1/* 2 * Copyright © 2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25#include "nir.h" 26#include "nir_builder.h" 27 28#include <math.h> 29#include <float.h> 30 31/* 32 * Lowers some unsupported double operations, using only: 33 * 34 * - pack/unpackDouble2x32 35 * - conversion to/from single-precision 36 * - double add, mul, and fma 37 * - conditional select 38 * - 32-bit integer and floating point arithmetic 39 */ 40 41/* Creates a double with the exponent bits set to a given integer value */ 42static nir_ssa_def * 43set_exponent(nir_builder *b, nir_ssa_def *src, nir_ssa_def *exp) 44{ 45 /* Split into bits 0-31 and 32-63 */ 46 nir_ssa_def *lo = nir_unpack_64_2x32_split_x(b, src); 47 nir_ssa_def *hi = nir_unpack_64_2x32_split_y(b, src); 48 49 /* The exponent is bits 52-62, or 20-30 of the high word, so set the exponent 50 * to 1023 51 */ 52 nir_ssa_def *new_hi = nir_bitfield_insert(b, hi, exp, 53 nir_imm_int(b, 20), 54 nir_imm_int(b, 11)); 55 /* recombine */ 56 return nir_pack_64_2x32_split(b, lo, new_hi); 57} 58 59static nir_ssa_def * 60get_exponent(nir_builder *b, nir_ssa_def *src) 61{ 62 /* get bits 32-63 */ 63 nir_ssa_def *hi = nir_unpack_64_2x32_split_y(b, src); 64 65 /* extract bits 20-30 of the high word */ 66 return nir_ubitfield_extract(b, hi, nir_imm_int(b, 20), nir_imm_int(b, 11)); 67} 68 69/* Return infinity with the sign of the given source which is +/-0 */ 70 71static nir_ssa_def * 72get_signed_inf(nir_builder *b, nir_ssa_def *zero) 73{ 74 nir_ssa_def *zero_hi = nir_unpack_64_2x32_split_y(b, zero); 75 76 /* The bit pattern for infinity is 0x7ff0000000000000, where the sign bit 77 * is the highest bit. Only the sign bit can be non-zero in the passed in 78 * source. So we essentially need to OR the infinity and the zero, except 79 * the low 32 bits are always 0 so we can construct the correct high 32 80 * bits and then pack it together with zero low 32 bits. 81 */ 82 nir_ssa_def *inf_hi = nir_ior(b, nir_imm_int(b, 0x7ff00000), zero_hi); 83 return nir_pack_64_2x32_split(b, nir_imm_int(b, 0), inf_hi); 84} 85 86/* 87 * Generates the correctly-signed infinity if the source was zero, and flushes 88 * the result to 0 if the source was infinity or the calculated exponent was 89 * too small to be representable. 90 */ 91 92static nir_ssa_def * 93fix_inv_result(nir_builder *b, nir_ssa_def *res, nir_ssa_def *src, 94 nir_ssa_def *exp) 95{ 96 /* If the exponent is too small or the original input was infinity/NaN, 97 * force the result to 0 (flush denorms) to avoid the work of handling 98 * denorms properly. Note that this doesn't preserve positive/negative 99 * zeros, but GLSL doesn't require it. 100 */ 101 res = nir_bcsel(b, nir_ior(b, nir_ige(b, nir_imm_int(b, 0), exp), 102 nir_feq(b, nir_fabs(b, src), 103 nir_imm_double(b, INFINITY))), 104 nir_imm_double(b, 0.0f), res); 105 106 /* If the original input was 0, generate the correctly-signed infinity */ 107 res = nir_bcsel(b, nir_fneu(b, src, nir_imm_double(b, 0.0f)), 108 res, get_signed_inf(b, src)); 109 110 return res; 111 112} 113 114static nir_ssa_def * 115lower_rcp(nir_builder *b, nir_ssa_def *src) 116{ 117 /* normalize the input to avoid range issues */ 118 nir_ssa_def *src_norm = set_exponent(b, src, nir_imm_int(b, 1023)); 119 120 /* cast to float, do an rcp, and then cast back to get an approximate 121 * result 122 */ 123 nir_ssa_def *ra = nir_f2f64(b, nir_frcp(b, nir_f2f32(b, src_norm))); 124 125 /* Fixup the exponent of the result - note that we check if this is too 126 * small below. 