1/* 2 * Copyright © 2014 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Jason Ekstrand (jason@jlekstrand.net) 25 * 26 */ 27 28#include <inttypes.h> 29#include "nir_search.h" 30#include "nir_builder.h" 31#include "nir_worklist.h" 32#include "util/half_float.h" 33 34/* This should be the same as nir_search_max_comm_ops in nir_algebraic.py. */ 35#define NIR_SEARCH_MAX_COMM_OPS 8 36 37struct match_state { 38 bool inexact_match; 39 bool has_exact_alu; 40 uint8_t comm_op_direction; 41 unsigned variables_seen; 42 43 /* Used for running the automaton on newly-constructed instructions. */ 44 struct util_dynarray *states; 45 const struct per_op_table *pass_op_table; 46 const nir_algebraic_table *table; 47 48 nir_alu_src variables[NIR_SEARCH_MAX_VARIABLES]; 49 struct hash_table *range_ht; 50}; 51 52static bool 53match_expression(const nir_algebraic_table *table, const nir_search_expression *expr, nir_alu_instr *instr, 54 unsigned num_components, const uint8_t *swizzle, 55 struct match_state *state); 56static bool 57nir_algebraic_automaton(nir_instr *instr, struct util_dynarray *states, 58 const struct per_op_table *pass_op_table); 59 60static const uint8_t identity_swizzle[NIR_MAX_VEC_COMPONENTS] = 61{ 62 0, 1, 2, 3, 63 4, 5, 6, 7, 64 8, 9, 10, 11, 65 12, 13, 14, 15, 66}; 67 68/** 69 * Check if a source produces a value of the given type. 70 * 71 * Used for satisfying 'a@type' constraints. 72 */ 73static bool 74src_is_type(nir_src src, nir_alu_type type) 75{ 76 assert(type != nir_type_invalid); 77 78 if (!src.is_ssa) 79 return false; 80 81 if (src.ssa->parent_instr->type == nir_instr_type_alu) { 82 nir_alu_instr *src_alu = nir_instr_as_alu(src.ssa->parent_instr); 83 nir_alu_type output_type = nir_op_infos[src_alu->op].output_type; 84 85 if (type == nir_type_bool) { 86 switch (src_alu->op) { 87 case nir_op_iand: 88 case nir_op_ior: 89 case nir_op_ixor: 90 return src_is_type(src_alu->src[0].src, nir_type_bool) && 91 src_is_type(src_alu->src[1].src, nir_type_bool); 92 case nir_op_inot: 93 return src_is_type(src_alu->src[0].src, nir_type_bool); 94 default: 95 break; 96 } 97 } 98 99 return nir_alu_type_get_base_type(output_type) == type; 100 } else if (src.ssa->parent_instr->type == nir_instr_type_intrinsic) { 101 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(src.ssa->parent_instr); 102 103 if (type == nir_type_bool) { 104 return intr->intrinsic == nir_intrinsic_load_front_face || 105 intr->intrinsic == nir_intrinsic_load_helper_invocation; 106 } 107 } 108 109 /* don't know */ 110 return false; 111} 112 113static bool 114nir_op_matches_search_op(nir_op nop, uint16_t sop) 115{ 116 if (sop <= nir_last_opcode) 117 return nop == sop; 118 119#define MATCH_FCONV_CASE(op) \ 120 case nir_search_op_##op: \ 121 return nop == nir_op_##op##16 || \ 122 nop == nir_op_##op##32 || \ 123 nop == nir_op_##op##64; 124 125#define MATCH_ICONV_CASE(op) \ 126 case nir_search_op_##op: \ 127 return nop == nir_op_##op##8 || \ 128 nop == nir_op_##op##16 || \ 129 nop == nir_op_##op##32 || \ 130 nop == nir_op_##op##64; 131 132#define MATCH_BCONV_CASE(op) \ 133 case nir_search_op_##op: \ 134 return nop == nir_op_##op##1 || \ 135 nop == nir_op_##op##32; 136 137 switch (sop) { 138 MATCH_FCONV_CASE(i2f) 139 MATCH_FCONV_CASE(u2f) 140 MATCH_FCONV_CASE(f2f) 141 MATCH_ICONV_CASE(f2u) 142 MATCH_ICONV_CASE(f2i) 143 MATCH_ICONV_CASE(u2u) 144 MATCH_ICONV_CASE(i2i) 145 MATCH_FCONV_CASE(b2f) 146 MATCH_ICONV_CASE(b2i) 147 MATCH_BCONV_CASE(i2b) 148 MATCH_BCONV_CASE(f2b) 149 default: 150 unreachable("Invalid nir_search_op"); 151 } 152 153#undef MATCH_FCONV_CASE 154#undef MATCH_ICONV_CASE 155#undef MATCH_BCONV_CASE 156} 157 158uint16_t 159nir_search_op_for_nir_op(nir_op