1/* 2 * Copyright © 2014 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Jason Ekstrand (jason@jlekstrand.net) 25 * 26 */ 27 28#include "nir.h" 29#include "nir_builder.h" 30#include "nir_vla.h" 31 32/* 33 * This file implements an out-of-SSA pass as described in "Revisiting 34 * Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by 35 * Boissinot et al. 36 */ 37 38struct from_ssa_state { 39 nir_builder builder; 40 void *dead_ctx; 41 struct exec_list dead_instrs; 42 bool phi_webs_only; 43 struct hash_table *merge_node_table; 44 nir_instr *instr; 45 bool progress; 46}; 47 48/* Returns if def @a comes after def @b. 49 * 50 * The core observation that makes the Boissinot algorithm efficient 51 * is that, given two properly sorted sets, we can check for 52 * interference in these sets via a linear walk. This is accomplished 53 * by doing single combined walk over union of the two sets in DFS 54 * order. It doesn't matter what DFS we do so long as we're 55 * consistent. Fortunately, the dominance algorithm we ran prior to 56 * this pass did such a walk and recorded the pre- and post-indices in 57 * the blocks. 58 * 59 * We treat SSA undefs as always coming before other instruction types. 60 */ 61static bool 62def_after(nir_ssa_def *a, nir_ssa_def *b) 63{ 64 if (a->parent_instr->type == nir_instr_type_ssa_undef) 65 return false; 66 67 if (b->parent_instr->type == nir_instr_type_ssa_undef) 68 return true; 69 70 /* If they're in the same block, we can rely on whichever instruction 71 * comes first in the block. 72 */ 73 if (a->parent_instr->block == b->parent_instr->block) 74 return a->parent_instr->index > b->parent_instr->index; 75 76 /* Otherwise, if blocks are distinct, we sort them in DFS pre-order */ 77 return a->parent_instr->block->dom_pre_index > 78 b->parent_instr->block->dom_pre_index; 79} 80 81/* Returns true if a dominates b */ 82static bool 83ssa_def_dominates(nir_ssa_def *a, nir_ssa_def *b) 84{ 85 if (a->parent_instr->type == nir_instr_type_ssa_undef) { 86 /* SSA undefs always dominate */ 87 return true; 88 } if (def_after(a, b)) { 89 return false; 90 } else if (a->parent_instr->block == b->parent_instr->block) { 91 return def_after(b, a); 92 } else { 93 return nir_block_dominates(a->parent_instr->block, 94 b->parent_instr->block); 95 } 96} 97 98 99/* The following data structure, which I have named merge_set is a way of 100 * representing a set registers of non-interfering registers. This is 101 * based on the concept of a "dominance forest" presented in "Fast Copy 102 * Coalescing and Live-Range Identification" by Budimlic et al. but the 103 * implementation concept is taken from "Revisiting Out-of-SSA Translation 104 * for Correctness, Code Quality, and Efficiency" by Boissinot et al. 105 * 106 * Each SSA definition is associated with a merge_node and the association 107 * is represented by a combination of a hash table and the "def" parameter 108 * in the merge_node structure. The merge_set stores a linked list of 109 * merge_nodes, ordered by a pre-order DFS walk of the dominance tree. (Since 110 * the liveness analysis pass indexes the SSA values in dominance order for 111 * us, this is an easy thing to keep up.) It is assumed that no pair of the 112 * nodes in a given set interfere. Merging two sets or checking for 113 * interference can be done in a single linear-time merge-sort walk of the 114 * two lists of nodes. 