1bf215546Sopenharmony_ci/* 2bf215546Sopenharmony_ci * Copyright © 2015 Intel Corporation 3bf215546Sopenharmony_ci * 4bf215546Sopenharmony_ci * Permission is hereby granted, free of charge, to any person obtaining a 5bf215546Sopenharmony_ci * copy of this software and associated documentation files (the "Software"), 6bf215546Sopenharmony_ci * to deal in the Software without restriction, including without limitation 7bf215546Sopenharmony_ci * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8bf215546Sopenharmony_ci * and/or sell copies of the Software, and to permit persons to whom the 9bf215546Sopenharmony_ci * Software is furnished to do so, subject to the following conditions: 10bf215546Sopenharmony_ci * 11bf215546Sopenharmony_ci * The above copyright notice and this permission notice (including the next 12bf215546Sopenharmony_ci * paragraph) shall be included in all copies or substantial portions of the 13bf215546Sopenharmony_ci * Software. 14bf215546Sopenharmony_ci * 15bf215546Sopenharmony_ci * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16bf215546Sopenharmony_ci * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17bf215546Sopenharmony_ci * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18bf215546Sopenharmony_ci * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19bf215546Sopenharmony_ci * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20bf215546Sopenharmony_ci * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21bf215546Sopenharmony_ci * IN THE SOFTWARE. 22bf215546Sopenharmony_ci * 23bf215546Sopenharmony_ci */ 24bf215546Sopenharmony_ci 25bf215546Sopenharmony_ci#include "nir.h" 26bf215546Sopenharmony_ci#include "nir_builder.h" 27bf215546Sopenharmony_ci 28bf215546Sopenharmony_ci#include <math.h> 29bf215546Sopenharmony_ci#include <float.h> 30bf215546Sopenharmony_ci 31bf215546Sopenharmony_ci/* 32bf215546Sopenharmony_ci * Lowers some unsupported double operations, using only: 33bf215546Sopenharmony_ci * 34bf215546Sopenharmony_ci * - pack/unpackDouble2x32 35bf215546Sopenharmony_ci * - conversion to/from single-precision 36bf215546Sopenharmony_ci * - double add, mul, and fma 37bf215546Sopenharmony_ci * - conditional select 38bf215546Sopenharmony_ci * - 32-bit integer and floating point arithmetic 39bf215546Sopenharmony_ci */ 40bf215546Sopenharmony_ci 41bf215546Sopenharmony_ci/* Creates a double with the exponent bits set to a given integer value */ 42bf215546Sopenharmony_cistatic nir_ssa_def * 43bf215546Sopenharmony_ciset_exponent(nir_builder *b, nir_ssa_def *src, nir_ssa_def *exp) 44bf215546Sopenharmony_ci{ 45bf215546Sopenharmony_ci /* Split into bits 0-31 and 32-63 */ 46bf215546Sopenharmony_ci nir_ssa_def *lo = nir_unpack_64_2x32_split_x(b, src); 47bf215546Sopenharmony_ci nir_ssa_def *hi = nir_unpack_64_2x32_split_y(b, src); 48bf215546Sopenharmony_ci 49bf215546Sopenharmony_ci /* The exponent is bits 52-62, or 20-30 of the high word, so set the exponent 50bf215546Sopenharmony_ci * to 1023 51bf215546Sopenharmony_ci */ 52bf215546Sopenharmony_ci nir_ssa_def *new_hi = nir_bitfield_insert(b, hi, exp, 53bf215546Sopenharmony_ci nir_imm_int(b, 20), 54bf215546Sopenharmony_ci nir_imm_int(b, 11)); 55bf215546Sopenharmony_ci /* recombine */ 56bf215546Sopenharmony_ci return nir_pack_64_2x32_split(b, lo, new_hi); 57bf215546Sopenharmony_ci} 58bf215546Sopenharmony_ci 59bf215546Sopenharmony_cistatic nir_ssa_def * 60bf215546Sopenharmony_ciget_exponent(nir_builder *b, nir_ssa_def *src) 61bf215546Sopenharmony_ci{ 62bf215546Sopenharmony_ci /* get bits 32-63 */ 63bf215546Sopenharmony_ci nir_ssa_def *hi = nir_unpack_64_2x32_split_y(b, src); 64bf215546Sopenharmony_ci 65bf215546Sopenharmony_ci /* extract bits 20-30 of the high word */ 66bf215546Sopenharmony_ci return nir_ubitfield_extract(b, hi, nir_imm_int(b, 20), nir_imm_int(b, 11)); 67bf215546Sopenharmony_ci} 68bf215546Sopenharmony_ci 69bf215546Sopenharmony_ci/* Return infinity with the sign of the given source which is +/-0 */ 70bf215546Sopenharmony_ci 71bf215546Sopenharmony_cistatic nir_ssa_def * 72bf215546Sopenharmony_ciget_signed_inf(nir_builder *b, nir_ssa_def *zero) 73bf215546Sopenharmony_ci{ 74bf215546Sopenharmony_ci nir_ssa_def *zero_hi = nir_unpack_64_2x32_split_y(b, zero); 75bf215546Sopenharmony_ci 76bf215546Sopenharmony_ci /* The bit pattern for infinity is 0x7ff0000000000000, where the sign bit 77bf215546Sopenharmony_ci * is the highest bit. Only the sign bit can be non-zero in the passed in 78bf215546Sopenharmony_ci * source. So we essentially need to OR the infinity and the zero, except 79bf215546Sopenharmony_ci * the low 32 bits are always 0 so we can construct the correct high 32 80bf215546Sopenharmony_ci * bits and then pack it together with zero low 32 bits. 81bf215546Sopenharmony_ci */ 82bf215546Sopenharmony_ci nir_ssa_def *inf_hi = nir_ior(b, nir_imm_int(b, 0x7ff00000), zero_hi); 83bf215546Sopenharmony_ci return nir_pack_64_2x32_split(b, nir_imm_int(b, 0), inf_hi); 84bf215546Sopenharmony_ci} 85bf215546Sopenharmony_ci 86bf215546Sopenharmony_ci/* 87bf215546Sopenharmony_ci * Generates the correctly-signed infinity if the source was zero, and flushes 88bf215546Sopenharmony_ci * the result to 0 if the source was infinity or the calculated exponent was 89bf215546Sopenharmony_ci * too small to be representable. 