nop) 160{ 161#define MATCH_FCONV_CASE(op) \ 162 case nir_op_##op##16: \ 163 case nir_op_##op##32: \ 164 case nir_op_##op##64: \ 165 return nir_search_op_##op; 166 167#define MATCH_ICONV_CASE(op) \ 168 case nir_op_##op##8: \ 169 case nir_op_##op##16: \ 170 case nir_op_##op##32: \ 171 case nir_op_##op##64: \ 172 return nir_search_op_##op; 173 174#define MATCH_BCONV_CASE(op) \ 175 case nir_op_##op##1: \ 176 case nir_op_##op##32: \ 177 return nir_search_op_##op; 178 179 180 switch (nop) { 181 MATCH_FCONV_CASE(i2f) 182 MATCH_FCONV_CASE(u2f) 183 MATCH_FCONV_CASE(f2f) 184 MATCH_ICONV_CASE(f2u) 185 MATCH_ICONV_CASE(f2i) 186 MATCH_ICONV_CASE(u2u) 187 MATCH_ICONV_CASE(i2i) 188 MATCH_FCONV_CASE(b2f) 189 MATCH_ICONV_CASE(b2i) 190 MATCH_BCONV_CASE(i2b) 191 MATCH_BCONV_CASE(f2b) 192 default: 193 return nop; 194 } 195 196#undef MATCH_FCONV_CASE 197#undef MATCH_ICONV_CASE 198#undef MATCH_BCONV_CASE 199} 200 201static nir_op 202nir_op_for_search_op(uint16_t sop, unsigned bit_size) 203{ 204 if (sop <= nir_last_opcode) 205 return sop; 206 207#define RET_FCONV_CASE(op) \ 208 case nir_search_op_##op: \ 209 switch (bit_size) { \ 210 case 16: return nir_op_##op##16; \ 211 case 32: return nir_op_##op##32; \ 212 case 64: return nir_op_##op##64; \ 213 default: unreachable("Invalid bit size"); \ 214 } 215 216#define RET_ICONV_CASE(op) \ 217 case nir_search_op_##op: \ 218 switch (bit_size) { \ 219 case 8: return nir_op_##op##8; \ 220 case 16: return nir_op_##op##16; \ 221 case 32: return nir_op_##op##32; \ 222 case 64: return nir_op_##op##64; \ 223 default: unreachable("Invalid bit size"); \ 224 } 225 226#define RET_BCONV_CASE(op) \ 227 case nir_search_op_##op: \ 228 switch (bit_size) { \ 229 case 1: return nir_op_##op##1; \ 230 case 32: return nir_op_##op##32; \ 231 default: unreachable("Invalid bit size"); \ 232 } 233 234 switch (sop) { 235 RET_FCONV_CASE(i2f) 236 RET_FCONV_CASE(u2f) 237 RET_FCONV_CASE(f2f) 238 RET_ICONV_CASE(f2u) 239 RET_ICONV_CASE(f2i) 240 RET_ICONV_CASE(u2u) 241 RET_ICONV_CASE(i2i) 242 RET_FCONV_CASE(b2f) 243 RET_ICONV_CASE(b2i) 244 RET_BCONV_CASE(i2b) 245 RET_BCONV_CASE(f2b) 246 default: 247 unreachable("Invalid nir_search_op"); 248 } 249 250#undef RET_FCONV_CASE 251#undef RET_ICONV_CASE 252#undef RET_BCONV_CASE 253} 254 255static bool 256match_value(const nir_algebraic_table *table, 257 const nir_search_value *value, nir_alu_instr *instr, unsigned src, 258 unsigned num_components, const uint8_t *swizzle, 259 struct match_state *state) 260{ 261 uint8_t new_swizzle[NIR_MAX_VEC_COMPONENTS]; 262 263 /* Searching only works on SSA values because, if it's not SSA, we can't 264 * know if the value changed between one instance of that value in the 265 * expression and another. Also, the replace operation will place reads of 266 * that value right before the last instruction in the expression we're 267 * replacing so those reads will happen after the original reads and may 268 * not be valid if they're register reads. 269 */ 270 assert(instr->src[src].src.is_ssa); 271 272 /* If the source is an explicitly sized source, then we need to reset 273 * both the number of components and the swizzle. 