1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28#include "nir.h"
29#include "nir_instr_set.h"
30
31/*
32 * Implements Global Code Motion.  A description of GCM can be found in
33 * "Global Code Motion; Global Value Numbering" by Cliff Click.
34 * Unfortunately, the algorithm presented in the paper is broken in a
35 * number of ways.  The algorithm used here differs substantially from the
36 * one in the paper but it is, in my opinion, much easier to read and
37 * verify correcness.
38 */
39
40/* This is used to stop GCM moving instruction out of a loop if the loop
41 * contains too many instructions and moving them would create excess spilling.
42 *
43 * TODO: Figure out a better way to decide if we should remove instructions from
44 * a loop.
45 */
46#define MAX_LOOP_INSTRUCTIONS 100
47
48struct gcm_block_info {
49   /* Number of loops this block is inside */
50   unsigned loop_depth;
51
52   /* Number of ifs this block is inside */
53   unsigned if_depth;
54
55   unsigned loop_instr_count;
56
57   /* The loop the block is nested inside or NULL */
58   nir_loop *loop;
59
60   /* The last instruction inserted into this block.  This is used as we
61    * traverse the instructions and insert them back into the program to
62    * put them in the right order.
63    */
64   nir_instr *last_instr;
65};
66
67struct gcm_instr_info {
68   nir_block *early_block;
69};
70
71/* Flags used in the instr->pass_flags field for various instruction states */
72enum {
73   GCM_INSTR_PINNED =                (1 << 0),
74   GCM_INSTR_SCHEDULE_EARLIER_ONLY = (1 << 1),
75   GCM_INSTR_SCHEDULED_EARLY =       (1 << 2),
76   GCM_INSTR_SCHEDULED_LATE =        (1 << 3),
77   GCM_INSTR_PLACED =                (1 << 4),
78};
79
80struct gcm_state {
81   nir_function_impl *impl;
82   nir_instr *instr;
83
84   bool progress;
85
86   /* The list of non-pinned instructions.  As we do the late scheduling,
87    * we pull non-pinned instructions out of their blocks and place them in
88    * this list.  This saves us from having linked-list problems when we go
89    * to put instructions back in their blocks.
90    */
91   struct exec_list instrs;
92
93   struct gcm_block_info *blocks;
94
95   unsigned num_instrs;
96   struct gcm_instr_info *instr_infos;
97};
98
99static unsigned
100get_loop_instr_count(struct exec_list *cf_list)
101{
102   unsigned loop_instr_count = 0;
103   foreach_list_typed(nir_cf_node, node, node, cf_list) {
104      switch (node->type) {
105      case nir_cf_node_block: {
106         nir_block *block = nir_cf_node_as_block(node);
107         nir_foreach_instr(instr, block) {
108            loop_instr_count++;
109         }
110         break;
111      }
112      case nir_cf_node_if: {
113         nir_if *if_stmt = nir_cf_node_as_if(node);
114         loop_instr_count += get_loop_instr_count(&if_stmt->then_list);
115         loop_instr_count += get_loop_instr_count(&if_stmt->else_list);
116         break;
117      }
118      case nir_cf_node_loop: {
119         nir_loop *loop = nir_cf_node_as_loop(node);
120         loop_instr_count += get_loop_instr_count(&loop->body);
121         break;
122      }
123      default:
124         unreachable("Invalid CF node type");
125      }
126   }
127
128   return loop_instr_count;
129}
130
131/* Recursively walks the CFG and builds the block_info structure */
132static void
133gcm_build_block_info(struct exec_list *cf_list, struct gcm_state *state,
134                     nir_loop *loop, unsigned loop_depth, unsigned if_depth,
135                     unsigned loop_instr_count)
136{
137   foreach_list_typed(nir_cf_node, node, node, cf_list) {
138      switch (node->type) {
139      case nir_cf_node_block: {
140         nir_block *block = nir_cf_node_as_block(node);
141         state->blocks[block->index].if_depth = if_depth;
142         state->blocks[block->index].loop_depth = loop_depth;
143         state->blocks[block->index].loop_instr_count = loop_instr_count;
144         state->blocks[block->index].loop = loop;
145         break;
146      }
147      case nir_cf_node_if: {
148         nir_if *if_stmt = nir_cf_node_as_if(node);
149         gcm_build_block_info(&if_stmt->then_list, state, loop, loop_depth,
150                              if_depth + 1, ~0u);
151         gcm_build_block_info(&if_stmt->else_list, state, loop, loop_depth,
152                              if_depth + 1, ~0u);
153         break;
154      }
155      case nir_cf_node_loop: {
156         nir_loop *loop = nir_cf_node_as_loop(node);
157         gcm_build_block_info(&loop->body, state, loop, loop_depth + 1, if_depth,
158                              get_loop_instr_count(&loop->body));
159         break;
160      }
161      default:
162         unreachable("Invalid CF node type");
163      }
164   }
165}
166
167static bool
168is_src_scalarizable(nir_src *src)
169{
170   assert(src->is_ssa);
171
172   nir_instr *src_instr = src->ssa->parent_instr;
173   switch (src_instr->type) {
174   case nir_instr_type_alu: {
175      nir_alu_instr *src_alu = nir_instr_as_alu(src_instr);
176
177      /* ALU operations with output_size == 0 should be scalarized.  We
178       * will also see a bunch of vecN operations from scalarizing ALU
179       * operations and, since they can easily be copy-propagated, they
180       * are ok too.