127 */ 128 nir_ssa_def *new_exp = nir_isub(b, get_exponent(b, ra), 129 nir_isub(b, get_exponent(b, src), 130 nir_imm_int(b, 1023))); 131 132 ra = set_exponent(b, ra, new_exp); 133 134 /* Do a few Newton-Raphson steps to improve precision. 135 * 136 * Each step doubles the precision, and we started off with around 24 bits, 137 * so we only need to do 2 steps to get to full precision. The step is: 138 * 139 * x_new = x * (2 - x*src) 140 * 141 * But we can re-arrange this to improve precision by using another fused 142 * multiply-add: 143 * 144 * x_new = x + x * (1 - x*src) 145 * 146 * See https://en.wikipedia.org/wiki/Division_algorithm for more details. 147 */ 148 149 ra = nir_ffma(b, nir_fneg(b, ra), nir_ffma(b, ra, src, nir_imm_double(b, -1)), ra); 150 ra = nir_ffma(b, nir_fneg(b, ra), nir_ffma(b, ra, src, nir_imm_double(b, -1)), ra); 151 152 return fix_inv_result(b, ra, src, new_exp); 153} 154 155static nir_ssa_def * 156lower_sqrt_rsq(nir_builder *b, nir_ssa_def *src, bool sqrt) 157{ 158 /* We want to compute: 159 * 160 * 1/sqrt(m * 2^e) 161 * 162 * When the exponent is even, this is equivalent to: 163 * 164 * 1/sqrt(m) * 2^(-e/2) 165 * 166 * and then the exponent is odd, this is equal to: 167 * 168 * 1/sqrt(m * 2) * 2^(-(e - 1)/2) 169 * 170 * where the m * 2 is absorbed into the exponent. So we want the exponent 171 * inside the square root to be 1 if e is odd and 0 if e is even, and we 172 * want to subtract off e/2 from the final exponent, rounded to negative 173 * infinity. We can do the former by first computing the unbiased exponent, 174 * and then AND'ing it with 1 to get 0 or 1, and we can do the latter by 175 * shifting right by 1. 176 */ 177 178 nir_ssa_def *unbiased_exp = nir_isub(b, get_exponent(b, src), 179 nir_imm_int(b, 1023)); 180 nir_ssa_def *even = nir_iand_imm(b, unbiased_exp, 1); 181 nir_ssa_def *half = nir_ishr_imm(b, unbiased_exp, 1); 182 183 nir_ssa_def *src_norm = set_exponent(b, src, 184 nir_iadd(b, nir_imm_int(b, 1023), 185 even)); 186 187 nir_ssa_def *ra = nir_f2f64(b, nir_frsq(b, nir_f2f32(b, src_norm))); 188 nir_ssa_def *new_exp = nir_isub(b, get_exponent(b, ra), half); 189 ra = set_exponent(b, ra, new_exp); 190 191 /* 192 * The following implements an iterative algorithm that's very similar 193 * between sqrt and rsqrt. We start with an iteration of Goldschmit's 194 * algorithm, which looks like: 195 * 196 * a = the source 197 * y_0 = initial (single-precision) rsqrt estimate 198 * 199 * h_0 = .5 * y_0 200 * g_0 = a * y_0 201 * r_0 = .5 - h_0 * g_0 202 * g_1 = g_0 * r_0 + g_0 203 * h_1 = h_0 * r_0 + h_0 204 * 205 * Now g_1 ~= sqrt(a), and h_1 ~= 1/(2 * sqrt(a)). We could continue 206 * applying another round of Goldschmit, but since we would never refer 207 * back to a (the original source), we would add too much rounding error. 