1/*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25#include "nir.h"
26#include "nir_builder.h"
27
28#include <math.h>
29#include <float.h>
30
31/*
32 * Lowers some unsupported double operations, using only:
33 *
34 * - pack/unpackDouble2x32
35 * - conversion to/from single-precision
36 * - double add, mul, and fma
37 * - conditional select
38 * - 32-bit integer and floating point arithmetic
39 */
40
41/* Creates a double with the exponent bits set to a given integer value */
42static nir_ssa_def *
43set_exponent(nir_builder *b, nir_ssa_def *src, nir_ssa_def *exp)
44{
45   /* Split into bits 0-31 and 32-63 */
46   nir_ssa_def *lo = nir_unpack_64_2x32_split_x(b, src);
47   nir_ssa_def *hi = nir_unpack_64_2x32_split_y(b, src);
48
49   /* The exponent is bits 52-62, or 20-30 of the high word, so set the exponent
50    * to 1023
51    */
52   nir_ssa_def *new_hi = nir_bitfield_insert(b, hi, exp,
53                                             nir_imm_int(b, 20),
54                                             nir_imm_int(b, 11));
55   /* recombine */
56   return nir_pack_64_2x32_split(b, lo, new_hi);
57}
58
59static nir_ssa_def *
60get_exponent(nir_builder *b, nir_ssa_def *src)
61{
62   /* get bits 32-63 */
63   nir_ssa_def *hi = nir_unpack_64_2x32_split_y(b, src);
64
65   /* extract bits 20-30 of the high word */
66   return nir_ubitfield_extract(b, hi, nir_imm_int(b, 20), nir_imm_int(b, 11));
67}
68
69/* Return infinity with the sign of the given source which is +/-0 */
70
71static nir_ssa_def *
72get_signed_inf(nir_builder *b, nir_ssa_def *zero)
73{
74   nir_ssa_def *zero_hi = nir_unpack_64_2x32_split_y(b, zero);
75
76   /* The bit pattern for infinity is 0x7ff0000000000000, where the sign bit
77    * is the highest bit. Only the sign bit can be non-zero in the passed in
78    * source. So we essentially need to OR the infinity and the zero, except
79    * the low 32 bits are always 0 so we can construct the correct high 32
80    * bits and then pack it together with zero low 32 bits.
81    */
82   nir_ssa_def *inf_hi = nir_ior(b, nir_imm_int(b, 0x7ff00000), zero_hi);
83   return nir_pack_64_2x32_split(b, nir_imm_int(b, 0), inf_hi);
84}
85
86/*
87 * Generates the correctly-signed infinity if the source was zero, and flushes
88 * the result to 0 if the source was infinity or the calculated exponent was
89 * too small to be representable.
90 */
91
92static nir_ssa_def *
93fix_inv_result(nir_builder *b, nir_ssa_def *res, nir_ssa_def *src,
94               nir_ssa_def *exp)
95{
96   /* If the exponent is too small or the original input was infinity/NaN,
97    * force the result to 0 (flush denorms) to avoid the work of handling
98    * denorms properly. Note that this doesn't preserve positive/negative
99    * zeros, but GLSL doesn't require it.
100    */
101   res = nir_bcsel(b, nir_ior(b, nir_ige(b, nir_imm_int(b, 0), exp),
102                              nir_feq(b, nir_fabs(b, src),
103                                      nir_imm_double(b, INFINITY))),
104                   nir_imm_double(b, 0.0f), res);
105
106   /* If the original input was 0, generate the correctly-signed infinity */
107   res = nir_bcsel(b, nir_fneu(b, src, nir_imm_double(b, 0.0f)),
108                   res, get_signed_inf(b, src));
109
110   return res;
111
112}
113
114static nir_ssa_def *
115lower_rcp(nir_builder *b, nir_ssa_def *src)
116{
117   /* normalize the input to avoid range issues */
118   nir_ssa_def *src_norm = set_exponent(b, src, nir_imm_int(b, 1023));
119
120   /* cast to float, do an rcp, and then cast back to get an approximate
121    * result
122    */
123   nir_ssa_def *ra = nir_f2f64(b, nir_frcp(b, nir_f2f32(b, src_norm)));
124
125   /* Fixup the exponent of the result - note that we check if this is too
126    * small below.