181       */
182      return nir_op_infos[src_alu->op].output_size == 0 ||
183             src_alu->op == nir_op_vec2 ||
184             src_alu->op == nir_op_vec3 ||
185             src_alu->op == nir_op_vec4;
186   }
187
188   case nir_instr_type_load_const:
189      /* These are trivially scalarizable */
190      return true;
191
192   case nir_instr_type_ssa_undef:
193      return true;
194
195   case nir_instr_type_intrinsic: {
196      nir_intrinsic_instr *src_intrin = nir_instr_as_intrinsic(src_instr);
197
198      switch (src_intrin->intrinsic) {
199      case nir_intrinsic_load_deref: {
200         /* Don't scalarize if we see a load of a local variable because it
201          * might turn into one of the things we can't scalarize.
202          */
203         nir_deref_instr *deref = nir_src_as_deref(src_intrin->src[0]);
204         return !nir_deref_mode_may_be(deref, (nir_var_function_temp |
205                                               nir_var_shader_temp));
206      }
207
208      case nir_intrinsic_interp_deref_at_centroid:
209      case nir_intrinsic_interp_deref_at_sample:
210      case nir_intrinsic_interp_deref_at_offset:
211      case nir_intrinsic_load_uniform:
212      case nir_intrinsic_load_ubo:
213      case nir_intrinsic_load_ssbo:
214      case nir_intrinsic_load_global:
215      case nir_intrinsic_load_global_constant:
216      case nir_intrinsic_load_input:
217         return true;
218      default:
219         break;
220      }
221
222      return false;
223   }
224
225   default:
226      /* We can't scalarize this type of instruction */
227      return false;
228   }
229}
230
231static bool
232is_binding_uniform(nir_src src)
233{
234   nir_binding binding = nir_chase_binding(src);
235   if (!binding.success)
236      return false;
237
238   for (unsigned i = 0; i < binding.num_indices; i++) {
239      if (!nir_src_is_always_uniform(binding.indices[i]))
240         return false;
241   }
242
243   return true;
244}
245
246static void
247pin_intrinsic(nir_intrinsic_instr *intrin)
248{
249   nir_instr *instr = &intrin->instr;
250
251   if (!nir_intrinsic_can_reorder(intrin)) {
252      instr->pass_flags = GCM_INSTR_PINNED;
253      return;
254   }
255
256   instr->pass_flags = 0;
257
258   /* If the intrinsic requires a uniform source, we can't safely move it across non-uniform
259    * control flow if it's not uniform at the point it's defined.
260    * Stores and atomics can never be re-ordered, so we don't have to consider them here.