208 * So instead, we do one last round of Newton-Raphson, which has better 209 * rounding characteristics, to get the final rounding correct. This is 210 * split into two cases: 211 * 212 * 1. sqrt 213 * 214 * Normally, doing a round of Newton-Raphson for sqrt involves taking a 215 * reciprocal of the original estimate, which is slow since it isn't 216 * supported in HW. But we can take advantage of the fact that we already 217 * computed a good estimate of 1/(2 * g_1) by rearranging it like so: 218 * 219 * g_2 = .5 * (g_1 + a / g_1) 220 * = g_1 + .5 * (a / g_1 - g_1) 221 * = g_1 + (.5 / g_1) * (a - g_1^2) 222 * = g_1 + h_1 * (a - g_1^2) 223 * 224 * The second term represents the error, and by splitting it out we can get 225 * better precision by computing it as part of a fused multiply-add. Since 226 * both Newton-Raphson and Goldschmit approximately double the precision of 227 * the result, these two steps should be enough. 228 * 229 * 2. rsqrt 230 * 231 * First off, note that the first round of the Goldschmit algorithm is 232 * really just a Newton-Raphson step in disguise: 233 * 234 * h_1 = h_0 * (.5 - h_0 * g_0) + h_0 235 * = h_0 * (1.5 - h_0 * g_0) 236 * = h_0 * (1.5 - .5 * a * y_0^2) 237 * = (.5 * y_0) * (1.5 - .5 * a * y_0^2) 238 * 239 * which is the standard formula multiplied by .5. Unlike in the sqrt case, 240 * we don't need the inverse to do a Newton-Raphson step; we just need h_1, 241 * so we can skip the calculation of g_1. Instead, we simply do another 242 * Newton-Raphson step: 243 * 244 * y_1 = 2 * h_1 245 * r_1 = .5 - h_1 * y_1 * a 246 * y_2 = y_1 * r_1 + y_1 247 * 248 * Where the difference from Goldschmit is that we calculate y_1 * a 249 * instead of using g_1. Doing it this way should be as fast as computing 250 * y_1 up front instead of h_1, and it lets us share the code for the 251 * initial Goldschmit step with the sqrt case. 252 * 253 * Putting it together, the computations are: 254 * 255 * h_0 = .5 * y_0 256 * g_0 = a * y_0 257 * r_0 = .5 - h_0 * g_0 258 * h_1 = h_0 * r_0 + h_0 259 * if sqrt: 260 * g_1 = g_0 * r_0 + g_0 261 * r_1 = a - g_1 * g_1 262 * g_2 = h_1 * r_1 + g_1 263 * else: 264 * y_1 = 2 * h_1 265 * r_1 = .5 - y_1 * (h_1 * a) 266 * y_2 = y_1 * r_1 + y_1 267 * 268 * For more on the ideas behind this, see "Software Division and Square 269 * Root Using Goldschmit's Algorithms" by Markstein and the Wikipedia page 270 * on square roots 271 * (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots). 272 */ 273 274 nir_ssa_def *one_half = nir_imm_double(b, 0.5); 275 nir_ssa_def *h_0 = nir_fmul(b, one_half, ra); 276 nir_ssa_def *g_0 = nir_fmul(b, src, ra); 277 nir_ssa_def *r_0 = nir_ffma(b, nir_fneg(b, h_0), g_0, one_half); 278 nir_ssa_def *h_1 = nir_ffma(b, h_0, r_0, h_0); 279 nir_ssa_def *res; 280 if (sqrt) { 281 nir_ssa_def *g_1 = nir_ffma(b, g_0, r_0, g_0); 282 nir_ssa_def *r_1 = nir_ffma(b, nir_fneg(b, g_1), g_1, src); 283 res = nir_ffma(b, h_1, r_1, g_1); 284 } else { 285 nir_ssa_def *y_1 = nir_fmul(b, nir_imm_double(b, 2.0), h_1); 286 nir_ssa_def *r_1 = nir_ffma(b, nir_fneg(b, y_1), nir_fmul(b, h_1, src), 287 one_half); 288 res = nir_ffma(b, y_1, r_1, y_1); 289 } 290 291 if (sqrt) { 292 /* Here, the special cases we need to handle are 293 * 0 -> 0 and 294 * +inf -> +inf 295 */ 296 const bool preserve_denorms = 297 b->shader->info.float_controls_execution_mode & 298 FLOAT_CONTROLS_DENORM_PRESERVE_FP64; 299 nir_ssa_def *src_flushed = src; 300 if (!preserve_denorms) { 301 src_flushed = nir_bcsel(b, 302 nir_flt(b, nir_fabs(b, src), 303 nir_imm_double(b, DBL_MIN)), 304 nir_imm_double(b, 0.0), 