127    */
128   nir_ssa_def *new_exp = nir_isub(b, get_exponent(b, ra),
129                                   nir_isub(b, get_exponent(b, src),
130                                            nir_imm_int(b, 1023)));
131
132   ra = set_exponent(b, ra, new_exp);
133
134   /* Do a few Newton-Raphson steps to improve precision.
135    *
136    * Each step doubles the precision, and we started off with around 24 bits,
137    * so we only need to do 2 steps to get to full precision. The step is:
138    *
139    * x_new = x * (2 - x*src)
140    *
141    * But we can re-arrange this to improve precision by using another fused
142    * multiply-add:
143    *
144    * x_new = x + x * (1 - x*src)
145    *
146    * See https://en.wikipedia.org/wiki/Division_algorithm for more details.
147    */
148
149   ra = nir_ffma(b, nir_fneg(b, ra), nir_ffma(b, ra, src, nir_imm_double(b, -1)), ra);
150   ra = nir_ffma(b, nir_fneg(b, ra), nir_ffma(b, ra, src, nir_imm_double(b, -1)), ra);
151
152   return fix_inv_result(b, ra, src, new_exp);
153}
154
155static nir_ssa_def *
156lower_sqrt_rsq(nir_builder *b, nir_ssa_def *src, bool sqrt)
157{
158   /* We want to compute:
159    *
160    * 1/sqrt(m * 2^e)
161    *
162    * When the exponent is even, this is equivalent to:
163    *
164    * 1/sqrt(m) * 2^(-e/2)
165    *
166    * and then the exponent is odd, this is equal to:
167    *
168    * 1/sqrt(m * 2) * 2^(-(e - 1)/2)
169    *
170    * where the m * 2 is absorbed into the exponent. So we want the exponent
171    * inside the square root to be 1 if e is odd and 0 if e is even, and we
172    * want to subtract off e/2 from the final exponent, rounded to negative
173    * infinity. We can do the former by first computing the unbiased exponent,
174    * and then AND'ing it with 1 to get 0 or 1, and we can do the latter by
175    * shifting right by 1.
176    */
177
178   nir_ssa_def *unbiased_exp = nir_isub(b, get_exponent(b, src),
179                                        nir_imm_int(b, 1023));
180   nir_ssa_def *even = nir_iand_imm(b, unbiased_exp, 1);
181   nir_ssa_def *half = nir_ishr_imm(b, unbiased_exp, 1);
182
183   nir_ssa_def *src_norm = set_exponent(b, src,
184                                        nir_iadd(b, nir_imm_int(b, 1023),
185                                                 even));
186
187   nir_ssa_def *ra = nir_f2f64(b, nir_frsq(b, nir_f2f32(b, src_norm)));
188   nir_ssa_def *new_exp = nir_isub(b, get_exponent(b, ra), half);
189   ra = set_exponent(b, ra, new_exp);
190
191   /*
192    * The following implements an iterative algorithm that's very similar
193    * between sqrt and rsqrt. We start with an iteration of Goldschmit's
194    * algorithm, which looks like:
195    *
196    * a = the source
197    * y_0 = initial (single-precision) rsqrt estimate
198    *
199    * h_0 = .5 * y_0
200    * g_0 = a * y_0
201    * r_0 = .5 - h_0 * g_0
202    * g_1 = g_0 * r_0 + g_0
203    * h_1 = h_0 * r_0 + h_0
204    *
205    * Now g_1 ~= sqrt(a), and h_1 ~= 1/(2 * sqrt(a)). We could continue
206    * applying another round of Goldschmit, but since we would never refer
207    * back to a (the original source), we would add too much rounding error.
208    * So instead, we do one last round of Newton-Raphson, which has better
209    * rounding characteristics, to get the final rounding correct. This is
210    * split into two cases:
211    *
212    * 1. sqrt
213    *
214    * Normally, doing a round of Newton-Raphson for sqrt involves taking a
215    * reciprocal of the original estimate, which is slow since it isn't
216    * supported in HW. But we can take advantage of the fact that we already
217    * computed a good estimate of 1/(2 * g_1) by rearranging it like so:
218    *
219    * g_2 = .5 * (g_1 + a / g_1)
220    *     = g_1 + .5 * (a / g_1 - g_1)
221    *     = g_1 + (.5 / g_1) * (a - g_1^2)
222    *     = g_1 + h_1 * (a - g_1^2)
223    *
224    * The second term represents the error, and by splitting it out we can get
225    * better precision by computing it as part of a fused multiply-add. Since
226    * both Newton-Raphson and Goldschmit approximately double the precision of
227    * the result, these two steps should be enough.