261    */
262   bool non_uniform = nir_intrinsic_has_access(intrin) &&
263                      (nir_intrinsic_access(intrin) & ACCESS_NON_UNIFORM);
264   if (!non_uniform &&
265       (intrin->intrinsic == nir_intrinsic_load_ubo ||
266        intrin->intrinsic == nir_intrinsic_load_ssbo ||
267        intrin->intrinsic == nir_intrinsic_get_ubo_size ||
268        intrin->intrinsic == nir_intrinsic_get_ssbo_size ||
269        nir_intrinsic_has_image_dim(intrin) ||
270        ((intrin->intrinsic == nir_intrinsic_load_deref ||
271          intrin->intrinsic == nir_intrinsic_deref_buffer_array_length) &&
272         nir_deref_mode_may_be(nir_src_as_deref(intrin->src[0]),
273                               nir_var_mem_ubo | nir_var_mem_ssbo)))) {
274      if (!is_binding_uniform(intrin->src[0]))
275         instr->pass_flags = GCM_INSTR_PINNED;
276   } else if (intrin->intrinsic == nir_intrinsic_load_push_constant) {
277      if (!nir_src_is_always_uniform(intrin->src[0]))
278         instr->pass_flags = GCM_INSTR_PINNED;
279   } else if (intrin->intrinsic == nir_intrinsic_load_deref &&
280              nir_deref_mode_is(nir_src_as_deref(intrin->src[0]),
281                                nir_var_mem_push_const)) {
282      nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
283      while (deref->deref_type != nir_deref_type_var) {
284         if ((deref->deref_type == nir_deref_type_array ||
285              deref->deref_type == nir_deref_type_ptr_as_array) &&
286             !nir_src_is_always_uniform(deref->arr.index)) {
287            instr->pass_flags = GCM_INSTR_PINNED;
288            return;
289         }
290         deref = nir_deref_instr_parent(deref);
291         if (!deref) {
292            instr->pass_flags = GCM_INSTR_PINNED;
293            return;
294         }
295      }
296   }
297}
298
299/* Walks the instruction list and marks immovable instructions as pinned or
300 * placed.
301 *
302 * This function also serves to initialize the instr->pass_flags field.
303 * After this is completed, all instructions' pass_flags fields will be set
304 * to either GCM_INSTR_PINNED, GCM_INSTR_PLACED or 0.
305 */
306static void
307gcm_pin_instructions(nir_function_impl *impl, struct gcm_state *state)
308{
309   state->num_instrs = 0;
310
311   nir_foreach_block(block, impl) {
312      nir_foreach_instr_safe(instr, block) {
313         /* Index the instructions for use in gcm_state::instrs */
314         instr->index = state->num_instrs++;
315
316         switch (instr->type) {
317         case nir_instr_type_alu:
318            switch (nir_instr_as_alu(instr)->op) {
319            case nir_op_fddx:
320            case nir_op_fddy:
321            case nir_op_fddx_fine:
322            case nir_op_fddy_fine:
323            case nir_op_fddx_coarse:
324            case nir_op_fddy_coarse:
325               /* These can only go in uniform control flow */
326               instr->pass_flags = GCM_INSTR_SCHEDULE_EARLIER_ONLY;
327               break;
328
329            case nir_op_mov:
330               if (!is_src_scalarizable(&(nir_instr_as_alu(instr)->src[0].src))) {
331                  instr->pass_flags = GCM_INSTR_PINNED;
332                  break;
333               }
334               FALLTHROUGH;
335
336            default:
337               instr->pass_flags = 0;
338               break;
339            }
340            break;
341
342         case nir_instr_type_tex: {
343            nir_tex_instr *tex = nir_instr_as_tex(instr);
344            if (nir_tex_instr_has_implicit_derivative(tex))
345               instr->pass_flags = GCM_INSTR_SCHEDULE_EARLIER_ONLY;
346
347            for (unsigned i = 0; i < tex->num_srcs; i++) {
348               nir_tex_src *src = &tex->src[i];
349               switch (src->src_type) {
350               case nir_tex_src_texture_deref:
351                  if (!tex->texture_non_uniform && !is_binding_uniform(src->src))
352                     instr->pass_flags = GCM_INSTR_PINNED;
353                  break;
354               case nir_tex_src_sampler_deref:
355                  if (!tex->sampler_non_uniform && !is_binding_uniform(src->src))
356                     instr->pass_flags = GCM_INSTR_PINNED;
357                  break;
358               case nir_tex_src_texture_offset:
359               case nir_tex_src_texture_handle:
360                  if (!tex->texture_non_uniform && !nir_src_is_always_uniform(src->src))
361                     instr->pass_flags = GCM_INSTR_PINNED;
362                  break;
363               case nir_tex_src_sampler_offset:
364               case nir_tex_src_sampler_handle:
365                  if (!tex->sampler_non_uniform && !nir_src_is_always_uniform(src->src))
366                     instr->pass_flags = GCM_INSTR_PINNED;
367                  break;
368               default:
369                  break;
370               }
371            }
372            break;
373         }
374
375         case nir_instr_type_deref:
376         case nir_instr_type_load_const:
377            instr->pass_flags = 0;
378            break;
379
380         case nir_instr_type_intrinsic:
381            pin_intrinsic(nir_instr_as_intrinsic(instr));
382            break;
383
384         case nir_instr_type_call:
385            instr->pass_flags = GCM_INSTR_PINNED;
386            break;
387
388         case nir_instr_type_jump:
389         case nir_instr_type_ssa_undef:
390         case nir_instr_type_phi:
391            instr->pass_flags = GCM_INSTR_PLACED;
392            break;
393
394         default:
395            unreachable("Invalid instruction type in GCM");
396         }
397
398         if (!(instr->pass_flags & GCM_INSTR_PLACED)) {
399            /* If this is an unplaced instruction, go ahead and pull it out of
400             * the program and put it on the instrs list.  This has a couple
401             * of benifits.  First, it makes the scheduling algorithm more
402             * efficient because we can avoid walking over basic blocks.