90bf215546Sopenharmony_ci */ 91bf215546Sopenharmony_ci 92bf215546Sopenharmony_cistatic nir_ssa_def * 93bf215546Sopenharmony_cifix_inv_result(nir_builder *b, nir_ssa_def *res, nir_ssa_def *src, 94bf215546Sopenharmony_ci nir_ssa_def *exp) 95bf215546Sopenharmony_ci{ 96bf215546Sopenharmony_ci /* If the exponent is too small or the original input was infinity/NaN, 97bf215546Sopenharmony_ci * force the result to 0 (flush denorms) to avoid the work of handling 98bf215546Sopenharmony_ci * denorms properly. Note that this doesn't preserve positive/negative 99bf215546Sopenharmony_ci * zeros, but GLSL doesn't require it. 100bf215546Sopenharmony_ci */ 101bf215546Sopenharmony_ci res = nir_bcsel(b, nir_ior(b, nir_ige(b, nir_imm_int(b, 0), exp), 102bf215546Sopenharmony_ci nir_feq(b, nir_fabs(b, src), 103bf215546Sopenharmony_ci nir_imm_double(b, INFINITY))), 104bf215546Sopenharmony_ci nir_imm_double(b, 0.0f), res); 105bf215546Sopenharmony_ci 106bf215546Sopenharmony_ci /* If the original input was 0, generate the correctly-signed infinity */ 107bf215546Sopenharmony_ci res = nir_bcsel(b, nir_fneu(b, src, nir_imm_double(b, 0.0f)), 108bf215546Sopenharmony_ci res, get_signed_inf(b, src)); 109bf215546Sopenharmony_ci 110bf215546Sopenharmony_ci return res; 111bf215546Sopenharmony_ci 112bf215546Sopenharmony_ci} 113bf215546Sopenharmony_ci 114bf215546Sopenharmony_cistatic nir_ssa_def * 115bf215546Sopenharmony_cilower_rcp(nir_builder *b, nir_ssa_def *src) 116bf215546Sopenharmony_ci{ 117bf215546Sopenharmony_ci /* normalize the input to avoid range issues */ 118bf215546Sopenharmony_ci nir_ssa_def *src_norm = set_exponent(b, src, nir_imm_int(b, 1023)); 119bf215546Sopenharmony_ci 120bf215546Sopenharmony_ci /* cast to float, do an rcp, and then cast back to get an approximate 121bf215546Sopenharmony_ci * result 122bf215546Sopenharmony_ci */ 123bf215546Sopenharmony_ci nir_ssa_def *ra = nir_f2f64(b, nir_frcp(b, nir_f2f32(b, src_norm))); 124bf215546Sopenharmony_ci 125bf215546Sopenharmony_ci /* Fixup the exponent of the result - note that we check if this is too 126bf215546Sopenharmony_ci * small below. 127bf215546Sopenharmony_ci */ 128bf215546Sopenharmony_ci nir_ssa_def *new_exp = nir_isub(b, get_exponent(b, ra), 129bf215546Sopenharmony_ci nir_isub(b, get_exponent(b, src), 130bf215546Sopenharmony_ci nir_imm_int(b, 1023))); 131bf215546Sopenharmony_ci 132bf215546Sopenharmony_ci ra = set_exponent(b, ra, new_exp); 133bf215546Sopenharmony_ci 134bf215546Sopenharmony_ci /* Do a few Newton-Raphson steps to improve precision. 135bf215546Sopenharmony_ci * 136bf215546Sopenharmony_ci * Each step doubles the precision, and we started off with around 24 bits, 137bf215546Sopenharmony_ci * so we only need to do 2 steps to get to full precision. The step is: 138bf215546Sopenharmony_ci * 139bf215546Sopenharmony_ci * x_new = x * (2 - x*src) 140bf215546Sopenharmony_ci * 141bf215546Sopenharmony_ci * But we can re-arrange this to improve precision by using another fused 142bf215546Sopenharmony_ci * multiply-add: 143bf215546Sopenharmony_ci * 144bf215546Sopenharmony_ci * x_new = x + x * (1 - x*src) 145bf215546Sopenharmony_ci * 146bf215546Sopenharmony_ci * See https://en.wikipedia.org/wiki/Division_algorithm for more details. 147bf215546Sopenharmony_ci */ 148bf215546Sopenharmony_ci 149bf215546Sopenharmony_ci ra = nir_ffma(b, nir_fneg(b, ra), nir_ffma(b, ra, src, nir_imm_double(b, -1)), ra); 150bf215546Sopenharmony_ci ra = nir_ffma(b, nir_fneg(b, ra), nir_ffma(b, ra, src, nir_imm_double(b, -1)), ra); 151bf215546Sopenharmony_ci 152bf215546Sopenharmony_ci return fix_inv_result(b, ra, src, new_exp); 153bf215546Sopenharmony_ci} 154bf215546Sopenharmony_ci 155bf215546Sopenharmony_cistatic nir_ssa_def * 156bf215546Sopenharmony_cilower_sqrt_rsq(nir_builder *b, nir_ssa_def *src, bool sqrt) 157bf215546Sopenharmony_ci{ 158bf215546Sopenharmony_ci /* We want to compute: 159bf215546Sopenharmony_ci * 160bf215546Sopenharmony_ci * 1/sqrt(m * 2^e) 161bf215546Sopenharmony_ci * 162bf215546Sopenharmony_ci * When the exponent is even, this is equivalent to: 163bf215546Sopenharmony_ci * 164bf215546Sopenharmony_ci * 1/sqrt(m) * 2^(-e/2) 165bf215546Sopenharmony_ci * 166bf215546Sopenharmony_ci * and then the exponent is odd, this is equal to: 167bf215546Sopenharmony_ci * 168bf215546Sopenharmony_ci * 1/sqrt(m * 2) * 2^(-(e - 1)/2) 169bf215546Sopenharmony_ci * 170bf215546Sopenharmony_ci * where the m * 2 is absorbed into the exponent. So we want the exponent 171bf215546Sopenharmony_ci * inside the square root to be 1 if e is odd and 0 if e is even, and we 172bf215546Sopenharmony_ci * want to subtract off e/2 from the final exponent, rounded to negative 173bf215546Sopenharmony_ci * infinity. We can do the former by first computing the unbiased exponent, 174bf215546Sopenharmony_ci * and then AND'ing it with 1 to get 0 or 1, and we can do the latter by 175bf215546Sopenharmony_ci * shifting right by 1. 