115 */ 116struct merge_set; 117 118typedef struct { 119 struct exec_node node; 120 struct merge_set *set; 121 nir_ssa_def *def; 122} merge_node; 123 124typedef struct merge_set { 125 struct exec_list nodes; 126 unsigned size; 127 bool divergent; 128 nir_register *reg; 129} merge_set; 130 131#if 0 132static void 133merge_set_dump(merge_set *set, FILE *fp) 134{ 135 nir_ssa_def *dom[set->size]; 136 int dom_idx = -1; 137 138 foreach_list_typed(merge_node, node, node, &set->nodes) { 139 while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def)) 140 dom_idx--; 141 142 for (int i = 0; i <= dom_idx; i++) 143 fprintf(fp, " "); 144 145 fprintf(fp, "ssa_%d\n", node->def->index); 146 147 dom[++dom_idx] = node->def; 148 } 149} 150#endif 151 152static merge_node * 153get_merge_node(nir_ssa_def *def, struct from_ssa_state *state) 154{ 155 struct hash_entry *entry = 156 _mesa_hash_table_search(state->merge_node_table, def); 157 if (entry) 158 return entry->data; 159 160 merge_set *set = ralloc(state->dead_ctx, merge_set); 161 exec_list_make_empty(&set->nodes); 162 set->size = 1; 163 set->divergent = def->divergent; 164 set->reg = NULL; 165 166 merge_node *node = ralloc(state->dead_ctx, merge_node); 167 node->set = set; 168 node->def = def; 169 exec_list_push_head(&set->nodes, &node->node); 170 171 _mesa_hash_table_insert(state->merge_node_table, def, node); 172 173 return node; 174} 175 176static bool 177merge_nodes_interfere(merge_node *a, merge_node *b) 178{ 179 /* There's no need to check for interference within the same set, 180 * because we assume, that sets themselves are already 181 * interference-free. 182 */ 183 if (a->set == b->set) 184 return false; 185 186 return nir_ssa_defs_interfere(a->def, b->def); 187} 188 189/* Merges b into a 190 * 191 * This algorithm uses def_after to ensure that the sets always stay in the 192 * same order as the pre-order DFS done by the liveness algorithm. 193 */ 194static merge_set * 195merge_merge_sets(merge_set *a, merge_set *b) 196{ 197 struct exec_node *an = exec_list_get_head(&a->nodes); 198 struct exec_node *bn = exec_list_get_head(&b->nodes); 199 while (!exec_node_is_tail_sentinel(bn)) { 200 merge_node *a_node = exec_node_data(merge_node, an, node); 201 merge_node *b_node = exec_node_data(merge_node, bn, node); 202 203 if (exec_node_is_tail_sentinel(an) || 204 def_after(a_node->def, b_node->def)) { 205 struct exec_node *next = bn->next; 206 exec_node_remove(bn); 207 exec_node_insert_node_before(an, bn); 208 exec_node_data(merge_node, bn, node)->set = a; 209 bn = next; 210 } else { 211 an = an->next; 212 } 213 } 214 215 a->size += b->size; 216 b->size = 0; 217 a->divergent |= b->divergent; 218 219 return a; 220} 221 222/* Checks for any interference between two merge sets 223 * 224 * This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA 225 * Translation for Correctness, Code Quality, and Efficiency" by 226 * Boissinot et al. 227 */ 228static bool 229merge_sets_interfere(merge_set *a, merge_set *b) 230{ 231 /* List of all the nodes which dominate the current node, in dominance 232 * order. 233 */ 234 NIR_VLA(merge_node *, dom, a->size + b->size); 235 int dom_idx = -1; 236 237 struct exec_node *an = exec_list_get_head(&a->nodes); 238 struct exec_node *bn = exec_list_get_head(&b->nodes); 239 while (!exec_node_is_tail_sentinel(an) || 240 !exec_node_is_tail_sentinel(bn)) { 241 242 /* We walk the union of the two sets in the same order as the pre-order 243 * DFS done by liveness analysis. 