1/* 2 * Copyright © 2014-2015 Broadcom 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24#include "nir.h" 25#include "nir_builder.h" 26 27struct alu_width_data { 28 nir_vectorize_cb cb; 29 const void *data; 30}; 31 32/** @file nir_lower_alu_width.c 33 * 34 * Replaces nir_alu_instr operations with more than one channel used in the 35 * arguments with individual per-channel operations. 36 * 37 * Optionally, a callback function which returns the max vectorization width 38 * per instruction can be provided. 39 * 40 * The max vectorization width must be a power of 2. 41 */ 42 43static bool 44inst_is_vector_alu(const nir_instr *instr, const void *_state) 45{ 46 if (instr->type != nir_instr_type_alu) 47 return false; 48 49 nir_alu_instr *alu = nir_instr_as_alu(instr); 50 51 /* There is no ALU instruction which has a scalar destination, scalar 52 * src[0], and some other vector source. 53 */ 54 assert(alu->dest.dest.is_ssa); 55 assert(alu->src[0].src.is_ssa); 56 return alu->dest.dest.ssa.num_components > 1 || 57 nir_op_infos[alu->op].input_sizes[0] > 1; 58} 59 60/* Checks whether all operands of an ALU instruction are swizzled 61 * within the targeted vectorization width. 62 * 63 * The assumption here is that a vecN instruction can only swizzle 64 * within the first N channels of the values it consumes, irrespective 65 * of the capabilities of the instruction which produced those values. 66 * If we assume values are packed consistently (i.e., they always start 67 * at the beginning of a hardware register), we can actually access any 68 * aligned group of N channels so long as we stay within the group. 69 * This means for a vectorization width of 4 that only swizzles from 70 * either [xyzw] or [abcd] etc are allowed. For a width of 2 these are 71 * swizzles from either [xy] or [zw] etc. 72 */ 73static bool 74alu_is_swizzled_in_bounds(const nir_alu_instr *alu, unsigned width) 75{ 76 for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) { 77 if (nir_op_infos[alu->op].input_sizes[i] == 1) 78 continue; 79 80 unsigned mask = ~(width - 1); 81 for (unsigned j = 1; j < alu->dest.dest.ssa.num_components; j++) { 82 if ((alu->src[i].swizzle[0] & mask) != (alu->src[i].swizzle[j] & mask)) 83 return false; 84 } 85 } 86 87 return true; 88} 89 90static void 91nir_alu_ssa_dest_init(nir_alu_instr *alu, unsigned num_components, 92 unsigned bit_size) 93{ 94 nir_ssa_dest_init(&alu->instr, &alu->dest.dest, num_components, 95 bit_size, NULL); 96 alu->dest.write_mask = (1 << num_components) - 1; 97} 98 99static nir_ssa_def * 100lower_reduction(nir_alu_instr *alu, nir_op chan_op, nir_op merge_op, 101 nir_builder *builder) 102{ 103 unsigned num_components = nir_op_infos[alu->op].input_sizes[0]; 104 105 nir_ssa_def *last = NULL; 106 for (int i = num_components - 1; i >= 0; i--) { 107 nir_alu_instr *chan = nir_alu_instr_create(builder->shader, chan_op); 108 nir_alu_ssa_dest_init(chan, 1, alu->dest.dest.ssa.bit_size); 109 nir_alu_src_copy(&chan->src[0], &alu->src[0]); 110 chan->src[0].swizzle[0] = chan->src[0].swizzle[i]; 111 if (nir_op_infos[chan_op].num_inputs > 1) { 112 assert(nir_op_infos[chan_op].num_inputs == 2); 113 nir_alu_src_copy(&chan->src[1], &alu->src[1]); 114 chan->src[1].swizzle[0] = chan->src[1].swizzle[i]; 115 } 116 chan->exact = alu->exact; 117 118 nir_builder_instr_insert(builder, &chan->instr); 119 120 if (i == num_components - 1) { 121 last = &chan->dest.dest.ssa; 122 } else { 123 last = nir_build_alu(builder, merge_op, 124 last, &chan->dest.dest.ssa, NULL, NULL); 125 } 126 } 127 128 return last; 129} 130 131static inline bool 132will_lower_ffma(nir_shader *shader, unsigned bit_size) 133{ 134 switch (bit_size) { 135 case 16: 136 return shader->options->lower_ffma16; 137 case 32: 138 return shader->options->lower_ffma32; 139 case 64: 140 return shader->options->lower_ffma64; 141 } 142 unreachable("bad bit size"); 143} 144 145static nir_ssa_def * 146lower_fdot(nir_alu_instr *alu, nir_builder *builder) 147{ 148 /* If we don't want to lower ffma, create several ffma instead of fmul+fadd 149 * and fusing later because fusing is not possible for exact fdot instructions. 150 */ 151 if (will_lower_ffma(builder->shader, alu->dest.dest.ssa.bit_size)) 152 return lower_reduction(alu, nir_op_fmul, nir_op_fadd, builder); 153 154 unsigned num_components = nir_op_infos[alu->op].input_sizes[0]; 155 156 nir_ssa_def *prev = NULL; 157 for (int i = num_components - 1; i >= 0; i--) { 158 nir_alu_instr *instr = nir_alu_instr_create( 159 builder->shader, prev ? nir_op_ffma : nir_op_fmul); 160 nir_alu_ssa_dest_init(instr, 1, alu->dest.dest.ssa.bit_size); 161 for (unsigned j = 0; j < 2; j++) { 162 nir_alu_src_copy(&instr->src[j], &alu->src[j]); 163 instr->src[j].swizzle[0] = alu->src[j].swizzle[i]; 164 } 165 if (i != num_components - 1) 166 instr->src[2].src = nir_src_for_ssa(prev); 167 instr->exact = builder->exact; 168 169 nir_builder_instr_insert(builder, &instr->instr); 170 171 prev = &instr->dest.dest.ssa; 172 } 173 174 return prev; 175} 176 177static nir_ssa_def * 178lower_alu_instr_width(nir_builder *b, nir_instr *instr, void *_data) 179{ 180 struct alu_width_data *data = _data; 181 nir_alu_instr *alu = nir_instr_as_alu(instr); 182 unsigned num_src = nir_op_infos[alu->op].num_inputs; 183 unsigned i, chan; 184 185 assert(alu->dest.dest.is_ssa); 186 assert(alu->dest.write_mask != 0); 187 188 b->exact = alu->exact; 189 190 unsigned num_components = alu->dest.dest.ssa.num_components; 191 unsigned target_width = 1; 192 193 if (data->cb) { 194 target_width = data->cb(instr, data->data); 195 assert(util_is_power_of_two_or_zero(target_width)); 196 if (target_width == 0) 197 return NULL; 198 } 199 200#define LOWER_REDUCTION(name, chan, merge) \ 201 case name##2: \ 202 case name##3: \ 203 case name##4: \ 204 case name##8: \ 205 case name##16: \ 206 return lower_reduction(alu, chan, merge, b); \ 207 208 switch (alu->op) { 209 case nir_op_vec16: 210 case nir_op_vec8: 211 case nir_op_vec5: 212 case nir_op_vec4: 213 case nir_op_vec3: 214 case nir_op_vec2: 215 case nir_op_cube_face_coord_amd: 216 case nir_op_cube_face_index_amd: 217 /* We don't need to scalarize these ops, they're the ones generated to 218 * group up outputs into a value that can be SSAed. 219 */ 220 return NULL; 221 222 case nir_op_pack_half_2x16: { 223 if (!b->shader->options->lower_pack_half_2x16) 224 return NULL; 225 226 nir_ssa_def *src_vec2 = nir_ssa_for_alu_src(b, alu, 0); 227 return nir_pack_half_2x16_split(b, nir_channel(b, src_vec2, 0), 228 nir_channel(b, src_vec2, 1)); 229 } 230 231 case nir_op_unpack_unorm_4x8: 232 case nir_op_unpack_snorm_4x8: 233 case nir_op_unpack_unorm_2x16: 234 case nir_op_unpack_snorm_2x16: 235 /* There is no scalar version of these ops, unless we were to break it 236 * down to bitshifts and math (which is definitely not intended). 