176bf215546Sopenharmony_ci */ 177bf215546Sopenharmony_ci 178bf215546Sopenharmony_ci nir_ssa_def *unbiased_exp = nir_isub(b, get_exponent(b, src), 179bf215546Sopenharmony_ci nir_imm_int(b, 1023)); 180bf215546Sopenharmony_ci nir_ssa_def *even = nir_iand_imm(b, unbiased_exp, 1); 181bf215546Sopenharmony_ci nir_ssa_def *half = nir_ishr_imm(b, unbiased_exp, 1); 182bf215546Sopenharmony_ci 183bf215546Sopenharmony_ci nir_ssa_def *src_norm = set_exponent(b, src, 184bf215546Sopenharmony_ci nir_iadd(b, nir_imm_int(b, 1023), 185bf215546Sopenharmony_ci even)); 186bf215546Sopenharmony_ci 187bf215546Sopenharmony_ci nir_ssa_def *ra = nir_f2f64(b, nir_frsq(b, nir_f2f32(b, src_norm))); 188bf215546Sopenharmony_ci nir_ssa_def *new_exp = nir_isub(b, get_exponent(b, ra), half); 189bf215546Sopenharmony_ci ra = set_exponent(b, ra, new_exp); 190bf215546Sopenharmony_ci 191bf215546Sopenharmony_ci /* 192bf215546Sopenharmony_ci * The following implements an iterative algorithm that's very similar 193bf215546Sopenharmony_ci * between sqrt and rsqrt. We start with an iteration of Goldschmit's 194bf215546Sopenharmony_ci * algorithm, which looks like: 195bf215546Sopenharmony_ci * 196bf215546Sopenharmony_ci * a = the source 197bf215546Sopenharmony_ci * y_0 = initial (single-precision) rsqrt estimate 198bf215546Sopenharmony_ci * 199bf215546Sopenharmony_ci * h_0 = .5 * y_0 200bf215546Sopenharmony_ci * g_0 = a * y_0 201bf215546Sopenharmony_ci * r_0 = .5 - h_0 * g_0 202bf215546Sopenharmony_ci * g_1 = g_0 * r_0 + g_0 203bf215546Sopenharmony_ci * h_1 = h_0 * r_0 + h_0 204bf215546Sopenharmony_ci * 205bf215546Sopenharmony_ci * Now g_1 ~= sqrt(a), and h_1 ~= 1/(2 * sqrt(a)). We could continue 206bf215546Sopenharmony_ci * applying another round of Goldschmit, but since we would never refer 207bf215546Sopenharmony_ci * back to a (the original source), we would add too much rounding error. 208bf215546Sopenharmony_ci * So instead, we do one last round of Newton-Raphson, which has better 209bf215546Sopenharmony_ci * rounding characteristics, to get the final rounding correct. This is 210bf215546Sopenharmony_ci * split into two cases: 211bf215546Sopenharmony_ci * 212bf215546Sopenharmony_ci * 1. sqrt 213bf215546Sopenharmony_ci * 214bf215546Sopenharmony_ci * Normally, doing a round of Newton-Raphson for sqrt involves taking a 215bf215546Sopenharmony_ci * reciprocal of the original estimate, which is slow since it isn't 216bf215546Sopenharmony_ci * supported in HW. But we can take advantage of the fact that we already 217bf215546Sopenharmony_ci * computed a good estimate of 1/(2 * g_1) by rearranging it like so: 218bf215546Sopenharmony_ci * 219bf215546Sopenharmony_ci * g_2 = .5 * (g_1 + a / g_1) 220bf215546Sopenharmony_ci * = g_1 + .5 * (a / g_1 - g_1) 221bf215546Sopenharmony_ci * = g_1 + (.5 / g_1) * (a - g_1^2) 222bf215546Sopenharmony_ci * = g_1 + h_1 * (a - g_1^2) 223bf215546Sopenharmony_ci * 224bf215546Sopenharmony_ci * The second term represents the error, and by splitting it out we can get 225bf215546Sopenharmony_ci * better precision by computing it as part of a fused multiply-add. Since 226bf215546Sopenharmony_ci * both Newton-Raphson and Goldschmit approximately double the precision of 227bf215546Sopenharmony_ci * the result, these two steps should be enough. 228bf215546Sopenharmony_ci * 229bf215546Sopenharmony_ci * 2. rsqrt 230bf215546Sopenharmony_ci * 231bf215546Sopenharmony_ci * First off, note that the first round of the Goldschmit algorithm is 232bf215546Sopenharmony_ci * really just a Newton-Raphson step in disguise: 233bf215546Sopenharmony_ci * 234bf215546Sopenharmony_ci * h_1 = h_0 * (.5 - h_0 * g_0) + h_0 235bf215546Sopenharmony_ci * = h_0 * (1.5 - h_0 * g_0) 236bf215546Sopenharmony_ci * = h_0 * (1.5 - .5 * a * y_0^2) 237bf215546Sopenharmony_ci * = (.5 * y_0) * (1.5 - .5 * a * y_0^2) 238bf215546Sopenharmony_ci * 239bf215546Sopenharmony_ci * which is the standard formula multiplied by .5. Unlike in the sqrt case, 240bf215546Sopenharmony_ci * we don't need the inverse to do a Newton-Raphson step; we just need h_1, 241bf215546Sopenharmony_ci * so we can skip the calculation of g_1. Instead, we simply do another 242bf215546Sopenharmony_ci * Newton-Raphson step: 243bf215546Sopenharmony_ci * 244bf215546Sopenharmony_ci * y_1 = 2 * h_1 245bf215546Sopenharmony_ci * r_1 = .5 - h_1 * y_1 * a 246bf215546Sopenharmony_ci * y_2 = y_1 * r_1 + y_1 247bf215546Sopenharmony_ci * 248bf215546Sopenharmony_ci * Where the difference from Goldschmit is that we calculate y_1 * a 249bf215546Sopenharmony_ci * instead of using g_1. Doing it this way should be as fast as computing 250bf215546Sopenharmony_ci * y_1 up front instead of h_1, and it lets us share the code for the 251bf215546Sopenharmony_ci * initial Goldschmit step with the sqrt case. 252bf215546Sopenharmony_ci * 253bf215546Sopenharmony_ci * Putting it together, the computations are: 254bf215546Sopenharmony_ci * 255bf215546Sopenharmony_ci * h_0 = .5 * y_0 256bf215546Sopenharmony_ci * g_0 = a * y_0 257bf215546Sopenharmony_ci * r_0 = .5 - h_0 * g_0 258bf215546Sopenharmony_ci * h_1 = h_0 * r_0 + h_0 259bf215546Sopenharmony_ci * if sqrt: 260bf215546Sopenharmony_ci * g_1 = g_0 * r_0 + g_0 261bf215546Sopenharmony_ci * r_1 = a - g_1 * g_1 262bf215546Sopenharmony_ci * g_2 = h_1 * r_1 + g_1 263bf215546Sopenharmony_ci * else: 264bf215546Sopenharmony_ci * y_1 = 2 * h_1 265bf215546Sopenharmony_ci * r_1 = .5 - y_1 * (h_1 * a) 266bf215546Sopenharmony_ci * y_2 = y_1 * r_1 + y_1 267bf215546Sopenharmony_ci * 268bf215546Sopenharmony_ci * For more on the ideas behind this, see "Software Division and Square 269bf215546Sopenharmony_ci * Root Using Goldschmit's Algorithms" by Markstein and the Wikipedia page 270bf215546Sopenharmony_ci * on square roots 271bf215546Sopenharmony_ci * (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots). 