274 */ 275 if (nir_op_infos[instr->op].input_sizes[src] != 0) { 276 num_components = nir_op_infos[instr->op].input_sizes[src]; 277 swizzle = identity_swizzle; 278 } 279 280 for (unsigned i = 0; i < num_components; ++i) 281 new_swizzle[i] = instr->src[src].swizzle[swizzle[i]]; 282 283 /* If the value has a specific bit size and it doesn't match, bail */ 284 if (value->bit_size > 0 && 285 nir_src_bit_size(instr->src[src].src) != value->bit_size) 286 return false; 287 288 switch (value->type) { 289 case nir_search_value_expression: 290 if (instr->src[src].src.ssa->parent_instr->type != nir_instr_type_alu) 291 return false; 292 293 return match_expression(table, nir_search_value_as_expression(value), 294 nir_instr_as_alu(instr->src[src].src.ssa->parent_instr), 295 num_components, new_swizzle, state); 296 297 case nir_search_value_variable: { 298 nir_search_variable *var = nir_search_value_as_variable(value); 299 assert(var->variable < NIR_SEARCH_MAX_VARIABLES); 300 301 if (state->variables_seen & (1 << var->variable)) { 302 if (state->variables[var->variable].src.ssa != instr->src[src].src.ssa) 303 return false; 304 305 assert(!instr->src[src].abs && !instr->src[src].negate); 306 307 for (unsigned i = 0; i < num_components; ++i) { 308 if (state->variables[var->variable].swizzle[i] != new_swizzle[i]) 309 return false; 310 } 311 312 return true; 313 } else { 314 if (var->is_constant && 315 instr->src[src].src.ssa->parent_instr->type != nir_instr_type_load_const) 316 return false; 317 318 if (var->cond_index != -1 && !table->variable_cond[var->cond_index](state->range_ht, instr, 319 src, num_components, new_swizzle)) 320 return false; 321 322 if (var->type != nir_type_invalid && 323 !src_is_type(instr->src[src].src, var->type)) 324 return false; 325 326 state->variables_seen |= (1 << var->variable); 327 state->variables[var->variable].src = instr->src[src].src; 328 state->variables[var->variable].abs = false; 329 state->variables[var->variable].negate = false; 330 331 for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; ++i) { 332 if (i < num_components) 333 state->variables[var->variable].swizzle[i] = new_swizzle[i]; 334 else 335 state->variables[var->variable].swizzle[i] = 0; 336 } 337 338 return true; 339 } 340 } 341 342 case nir_search_value_constant: { 343 nir_search_constant *const_val = nir_search_value_as_constant(value); 344 345 if (!nir_src_is_const(instr->src[src].src)) 346 return false; 347 348 switch (const_val->type) { 349 case nir_type_float: { 350 nir_load_const_instr *const load = 351 nir_instr_as_load_const(instr->src[src].src.ssa->parent_instr); 352 353 /* There are 8-bit and 1-bit integer types, but there are no 8-bit or 354 * 1-bit float types. This prevents potential assertion failures in 355 * nir_src_comp_as_float. 356 */ 357 if (load->def.bit_size < 16) 358 return false; 359 360 for (unsigned i = 0; i < num_components; ++i) { 361 double val = nir_src_comp_as_float(instr->src[src].src, 362 new_swizzle[i]); 363 if (val != const_val->data.d) 364 return false; 365 } 366 return true; 367 } 368 369 case nir_type_int: 370 case nir_type_uint: 371 case nir_type_bool: { 372 unsigned bit_size = nir_src_bit_size(instr->src[src].src); 373 uint64_t mask = u_uintN_max(bit_size); 374 for (unsigned i = 0; i < num_components; ++i) { 375 uint64_t val = nir_src_comp_as_uint(instr->src[src].src, 376 new_swizzle[i]); 377 if ((val & mask) != (const_val->data.u & mask)) 378 return false; 379 } 380 return true; 381 } 382 383 default: 384 unreachable("Invalid alu source type"); 385 } 386 } 387 388 default: 389 unreachable("Invalid search value type"); 390 } 391} 392 393static bool 394match_expression(const nir_algebraic_table *table, const nir_search_expression *expr, nir_alu_instr *instr, 395 unsigned num_components, const uint8_t *swizzle, 396 struct match_state *state) 397{ 398 if (expr->cond_index != -1 && !table->expression_cond[expr->cond_index](instr)) 399 return false; 400 401 if (!nir_op_matches_search_op(instr->op, expr->opcode)) 402 return false; 403 404 assert(instr->dest.dest.is_ssa); 405 406 if (expr->value.bit_size > 0 && 407 instr->dest.dest.ssa.bit_size != expr->value.bit_size) 408 return false; 409 410 state->inexact_match = expr->inexact || state->inexact_match; 411 state->has_exact_alu = (instr->exact && !expr->ignore_exact) || state->has_exact_alu; 412 if (state->inexact_match && state->has_exact_alu) 413 return false; 414 415 assert(!instr->dest.saturate); 416 assert(nir_op_infos[instr->op].num_inputs > 0); 417 418 /* If we have an explicitly sized destination, we can only handle the 419 * identity swizzle. While dot(vec3(a, b, c).zxy) is a valid 420 * expression, we don't have the information right now to propagate that 421 * swizzle through. We can only properly propagate swizzles if the 422 * instruction is vectorized. 423 */ 424 if (nir_op_infos[instr->op].output_size != 0) { 425 for (unsigned i = 0; i < num_components; i++) { 426 if (swizzle[i] != i) 427 return false; 428 } 429 } 430 431 /* If this is a commutative expression and it's one of the first few, look 432 * up its direction for the current search operation. We'll use that value 433 * to possibly flip the sources for the match. 434 */ 435 unsigned comm_op_flip = 436 (expr->comm_expr_idx >= 0 && 437 expr->comm_expr_idx < NIR_SEARCH_MAX_COMM_OPS) ? 438 ((state->comm_op_direction >> expr->comm_expr_idx) & 1) : 0; 439 440 bool matched = true; 441 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) { 442 /* 2src_commutative instructions that have 3 sources are only commutative 443 * in the first two sources. Source 2 is always source 2. 444 */ 445 if (!match_value(table, &state->table->values[expr->srcs[i]].value, instr, 446 i < 2 ? i ^ comm_op_flip : i, 447 num_components, swizzle, state)) { 448 matched = false; 449 break; 450 } 451 } 452 453 return matched; 454} 455 456static unsigned 457replace_bitsize(const nir_search_value *value, unsigned search_bitsize, 458 struct match_state *state) 459{ 460 if (value->bit_size > 0) 461 return value->bit_size; 462 if (value->bit_size < 0) 463 return nir_src_bit_size(state->variables[-value->bit_size - 1].src); 464 return search_bitsize; 465} 466 467static nir_alu_src 468construct_value(nir_builder *build, 469 const nir_search_value *value, 470 unsigned num_components, unsigned search_bitsize, 471 struct match_state *state, 472 nir_instr *instr) 473{ 474 switch (value->type) { 475 case nir_search_value_expression: { 476 const nir_search_expression *expr = nir_search_value_as_expression(value); 477 unsigned dst_bit_size = replace_bitsize(value, search_bitsize, state); 478 nir_op op = nir_op_for_search_op(expr->opcode, dst_bit_size); 479 480 if (nir_op_infos[op].output_size != 0) 481 num_components = nir_op_infos[op].output_size; 482 483 nir_alu_instr *alu = nir_alu_instr_create(build->shader, op); 484 nir_ssa_dest_init(&alu->instr, &alu->dest.dest, num_components, 485 dst_bit_size, NULL); 486 alu->dest.write_mask = (1 << num_components) - 1; 487 alu->dest.saturate = false; 488 489 /* We have no way of knowing what values in a given search expression 490 * map to a particular replacement value. Therefore, if the 491 * expression we are replacing has any exact values, the entire 492 * replacement should be exact. 493 */ 494 alu->exact = state->has_exact_alu || expr->exact; 495 496 for (unsigned i = 0; i < nir_op_infos[op].num_inputs; i++) { 497 /* If the source is an explicitly sized source, then we need to reset 498 * the number of components to match. 