237 */ 238 return NULL; 239 240 case nir_op_unpack_half_2x16_flush_to_zero: 241 case nir_op_unpack_half_2x16: { 242 if (!b->shader->options->lower_unpack_half_2x16) 243 return NULL; 244 245 nir_ssa_def *packed = nir_ssa_for_alu_src(b, alu, 0); 246 if (alu->op == nir_op_unpack_half_2x16_flush_to_zero) { 247 return nir_vec2(b, 248 nir_unpack_half_2x16_split_x_flush_to_zero(b, 249 packed), 250 nir_unpack_half_2x16_split_y_flush_to_zero(b, 251 packed)); 252 } else { 253 return nir_vec2(b, 254 nir_unpack_half_2x16_split_x(b, packed), 255 nir_unpack_half_2x16_split_y(b, packed)); 256 } 257 } 258 259 case nir_op_pack_uvec2_to_uint: { 260 assert(b->shader->options->lower_pack_snorm_2x16 || 261 b->shader->options->lower_pack_unorm_2x16); 262 263 nir_ssa_def *word = nir_extract_u16(b, nir_ssa_for_alu_src(b, alu, 0), 264 nir_imm_int(b, 0)); 265 return nir_ior(b, nir_ishl(b, nir_channel(b, word, 1), 266 nir_imm_int(b, 16)), 267 nir_channel(b, word, 0)); 268 } 269 270 case nir_op_pack_uvec4_to_uint: { 271 assert(b->shader->options->lower_pack_snorm_4x8 || 272 b->shader->options->lower_pack_unorm_4x8); 273 274 nir_ssa_def *byte = nir_extract_u8(b, nir_ssa_for_alu_src(b, alu, 0), 275 nir_imm_int(b, 0)); 276 return nir_ior(b, nir_ior(b, nir_ishl(b, nir_channel(b, byte, 3), 277 nir_imm_int(b, 24)), 278 nir_ishl(b, nir_channel(b, byte, 2), 279 nir_imm_int(b, 16))), 280 nir_ior(b, nir_ishl(b, nir_channel(b, byte, 1), 281 nir_imm_int(b, 8)), 282 nir_channel(b, byte, 0))); 283 } 284 285 case nir_op_fdph: { 286 nir_ssa_def *src0_vec = nir_ssa_for_alu_src(b, alu, 0); 287 nir_ssa_def *src1_vec = nir_ssa_for_alu_src(b, alu, 1); 288 289 nir_ssa_def *sum[4]; 290 for (unsigned i = 0; i < 3; i++) { 291 sum[i] = nir_fmul(b, nir_channel(b, src0_vec, i), 292 nir_channel(b, src1_vec, i)); 293 } 294 sum[3] = nir_channel(b, src1_vec, 3); 295 296 return nir_fadd(b, nir_fadd(b, sum[0], sum[1]), 297 nir_fadd(b, sum[2], sum[3])); 298 } 299 300 case nir_op_pack_64_2x32: { 301 if (!b->shader->options->lower_pack_64_2x32) 302 return NULL; 303 304 nir_ssa_def *src_vec2 = nir_ssa_for_alu_src(b, alu, 0); 305 return nir_pack_64_2x32_split(b, nir_channel(b, src_vec2, 0), 306 nir_channel(b, src_vec2, 1)); 307 } 308 case nir_op_pack_64_4x16: { 309 if (!b->shader->options->lower_pack_64_4x16) 310 return NULL; 311 312 nir_ssa_def *src_vec4 = nir_ssa_for_alu_src(b, alu, 0); 313 nir_ssa_def *xy = nir_pack_32_2x16_split(b, nir_channel(b, src_vec4, 0), 314 nir_channel(b, src_vec4, 1)); 315 nir_ssa_def *zw = nir_pack_32_2x16_split(b, nir_channel(b, src_vec4, 2), 316 nir_channel(b, src_vec4, 3)); 317 318 return nir_pack_64_2x32_split(b, xy, zw); 319 } 320 case nir_op_pack_32_2x16: { 321 if (!b->shader->options->lower_pack_32_2x16) 322 return NULL; 323 324 nir_ssa_def *src_vec2 = nir_ssa_for_alu_src(b, alu, 0); 325 return nir_pack_32_2x16_split(b, nir_channel(b, src_vec2, 0), 326 nir_channel(b, src_vec2, 1)); 327 } 328 case nir_op_unpack_64_2x32: 329 case nir_op_unpack_64_4x16: 330 case nir_op_unpack_32_2x16: 331 case nir_op_unpack_double_2x32_dxil: 332 return NULL; 333 334 case nir_op_fdot2: 335 case nir_op_fdot3: 336 case nir_op_fdot4: 337 case nir_op_fdot8: 338 case nir_op_fdot16: 339 return lower_fdot(alu, b); 340 341 LOWER_REDUCTION(nir_op_ball_fequal, nir_op_feq, nir_op_iand); 342 LOWER_REDUCTION(nir_op_ball_iequal, nir_op_ieq, nir_op_iand); 343 LOWER_REDUCTION(nir_op_bany_fnequal, nir_op_fneu, nir_op_ior); 344 LOWER_REDUCTION(nir_op_bany_inequal, nir_op_ine, nir_op_ior); 345 