272bf215546Sopenharmony_ci */ 273bf215546Sopenharmony_ci 274bf215546Sopenharmony_ci nir_ssa_def *one_half = nir_imm_double(b, 0.5); 275bf215546Sopenharmony_ci nir_ssa_def *h_0 = nir_fmul(b, one_half, ra); 276bf215546Sopenharmony_ci nir_ssa_def *g_0 = nir_fmul(b, src, ra); 277bf215546Sopenharmony_ci nir_ssa_def *r_0 = nir_ffma(b, nir_fneg(b, h_0), g_0, one_half); 278bf215546Sopenharmony_ci nir_ssa_def *h_1 = nir_ffma(b, h_0, r_0, h_0); 279bf215546Sopenharmony_ci nir_ssa_def *res; 280bf215546Sopenharmony_ci if (sqrt) { 281bf215546Sopenharmony_ci nir_ssa_def *g_1 = nir_ffma(b, g_0, r_0, g_0); 282bf215546Sopenharmony_ci nir_ssa_def *r_1 = nir_ffma(b, nir_fneg(b, g_1), g_1, src); 283bf215546Sopenharmony_ci res = nir_ffma(b, h_1, r_1, g_1); 284bf215546Sopenharmony_ci } else { 285bf215546Sopenharmony_ci nir_ssa_def *y_1 = nir_fmul(b, nir_imm_double(b, 2.0), h_1); 286bf215546Sopenharmony_ci nir_ssa_def *r_1 = nir_ffma(b, nir_fneg(b, y_1), nir_fmul(b, h_1, src), 287bf215546Sopenharmony_ci one_half); 288bf215546Sopenharmony_ci res = nir_ffma(b, y_1, r_1, y_1); 289bf215546Sopenharmony_ci } 290bf215546Sopenharmony_ci 291bf215546Sopenharmony_ci if (sqrt) { 292bf215546Sopenharmony_ci /* Here, the special cases we need to handle are 293bf215546Sopenharmony_ci * 0 -> 0 and 294bf215546Sopenharmony_ci * +inf -> +inf 295bf215546Sopenharmony_ci */ 296bf215546Sopenharmony_ci const bool preserve_denorms = 297bf215546Sopenharmony_ci b->shader->info.float_controls_execution_mode & 298bf215546Sopenharmony_ci FLOAT_CONTROLS_DENORM_PRESERVE_FP64; 299bf215546Sopenharmony_ci nir_ssa_def *src_flushed = src; 300bf215546Sopenharmony_ci if (!preserve_denorms) { 301bf215546Sopenharmony_ci src_flushed = nir_bcsel(b, 302bf215546Sopenharmony_ci nir_flt(b, nir_fabs(b, src), 303bf215546Sopenharmony_ci nir_imm_double(b, DBL_MIN)), 304bf215546Sopenharmony_ci nir_imm_double(b, 0.0), 305bf215546Sopenharmony_ci src); 306bf215546Sopenharmony_ci } 307bf215546Sopenharmony_ci res = nir_bcsel(b, nir_ior(b, nir_feq(b, src_flushed, nir_imm_double(b, 0.0)), 308bf215546Sopenharmony_ci nir_feq(b, src, nir_imm_double(b, INFINITY))), 309bf215546Sopenharmony_ci src_flushed, res); 310bf215546Sopenharmony_ci } else { 311bf215546Sopenharmony_ci res = fix_inv_result(b, res, src, new_exp); 312bf215546Sopenharmony_ci } 313bf215546Sopenharmony_ci 314bf215546Sopenharmony_ci return res; 315bf215546Sopenharmony_ci} 316bf215546Sopenharmony_ci 317bf215546Sopenharmony_cistatic nir_ssa_def * 318bf215546Sopenharmony_cilower_trunc(nir_builder *b, nir_ssa_def *src) 319bf215546Sopenharmony_ci{ 320bf215546Sopenharmony_ci nir_ssa_def *unbiased_exp = nir_isub(b, get_exponent(b, src), 321bf215546Sopenharmony_ci nir_imm_int(b, 1023)); 322bf215546Sopenharmony_ci 323bf215546Sopenharmony_ci nir_ssa_def *frac_bits = nir_isub(b, nir_imm_int(b, 52), unbiased_exp); 324bf215546Sopenharmony_ci 325bf215546Sopenharmony_ci /* 326bf215546Sopenharmony_ci * Decide the operation to apply depending on the unbiased exponent: 327bf215546Sopenharmony_ci * 328bf215546Sopenharmony_ci * if (unbiased_exp < 0) 329bf215546Sopenharmony_ci * return 0 330bf215546Sopenharmony_ci * else if (unbiased_exp > 52) 331bf215546Sopenharmony_ci * return src 332bf215546Sopenharmony_ci * else 333bf215546Sopenharmony_ci * return src & (~0 << frac_bits) 334bf215546Sopenharmony_ci * 335bf215546Sopenharmony_ci * Notice that the else branch is a 64-bit integer operation that we need 336bf215546Sopenharmony_ci * to implement in terms of 32-bit integer arithmetics (at least until we 337bf215546Sopenharmony_ci * support 64-bit integer arithmetics). 338bf215546Sopenharmony_ci */ 339bf215546Sopenharmony_ci 340bf215546Sopenharmony_ci /* Compute "~0 << frac_bits" in terms of hi/lo 32-bit integer math */ 341bf215546Sopenharmony_ci nir_ssa_def *mask_lo = 342bf215546Sopenharmony_ci nir_bcsel(b, 343bf215546Sopenharmony_ci nir_ige(b, frac_bits, nir_imm_int(b, 32)), 344bf215546Sopenharmony_ci nir_imm_int(b, 0), 345bf215546Sopenharmony_ci nir_ishl(b, nir_imm_int(b, ~0), frac_bits)); 346bf215546Sopenharmony_ci 347bf215546Sopenharmony_ci nir_ssa_def *mask_hi = 348bf215546Sopenharmony_ci nir_bcsel(b, 349bf215546Sopenharmony_ci nir_ilt(b, frac_bits, nir_imm_int(b, 33)), 350bf215546Sopenharmony_ci nir_imm_int(b, ~0), 351bf215546Sopenharmony_ci nir_ishl(b, 352bf215546Sopenharmony_ci nir_imm_int(b, ~0), 353bf215546Sopenharmony_ci nir_isub(b, frac_bits, nir_imm_int(b, 32)))); 354bf215546Sopenharmony_ci 355bf215546Sopenharmony_ci nir_ssa_def *src_lo = nir_unpack_64_2x32_split_x(b, src); 356bf215546Sopenharmony_ci nir_ssa_def *src_hi = nir_unpack_64_2x32_split_y(b, src); 357bf215546Sopenharmony_ci 358bf215546Sopenharmony_ci return 359bf215546Sopenharmony_ci nir_bcsel(b, 360bf215546Sopenharmony_ci nir_ilt(b, unbiased_exp, nir_imm_int(b, 0)), 361bf215546Sopenharmony_ci nir_imm_double(b, 0.0), 362bf215546Sopenharmony_ci