403             * Second, it keeps us from causing linked list confusion when
404             * we're trying to put everything in its proper place at the end
405             * of the pass.
406             *
407             * Note that we don't use nir_instr_remove here because that also
408             * cleans up uses and defs and we want to keep that information.
409             */
410            exec_node_remove(&instr->node);
411            exec_list_push_tail(&state->instrs, &instr->node);
412         }
413      }
414   }
415}
416
417static void
418gcm_schedule_early_instr(nir_instr *instr, struct gcm_state *state);
419
420/** Update an instructions schedule for the given source
421 *
422 * This function is called iteratively as we walk the sources of an
423 * instruction.  It ensures that the given source instruction has been
424 * scheduled and then update this instruction's block if the source
425 * instruction is lower down the tree.
426 */
427static bool
428gcm_schedule_early_src(nir_src *src, void *void_state)
429{
430   struct gcm_state *state = void_state;
431   nir_instr *instr = state->instr;
432
433   assert(src->is_ssa);
434
435   gcm_schedule_early_instr(src->ssa->parent_instr, void_state);
436
437   /* While the index isn't a proper dominance depth, it does have the
438    * property that if A dominates B then A->index <= B->index.  Since we
439    * know that this instruction must have been dominated by all of its
440    * sources at some point (even if it's gone through value-numbering),
441    * all of the sources must lie on the same branch of the dominance tree.
442    * Therefore, we can just go ahead and just compare indices.
443    */
444   struct gcm_instr_info *src_info =
445      &state->instr_infos[src->ssa->parent_instr->index];
446   struct gcm_instr_info *info = &state->instr_infos[instr->index];
447   if (info->early_block->index < src_info->early_block->index)
448      info->early_block = src_info->early_block;
449
450   /* We need to restore the state instruction because it may have been
451    * changed through the gcm_schedule_early_instr call above.  Since we
452    * may still be iterating through sources and future calls to
453    * gcm_schedule_early_src for the same instruction will still need it.
454    */
455   state->instr = instr;
456
457   return true;
458}
459
460/** Schedules an instruction early
461 *
462 * This function performs a recursive depth-first search starting at the
463 * given instruction and proceeding through the sources to schedule
464 * instructions as early as they can possibly go in the dominance tree.
465 * The instructions are "scheduled" by updating the early_block field of
466 * the corresponding gcm_instr_state entry.
467 */
468static void
469gcm_schedule_early_instr(nir_instr *instr, struct gcm_state *state)
470{
471   if (instr->pass_flags & GCM_INSTR_SCHEDULED_EARLY)
472      return;
473
474   instr->pass_flags |= GCM_INSTR_SCHEDULED_EARLY;
475
476   /* Pinned/placed instructions always get scheduled in their original block so
477    * we don't need to do anything.  Also, bailing here keeps us from ever
478    * following the sources of phi nodes which can be back-edges.
479    */
480   if (instr->pass_flags & GCM_INSTR_PINNED ||
481       instr->pass_flags & GCM_INSTR_PLACED) {
482      state->instr_infos[instr->index].early_block = instr->block;
483      return;
484   }
485
486   /* Start with the instruction at the top.  As we iterate over the
487    * sources, it will get moved down as needed.
488    */
489   state->instr_infos[instr->index].early_block = nir_start_block(state->impl);
490   state->instr = instr;
491
492   nir_foreach_src(instr, gcm_schedule_early_src, state);
493}
494
495static bool
496set_block_for_loop_instr(struct gcm_state *state, nir_instr *instr,
497                         nir_block *block)
498{
499   /* If the instruction wasn't in a loop to begin with we don't want to push
500    * it down into one.
