmony_ci */ 858bf215546Sopenharmony_ci mark_jp(last_block); 859bf215546Sopenharmony_ci } 860bf215546Sopenharmony_ci} 861bf215546Sopenharmony_ci 862bf215546Sopenharmony_ci/* Insert nop's required to make this a legal/valid shader program: */ 863bf215546Sopenharmony_cistatic void 864bf215546Sopenharmony_cinop_sched(struct ir3 *ir, struct ir3_shader_variant *so) 865bf215546Sopenharmony_ci{ 866bf215546Sopenharmony_ci foreach_block (block, &ir->block_list) { 867bf215546Sopenharmony_ci struct ir3_instruction *last = NULL; 868bf215546Sopenharmony_ci struct list_head instr_list; 869bf215546Sopenharmony_ci 870bf215546Sopenharmony_ci /* remove all the instructions from the list, we'll be adding 871bf215546Sopenharmony_ci * them back in as we go 872bf215546Sopenharmony_ci */ 873bf215546Sopenharmony_ci list_replace(&block->instr_list, &instr_list); 874bf215546Sopenharmony_ci list_inithead(&block->instr_list); 875bf215546Sopenharmony_ci 876bf215546Sopenharmony_ci foreach_instr_safe (instr, &instr_list) { 877bf215546Sopenharmony_ci unsigned delay = ir3_delay_calc(block, instr, so->mergedregs); 878bf215546Sopenharmony_ci 879bf215546Sopenharmony_ci /* NOTE: I think the nopN encoding works for a5xx and 880bf215546Sopenharmony_ci * probably a4xx, but not a3xx. So far only tested on 881bf215546Sopenharmony_ci * a6xx. 882bf215546Sopenharmony_ci */ 883bf215546Sopenharmony_ci 884bf215546Sopenharmony_ci if ((delay > 0) && (ir->compiler->gen >= 6) && last && 885bf215546Sopenharmony_ci ((opc_cat(last->opc) == 2) || (opc_cat(last->opc) == 3)) && 886bf215546Sopenharmony_ci (last->repeat == 0)) { 887bf215546Sopenharmony_ci /* the previous cat2/cat3 instruction can encode at most 3 nop's: */ 888bf215546Sopenharmony_ci unsigned transfer = MIN2(delay, 3 - last->nop); 889bf215546Sopenharmony_ci last->nop += transfer; 890bf215546Sopenharmony_ci delay -= transfer; 891bf215546Sopenharmony_ci } 892bf215546Sopenharmony_ci 893bf215546Sopenharmony_ci if ((delay > 0) && last && (last->opc == OPC_NOP)) { 894bf215546Sopenharmony_ci /* the previous nop can encode at most 5 repeats: */ 895bf215546Sopenharmony_ci unsigned transfer = MIN2(delay, 5 - last->repeat); 896bf215546Sopenharmony_ci last->repeat += transfer; 897bf215546Sopenharmony_ci delay -= transfer; 898bf215546Sopenharmony_ci } 899bf215546Sopenharmony_ci 900bf215546Sopenharmony_ci if (delay > 0) { 901bf215546Sopenharmony_ci assert(delay <= 6); 902bf215546Sopenharmony_ci ir3_NOP(block)->repeat = delay - 1; 903bf215546Sopenharmony_ci } 904bf215546Sopenharmony_ci 905bf215546Sopenharmony_ci list_addtail(&instr->node, &block->instr_list); 906bf215546Sopenharmony_ci last = instr; 907bf215546Sopenharmony_ci } 908bf215546Sopenharmony_ci } 909bf215546Sopenharmony_ci} 910bf215546Sopenharmony_ci 911bf215546Sopenharmony_cibool 912bf215546Sopenharmony_ciir3_legalize(struct ir3 *ir, struct ir3_shader_variant *so, int *max_bary) 913bf215546Sopenharmony_ci{ 914bf215546Sopenharmony_ci struct ir3_legalize_ctx *ctx = rzalloc(ir, struct ir3_legalize_ctx); 915bf215546Sopenharmony_ci bool mergedregs = so->mergedregs; 916bf215546Sopenharmony_ci bool progress; 917bf215546Sopenharmony_ci 918bf215546Sopenharmony_ci ctx->so = so; 919bf215546Sopenharmony_ci ctx->max_bary = -1; 920bf215546Sopenharmony_ci ctx->compiler = ir->compiler; 921bf215546Sopenharmony_ci ctx->type = ir->type; 922bf215546Sopenharmony_ci 923bf215546Sopenharmony_ci /* allocate per-block data: */ 924bf215546Sopenharmony_ci foreach_block (block, &ir->block_list) { 925bf215546Sopenharmony_ci struct ir3_legalize_block_data *bd = 926bf215546Sopenharmony_ci rzalloc(ctx, struct ir3_legalize_block_data); 927bf215546Sopenharmony_ci 928bf215546Sopenharmony_ci regmask_init(&bd->state.needs_ss_war, mergedregs); 929bf215546Sopenharmony_ci regmask_init(&bd->state.needs_ss, mergedregs); 930bf215546Sopenharmony_ci regmask_init(&bd->state.needs_sy, mergedregs); 931bf215546Sopenharmony_ci 932bf215546Sopenharmony_ci block->data = bd; 933bf215546Sopenharmony_ci } 934bf215546Sopenharmony_ci 935bf215546Sopenharmony_ci /* We may have failed to pull all input loads into the first block. 936bf215546Sopenharmony_ci * In such case at the moment we aren't able to find a better place 937bf215546Sopenharmony_ci * to for (ei) than the end of the program. 938bf215546Sopenharmony_ci * a5xx and a6xx do automatically release varying storage at the end. 939bf215546Sopenharmony_ci */ 940bf215546Sopenharmony_ci ctx->early_input_release = true; 941bf215546Sopenharmony_ci struct ir3_block *start_block = ir3_after_preamble(ir); 942bf215546Sopenharmony_ci foreach_block (block, &ir->block_list) { 943bf215546Sopenharmony_ci foreach_instr (instr, &block->instr_list) { 944bf215546Sopenharmony_ci if (is_input(instr)) { 945bf215546Sopenharmony_ci ctx->has_inputs = true; 946bf215546Sopenharmony_ci if (block != start_block) { 947bf215546Sopenharmony_ci ctx->early_input_release = false; 948bf215546Sopenharmony_ci break; 949bf215546Sopenharmony_ci } 950bf215546Sopenharmony_ci } 951bf215546Sopenharmony_ci } 952bf215546Sopenharmony_ci } 953bf215546Sopenharmony_ci 954bf215546Sopenharmony_ci assert(ctx->early_input_release || ctx->compiler->gen >= 5); 955bf215546Sopenharmony_ci 956bf215546Sopenharmony_ci /* process each block: */ 957bf215546Sopenharmony_ci do { 958bf215546Sopenharmony_ci progress = false; 959bf215546Sopenharmony_ci foreach_block (block, &ir->block_list) { 960bf215546Sopenharmony_ci progress |= legalize_block(ctx, block); 961bf215546Sopenharmony_ci } 962bf215546Sopenharmony_ci } while (progress); 963bf215546Sopenharmony_ci 964bf215546Sopenharmony_ci *max_bary = ctx->max_bary; 965bf215546Sopenharmony_ci 966bf215546Sopenharmony_ci block_sched(ir); 967bf215546Sopenharmony_ci if (so->type == MESA_SHADER_FRAGMENT) 968bf215546Sopenharmony_ci kill_sched(ir, so); 969bf215546Sopenharmony_ci 970bf215546Sopenharmony_ci foreach_block (block, &ir->block_list) { 971bf215546Sopenharmony_ci progress |= apply_fine_deriv_macro(ctx, block); 972bf215546Sopenharmony_ci } 973bf215546Sopenharmony_ci 974bf215546Sopenharmony_ci nop_sched(ir, so); 975bf215546Sopenharmony_ci 976bf215546Sopenharmony_ci while (opt_jump(ir)) 977bf215546Sopenharmony_ci ; 978bf215546Sopenharmony_ci 979bf215546Sopenharmony_ci ir3_count_instructions(ir); 980bf215546Sopenharmony_ci resolve_jumps(ir); 981bf215546Sopenharmony_ci 982bf215546Sopenharmony_ci mark_xvergence_points(ir); 983bf215546Sopenharmony_ci 984bf215546Sopenharmony_ci ralloc_free(ctx); 985bf215546Sopenharmony_ci 986bf215546Sopenharmony_ci return true; 987bf215546Sopenharmony_ci} 988