305 src); 306 } 307 res = nir_bcsel(b, nir_ior(b, nir_feq(b, src_flushed, nir_imm_double(b, 0.0)), 308 nir_feq(b, src, nir_imm_double(b, INFINITY))), 309 src_flushed, res); 310 } else { 311 res = fix_inv_result(b, res, src, new_exp); 312 } 313 314 return res; 315} 316 317static nir_ssa_def * 318lower_trunc(nir_builder *b, nir_ssa_def *src) 319{ 320 nir_ssa_def *unbiased_exp = nir_isub(b, get_exponent(b, src), 321 nir_imm_int(b, 1023)); 322 323 nir_ssa_def *frac_bits = nir_isub(b, nir_imm_int(b, 52), unbiased_exp); 324 325 /* 326 * Decide the operation to apply depending on the unbiased exponent: 327 * 328 * if (unbiased_exp < 0) 329 * return 0 330 * else if (unbiased_exp > 52) 331 * return src 332 * else 333 * return src & (~0 << frac_bits) 334 * 335 * Notice that the else branch is a 64-bit integer operation that we need 336 * to implement in terms of 32-bit integer arithmetics (at least until we 337 * support 64-bit integer arithmetics). 338 */ 339 340 /* Compute "~0 << frac_bits" in terms of hi/lo 32-bit integer math */ 341 nir_ssa_def *mask_lo = 342 nir_bcsel(b, 343 nir_ige(b, frac_bits, nir_imm_int(b, 32)), 344 nir_imm_int(b, 0), 345 nir_ishl(b, nir_imm_int(b, ~0), frac_bits)); 346 347 nir_ssa_def *mask_hi = 348 nir_bcsel(b, 349 nir_ilt(b, frac_bits, nir_imm_int(b, 33)), 350 nir_imm_int(b, ~0), 351 nir_ishl(b, 352 nir_imm_int(b, ~0), 353 nir_isub(b, frac_bits, nir_imm_int(b, 32)))); 354 355 nir_ssa_def *src_lo = nir_unpack_64_2x32_split_x(b, src); 356 nir_ssa_def *src_hi = nir_unpack_64_2x32_split_y(b, src); 357 358 return 359 nir_bcsel(b, 360 nir_ilt(b, unbiased_exp, nir_imm_int(b, 0)), 361 nir_imm_double(b, 0.0), 362 nir_bcsel(b, nir_ige(b, unbiased_exp, nir_imm_int(b, 53)), 363 src, 364 nir_pack_64_2x32_split(b, 365 nir_iand(b, mask_lo, src_lo), 366 nir_iand(b, mask_hi, src_hi)))); 367} 368 369static nir_ssa_def * 370lower_floor(nir_builder *b, nir_ssa_def *src) 371{ 372 /* 373 * For x >= 0, floor(x) = trunc(x) 374 * For x < 0, 375 * - if x is integer, floor(x) = x 376 * - otherwise, floor(x) = trunc(x) - 1 377 */ 378 nir_ssa_def *tr = nir_ftrunc(b, src); 379 nir_ssa_def *positive = nir_fge(b, src, nir_imm_double(b, 0.0)); 380 return nir_bcsel(b, 381 nir_ior(b, positive, nir_feq(b, src, tr)), 382 tr, 383 nir_fsub(b, tr, nir_imm_double(b, 1.0))); 384} 385 386static nir_ssa_def * 387lower_ceil(nir_builder *b, nir_ssa_def *src) 388{ 389 /* if x < 0, ceil(x) = trunc(x) 390 * else if (x - trunc(x) == 0), ceil(x) = x 391 * else, ceil(x) = trunc(x) + 1 392 */ 393 nir_ssa_def *tr = nir_ftrunc(b, src); 394 nir_ssa_def *negative = nir_flt(b, src, nir_imm_double(b, 0.0)); 395 return nir_bcsel(b, 396 nir_ior(b, negative, nir_feq(b, src, tr)), 397 tr, 398 nir_fadd(b, tr, nir_imm_double(b, 1.0))); 399} 400 401static nir_ssa_def * 402lower_fract(nir_builder *b, nir_ssa_def *src) 403{ 404 return nir_fsub(b, src, nir_ffloor(b, src)); 405} 406 407static nir_ssa_def * 408lower_round_even(nir_builder *b, nir_ssa_def *src) 409{ 410 /* Add and subtract 2**52 to round off any fractional bits. */ 411 nir_ssa_def *two52 = nir_imm_double(b, (double)(1ull << 52)); 412 nir_ssa_def *sign = nir_iand(b, nir_unpack_64_2x32_split_y(b, src), 413 nir_imm_int(b, 1ull << 31)); 414 415 b->exact = true; 416 nir_ssa_def *res = nir_fsub(b, nir_fadd(b, nir_fabs(b, src), two52), two52); 