nir_bcsel(b, nir_ige(b, unbiased_exp, nir_imm_int(b, 53)), 363bf215546Sopenharmony_ci src, 364bf215546Sopenharmony_ci nir_pack_64_2x32_split(b, 365bf215546Sopenharmony_ci nir_iand(b, mask_lo, src_lo), 366bf215546Sopenharmony_ci nir_iand(b, mask_hi, src_hi)))); 367bf215546Sopenharmony_ci} 368bf215546Sopenharmony_ci 369bf215546Sopenharmony_cistatic nir_ssa_def * 370bf215546Sopenharmony_cilower_floor(nir_builder *b, nir_ssa_def *src) 371bf215546Sopenharmony_ci{ 372bf215546Sopenharmony_ci /* 373bf215546Sopenharmony_ci * For x >= 0, floor(x) = trunc(x) 374bf215546Sopenharmony_ci * For x < 0, 375bf215546Sopenharmony_ci * - if x is integer, floor(x) = x 376bf215546Sopenharmony_ci * - otherwise, floor(x) = trunc(x) - 1 377bf215546Sopenharmony_ci */ 378bf215546Sopenharmony_ci nir_ssa_def *tr = nir_ftrunc(b, src); 379bf215546Sopenharmony_ci nir_ssa_def *positive = nir_fge(b, src, nir_imm_double(b, 0.0)); 380bf215546Sopenharmony_ci return nir_bcsel(b, 381bf215546Sopenharmony_ci nir_ior(b, positive, nir_feq(b, src, tr)), 382bf215546Sopenharmony_ci tr, 383bf215546Sopenharmony_ci nir_fsub(b, tr, nir_imm_double(b, 1.0))); 384bf215546Sopenharmony_ci} 385bf215546Sopenharmony_ci 386bf215546Sopenharmony_cistatic nir_ssa_def * 387bf215546Sopenharmony_cilower_ceil(nir_builder *b, nir_ssa_def *src) 388bf215546Sopenharmony_ci{ 389bf215546Sopenharmony_ci /* if x < 0, ceil(x) = trunc(x) 390bf215546Sopenharmony_ci * else if (x - trunc(x) == 0), ceil(x) = x 391bf215546Sopenharmony_ci * else, ceil(x) = trunc(x) + 1 392bf215546Sopenharmony_ci */ 393bf215546Sopenharmony_ci nir_ssa_def *tr = nir_ftrunc(b, src); 394bf215546Sopenharmony_ci nir_ssa_def *negative = nir_flt(b, src, nir_imm_double(b, 0.0)); 395bf215546Sopenharmony_ci return nir_bcsel(b, 396bf215546Sopenharmony_ci nir_ior(b, negative, nir_feq(b, src, tr)), 397bf215546Sopenharmony_ci tr, 398bf215546Sopenharmony_ci nir_fadd(b, tr, nir_imm_double(b, 1.0))); 399bf215546Sopenharmony_ci} 400bf215546Sopenharmony_ci 401bf215546Sopenharmony_cistatic nir_ssa_def * 402bf215546Sopenharmony_cilower_fract(nir_builder *b, nir_ssa_def *src) 403bf215546Sopenharmony_ci{ 404bf215546Sopenharmony_ci return nir_fsub(b, src, nir_ffloor(b, src)); 405bf215546Sopenharmony_ci} 406bf215546Sopenharmony_ci 407bf215546Sopenharmony_cistatic nir_ssa_def * 408bf215546Sopenharmony_cilower_round_even(nir_builder *b, nir_ssa_def *src) 409bf215546Sopenharmony_ci{ 410bf215546Sopenharmony_ci /* Add and subtract 2**52 to round off any fractional bits. */ 411bf215546Sopenharmony_ci nir_ssa_def *two52 = nir_imm_double(b, (double)(1ull << 52)); 412bf215546Sopenharmony_ci nir_ssa_def *sign = nir_iand(b, nir_unpack_64_2x32_split_y(b, src), 413bf215546Sopenharmony_ci nir_imm_int(b, 1ull << 31)); 414bf215546Sopenharmony_ci 415bf215546Sopenharmony_ci b->exact = true; 416bf215546Sopenharmony_ci nir_ssa_def *res = nir_fsub(b, nir_fadd(b, nir_fabs(b, src), two52), two52); 417bf215546Sopenharmony_ci b->exact = false; 418bf215546Sopenharmony_ci 419bf215546Sopenharmony_ci return nir_bcsel(b, nir_flt(b, nir_fabs(b, src), two52), 420bf215546Sopenharmony_ci nir_pack_64_2x32_split(b, nir_unpack_64_2x32_split_x(b, res), 421bf215546Sopenharmony_ci nir_ior(b, nir_unpack_64_2x32_split_y(b, res), sign)), src); 422bf215546Sopenharmony_ci} 423bf215546Sopenharmony_ci 424bf215546Sopenharmony_cistatic nir_ssa_def * 425bf215546Sopenharmony_cilower_mod(nir_builder *b, nir_ssa_def *src0, nir_ssa_def *src1) 426bf215546Sopenharmony_ci{ 427bf215546Sopenharmony_ci /* mod(x,y) = x - y * floor(x/y) 428bf215546Sopenharmony_ci * 429bf215546Sopenharmony_ci * If the division is lowered, it could add some rounding errors that make 430bf215546Sopenharmony_ci * floor() to return the quotient minus one when x = N * y. If this is the 431bf215546Sopenharmony_ci * case, we should return zero because mod(x, y) output value is [0, y). 432bf215546Sopenharmony_ci * But fortunately Vulkan spec allows this kind of errors; from Vulkan 433bf215546Sopenharmony_ci * spec, appendix A (Precision and Operation of SPIR-V instructions: 434bf215546Sopenharmony_ci * 435bf215546Sopenharmony_ci * "The OpFRem and OpFMod instructions use cheap approximations of 436bf215546Sopenharmony_ci * remainder, and the error can be large due to the discontinuity in 437bf215546Sopenharmony_ci * trunc() and floor(). This can produce mathematically unexpected 438bf215546Sopenharmony_ci * results in some cases, such as FMod(x,x) computing x rather than 0, 439bf215546Sopenharmony_ci * and can also cause the result to have a different sign than the 440bf215546Sopenharmony_ci * infinitely precise result." 441bf215546Sopenharmony_ci * 442bf215546Sopenharmony_ci * In practice this means the output value is actually in the interval 443bf215546Sopenharmony_ci * [0, y]. 444bf215546Sopenharmony_ci * 445bf215546Sopenharmony_ci * While Vulkan states this behaviour explicitly, OpenGL does not, and thus 446bf215546Sopenharmony_ci * we need to assume that value should be in range [0, y); but on the other 447bf215546Sopenharmony_ci * hand, mod(a,b) is defined as "a - b * floor(a/b)" and OpenGL allows for 448bf215546Sopenharmony_ci * some error in division, so a/a could actually end up being 1.0 - 1ULP; 449bf215546Sopenharmony_ci * so in this case floor(a/a) would end up as 0, and hence mod(a,a) == a. 450bf215546Sopenharmony_ci * 451bf215546Sopenharmony_ci * In summary, in the practice mod(a,a) can be "a" both for OpenGL and 452bf215546Sopenharmony_ci * Vulkan. 