499 */ 500 if (nir_op_infos[alu->op].input_sizes[i] != 0) 501 num_components = nir_op_infos[alu->op].input_sizes[i]; 502 503 alu->src[i] = construct_value(build, &state->table->values[expr->srcs[i]].value, 504 num_components, search_bitsize, 505 state, instr); 506 } 507 508 nir_builder_instr_insert(build, &alu->instr); 509 510 assert(alu->dest.dest.ssa.index == 511 util_dynarray_num_elements(state->states, uint16_t)); 512 util_dynarray_append(state->states, uint16_t, 0); 513 nir_algebraic_automaton(&alu->instr, state->states, state->pass_op_table); 514 515 nir_alu_src val; 516 val.src = nir_src_for_ssa(&alu->dest.dest.ssa); 517 val.negate = false; 518 val.abs = false, 519 memcpy(val.swizzle, identity_swizzle, sizeof val.swizzle); 520 521 return val; 522 } 523 524 case nir_search_value_variable: { 525 const nir_search_variable *var = nir_search_value_as_variable(value); 526 assert(state->variables_seen & (1 << var->variable)); 527 528 nir_alu_src val = { NIR_SRC_INIT }; 529 nir_alu_src_copy(&val, &state->variables[var->variable]); 530 assert(!var->is_constant); 531 532 for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) 533 val.swizzle[i] = state->variables[var->variable].swizzle[var->swizzle[i]]; 534 535 return val; 536 } 537 538 case nir_search_value_constant: { 539 const nir_search_constant *c = nir_search_value_as_constant(value); 540 unsigned bit_size = replace_bitsize(value, search_bitsize, state); 541 542 nir_ssa_def *cval; 543 switch (c->type) { 544 case nir_type_float: 545 cval = nir_imm_floatN_t(build, c->data.d, bit_size); 546 break; 547 548 case nir_type_int: 549 case nir_type_uint: 550 cval = nir_imm_intN_t(build, c->data.i, bit_size); 551 break; 552 553 case nir_type_bool: 554 cval = nir_imm_boolN_t(build, c->data.u, bit_size); 555 break; 556 557 default: 558 unreachable("Invalid alu source type"); 559 } 560 561 assert(cval->index == 562 util_dynarray_num_elements(state->states, uint16_t)); 563 util_dynarray_append(state->states, uint16_t, 0); 564 nir_algebraic_automaton(cval->parent_instr, state->states, 565 state->pass_op_table); 566 567 nir_alu_src val; 568 val.src = nir_src_for_ssa(cval); 569 val.negate = false; 570 val.abs = false, 571 memset(val.swizzle, 0, sizeof val.swizzle); 572 573 return val; 574 } 575 576 default: 577 unreachable("Invalid search value type"); 578 } 579} 580 581UNUSED static void dump_value(const nir_algebraic_table *table, const nir_search_value *val) 582{ 583 switch (val->type) { 584 case nir_search_value_constant: { 585 const nir_search_constant *sconst = nir_search_value_as_constant(val); 586 switch (sconst->type) { 587 case nir_type_float: 588 fprintf(stderr, "%f", sconst->data.d); 589 break; 590 case nir_type_int: 591 fprintf(stderr, "%"PRId64, sconst->data.i); 592 break; 593 case nir_type_uint: 594 fprintf(stderr, "0x%"PRIx64, sconst->data.u); 595 break; 596 case nir_type_bool: 597 fprintf(stderr, "%s", sconst->data.u != 0 ? "True" : "False"); 598 break; 599 default: 600 unreachable("bad const type"); 601 } 602 break; 603 } 604 605 case nir_search_value_variable: { 606 const nir_search_variable *var = nir_search_value_as_variable(val); 607 if (var->is_constant) 608 fprintf(stderr, "#"); 609 fprintf(stderr, "%c", var->variable + 'a'); 610 break; 611 } 612 613 case nir_search_value_expression: { 614 const nir_search_expression *expr = nir_search_value_as_expression(val); 615 fprintf(stderr, "("); 616 if (expr->inexact) 617 fprintf(stderr, "~"); 618 switch (expr->opcode) { 619#define CASE(n) \ 620 case nir_search_op_##n: fprintf(stderr, #n); break; 621 CASE(f2b) 622 CASE(b2f) 623 CASE(b2i) 624 CASE(i2b) 625 CASE(i2i) 626 CASE(f2i) 627 CASE(i2f) 628#undef CASE 629 default: 630 fprintf(stderr, "%s", nir_op_infos[expr->opcode].name); 631 } 632 633 unsigned num_srcs = 1; 634 if (expr->opcode <= nir_last_opcode) 635 num_srcs = nir_op_infos[expr->opcode].num_inputs; 636 637 for (unsigned i = 0; i < num_srcs; i++) { 638 fprintf(stderr, " "); 639 dump_value(table, &table->values[expr->srcs[i]].value); 640 } 641 642 fprintf(stderr, ")"); 643 break; 644 } 