228    *
229    * 2. rsqrt
230    *
231    * First off, note that the first round of the Goldschmit algorithm is
232    * really just a Newton-Raphson step in disguise:
233    *
234    * h_1 = h_0 * (.5 - h_0 * g_0) + h_0
235    *     = h_0 * (1.5 - h_0 * g_0)
236    *     = h_0 * (1.5 - .5 * a * y_0^2)
237    *     = (.5 * y_0) * (1.5 - .5 * a * y_0^2)
238    *
239    * which is the standard formula multiplied by .5. Unlike in the sqrt case,
240    * we don't need the inverse to do a Newton-Raphson step; we just need h_1,
241    * so we can skip the calculation of g_1. Instead, we simply do another
242    * Newton-Raphson step:
243    *
244    * y_1 = 2 * h_1
245    * r_1 = .5 - h_1 * y_1 * a
246    * y_2 = y_1 * r_1 + y_1
247    *
248    * Where the difference from Goldschmit is that we calculate y_1 * a
249    * instead of using g_1. Doing it this way should be as fast as computing
250    * y_1 up front instead of h_1, and it lets us share the code for the
251    * initial Goldschmit step with the sqrt case.
252    *
253    * Putting it together, the computations are:
254    *
255    * h_0 = .5 * y_0
256    * g_0 = a * y_0
257    * r_0 = .5 - h_0 * g_0
258    * h_1 = h_0 * r_0 + h_0
259    * if sqrt:
260    *    g_1 = g_0 * r_0 + g_0
261    *    r_1 = a - g_1 * g_1
262    *    g_2 = h_1 * r_1 + g_1
263    * else:
264    *    y_1 = 2 * h_1
265    *    r_1 = .5 - y_1 * (h_1 * a)
266    *    y_2 = y_1 * r_1 + y_1
267    *
268    * For more on the ideas behind this, see "Software Division and Square
269    * Root Using Goldschmit's Algorithms" by Markstein and the Wikipedia page
270    * on square roots
271    * (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots).
272    */
273
274   nir_ssa_def *one_half = nir_imm_double(b, 0.5);
275   nir_ssa_def *h_0 = nir_fmul(b, one_half, ra);
276   nir_ssa_def *g_0 = nir_fmul(b, src, ra);
277   nir_ssa_def *r_0 = nir_ffma(b, nir_fneg(b, h_0), g_0, one_half);
278   nir_ssa_def *h_1 = nir_ffma(b, h_0, r_0, h_0);
279   nir_ssa_def *res;
280   if (sqrt) {
281      nir_ssa_def *g_1 = nir_ffma(b, g_0, r_0, g_0);
282      nir_ssa_def *r_1 = nir_ffma(b, nir_fneg(b, g_1), g_1, src);
283      res = nir_ffma(b, h_1, r_1, g_1);
284   } else {
285      nir_ssa_def *y_1 = nir_fmul(b, nir_imm_double(b, 2.0), h_1);
286      nir_ssa_def *r_1 = nir_ffma(b, nir_fneg(b, y_1), nir_fmul(b, h_1, src),
287                                  one_half);
288      res = nir_ffma(b, y_1, r_1, y_1);
289   }
290
291   if (sqrt) {
292      /* Here, the special cases we need to handle are
293       * 0 -> 0 and
294       * +inf -> +inf
295       */
296      const bool preserve_denorms =
297         b->shader->info.float_controls_execution_mode &
298         FLOAT_CONTROLS_DENORM_PRESERVE_FP64;
299      nir_ssa_def *src_flushed = src;
300      if (!preserve_denorms) {
301         src_flushed = nir_bcsel(b,
302                                 nir_flt(b, nir_fabs(b, src),
303                                         nir_imm_double(b, DBL_MIN)),
304                                 nir_imm_double(b, 0.0),
305                                 src);
306      }
307      res = nir_bcsel(b, nir_ior(b, nir_feq(b, src_flushed, nir_imm_double(b, 0.0)),
308                                 nir_feq(b, src, nir_imm_double(b, INFINITY))),
309                                 src_flushed, res);
310   } else {
311      res = fix_inv_result(b, res, src, new_exp);
312   }
313
314   return res;
315}
316
317static nir_ssa_def *
318lower_trunc(nir_builder *b, nir_ssa_def *src)
319{
320   nir_ssa_def *unbiased_exp = nir_isub(b, get_exponent(b, src),
321                                        nir_imm_int(b, 1023));
322
323   nir_ssa_def *frac_bits = nir_isub(b, nir_imm_int(b, 52), unbiased_exp);
324
325   /*
326    * Decide the operation to apply depending on the unbiased exponent:
327    *
328    * if (unbiased_exp < 0)
329    *    return 0
330    * else if (unbiased_exp > 52)
331    *    return src
332    * else
333    *    return src & (~0 << frac_bits)
334    *
335    * Notice that the else branch is a 64-bit integer operation that we need
336    * to implement in terms of 32-bit integer arithmetics (at least until we
337    * support 64-bit integer arithmetics).