501    */
502   nir_loop *loop = state->blocks[instr->block->index].loop;
503   if (loop == NULL)
504      return true;
505
506   if (nir_block_dominates(instr->block, block))
507      return true;
508
509   /* If the loop only executes a single time i.e its wrapped in a:
510    *    do{ ... break; } while(true)
511    * Don't move the instruction as it will not help anything.
512    */
513   if (loop->info->limiting_terminator == NULL && !loop->info->complex_loop &&
514       nir_block_ends_in_break(nir_loop_last_block(loop)))
515      return false;
516
517   /* Being too aggressive with how we pull instructions out of loops can
518    * result in extra register pressure and spilling. For example its fairly
519    * common for loops in compute shaders to calculate SSBO offsets using
520    * the workgroup id, subgroup id and subgroup invocation, pulling all
521    * these calculations outside the loop causes register pressure.
522    *
523    * To work around these issues for now we only allow constant and texture
524    * instructions to be moved outside their original loops, or instructions
525    * where the total loop instruction count is less than
526    * MAX_LOOP_INSTRUCTIONS.
527    *
528    * TODO: figure out some more heuristics to allow more to be moved out of
529    * loops.
530    */
531   if (state->blocks[instr->block->index].loop_instr_count < MAX_LOOP_INSTRUCTIONS)
532      return true;
533
534   if (instr->type == nir_instr_type_load_const ||
535       instr->type == nir_instr_type_tex)
536      return true;
537
538   return false;
539}
540
541static bool
542set_block_to_if_block(struct gcm_state *state,  nir_instr *instr,
543                      nir_block *block)
544{
545   if (instr->type == nir_instr_type_load_const)
546      return true;
547
548   /* TODO: Figure out some more heuristics to allow more to be moved into
549    * if-statements.
550    */
551
552   return false;
553}
554
555static nir_block *
556gcm_choose_block_for_instr(nir_instr *instr, nir_block *early_block,
557                           nir_block *late_block, struct gcm_state *state)
558{
559   assert(nir_block_dominates(early_block, late_block));
560
561   bool block_set = false;
562
563   /* First see if we can push the instruction down into an if-statements block */
564   nir_block *best = late_block;
565   for (nir_block *block = late_block; block != NULL; block = block->imm_dom) {
566      if (state->blocks[block->index].loop_depth >
567          state->blocks[instr->block->index].loop_depth)
568         continue;
569
570      if (state->blocks[block->index].if_depth >=
571          state->blocks[best->index].if_depth &&
572          set_block_to_if_block(state, instr, block)) {
573            /* If we are pushing the instruction into an if we want it to be
574             * in the earliest block not the latest to avoid creating register
575             * pressure issues. So we don't break unless we come across the
576             * block the instruction was originally in.
577             */
578            best = block;
579            block_set = true;
580            if (block == instr->block)
581               break;
582      } else if (block == instr->block) {
583         /* If we couldn't push the instruction later just put is back where it
584          * was previously.
585          */
586         if (!block_set)
587            best = block;
588         break;
589      }
590
591      if (block == early_block)
592         break;
593   }
594
595   /* Now see if we can evict the instruction from a loop */
596   for (nir_block *block = late_block; block != NULL; block = block->imm_dom) {
597      if (state->blocks[block->index].loop_depth <
598          state->blocks[best->index].loop_depth) {
599         if (set_block_for_loop_instr(state, instr, block)) {
600            best = block;
601         } else if (block == instr->block) {
602            if (!block_set)
603               best = block;
604            break;
605         }
606      }
607
608      if (block == early_block)
609         break;
610   }
611
612   return best;
613}
614
615static void
616gcm_schedule_late_instr(nir_instr *instr, struct gcm_state *state);
617
618/** Schedules the instruction associated with the given SSA def late
619 *
620 * This function works by first walking all of the uses of the given SSA
621 * definition, ensuring that they are scheduled, and then computing the LCA
622 * (least common ancestor) of its uses.  It then schedules this instruction
623 * as close to the LCA as possible while trying to stay out of loops.