645 } 646 647 if (val->bit_size > 0) 648 fprintf(stderr, "@%d", val->bit_size); 649} 650 651static void 652add_uses_to_worklist(nir_instr *instr, 653 nir_instr_worklist *worklist, 654 struct util_dynarray *states, 655 const struct per_op_table *pass_op_table) 656{ 657 nir_ssa_def *def = nir_instr_ssa_def(instr); 658 659 nir_foreach_use_safe(use_src, def) { 660 if (nir_algebraic_automaton(use_src->parent_instr, states, pass_op_table)) 661 nir_instr_worklist_push_tail(worklist, use_src->parent_instr); 662 } 663} 664 665static void 666nir_algebraic_update_automaton(nir_instr *new_instr, 667 nir_instr_worklist *algebraic_worklist, 668 struct util_dynarray *states, 669 const struct per_op_table *pass_op_table) 670{ 671 672 nir_instr_worklist *automaton_worklist = nir_instr_worklist_create(); 673 674 /* Walk through the tree of uses of our new instruction's SSA value, 675 * recursively updating the automaton state until it stabilizes. 676 */ 677 add_uses_to_worklist(new_instr, automaton_worklist, states, pass_op_table); 678 679 nir_instr *instr; 680 while ((instr = nir_instr_worklist_pop_head(automaton_worklist))) { 681 nir_instr_worklist_push_tail(algebraic_worklist, instr); 682 add_uses_to_worklist(instr, automaton_worklist, states, pass_op_table); 683 } 684 685 nir_instr_worklist_destroy(automaton_worklist); 686} 687 688nir_ssa_def * 689nir_replace_instr(nir_builder *build, nir_alu_instr *instr, 690 struct hash_table *range_ht, 691 struct util_dynarray *states, 692 const nir_algebraic_table *table, 693 const nir_search_expression *search, 694 const nir_search_value *replace, 695 nir_instr_worklist *algebraic_worklist) 696{ 697 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS] = { 0 }; 698 699 for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i) 700 swizzle[i] = i; 701 702 assert(instr->dest.dest.is_ssa); 703 704 struct match_state state; 705 state.inexact_match = false; 706 state.has_exact_alu = false; 707 state.range_ht = range_ht; 708 state.pass_op_table = table->pass_op_table; 709 state.table = table; 710 711 STATIC_ASSERT(sizeof(state.comm_op_direction) * 8 >= NIR_SEARCH_MAX_COMM_OPS); 712 713 unsigned comm_expr_combinations = 714 1 << MIN2(search->comm_exprs, NIR_SEARCH_MAX_COMM_OPS); 715 716 bool found = false; 717 for (unsigned comb = 0; comb < comm_expr_combinations; comb++) { 718 /* The bitfield of directions is just the current iteration. Hooray for 719 * binary. 720 */ 721 state.comm_op_direction = comb; 722 state.variables_seen = 0; 723 724 if (match_expression(table, search, instr, 725 instr->dest.dest.ssa.num_components, 726 swizzle, &state)) { 727 found = true; 728 break; 729 } 730 } 731 if (!found) 732 return NULL; 733 734#if 0 735 fprintf(stderr, "matched: "); 736 dump_value(&search->value); 737 fprintf(stderr, " -> "); 738 dump_value(replace); 739 fprintf(stderr, " ssa_%d\n", instr->dest.dest.ssa.index); 740#endif 741 742 /* If the instruction at the root of the expression tree being replaced is 743 * a unary operation, insert the replacement instructions at the location 744 * of the source of the unary operation. Otherwise, insert the replacement 745 * instructions at the location of the expression tree root. 746 * 747 * For the unary operation case, this is done to prevent some spurious code 748 * motion that can dramatically extend live ranges. Imagine an expression 749 * like -(A+B) where the addtion and the negation are separated by flow 750 * control and thousands of instructions. If this expression is replaced 751 * with -A+-B, inserting the new instructions at the site of the negation 752 * could extend the live range of A and B dramtically. This could increase 753 * register pressure and cause spilling. 