453bf215546Sopenharmony_ci */ 454bf215546Sopenharmony_ci nir_ssa_def *floor = nir_ffloor(b, nir_fdiv(b, src0, src1)); 455bf215546Sopenharmony_ci 456bf215546Sopenharmony_ci return nir_fsub(b, src0, nir_fmul(b, src1, floor)); 457bf215546Sopenharmony_ci} 458bf215546Sopenharmony_ci 459bf215546Sopenharmony_cistatic nir_ssa_def * 460bf215546Sopenharmony_cilower_doubles_instr_to_soft(nir_builder *b, nir_alu_instr *instr, 461bf215546Sopenharmony_ci const nir_shader *softfp64, 462bf215546Sopenharmony_ci nir_lower_doubles_options options) 463bf215546Sopenharmony_ci{ 464bf215546Sopenharmony_ci if (!(options & nir_lower_fp64_full_software)) 465bf215546Sopenharmony_ci return NULL; 466bf215546Sopenharmony_ci 467bf215546Sopenharmony_ci assert(instr->dest.dest.is_ssa); 468bf215546Sopenharmony_ci 469bf215546Sopenharmony_ci const char *name; 470bf215546Sopenharmony_ci const struct glsl_type *return_type = glsl_uint64_t_type(); 471bf215546Sopenharmony_ci 472bf215546Sopenharmony_ci switch (instr->op) { 473bf215546Sopenharmony_ci case nir_op_f2i64: 474bf215546Sopenharmony_ci if (instr->src[0].src.ssa->bit_size != 64) 475bf215546Sopenharmony_ci return false; 476bf215546Sopenharmony_ci name = "__fp64_to_int64"; 477bf215546Sopenharmony_ci return_type = glsl_int64_t_type(); 478bf215546Sopenharmony_ci break; 479bf215546Sopenharmony_ci case nir_op_f2u64: 480bf215546Sopenharmony_ci if (instr->src[0].src.ssa->bit_size != 64) 481bf215546Sopenharmony_ci return false; 482bf215546Sopenharmony_ci name = "__fp64_to_uint64"; 483bf215546Sopenharmony_ci break; 484bf215546Sopenharmony_ci case nir_op_f2f64: 485bf215546Sopenharmony_ci name = "__fp32_to_fp64"; 486bf215546Sopenharmony_ci break; 487bf215546Sopenharmony_ci case nir_op_f2f32: 488bf215546Sopenharmony_ci name = "__fp64_to_fp32"; 489bf215546Sopenharmony_ci return_type = glsl_float_type(); 490bf215546Sopenharmony_ci break; 491bf215546Sopenharmony_ci case nir_op_f2i32: 492bf215546Sopenharmony_ci name = "__fp64_to_int"; 493bf215546Sopenharmony_ci return_type = glsl_int_type(); 494bf215546Sopenharmony_ci break; 495bf215546Sopenharmony_ci case nir_op_f2u32: 496bf215546Sopenharmony_ci name = "__fp64_to_uint"; 497bf215546Sopenharmony_ci return_type = glsl_uint_type(); 498bf215546Sopenharmony_ci break; 499bf215546Sopenharmony_ci case nir_op_f2b1: 500bf215546Sopenharmony_ci case nir_op_f2b32: 501bf215546Sopenharmony_ci name = "__fp64_to_bool"; 502bf215546Sopenharmony_ci return_type = glsl_bool_type(); 503bf215546Sopenharmony_ci break; 504bf215546Sopenharmony_ci case nir_op_b2f64: 505bf215546Sopenharmony_ci name = "__bool_to_fp64"; 506bf215546Sopenharmony_ci break; 507bf215546Sopenharmony_ci case nir_op_i2f64: 508bf215546Sopenharmony_ci if (instr->src[0].src.ssa->bit_size == 64) 509bf215546Sopenharmony_ci name = "__int64_to_fp64"; 510bf215546Sopenharmony_ci else 511bf215546Sopenharmony_ci name = "__int_to_fp64"; 512bf215546Sopenharmony_ci break; 513bf215546Sopenharmony_ci case nir_op_u2f64: 514bf215546Sopenharmony_ci if (instr->src[0].src.ssa->bit_size == 64) 515bf215546Sopenharmony_ci name = "__uint64_to_fp64"; 516bf215546Sopenharmony_ci else 517bf215546Sopenharmony_ci name = "__uint_to_fp64"; 518bf215546Sopenharmony_ci break; 519bf215546Sopenharmony_ci case nir_op_fabs: 520bf215546Sopenharmony_ci name = "__fabs64"; 521bf215546Sopenharmony_ci break; 522bf215546Sopenharmony_ci case nir_op_fneg: 523bf215546Sopenharmony_ci name = "__fneg64"; 524bf215546Sopenharmony_ci break; 525bf215546Sopenharmony_ci case nir_op_fround_even: 526bf215546Sopenharmony_ci name = "__fround64"; 527bf215546Sopenharmony_ci break; 528bf215546Sopenharmony_ci case nir_op_ftrunc: 529bf215546Sopenharmony_ci name = "__ftrunc64"; 530bf215546Sopenharmony_ci break; 531bf215546Sopenharmony_ci case nir_op_ffloor: 532bf215546Sopenharmony_ci name = "__ffloor64"; 533bf215546Sopenharmony_ci break; 534bf215546Sopenharmony_ci case nir_op_ffract: 535bf215546Sopenharmony_ci name = "__ffract64"; 536bf215546Sopenharmony_ci break; 537bf215546Sopenharmony_ci case nir_op_fsign: 538bf215546Sopenharmony_ci name = "__fsign64"; 539bf215546Sopenharmony_ci break; 540bf215546Sopenharmony_ci case nir_op_feq: 541bf215546Sopenharmony_ci name = "__feq64"; 542bf215546Sopenharmony_ci return_type = glsl_bool_type(); 543bf215546Sopenharmony_ci break; 544bf215546Sopenharmony_ci case nir_op_fneu: 545bf215546Sopenharmony_ci name = "__fneu64"; 546bf215546Sopenharmony_ci return_type = glsl_bool_type(); 547bf215546Sopenharmony_ci break; 548bf215546Sopenharmony_ci case nir_op_flt: 549bf215546Sopenharmony_ci name = "__flt64"; 550bf215546Sopenharmony_ci return_type = glsl_bool_type(); 551bf215546Sopenharmony_ci break; 552bf215546Sopenharmony_ci case nir_op_fge: 553bf215546Sopenharmony_ci name = "__fge64"; 554bf215546Sopenharmony_ci return_type = glsl_bool_type(); 555bf215546Sopenharmony_ci break; 556bf215546Sopenharmony_ci case nir_op_fmin: 557bf215546Sopenharmony_ci name = "__fmin64"; 558bf215546Sopenharmony_ci break; 559bf215546Sopenharmony_ci case nir_op_fmax: 560bf215546Sopenharmony_ci