LOWER_REDUCTION(nir_op_b8all_fequal, nir_op_feq8, nir_op_iand); 346 LOWER_REDUCTION(nir_op_b8all_iequal, nir_op_ieq8, nir_op_iand); 347 LOWER_REDUCTION(nir_op_b8any_fnequal, nir_op_fneu8, nir_op_ior); 348 LOWER_REDUCTION(nir_op_b8any_inequal, nir_op_ine8, nir_op_ior); 349 LOWER_REDUCTION(nir_op_b16all_fequal, nir_op_feq16, nir_op_iand); 350 LOWER_REDUCTION(nir_op_b16all_iequal, nir_op_ieq16, nir_op_iand); 351 LOWER_REDUCTION(nir_op_b16any_fnequal, nir_op_fneu16, nir_op_ior); 352 LOWER_REDUCTION(nir_op_b16any_inequal, nir_op_ine16, nir_op_ior); 353 LOWER_REDUCTION(nir_op_b32all_fequal, nir_op_feq32, nir_op_iand); 354 LOWER_REDUCTION(nir_op_b32all_iequal, nir_op_ieq32, nir_op_iand); 355 LOWER_REDUCTION(nir_op_b32any_fnequal, nir_op_fneu32, nir_op_ior); 356 LOWER_REDUCTION(nir_op_b32any_inequal, nir_op_ine32, nir_op_ior); 357 LOWER_REDUCTION(nir_op_fall_equal, nir_op_seq, nir_op_fmin); 358 LOWER_REDUCTION(nir_op_fany_nequal, nir_op_sne, nir_op_fmax); 359 360 default: 361 break; 362 } 363 364 if (num_components == 1) 365 return NULL; 366 367 if (num_components <= target_width) { 368 /* If the ALU instr is swizzled outside the target width, 369 * reduce the target width. 370 */ 371 if (alu_is_swizzled_in_bounds(alu, target_width)) 372 return NULL; 373 else 374 target_width = DIV_ROUND_UP(num_components, 2); 375 } 376 377 nir_alu_instr *vec = nir_alu_instr_create(b->shader, nir_op_vec(num_components)); 378 379 for (chan = 0; chan < num_components; chan += target_width) { 380 unsigned components = MIN2(target_width, num_components - chan); 381 nir_alu_instr *lower = nir_alu_instr_create(b->shader, alu->op); 382 383 for (i = 0; i < num_src; i++) { 384 nir_alu_src_copy(&lower->src[i], &alu->src[i]); 385 386 /* We only handle same-size-as-dest (input_sizes[] == 0) or scalar 387 * args (input_sizes[] == 1). 388 */ 389 assert(nir_op_infos[alu->op].input_sizes[i] < 2); 390 for (int j = 0; j < components; j++) { 391 unsigned src_chan = nir_op_infos[alu->op].input_sizes[i] == 1 ? 0 : chan + j; 392 lower->src[i].swizzle[j] = alu->src[i].swizzle[src_chan]; 393 } 394 } 395 396 nir_alu_ssa_dest_init(lower, components, alu->dest.dest.ssa.bit_size); 397 lower->dest.saturate = alu->dest.saturate; 398 lower->exact = alu->exact; 399 400 for (i = 0; i < components; i++) { 401 vec->src[chan + i].src = nir_src_for_ssa(&lower->dest.dest.ssa); 402 vec->src[chan + i].swizzle[0] = i; 403 } 404 405 nir_builder_instr_insert(b, &lower->instr); 406 } 407 408 return nir_builder_alu_instr_finish_and_insert(b, vec); 409} 410 411bool 412nir_lower_alu_width(nir_shader *shader, nir_vectorize_cb cb, const void *_data) 413{ 414 struct alu_width_data data = { 415 .cb = cb, 416 .data = _data, 417 }; 418 419 return nir_shader_lower_instructions(shader, 420 inst_is_vector_alu, 421 lower_alu_instr_width, 422 &data); 423} 424 425struct alu_to_scalar_data { 426 nir_instr_filter_cb cb; 427 const void *data; 428}; 429 430static uint8_t 431scalar_cb(const nir_instr *instr, const void *data) 432{ 433 /* return vectorization-width = 1 for filtered instructions */ 434 const struct alu_to_scalar_data *filter = data; 435 return filter->cb(instr, filter->data) ? 1 : 0; 436} 437 438bool 439nir_lower_alu_to_scalar(nir_shader *shader, nir_instr_filter_cb cb, const void *_data) 440{ 441 struct alu_to_scalar_data data = { 442 .cb = cb, 443 .data = _data, 444 }; 445 446 return nir_lower_alu_width(shader, cb ? scalar_cb : NULL, &data); 447} 448 449