624 */
625static bool
626gcm_schedule_late_def(nir_ssa_def *def, void *void_state)
627{
628   struct gcm_state *state = void_state;
629
630   nir_block *lca = NULL;
631
632   nir_foreach_use(use_src, def) {
633      nir_instr *use_instr = use_src->parent_instr;
634
635      gcm_schedule_late_instr(use_instr, state);
636
637      /* Phi instructions are a bit special.  SSA definitions don't have to
638       * dominate the sources of the phi nodes that use them; instead, they
639       * have to dominate the predecessor block corresponding to the phi
640       * source.  We handle this by looking through the sources, finding
641       * any that are usingg this SSA def, and using those blocks instead
642       * of the one the phi lives in.
643       */
644      if (use_instr->type == nir_instr_type_phi) {
645         nir_phi_instr *phi = nir_instr_as_phi(use_instr);
646
647         nir_foreach_phi_src(phi_src, phi) {
648            if (phi_src->src.ssa == def)
649               lca = nir_dominance_lca(lca, phi_src->pred);
650         }
651      } else {
652         lca = nir_dominance_lca(lca, use_instr->block);
653      }
654   }
655
656   nir_foreach_if_use(use_src, def) {
657      nir_if *if_stmt = use_src->parent_if;
658
659      /* For if statements, we consider the block to be the one immediately
660       * preceding the if CF node.
661       */
662      nir_block *pred_block =
663         nir_cf_node_as_block(nir_cf_node_prev(&if_stmt->cf_node));
664
665      lca = nir_dominance_lca(lca, pred_block);
666   }
667
668   nir_block *early_block =
669      state->instr_infos[def->parent_instr->index].early_block;
670
671   /* Some instructions may never be used.  Flag them and the instruction
672    * placement code will get rid of them for us.
673    */
674   if (lca == NULL) {
675      def->parent_instr->block = NULL;
676      return true;
677   }
678
679   if (def->parent_instr->pass_flags & GCM_INSTR_SCHEDULE_EARLIER_ONLY &&
680       lca != def->parent_instr->block &&
681       nir_block_dominates(def->parent_instr->block, lca)) {
682      lca = def->parent_instr->block;
683   }
684
685   /* We now have the LCA of all of the uses.  If our invariants hold,
686    * this is dominated by the block that we chose when scheduling early.
687    * We now walk up the dominance tree and pick the lowest block that is
688    * as far outside loops as we can get.
689    */
690   nir_block *best_block =
691      gcm_choose_block_for_instr(def->parent_instr, early_block, lca, state);
692
693   if (def->parent_instr->block != best_block)
694      state->progress = true;
695
696   def->parent_instr->block = best_block;
697
698   return true;
699}
700
701/** Schedules an instruction late
702 *
703 * This function performs a depth-first search starting at the given
704 * instruction and proceeding through its uses to schedule instructions as
705 * late as they can reasonably go in the dominance tree.  The instructions
706 * are "scheduled" by updating their instr->block field.
707 *
708 * The name of this function is actually a bit of a misnomer as it doesn't
709 * schedule them "as late as possible" as the paper implies.  Instead, it
710 * first finds the lates possible place it can schedule the instruction and
711 * then possibly schedules it earlier than that.  The actual location is as
712 * far down the tree as we can go while trying to stay out of loops.
713 */
714static void
715gcm_schedule_late_instr(nir_instr *instr, struct gcm_state *state)
716{
717   if (instr->pass_flags & GCM_INSTR_SCHEDULED_LATE)
718      return;
719
720   instr->pass_flags |= GCM_INSTR_SCHEDULED_LATE;
721
722   /* Pinned/placed instructions are already scheduled so we don't need to do
723    * anything.  Also, bailing here keeps us from ever following phi nodes
724    * which can be back-edges.
725    */
726   if (instr->pass_flags & GCM_INSTR_PLACED ||
727       instr->pass_flags & GCM_INSTR_PINNED)
728      return;
729
730   nir_foreach_ssa_def(instr, gcm_schedule_late_def, state);
731}
732
733static bool
734gcm_replace_def_with_undef(nir_ssa_def *def, void *void_state)
735{
736   struct gcm_state *state = void_state;
737
738   if (nir_ssa_def_is_unused(def))
739      return true;
740
741   nir_ssa_undef_instr *undef =
742      nir_ssa_undef_instr_create(state->impl->function->shader,
743                                 def->num_components, def->bit_size);
744   nir_instr_insert(nir_before_cf_list(&state->impl->body), &undef->instr);
745   nir_ssa_def_rewrite_uses(def, &undef->def);
746
747   return true;
748}
749
750/** Places an instrution back into the program
751 *
752 * The earlier passes of GCM simply choose blocks for each instruction and
753 * otherwise leave them alone.  This pass actually places the instructions
754 * into their chosen blocks.