name = "__fmax64"; 561bf215546Sopenharmony_ci break; 562bf215546Sopenharmony_ci case nir_op_fadd: 563bf215546Sopenharmony_ci name = "__fadd64"; 564bf215546Sopenharmony_ci break; 565bf215546Sopenharmony_ci case nir_op_fmul: 566bf215546Sopenharmony_ci name = "__fmul64"; 567bf215546Sopenharmony_ci break; 568bf215546Sopenharmony_ci case nir_op_ffma: 569bf215546Sopenharmony_ci name = "__ffma64"; 570bf215546Sopenharmony_ci break; 571bf215546Sopenharmony_ci case nir_op_fsat: 572bf215546Sopenharmony_ci name = "__fsat64"; 573bf215546Sopenharmony_ci break; 574bf215546Sopenharmony_ci default: 575bf215546Sopenharmony_ci return false; 576bf215546Sopenharmony_ci } 577bf215546Sopenharmony_ci 578bf215546Sopenharmony_ci nir_function *func = NULL; 579bf215546Sopenharmony_ci nir_foreach_function(function, softfp64) { 580bf215546Sopenharmony_ci if (strcmp(function->name, name) == 0) { 581bf215546Sopenharmony_ci func = function; 582bf215546Sopenharmony_ci break; 583bf215546Sopenharmony_ci } 584bf215546Sopenharmony_ci } 585bf215546Sopenharmony_ci if (!func || !func->impl) { 586bf215546Sopenharmony_ci fprintf(stderr, "Cannot find function \"%s\"\n", name); 587bf215546Sopenharmony_ci assert(func); 588bf215546Sopenharmony_ci } 589bf215546Sopenharmony_ci 590bf215546Sopenharmony_ci nir_ssa_def *params[4] = { NULL, }; 591bf215546Sopenharmony_ci 592bf215546Sopenharmony_ci nir_variable *ret_tmp = 593bf215546Sopenharmony_ci nir_local_variable_create(b->impl, return_type, "return_tmp"); 594bf215546Sopenharmony_ci nir_deref_instr *ret_deref = nir_build_deref_var(b, ret_tmp); 595bf215546Sopenharmony_ci params[0] = &ret_deref->dest.ssa; 596bf215546Sopenharmony_ci 597bf215546Sopenharmony_ci assert(nir_op_infos[instr->op].num_inputs + 1 == func->num_params); 598bf215546Sopenharmony_ci for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) { 599bf215546Sopenharmony_ci assert(i + 1 < ARRAY_SIZE(params)); 600bf215546Sopenharmony_ci params[i + 1] = nir_mov_alu(b, instr->src[i], 1); 601bf215546Sopenharmony_ci } 602bf215546Sopenharmony_ci 603bf215546Sopenharmony_ci nir_inline_function_impl(b, func->impl, params, NULL); 604bf215546Sopenharmony_ci 605bf215546Sopenharmony_ci return nir_load_deref(b, ret_deref); 606bf215546Sopenharmony_ci} 607bf215546Sopenharmony_ci 608bf215546Sopenharmony_cinir_lower_doubles_options 609bf215546Sopenharmony_cinir_lower_doubles_op_to_options_mask(nir_op opcode) 610bf215546Sopenharmony_ci{ 611bf215546Sopenharmony_ci switch (opcode) { 612bf215546Sopenharmony_ci case nir_op_frcp: return nir_lower_drcp; 613bf215546Sopenharmony_ci case nir_op_fsqrt: return nir_lower_dsqrt; 614bf215546Sopenharmony_ci case nir_op_frsq: return nir_lower_drsq; 615bf215546Sopenharmony_ci case nir_op_ftrunc: return nir_lower_dtrunc; 616bf215546Sopenharmony_ci case nir_op_ffloor: return nir_lower_dfloor; 617bf215546Sopenharmony_ci case nir_op_fceil: return nir_lower_dceil; 618bf215546Sopenharmony_ci case nir_op_ffract: return nir_lower_dfract; 619bf215546Sopenharmony_ci case nir_op_fround_even: return nir_lower_dround_even; 620bf215546Sopenharmony_ci case nir_op_fmod: return nir_lower_dmod; 621bf215546Sopenharmony_ci case nir_op_fsub: return nir_lower_dsub; 622bf215546Sopenharmony_ci case nir_op_fdiv: return nir_lower_ddiv; 623bf215546Sopenharmony_ci default: return 0; 624bf215546Sopenharmony_ci } 625bf215546Sopenharmony_ci} 626bf215546Sopenharmony_ci 627bf215546Sopenharmony_cistruct lower_doubles_data { 628bf215546Sopenharmony_ci const nir_shader *softfp64; 629bf215546Sopenharmony_ci nir_lower_doubles_options options; 630bf215546Sopenharmony_ci}; 631bf215546Sopenharmony_ci 632bf215546Sopenharmony_cistatic bool 633bf215546Sopenharmony_cishould_lower_double_instr(const nir_instr *instr, const void *_data) 634bf215546Sopenharmony_ci{ 635bf215546Sopenharmony_ci const struct lower_doubles_data *data = _data; 636bf215546Sopenharmony_ci const nir_lower_doubles_options options = data->options; 637bf215546Sopenharmony_ci 638bf215546Sopenharmony_ci if (instr->type != nir_instr_type_alu) 639bf215546Sopenharmony_ci return false; 640bf215546Sopenharmony_ci 641bf215546Sopenharmony_ci const nir_alu_instr *alu = nir_instr_as_alu(instr); 642bf215546Sopenharmony_ci 643bf215546Sopenharmony_ci assert(alu->dest.dest.is_ssa); 644bf215546Sopenharmony_ci bool is_64 = alu->dest.dest.ssa.bit_size == 64; 645bf215546Sopenharmony_ci 646bf215546Sopenharmony_ci unsigned num_srcs = nir_op_infos[alu->op].num_inputs; 647bf215546Sopenharmony_ci for (unsigned i = 0; i < num_srcs; i++) { 648bf215546Sopenharmony_ci is_64 |= (nir_src_bit_size(alu->src[i].src) == 64); 649bf215546Sopenharmony_ci } 650bf215546Sopenharmony_ci 651bf215546Sopenharmony_ci if (!is_64) 652bf215546Sopenharmony_ci return false; 653bf215546Sopenharmony_ci 654bf215546Sopenharmony_ci if (options & nir_lower_fp64_full_software) 655bf215546Sopenharmony_ci return true; 656bf215546Sopenharmony_ci 657bf215546Sopenharmony_ci return options & nir_lower_doubles_op_to_options_mask(alu->op); 658bf215546Sopenharmony_ci} 659bf215546Sopenharmony_ci 660bf215546Sopenharmony_cistatic nir_ssa_def * 661bf215546Sopenharmony_cilower_doubles_instr(nir_builder *b, nir_instr *instr, void *_data) 662bf215546Sopenharmony_ci{ 663bf215546Sopenharmony_ci const struct lower_doubles_data *data = _data; 664bf215546Sopenharmony_ci const nir_lower_doubles_options options = data->options; 665bf215546Sopenharmony_ci nir_alu_instr *alu = nir_instr_as_alu(instr); 666bf215546Sopenharmony_ci 667bf215546Sopenharmony_ci nir_ssa_def *soft_def = 668bf215546Sopenharmony_ci lower_doubles_instr_to_soft(b, alu, data->softfp64, options); 669bf215546Sopenharmony_ci if (soft_def) 670bf215546Sopenharmony_ci return soft_def; 671bf215546Sopenharmony_ci 672bf215546Sopenharmony_ci if (!