244 */ 245 merge_node *current; 246 if (exec_node_is_tail_sentinel(an)) { 247 current = exec_node_data(merge_node, bn, node); 248 bn = bn->next; 249 } else if (exec_node_is_tail_sentinel(bn)) { 250 current = exec_node_data(merge_node, an, node); 251 an = an->next; 252 } else { 253 merge_node *a_node = exec_node_data(merge_node, an, node); 254 merge_node *b_node = exec_node_data(merge_node, bn, node); 255 256 if (def_after(b_node->def, a_node->def)) { 257 current = a_node; 258 an = an->next; 259 } else { 260 current = b_node; 261 bn = bn->next; 262 } 263 } 264 265 /* Because our walk is a pre-order DFS, we can maintain the list of 266 * dominating nodes as a simple stack, pushing every node onto the list 267 * after we visit it and popping any non-dominating nodes off before we 268 * visit the current node. 269 */ 270 while (dom_idx >= 0 && 271 !ssa_def_dominates(dom[dom_idx]->def, current->def)) 272 dom_idx--; 273 274 /* There are three invariants of this algorithm that are important here: 275 * 276 * 1. There is no interference within either set a or set b. 277 * 2. None of the nodes processed up until this point interfere. 278 * 3. All the dominators of `current` have been processed 279 * 280 * Because of these invariants, we only need to check the current node 281 * against its minimal dominator. If any other node N in the union 282 * interferes with current, then N must dominate current because we are 283 * in SSA form. If N dominates current then it must also dominate our 284 * minimal dominator dom[dom_idx]. Since N is live at current it must 285 * also be live at the minimal dominator which means N interferes with 286 * the minimal dominator dom[dom_idx] and, by invariants 2 and 3 above, 287 * the algorithm would have already terminated. Therefore, if we got 288 * here, the only node that can possibly interfere with current is the 289 * minimal dominator dom[dom_idx]. 290 * 291 * This is what allows us to do a interference check of the union of the 292 * two sets with a single linear-time walk. 293 */ 294 if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx])) 295 return true; 296 297 dom[++dom_idx] = current; 298 } 299 300 return false; 301} 302 303static bool 304add_parallel_copy_to_end_of_block(nir_shader *shader, nir_block *block, void *dead_ctx) 305{ 306 bool need_end_copy = false; 307 if (block->successors[0]) { 308 nir_instr *instr = nir_block_first_instr(block->successors[0]); 309 if (instr && instr->type == nir_instr_type_phi) 310 need_end_copy = true; 311 } 312 313 if (block->successors[1]) { 314 nir_instr *instr = nir_block_first_instr(block->successors[1]); 315 if (instr && instr->type == nir_instr_type_phi) 316 need_end_copy = true; 317 } 318 319 if (need_end_copy) { 320 /* If one of our successors has at least one phi node, we need to 321 * create a parallel copy at the end of the block but before the jump 322 * (if there is one). 323 */ 324 nir_parallel_copy_instr *pcopy = 325 nir_parallel_copy_instr_create(shader); 326 327 nir_instr_insert(nir_after_block_before_jump(block), &pcopy->instr); 328 } 329 330 return true; 331} 332 333static nir_parallel_copy_instr * 334get_parallel_copy_at_end_of_block(nir_block *block) 335{ 336 nir_instr *last_instr = nir_block_last_instr(block); 337 if (last_instr == NULL) 338 return NULL; 339 340 /* The last instruction may be a jump in which case the parallel copy is 341 * right before it. 342 */ 343 if (last_instr->type == nir_instr_type_jump) 344 last_instr = nir_instr_prev(last_instr); 345 346 if (last_instr && last_instr->type == nir_instr_type_parallel_copy) 347 return nir_instr_as_parallel_copy(last_instr); 348 else 349 return NULL; 350} 351 352/** Isolate phi nodes with parallel copies 353 * 354 * In order to solve the dependency problems with the sources and 355 * destinations of phi nodes, we first isolate them by adding parallel 356 * copies to the beginnings and ends of basic blocks. For every block with 357 * phi nodes, we add a parallel copy immediately