754 * 755 * It may well be that moving instructions around is a good thing, but 756 * keeping algebraic optimizations and code motion optimizations separate 757 * seems safest. 758 */ 759 nir_alu_instr *const src_instr = nir_src_as_alu_instr(instr->src[0].src); 760 if (src_instr != NULL && 761 (instr->op == nir_op_fneg || instr->op == nir_op_fabs || 762 instr->op == nir_op_ineg || instr->op == nir_op_iabs || 763 instr->op == nir_op_inot)) { 764 /* Insert new instructions *after*. Otherwise a hypothetical 765 * replacement fneg(X) -> fabs(X) would insert the fabs() instruction 766 * before X! This can also occur for things like fneg(X.wzyx) -> X.wzyx 767 * in vector mode. A move instruction to handle the swizzle will get 768 * inserted before X. 769 * 770 * This manifested in a single OpenGL ES 2.0 CTS vertex shader test on 771 * older Intel GPU that use vector-mode vertex processing. 772 */ 773 build->cursor = nir_after_instr(&src_instr->instr); 774 } else { 775 build->cursor = nir_before_instr(&instr->instr); 776 } 777 778 state.states = states; 779 780 nir_alu_src val = construct_value(build, replace, 781 instr->dest.dest.ssa.num_components, 782 instr->dest.dest.ssa.bit_size, 783 &state, &instr->instr); 784 785 /* Note that NIR builder will elide the MOV if it's a no-op, which may 786 * allow more work to be done in a single pass through algebraic. 787 */ 788 nir_ssa_def *ssa_val = 789 nir_mov_alu(build, val, instr->dest.dest.ssa.num_components); 790 if (ssa_val->index == util_dynarray_num_elements(states, uint16_t)) { 791 util_dynarray_append(states, uint16_t, 0); 792 nir_algebraic_automaton(ssa_val->parent_instr, states, table->pass_op_table); 793 } 794 795 /* Rewrite the uses of the old SSA value to the new one, and recurse 796 * through the uses updating the automaton's state. 797 */ 798 nir_ssa_def_rewrite_uses(&instr->dest.dest.ssa, ssa_val); 799 nir_algebraic_update_automaton(ssa_val->parent_instr, algebraic_worklist, 800 states, table->pass_op_table); 801 802 /* Nothing uses the instr any more, so drop it out of the program. Note 803 * that the instr may be in the worklist still, so we can't free it 804 * directly. 805 */ 806 nir_instr_remove(&instr->instr); 807 808 return ssa_val; 809} 810 811static bool 812nir_algebraic_automaton(nir_instr *instr, struct util_dynarray *states, 813 const struct per_op_table *pass_op_table) 814{ 815 switch (instr->type) { 816 case nir_instr_type_alu: { 817 nir_alu_instr *alu = nir_instr_as_alu(instr); 818 nir_op op = alu->op; 819 uint16_t search_op = nir_search_op_for_nir_op(op); 820 const struct per_op_table *tbl = &pass_op_table[search_op]; 821 if (tbl->num_filtered_states == 0) 822 return false; 823 824 /* Calculate the index into the transition table. Note the index 825 * calculated must match the iteration order of Python's 826 * itertools.product(), which was used to emit the transition 827 * table. 828 */ 829 unsigned index = 0; 830 for (unsigned i = 0; i < nir_op_infos[op].num_inputs; i++) { 831 index *= tbl->num_filtered_states; 832 if (tbl->filter) 833 index += tbl->filter[*util_dynarray_element(states, uint16_t, 834 alu->src[i].src.ssa->index)]; 835 } 836 837 uint16_t *state = util_dynarray_element(states, uint16_t, 838 alu->dest.dest.ssa.index); 839 if (*state != tbl->table[index]) { 840 *state = tbl->table[index]; 841 return true; 842 } 843 return false; 844 } 845 846 case nir_instr_type_load_const: { 847 nir_load_const_instr *load_const = nir_instr_as_load_const(instr); 848 uint16_t *state = util_dynarray_element(states, uint16_t, 849 load_const->def.index); 850 if (*state != CONST_STATE) { 851 *state = CONST_STATE; 852 return true; 