(options & nir_lower_doubles_op_to_options_mask(alu->op))) 673bf215546Sopenharmony_ci return NULL; 674bf215546Sopenharmony_ci 675bf215546Sopenharmony_ci nir_ssa_def *src = nir_mov_alu(b, alu->src[0], 676bf215546Sopenharmony_ci alu->dest.dest.ssa.num_components); 677bf215546Sopenharmony_ci 678bf215546Sopenharmony_ci switch (alu->op) { 679bf215546Sopenharmony_ci case nir_op_frcp: 680bf215546Sopenharmony_ci return lower_rcp(b, src); 681bf215546Sopenharmony_ci case nir_op_fsqrt: 682bf215546Sopenharmony_ci return lower_sqrt_rsq(b, src, true); 683bf215546Sopenharmony_ci case nir_op_frsq: 684bf215546Sopenharmony_ci return lower_sqrt_rsq(b, src, false); 685bf215546Sopenharmony_ci case nir_op_ftrunc: 686bf215546Sopenharmony_ci return lower_trunc(b, src); 687bf215546Sopenharmony_ci case nir_op_ffloor: 688bf215546Sopenharmony_ci return lower_floor(b, src); 689bf215546Sopenharmony_ci case nir_op_fceil: 690bf215546Sopenharmony_ci return lower_ceil(b, src); 691bf215546Sopenharmony_ci case nir_op_ffract: 692bf215546Sopenharmony_ci return lower_fract(b, src); 693bf215546Sopenharmony_ci case nir_op_fround_even: 694bf215546Sopenharmony_ci return lower_round_even(b, src); 695bf215546Sopenharmony_ci 696bf215546Sopenharmony_ci case nir_op_fdiv: 697bf215546Sopenharmony_ci case nir_op_fsub: 698bf215546Sopenharmony_ci case nir_op_fmod: { 699bf215546Sopenharmony_ci nir_ssa_def *src1 = nir_mov_alu(b, alu->src[1], 700bf215546Sopenharmony_ci alu->dest.dest.ssa.num_components); 701bf215546Sopenharmony_ci switch (alu->op) { 702bf215546Sopenharmony_ci case nir_op_fdiv: 703bf215546Sopenharmony_ci return nir_fmul(b, src, nir_frcp(b, src1)); 704bf215546Sopenharmony_ci case nir_op_fsub: 705bf215546Sopenharmony_ci return nir_fadd(b, src, nir_fneg(b, src1)); 706bf215546Sopenharmony_ci case nir_op_fmod: 707bf215546Sopenharmony_ci return lower_mod(b, src, src1); 708bf215546Sopenharmony_ci default: 709bf215546Sopenharmony_ci unreachable("unhandled opcode"); 710bf215546Sopenharmony_ci } 711bf215546Sopenharmony_ci } 712bf215546Sopenharmony_ci default: 713bf215546Sopenharmony_ci unreachable("unhandled opcode"); 714bf215546Sopenharmony_ci } 715bf215546Sopenharmony_ci} 716bf215546Sopenharmony_ci 717bf215546Sopenharmony_cistatic bool 718bf215546Sopenharmony_cinir_lower_doubles_impl(nir_function_impl *impl, 719bf215546Sopenharmony_ci const nir_shader *softfp64, 720bf215546Sopenharmony_ci nir_lower_doubles_options options) 721bf215546Sopenharmony_ci{ 722bf215546Sopenharmony_ci struct lower_doubles_data data = { 723bf215546Sopenharmony_ci .softfp64 = softfp64, 724bf215546Sopenharmony_ci .options = options, 725bf215546Sopenharmony_ci }; 726bf215546Sopenharmony_ci 727bf215546Sopenharmony_ci bool progress = 728bf215546Sopenharmony_ci nir_function_impl_lower_instructions(impl, 729bf215546Sopenharmony_ci should_lower_double_instr, 730bf215546Sopenharmony_ci lower_doubles_instr, 731bf215546Sopenharmony_ci &data); 732bf215546Sopenharmony_ci 733bf215546Sopenharmony_ci if (progress && (options & nir_lower_fp64_full_software)) { 734bf215546Sopenharmony_ci /* SSA and register indices are completely messed up now */ 735bf215546Sopenharmony_ci nir_index_ssa_defs(impl); 736bf215546Sopenharmony_ci nir_index_local_regs(impl); 737bf215546Sopenharmony_ci 738bf215546Sopenharmony_ci nir_metadata_preserve(impl, nir_metadata_none); 739bf215546Sopenharmony_ci 740bf215546Sopenharmony_ci /* And we have deref casts we need to clean up thanks to function 741bf215546Sopenharmony_ci * inlining. 742bf215546Sopenharmony_ci */ 743bf215546Sopenharmony_ci nir_opt_deref_impl(impl); 744bf215546Sopenharmony_ci } else if (progress) { 745bf215546Sopenharmony_ci nir_metadata_preserve(impl, nir_metadata_block_index | 746bf215546Sopenharmony_ci nir_metadata_dominance); 747bf215546Sopenharmony_ci } else { 748bf215546Sopenharmony_ci nir_metadata_preserve(impl, nir_metadata_all); 749bf215546Sopenharmony_ci } 750bf215546Sopenharmony_ci 751bf215546Sopenharmony_ci return progress; 752bf215546Sopenharmony_ci} 753bf215546Sopenharmony_ci 754bf215546Sopenharmony_cibool 755bf215546Sopenharmony_cinir_lower_doubles(nir_shader *shader, 756bf215546Sopenharmony_ci const nir_shader *softfp64, 757bf215546Sopenharmony_ci nir_lower_doubles_options options) 758bf215546Sopenharmony_ci{ 759bf215546Sopenharmony_ci bool progress = false; 760bf215546Sopenharmony_ci 761bf215546Sopenharmony_ci nir_foreach_function(function, shader) { 762bf215546Sopenharmony_ci if (function->impl) { 763bf215546Sopenharmony_ci progress |= nir_lower_doubles_impl(function->impl, softfp64, options); 764bf215546Sopenharmony_ci } 765bf215546Sopenharmony_ci } 766bf215546Sopenharmony_ci 767bf215546Sopenharmony_ci return progress; 768bf215546Sopenharmony_ci} 769