following the last phi 358 * node that copies the destinations of all of the phi nodes to new SSA 359 * values. We also add a parallel copy to the end of every block that has 360 * a successor with phi nodes that, for each phi node in each successor, 361 * copies the corresponding sorce of the phi node and adjust the phi to 362 * used the destination of the parallel copy. 363 * 364 * In SSA form, each value has exactly one definition. What this does is 365 * ensure that each value used in a phi also has exactly one use. The 366 * destinations of phis are only used by the parallel copy immediately 367 * following the phi nodes and. Thanks to the parallel copy at the end of 368 * the predecessor block, the sources of phi nodes are are the only use of 369 * that value. This allows us to immediately assign all the sources and 370 * destinations of any given phi node to the same register without worrying 371 * about interference at all. We do coalescing to get rid of the parallel 372 * copies where possible. 373 * 374 * Before this pass can be run, we have to iterate over the blocks with 375 * add_parallel_copy_to_end_of_block to ensure that the parallel copies at 376 * the ends of blocks exist. We can create the ones at the beginnings as 377 * we go, but the ones at the ends of blocks need to be created ahead of 378 * time because of potential back-edges in the CFG. 379 */ 380static bool 381isolate_phi_nodes_block(nir_shader *shader, nir_block *block, void *dead_ctx) 382{ 383 nir_instr *last_phi_instr = NULL; 384 nir_foreach_instr(instr, block) { 385 /* Phi nodes only ever come at the start of a block */ 386 if (instr->type != nir_instr_type_phi) 387 break; 388 389 last_phi_instr = instr; 390 } 391 392 /* If we don't have any phis, then there's nothing for us to do. */ 393 if (last_phi_instr == NULL) 394 return true; 395 396 /* If we have phi nodes, we need to create a parallel copy at the 397 * start of this block but after the phi nodes. 398 */ 399 nir_parallel_copy_instr *block_pcopy = 400 nir_parallel_copy_instr_create(shader); 401 nir_instr_insert_after(last_phi_instr, &block_pcopy->instr); 402 403 nir_foreach_instr(instr, block) { 404 /* Phi nodes only ever come at the start of a block */ 405 if (instr->type != nir_instr_type_phi) 406 break; 407 408 nir_phi_instr *phi = nir_instr_as_phi(instr); 409 assert(phi->dest.is_ssa); 410 nir_foreach_phi_src(src, phi) { 411 if (nir_src_is_undef(src->src)) 412 continue; 413 414 nir_parallel_copy_instr *pcopy = 415 get_parallel_copy_at_end_of_block(src->pred); 416 assert(pcopy); 417 418 nir_parallel_copy_entry *entry = rzalloc(dead_ctx, 419 nir_parallel_copy_entry); 420 nir_ssa_dest_init(&pcopy->instr, &entry->dest, 421 phi->dest.ssa.num_components, 422 phi->dest.ssa.bit_size, NULL); 423 entry->dest.ssa.divergent = nir_src_is_divergent(src->src); 424 exec_list_push_tail(&pcopy->entries, &entry->node); 425 426 assert(src->src.is_ssa); 427 nir_instr_rewrite_src(&pcopy->instr, &entry->src, src->src); 428 429 nir_instr_rewrite_src(&phi->instr, &src->src, 430 nir_src_for_ssa(&entry->dest.ssa)); 431 } 432 433 nir_parallel_copy_entry *entry = rzalloc(dead_ctx, 434 nir_parallel_copy_entry); 435 nir_ssa_dest_init(&block_pcopy->instr, &entry->dest, 436 phi->dest.ssa.num_components, phi->dest.ssa.bit_size, 437 NULL); 438 entry->dest.ssa.divergent = phi->dest.ssa.divergent; 439 exec_list_push_tail(&block_pcopy->entries, &entry->node); 440 441 nir_ssa_def_rewrite_uses(&phi->dest.ssa, 442 &entry->dest.ssa); 443 444 nir_instr_rewrite_src(&block_pcopy->instr, &entry->src, 445 nir_src_for_ssa(&phi->dest.ssa)); 446 } 447 448 return true; 449} 