853 } 854 return false; 855 } 856 857 default: 858 return false; 859 } 860} 861 862static bool 863nir_algebraic_instr(nir_builder *build, nir_instr *instr, 864 struct hash_table *range_ht, 865 const bool *condition_flags, 866 const nir_algebraic_table *table, 867 struct util_dynarray *states, 868 nir_instr_worklist *worklist) 869{ 870 871 if (instr->type != nir_instr_type_alu) 872 return false; 873 874 nir_alu_instr *alu = nir_instr_as_alu(instr); 875 if (!alu->dest.dest.is_ssa) 876 return false; 877 878 unsigned bit_size = alu->dest.dest.ssa.bit_size; 879 const unsigned execution_mode = 880 build->shader->info.float_controls_execution_mode; 881 const bool ignore_inexact = 882 nir_is_float_control_signed_zero_inf_nan_preserve(execution_mode, bit_size) || 883 nir_is_denorm_flush_to_zero(execution_mode, bit_size); 884 885 int xform_idx = *util_dynarray_element(states, uint16_t, 886 alu->dest.dest.ssa.index); 887 for (const struct transform *xform = &table->transforms[table->transform_offsets[xform_idx]]; 888 xform->condition_offset != ~0; 889 xform++) { 890 if (condition_flags[xform->condition_offset] && 891 !(table->values[xform->search].expression.inexact && ignore_inexact) && 892 nir_replace_instr(build, alu, range_ht, states, table, 893 &table->values[xform->search].expression, 894 &table->values[xform->replace].value, worklist)) { 895 _mesa_hash_table_clear(range_ht, NULL); 896 return true; 897 } 898 } 899 900 return false; 901} 902 903bool 904nir_algebraic_impl(nir_function_impl *impl, 905 const bool *condition_flags, 906 const nir_algebraic_table *table) 907{ 908 bool progress = false; 909 910 nir_builder build; 911 nir_builder_init(&build, impl); 912 913 /* Note: it's important here that we're allocating a zeroed array, since 914 * state 0 is the default state, which means we don't have to visit 915 * anything other than constants and ALU instructions. 916 */ 917 struct util_dynarray states = {0}; 918 if (!util_dynarray_resize(&states, uint16_t, impl->ssa_alloc)) { 919 nir_metadata_preserve(impl, nir_metadata_all); 920 return false; 921 } 922 memset(states.data, 0, states.size); 923 924 struct hash_table *range_ht = _mesa_pointer_hash_table_create(NULL); 925 926 nir_instr_worklist *worklist = nir_instr_worklist_create(); 927 928 /* Walk top-to-bottom setting up the automaton state. */ 929 nir_foreach_block(block, impl) { 930 nir_foreach_instr(instr, block) { 931 nir_algebraic_automaton(instr, &states, table->pass_op_table); 932 } 933 } 934 935 /* Put our instrs in the worklist such that we're popping the last instr 936 * first. This will encourage us to match the biggest source patterns when 937 * possible. 938 */ 939 nir_foreach_block_reverse(block, impl) { 940 nir_foreach_instr_reverse(instr, block) { 941 if (instr->type == nir_instr_type_alu) 942 nir_instr_worklist_push_tail(worklist, instr); 943 } 944 } 945 946 nir_instr *instr; 947 while ((instr = nir_instr_worklist_pop_head(worklist))) { 948 /* The worklist can have an instr pushed to it multiple times if it was 949 * the src of multiple instrs that also got optimized, so make sure that 950 * we don't try to re-optimize an instr we already handled. 951 */ 952 if (exec_node_is_tail_sentinel(&instr->node)) 953 continue; 954 955 progress |= nir_algebraic_instr(&build, instr, 956 range_ht, condition_flags, 957 table, &states, worklist); 958 } 959 960 nir_instr_worklist_destroy(worklist); 961 ralloc_free(range_ht); 962 util_dynarray_fini(&states); 963 964 if (progress) { 965 nir_metadata_preserve(impl, nir_metadata_block_index | 966 nir_metadata_dominance); 967 } else { 968 nir_metadata_preserve(impl, nir_metadata_all); 969 } 970 971 return progress; 972} 973