755 *
756 * To do so, we simply insert instructions in the reverse order they were
757 * extracted. This will simply place instructions that were scheduled earlier
758 * onto the end of their new block and instructions that were scheduled later to
759 * the start of their new block.
760 */
761static void
762gcm_place_instr(nir_instr *instr, struct gcm_state *state)
763{
764   if (instr->pass_flags & GCM_INSTR_PLACED)
765      return;
766
767   instr->pass_flags |= GCM_INSTR_PLACED;
768
769   if (instr->block == NULL) {
770      nir_foreach_ssa_def(instr, gcm_replace_def_with_undef, state);
771      nir_instr_remove(instr);
772      return;
773   }
774
775   struct gcm_block_info *block_info = &state->blocks[instr->block->index];
776   exec_node_remove(&instr->node);
777
778   if (block_info->last_instr) {
779      exec_node_insert_node_before(&block_info->last_instr->node,
780                                   &instr->node);
781   } else {
782      /* Schedule it at the end of the block */
783      nir_instr *jump_instr = nir_block_last_instr(instr->block);
784      if (jump_instr && jump_instr->type == nir_instr_type_jump) {
785         exec_node_insert_node_before(&jump_instr->node, &instr->node);
786      } else {
787         exec_list_push_tail(&instr->block->instr_list, &instr->node);
788      }
789   }
790
791   block_info->last_instr = instr;
792}
793
794static bool
795opt_gcm_impl(nir_shader *shader, nir_function_impl *impl, bool value_number)
796{
797   nir_metadata_require(impl, nir_metadata_block_index |
798                              nir_metadata_dominance);
799   nir_metadata_require(impl, nir_metadata_loop_analysis,
800                        shader->options->force_indirect_unrolling,
801                        shader->options->force_indirect_unrolling_sampler);
802
803   /* A previous pass may have left pass_flags dirty, so clear it all out. */
804   nir_foreach_block(block, impl)
805      nir_foreach_instr(instr, block)
806         instr->pass_flags = 0;
807
808   struct gcm_state state;
809
810   state.impl = impl;
811   state.instr = NULL;
812   state.progress = false;
813   exec_list_make_empty(&state.instrs);
814   state.blocks = rzalloc_array(NULL, struct gcm_block_info, impl->num_blocks);
815
816   gcm_build_block_info(&impl->body, &state, NULL, 0, 0, ~0u);
817
818   gcm_pin_instructions(impl, &state);
819
820   state.instr_infos =
821      rzalloc_array(NULL, struct gcm_instr_info, state.num_instrs);
822
823   if (value_number) {
824      struct set *gvn_set = nir_instr_set_create(NULL);
825      foreach_list_typed_safe(nir_instr, instr, node, &state.instrs) {
826         if (instr->pass_flags & GCM_INSTR_PINNED)
827            continue;
828
829         if (nir_instr_set_add_or_rewrite(gvn_set, instr, NULL))
830            state.progress = true;
831      }
832      nir_instr_set_destroy(gvn_set);
833   }
834
835   foreach_list_typed(nir_instr, instr, node, &state.instrs)
836      gcm_schedule_early_instr(instr, &state);
837
838   foreach_list_typed(nir_instr, instr, node, &state.instrs)
839      gcm_schedule_late_instr(instr, &state);
840
841   while (!exec_list_is_empty(&state.instrs)) {
842      nir_instr *instr = exec_node_data(nir_instr,
843                                        state.instrs.tail_sentinel.prev, node);
844      gcm_place_instr(instr, &state);
845   }
846
847   ralloc_free(state.blocks);
848   ralloc_free(state.instr_infos);
849
850   nir_metadata_preserve(impl, nir_metadata_block_index |
851                               nir_metadata_dominance |
852                               nir_metadata_loop_analysis);
853
854   return state.progress;
855}
856
857bool
858nir_opt_gcm(nir_shader *shader, bool value_number)
859{
860   bool progress = false;
861
862   nir_foreach_function(function, shader) {
863      if (function->impl)
864         progress |= opt_gcm_impl(shader, function->impl, value_number);
865   }
866
867   return progress;
868}
869