338    */
339
340   /* Compute "~0 << frac_bits" in terms of hi/lo 32-bit integer math */
341   nir_ssa_def *mask_lo =
342      nir_bcsel(b,
343                nir_ige(b, frac_bits, nir_imm_int(b, 32)),
344                nir_imm_int(b, 0),
345                nir_ishl(b, nir_imm_int(b, ~0), frac_bits));
346
347   nir_ssa_def *mask_hi =
348      nir_bcsel(b,
349                nir_ilt(b, frac_bits, nir_imm_int(b, 33)),
350                nir_imm_int(b, ~0),
351                nir_ishl(b,
352                         nir_imm_int(b, ~0),
353                         nir_isub(b, frac_bits, nir_imm_int(b, 32))));
354
355   nir_ssa_def *src_lo = nir_unpack_64_2x32_split_x(b, src);
356   nir_ssa_def *src_hi = nir_unpack_64_2x32_split_y(b, src);
357
358   return
359      nir_bcsel(b,
360                nir_ilt(b, unbiased_exp, nir_imm_int(b, 0)),
361                nir_imm_double(b, 0.0),
362                nir_bcsel(b, nir_ige(b, unbiased_exp, nir_imm_int(b, 53)),
363                          src,
364                          nir_pack_64_2x32_split(b,
365                                                 nir_iand(b, mask_lo, src_lo),
366                                                 nir_iand(b, mask_hi, src_hi))));
367}
368
369static nir_ssa_def *
370lower_floor(nir_builder *b, nir_ssa_def *src)
371{
372   /*
373    * For x >= 0, floor(x) = trunc(x)
374    * For x < 0,
375    *    - if x is integer, floor(x) = x
376    *    - otherwise, floor(x) = trunc(x) - 1
377    */
378   nir_ssa_def *tr = nir_ftrunc(b, src);
379   nir_ssa_def *positive = nir_fge(b, src, nir_imm_double(b, 0.0));
380   return nir_bcsel(b,
381                    nir_ior(b, positive, nir_feq(b, src, tr)),
382                    tr,
383                    nir_fsub(b, tr, nir_imm_double(b, 1.0)));
384}
385
386static nir_ssa_def *
387lower_ceil(nir_builder *b, nir_ssa_def *src)
388{
389   /* if x < 0,                    ceil(x) = trunc(x)
390    * else if (x - trunc(x) == 0), ceil(x) = x
391    * else,                        ceil(x) = trunc(x) + 1
392    */
393   nir_ssa_def *tr = nir_ftrunc(b, src);
394   nir_ssa_def *negative = nir_flt(b, src, nir_imm_double(b, 0.0));
395   return nir_bcsel(b,
396                    nir_ior(b, negative, nir_feq(b, src, tr)),
397                    tr,
398                    nir_fadd(b, tr, nir_imm_double(b, 1.0)));
399}
400
401static nir_ssa_def *
402lower_fract(nir_builder *b, nir_ssa_def *src)
403{
404   return nir_fsub(b, src, nir_ffloor(b, src));
405}
406
407static nir_ssa_def *
408lower_round_even(nir_builder *b, nir_ssa_def *src)
409{
410   /* Add and subtract 2**52 to round off any fractional bits. */
411   nir_ssa_def *two52 = nir_imm_double(b, (double)(1ull << 52));
412   nir_ssa_def *sign = nir_iand(b, nir_unpack_64_2x32_split_y(b, src),
413                                nir_imm_int(b, 1ull << 31));
414
415   b->exact = true;
416   nir_ssa_def *res = nir_fsub(b, nir_fadd(b, nir_fabs(b, src), two52), two52);
417   b->exact = false;
418
419   return nir_bcsel(b, nir_flt(b, nir_fabs(b, src), two52),
420                    nir_pack_64_2x32_split(b, nir_unpack_64_2x32_split_x(b, res),
421                                           nir_ior(b, nir_unpack_64_2x32_split_y(b, res), sign)), src);
422}
423
424static nir_ssa_def *
425lower_mod(nir_builder *b, nir_ssa_def *src0, nir_ssa_def *src1)
426{
427   /* mod(x,y) = x - y * floor(x/y)
428    *
429    * If the division is lowered, it could add some rounding errors that make
430    * floor() to return the quotient minus one when x = N * y. If this is the