417 b->exact = false; 418 419 return nir_bcsel(b, nir_flt(b, nir_fabs(b, src), two52), 420 nir_pack_64_2x32_split(b, nir_unpack_64_2x32_split_x(b, res), 421 nir_ior(b, nir_unpack_64_2x32_split_y(b, res), sign)), src); 422} 423 424static nir_ssa_def * 425lower_mod(nir_builder *b, nir_ssa_def *src0, nir_ssa_def *src1) 426{ 427 /* mod(x,y) = x - y * floor(x/y) 428 * 429 * If the division is lowered, it could add some rounding errors that make 430 * floor() to return the quotient minus one when x = N * y. If this is the 431 * case, we should return zero because mod(x, y) output value is [0, y). 432 * But fortunately Vulkan spec allows this kind of errors; from Vulkan 433 * spec, appendix A (Precision and Operation of SPIR-V instructions: 434 * 435 * "The OpFRem and OpFMod instructions use cheap approximations of 436 * remainder, and the error can be large due to the discontinuity in 437 * trunc() and floor(). This can produce mathematically unexpected 438 * results in some cases, such as FMod(x,x) computing x rather than 0, 439 * and can also cause the result to have a different sign than the 440 * infinitely precise result." 441 * 442 * In practice this means the output value is actually in the interval 443 * [0, y]. 444 * 445 * While Vulkan states this behaviour explicitly, OpenGL does not, and thus 446 * we need to assume that value should be in range [0, y); but on the other 447 * hand, mod(a,b) is defined as "a - b * floor(a/b)" and OpenGL allows for 448 * some error in division, so a/a could actually end up being 1.0 - 1ULP; 449 * so in this case floor(a/a) would end up as 0, and hence mod(a,a) == a. 450 * 451 * In summary, in the practice mod(a,a) can be "a" both for OpenGL and 452 * Vulkan. 453 */ 454 nir_ssa_def *floor = nir_ffloor(b, nir_fdiv(b, src0, src1)); 455 456 return nir_fsub(b, src0, nir_fmul(b, src1, floor)); 457} 458 459static nir_ssa_def * 460lower_doubles_instr_to_soft(nir_builder *b, nir_alu_instr *instr, 461 const nir_shader *softfp64, 462 nir_lower_doubles_options options) 463{ 464 if (!(options & nir_lower_fp64_full_software)) 465 return NULL; 466 467 assert(instr->dest.dest.is_ssa); 468 469 const char *name; 470 const struct glsl_type *return_type = glsl_uint64_t_type(); 471 472 switch (instr->op) { 473 case nir_op_f2i64: 474 if (instr->src[0].src.ssa->bit_size != 64) 475 return false; 476 name = "__fp64_to_int64"; 477 return_type = glsl_int64_t_type(); 478 break; 479 case nir_op_f2u64: 480 if (instr->src[0].src.ssa->bit_size != 64) 481 return false; 482 name = "__fp64_to_uint64"; 483 break; 484 case nir_op_f2f64: 485 name = "__fp32_to_fp64"; 486 break; 487 case nir_op_f2f32: 488 name = "__fp64_to_fp32"; 489 return_type = glsl_float_type(); 490 break; 491 case nir_op_f2i32: 492 name = "__fp64_to_int"; 493 return_type = glsl_int_type(); 494 break; 495 case nir_op_f2u32: 496 name = "__fp64_to_uint"; 497 return_type = glsl_uint_type(); 498 break; 499 case nir_op_f2b1: 500 case nir_op_f2b32: 501 name = "__fp64_to_bool"; 502 return_type = glsl_bool_type(); 503 break; 504 case nir_op_b2f64: 505 name = "__bool_to_fp64"; 506 break; 507 case nir_op_i2f64: 508 if (instr->src[0].src.ssa->bit_size == 64) 509 name = "__int64_to_fp64"; 510 else 511 name = "__int_to_fp64"; 512 break; 513 case nir_op_u2f64: 514 if (instr->src[0].src.ssa->bit_size == 64) 515 name = "__uint64_to_fp64"; 516 else 517 name = "__uint_to_fp64"; 518 break; 519 case nir_op_fabs: 520 name = "__fabs64"; 521 break; 522 case nir_op_fneg: 523 name = "__fneg64"; 524 break; 525 case nir_op_fround_even: 526 name = "__fround64"; 527 break; 528 case nir_op_ftrunc: 529 name = "__ftrunc64"; 530 break; 531 case nir_op_ffloor: 532 name = "__ffloor64"; 533 break; 534 case nir_op_ffract: 535 name = "__ffract64"; 536 break; 537 case nir_op_fsign: 538 name = "__fsign64"; 539 break; 540 case nir_op_feq: 541 name = "__feq64"; 542 return_type = glsl_bool_type(); 543 break; 544 case nir_op_fneu: 545 name = "__fneu64"; 546 return_type = glsl_bool_type(); 547 break; 548 case nir_op_flt: 549 name = "__flt64"; 550 return_type = glsl_bool_type(); 551 break; 552 case nir_op_fge: 553 name = "__fge64"; 554 return_type = glsl_bool_type(); 555 break; 556 case nir_op_fmin: 557 name = "__fmin64"; 558 break; 559 case nir_op_fmax: 560 name = "__fmax64"; 561 break; 562 case nir_op_fadd: 563 name = "__fadd64"; 564 break; 565 case nir_op_fmul: 566 name = "__fmul64"; 567 break; 568 case nir_op_ffma: 569 name = "__ffma64"; 570 break; 571 case nir_op_fsat: 572 name = "__fsat64"; 573 break; 574 default: 575 return false; 576 } 577 578 nir_function *func = NULL; 579 nir_foreach_function(function, softfp64) { 580 if (strcmp(function->name, name) == 0) { 581 func = function; 582 break; 583 } 584 } 585 if (!func || !func->impl) { 586 fprintf(stderr, "Cannot find function \"%s\"\n", name); 587 assert(func); 588 } 589 590 nir_ssa_def *params[4] = { NULL, }; 591 592 nir_variable *ret_tmp = 593 nir_local_variable_create(b->impl, return_type, "return_tmp"); 594 nir_deref_instr *ret_deref = nir_build_deref_var(b, ret_tmp); 595 params[0] = &ret_deref->dest.ssa; 596 597 assert(nir_op_infos[instr->op].num_inputs + 1 == func->num_params); 598 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) { 599 assert(i + 1 < ARRAY_SIZE(params)); 600 params[i + 1] = nir_mov_alu(b, instr->src[i], 1); 601 } 602 603 nir_inline_function_impl(b, func->impl, params, NULL); 604 605 return nir_load_deref(b, ret_deref); 606} 607 608nir_lower_doubles_options 609nir_lower_doubles_op_to_options_mask(nir_op opcode) 610{ 611 switch (opcode) { 612 case nir_op_frcp: return nir_lower_drcp; 613 case nir_op_fsqrt: return nir_lower_dsqrt; 614 case nir_op_frsq: return nir_lower_drsq; 615 case nir_op_ftrunc: return nir_lower_dtrunc; 616 case nir_op_ffloor: return nir_lower_dfloor; 617 case nir_op_fceil: return nir_lower_dceil; 618 case nir_op_ffract: return nir_lower_dfract; 619 case nir_op_fround_even: return nir_lower_dround_even; 620 case nir_op_fmod: return nir_lower_dmod; 621 case nir_op_fsub: return nir_lower_dsub; 622 case nir_op_fdiv: return nir_lower_ddiv; 623 default: return 0; 624 } 625} 626 627struct lower_doubles_data { 628 const nir_shader *softfp64; 629 nir_lower_doubles_options options; 630}; 631 632static bool 633should_lower_double_instr(const nir_instr *instr, const void *_data) 634{ 635 const struct lower_doubles_data *data = _data; 636 const nir_lower_doubles_options options = data->options; 637 638 if (instr->type != nir_instr_type_alu) 639 return false; 640 641 const nir_alu_instr *alu = nir_instr_as_alu(instr); 642 643 assert(alu->dest.dest.is_ssa); 644 bool is_64 = alu->dest.dest.ssa.bit_size == 64; 645 646 unsigned num_srcs = nir_op_infos[alu->op].num_inputs; 647 for (unsigned i = 0; i < num_srcs; i++) { 648 is_64 |= (nir_src_bit_size(alu->src[i].src) == 64); 649 } 650 651 if (!is_64) 652 return false; 653 654 if (options & nir_lower_fp64_full_software) 655 return true; 656 657 return options & nir_lower_doubles_op_to_options_mask(alu->op); 658} 659 660static nir_ssa_def * 661lower_doubles_instr(nir_builder *b, nir_instr *instr, void *_data) 662{ 663 const struct lower_doubles_data *data = _data; 664 const nir_lower_doubles_options options = data->options; 665 nir_alu_instr *alu = nir_instr_as_alu(instr); 666 667 nir_ssa_def *soft_def = 668 lower_doubles_instr_to_soft(b, alu, data->softfp64, options); 669 if (soft_def) 670 return soft_def; 671 672 if (!(options & nir_lower_doubles_op_to_options_mask(alu->op))) 673 return NULL; 674 675 nir_ssa_def *src = nir_mov_alu(b, alu->src[0], 676 alu->dest.dest.ssa.num_components); 677 678 switch (alu->op) { 679 case nir_op_frcp: 680 return lower_rcp(b, src); 681 case nir_op_fsqrt: 682 return lower_sqrt_rsq(b, src, true); 683 case nir_op_frsq: 684 return lower_sqrt_rsq(b, src, false); 685 case nir_op_ftrunc: 686 return lower_trunc(b, src); 687 case nir_op_ffloor: 688 return lower_floor(b, src); 689 case nir_op_fceil: 690 return lower_ceil(b, src); 691 case nir_op_ffract: 692 return lower_fract(b, src); 693 case nir_op_fround_even: 694 return lower_round_even(b, src); 695 696 case nir_op_fdiv: 697 case nir_op_fsub: 698 case nir_op_fmod: { 699 nir_ssa_def *src1 = nir_mov_alu(b, alu->src[1], 700 alu->dest.dest.ssa.num_components); 701 switch (alu->op) { 702 case nir_op_fdiv: 703 return nir_fmul(b, src, nir_frcp(b, src1)); 704 case nir_op_fsub: 705 return nir_fadd(b, src, nir_fneg(b, src1)); 706 case nir_op_fmod: 707 return lower_mod(b, src, src1); 708 default: 709 unreachable("unhandled opcode"); 710 } 711 } 712 default: 713 unreachable("unhandled opcode"); 714 } 715} 716 717static bool 718nir_lower_doubles_impl(nir_function_impl *impl, 719 const nir_shader *softfp64, 720 nir_lower_doubles_options options) 721{ 722 struct lower_doubles_data data = { 723 .softfp64 = softfp64, 724 .options = options, 725 }; 726 727 bool progress = 728 nir_function_impl_lower_instructions(impl, 729 should_lower_double_instr, 730 lower_doubles_instr, 731 &data); 732 733 if (progress && (options & nir_lower_fp64_full_software)) { 734 /* SSA and register indices are completely messed up now */ 735 nir_index_ssa_defs(impl); 736 nir_index_local_regs(impl); 737 738 nir_metadata_preserve(impl, nir_metadata_none); 739 740 /* And we have deref casts we need to clean up thanks to function 741 * inlining. 742 */ 743 nir_opt_deref_impl(impl); 744 } else if (progress) { 745 nir_metadata_preserve(impl, nir_metadata_block_index | 746 nir_metadata_dominance); 747 } else { 748 nir_metadata_preserve(impl, nir_metadata_all); 749 } 750 751 return progress; 752} 753 754bool 755nir_lower_doubles(nir_shader *shader, 756 const nir_shader *softfp64, 757 nir_lower_doubles_options options) 758{ 759 bool progress = false; 760 761 nir_foreach_function(function, shader) { 762 if (function->impl) { 763 progress |= nir_lower_doubles_impl(function->impl, softfp64, options); 764 } 765 } 766 767 return progress; 768} 769