431    * case, we should return zero because mod(x, y) output value is [0, y).
432    * But fortunately Vulkan spec allows this kind of errors; from Vulkan
433    * spec, appendix A (Precision and Operation of SPIR-V instructions:
434    *
435    *   "The OpFRem and OpFMod instructions use cheap approximations of
436    *   remainder, and the error can be large due to the discontinuity in
437    *   trunc() and floor(). This can produce mathematically unexpected
438    *   results in some cases, such as FMod(x,x) computing x rather than 0,
439    *   and can also cause the result to have a different sign than the
440    *   infinitely precise result."
441    *
442    * In practice this means the output value is actually in the interval
443    * [0, y].
444    *
445    * While Vulkan states this behaviour explicitly, OpenGL does not, and thus
446    * we need to assume that value should be in range [0, y); but on the other
447    * hand, mod(a,b) is defined as "a - b * floor(a/b)" and OpenGL allows for
448    * some error in division, so a/a could actually end up being 1.0 - 1ULP;
449    * so in this case floor(a/a) would end up as 0, and hence mod(a,a) == a.
450    *
451    * In summary, in the practice mod(a,a) can be "a" both for OpenGL and
452    * Vulkan.
453    */
454   nir_ssa_def *floor = nir_ffloor(b, nir_fdiv(b, src0, src1));
455
456   return nir_fsub(b, src0, nir_fmul(b, src1, floor));
457}
458
459static nir_ssa_def *
460lower_doubles_instr_to_soft(nir_builder *b, nir_alu_instr *instr,
461                            const nir_shader *softfp64,
462                            nir_lower_doubles_options options)
463{
464   if (!(options & nir_lower_fp64_full_software))
465      return NULL;
466
467   assert(instr->dest.dest.is_ssa);
468
469   const char *name;
470   const struct glsl_type *return_type = glsl_uint64_t_type();
471
472   switch (instr->op) {
473   case nir_op_f2i64:
474      if (instr->src[0].src.ssa->bit_size != 64)
475         return false;
476      name = "__fp64_to_int64";
477      return_type = glsl_int64_t_type();
478      break;
479   case nir_op_f2u64:
480      if (instr->src[0].src.ssa->bit_size != 64)
481         return false;
482      name = "__fp64_to_uint64";
483      break;
484   case nir_op_f2f64:
485      name = "__fp32_to_fp64";
486      break;
487   case nir_op_f2f32:
488      name = "__fp64_to_fp32";
489      return_type = glsl_float_type();
490      break;
491   case nir_op_f2i32:
492      name = "__fp64_to_int";
493      return_type = glsl_int_type();
494      break;
495   case nir_op_f2u32:
496      name = "__fp64_to_uint";
497      return_type = glsl_uint_type();
498      break;
499   case nir_op_f2b1:
500   case nir_op_f2b32:
501      name = "__fp64_to_bool";
502      return_type = glsl_bool_type();
503      break;
504   case nir_op_b2f64:
505      name = "__bool_to_fp64";
506      break;
507   case nir_op_i2f64:
508      if (instr->src[0].src.ssa->bit_size == 64)
509         name = "__int64_to_fp64";
510      else
511         name = "__int_to_fp64";
512      break;
513   case nir_op_u2f64:
514      if (instr->src[0].src.ssa->bit_size == 64)
515         name = "__uint64_to_fp64";
516      else
517         name = "__uint_to_fp64";
518      break;
519   case nir_op_fabs:
520      name = "__fabs64";
521      break;
522   case nir_op_fneg:
523      name = "__fneg64";
524      break;
525   case nir_op_fround_even:
526      name = "__fround64";
527      break;
528   case nir_op_ftrunc:
529      name = "__ftrunc64";
530      break;
531   case nir_op_ffloor:
532      name = "__ffloor64";
533      break;
534   case nir_op_ffract:
535      name = "__ffract64";
536      break;
537   case nir_op_fsign:
538      name = "__fsign64";
539      break;
540   case nir_op_feq:
541      name = "__feq64";
542      return_type = glsl_bool_type();
543      break;
544   case nir_op_fneu:
545      name = "__fneu64";
546      return_type = glsl_bool_type();
547      break;
548   case nir_op_flt:
549      name = "__flt64";
550      return_type = glsl_bool_type();
551      break;
552   case nir_op_fge:
553      name = "__fge64";
554      return_type = glsl_bool_type();
555      break;
556   case nir_op_fmin:
557      name = "__fmin64";
558      break;
559   case nir_op_fmax:
560      name = "__fmax64";
561      break;
562   case nir_op_fadd:
563      name = "__fadd64";
564      break;
565   case nir_op_fmul:
566      name = "__fmul64";
567      break;
568   case nir_op_ffma:
569      name = "__ffma64";
570      break;
571   case nir_op_fsat:
572      name = "__fsat64";
573      break;
574   default:
575      return false;
576   }
577
578   nir_function *func = NULL;
579   nir_foreach_function(function, softfp64) {
580      if (strcmp(function->name, name) == 0) {
581         func = function;
582         break;
583      }
584   }
585   if (!func || !func->impl) {
586      fprintf(stderr, "Cannot find function \"%s\"\n", name);
587      assert(func);
588   }
589
590   nir_ssa_def *params[4] = { NULL, };
591
592   nir_variable *ret_tmp =
593      nir_local_variable_create(b->impl, return_type, "return_tmp");
594   nir_deref_instr *ret_deref = nir_build_deref_var(b, ret_tmp);
595   params[0] = &ret_deref->dest.ssa;
596
597   assert(nir_op_infos[instr->op].num_inputs + 1 == func->num_params);
598   for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
599      assert(i + 1 < ARRAY_SIZE(params));
600      params[i + 1] = nir_mov_alu(b, instr->src[i], 1);
601   }
602
603   nir_inline_function_impl(b, func->impl, params, NULL);
604
605   return nir_load_deref(b, ret_deref);
606}
607
608nir_lower_doubles_options
609nir_lower_doubles_op_to_options_mask(nir_op opcode)
610{
611   switch (opcode) {
612   case nir_op_frcp:          return nir_lower_drcp;
613   case nir_op_fsqrt:         return nir_lower_dsqrt;
614   case nir_op_frsq:          return nir_lower_drsq;
615   case nir_op_ftrunc:        return nir_lower_dtrunc;
616   case nir_op_ffloor:        return nir_lower_dfloor;
617   case nir_op_fceil:         return nir_lower_dceil;
618   case nir_op_ffract:        return nir_lower_dfract;
619   case nir_op_fround_even:   return nir_lower_dround_even;
620   case nir_op_fmod:          return nir_lower_dmod;
621   case nir_op_fsub:          return nir_lower_dsub;
622   case nir_op_fdiv:          return nir_lower_ddiv;
623   default:                   return 0;
624   }
625}
626
627struct lower_doubles_data {
628   const nir_shader *softfp64;
629   nir_lower_doubles_options options;
630};
631
632static bool
633should_lower_double_instr(const nir_instr *instr, const void *_data)
634{
635   const struct lower_doubles_data *data = _data;
636   const nir_lower_doubles_options options = data->options;
637
638   if (instr->type != nir_instr_type_alu)
639      return false;
640
641   const nir_alu_instr *alu = nir_instr_as_alu(instr);
642
643   assert(alu->dest.dest.is_ssa);
644   bool is_64 = alu->dest.dest.ssa.bit_size == 64;
645
646   unsigned num_srcs = nir_op_infos[alu->op].num_inputs;
647   for (unsigned i = 0; i < num_srcs; i++) {
648      is_64 |= (nir_src_bit_size(alu->src[i].src) == 64);
649   }
650
651   if (!is_64)
652      return false;
653
654   if (options & nir_lower_fp64_full_software)
655      return true;
656
657   return options & nir_lower_doubles_op_to_options_mask(alu->op);
658}
659
660static nir_ssa_def *
661lower_doubles_instr(nir_builder *b, nir_instr *instr, void *_data)
662{
663   const struct lower_doubles_data *data = _data;
664   const nir_lower_doubles_options options = data->options;
665   nir_alu_instr *alu = nir_instr_as_alu(instr);
666
667   nir_ssa_def *soft_def =
668      lower_doubles_instr_to_soft(b, alu, data->softfp64, options);
669   if (soft_def)
670      return soft_def;
671
672   if (!(options & nir_lower_doubles_op_to_options_mask(alu->op)))
673      return NULL;
674
675   nir_ssa_def *src = nir_mov_alu(b, alu->src[0],
676                                  alu->dest.dest.ssa.num_components);
677
678   switch (alu->op) {
679   case nir_op_frcp:
680      return lower_rcp(b, src);
681   case nir_op_fsqrt:
682      return lower_sqrt_rsq(b, src, true);
683   case nir_op_frsq:
684      return lower_sqrt_rsq(b, src, false);
685   case nir_op_ftrunc:
686      return lower_trunc(b, src);
687   case nir_op_ffloor:
688      return lower_floor(b, src);
689   case nir_op_fceil:
690      return lower_ceil(b, src);
691   case nir_op_ffract:
692      return lower_fract(b, src);
693   case nir_op_fround_even:
694      return lower_round_even(b, src);
695
696   case nir_op_fdiv:
697   case nir_op_fsub:
698   case nir_op_fmod: {
699      nir_ssa_def *src1 = nir_mov_alu(b, alu->src[1],
700                                      alu->dest.dest.ssa.num_components);
701      switch (alu->op) {
702      case nir_op_fdiv:
703         return nir_fmul(b, src, nir_frcp(b, src1));
704      case nir_op_fsub:
705         return nir_fadd(b, src, nir_fneg(b, src1));
706      case nir_op_fmod:
707         return lower_mod(b, src, src1);
708      default:
709         unreachable("unhandled opcode");
710      }
711   }
712   default:
713      unreachable("unhandled opcode");
714   }
715}
716
717static bool
718nir_lower_doubles_impl(nir_function_impl *impl,
719                       const nir_shader *softfp64,
720                       nir_lower_doubles_options options)
721{
722   struct lower_doubles_data data = {
723      .softfp64 = softfp64,
724      .options = options,
725   };
726
727   bool progress =
728      nir_function_impl_lower_instructions(impl,
729                                           should_lower_double_instr,
730                                           lower_doubles_instr,
731                                           &data);
732
733   if (progress && (options & nir_lower_fp64_full_software)) {
734      /* SSA and register indices are completely messed up now */
735      nir_index_ssa_defs(impl);
736      nir_index_local_regs(impl);
737
738      nir_metadata_preserve(impl, nir_metadata_none);
739
740      /* And we have deref casts we need to clean up thanks to function
741       * inlining.
742       */
743      nir_opt_deref_impl(impl);
744   } else if (progress) {
745      nir_metadata_preserve(impl, nir_metadata_block_index |
746                                  nir_metadata_dominance);
747   } else {
748      nir_metadata_preserve(impl, nir_metadata_all);
749   }
750
751   return progress;
752}
753
754bool
755nir_lower_doubles(nir_shader *shader,
756                  const nir_shader *softfp64,
757                  nir_lower_doubles_options options)
758{
759   bool progress = false;
760
761   nir_foreach_function(function, shader) {
762      if (function->impl) {
763         progress |= nir_lower_doubles_impl(function->impl, softfp64, options);
764      }
765   }
766
767   return progress;
768}
769