450 451static bool 452coalesce_phi_nodes_block(nir_block *block, struct from_ssa_state *state) 453{ 454 nir_foreach_instr(instr, block) { 455 /* Phi nodes only ever come at the start of a block */ 456 if (instr->type != nir_instr_type_phi) 457 break; 458 459 nir_phi_instr *phi = nir_instr_as_phi(instr); 460 461 assert(phi->dest.is_ssa); 462 merge_node *dest_node = get_merge_node(&phi->dest.ssa, state); 463 464 nir_foreach_phi_src(src, phi) { 465 assert(src->src.is_ssa); 466 if (nir_src_is_undef(src->src)) 467 continue; 468 469 merge_node *src_node = get_merge_node(src->src.ssa, state); 470 if (src_node->set != dest_node->set) 471 merge_merge_sets(dest_node->set, src_node->set); 472 } 473 } 474 475 return true; 476} 477 478static void 479aggressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy, 480 struct from_ssa_state *state) 481{ 482 nir_foreach_parallel_copy_entry(entry, pcopy) { 483 if (!entry->src.is_ssa) 484 continue; 485 486 /* Since load_const instructions are SSA only, we can't replace their 487 * destinations with registers and, therefore, can't coalesce them. 488 */ 489 if (entry->src.ssa->parent_instr->type == nir_instr_type_load_const) 490 continue; 491 492 /* Don't try and coalesce these */ 493 if (entry->dest.ssa.num_components != entry->src.ssa->num_components) 494 continue; 495 496 merge_node *src_node = get_merge_node(entry->src.ssa, state); 497 merge_node *dest_node = get_merge_node(&entry->dest.ssa, state); 498 499 if (src_node->set == dest_node->set) 500 continue; 501 502 /* TODO: We can probably do better here but for now we should be safe if 503 * we just don't coalesce things with different divergence. 504 */ 505 if (dest_node->set->divergent != src_node->set->divergent) 506 continue; 507 508 if (!merge_sets_interfere(src_node->set, dest_node->set)) 509 merge_merge_sets(src_node->set, dest_node->set); 510 } 511} 512 513static bool 514aggressive_coalesce_block(nir_block *block, struct from_ssa_state *state) 515{ 516 nir_parallel_copy_instr *start_pcopy = NULL; 517 nir_foreach_instr(instr, block) { 518 /* Phi nodes only ever come at the start of a block */ 519 if (instr->type != nir_instr_type_phi) { 520 if (instr->type != nir_instr_type_parallel_copy) 521 break; /* The parallel copy must be right after the phis */ 522 523 start_pcopy = nir_instr_as_parallel_copy(instr); 524 525 aggressive_coalesce_parallel_copy(start_pcopy, state); 526 527 break; 528 } 529 } 530 531 nir_parallel_copy_instr *end_pcopy = 532 get_parallel_copy_at_end_of_block(block); 533 534 if (end_pcopy && end_pcopy != start_pcopy) 535 aggressive_coalesce_parallel_copy(end_pcopy, state); 536 537 return true; 538} 539 540static nir_register * 541create_reg_for_ssa_def(nir_ssa_def *def, nir_function_impl *impl) 542{ 543 nir_register *reg = nir_local_reg_create(impl); 544 545 reg->num_components = def->num_components; 546 reg->bit_size = def->bit_size; 547 reg->num_array_elems = 0; 548 549 return reg; 550} 551 552static bool 553rewrite_ssa_def(nir_ssa_def *def, void *void_state) 554{ 555 struct from_ssa_state *state = void_state; 556 nir_register *reg; 557 558 struct hash_entry *entry = 559 _mesa_hash_table_search(state->merge_node_table, def); 560 if (entry) { 561 /* In this case, we're part of a phi web. Use the web's register. */ 562 merge_node *node = (merge_node *)entry->data; 563 564 /* If it doesn't have a register yet, create one. Note that all of 565 * the things in the merge set should be the same so it doesn't 566 * matter which node's definition we use. 567 */ 568 if (node->set->reg == NULL) { 569 node->set->reg = create_reg_for_ssa_def(def, state->builder.impl); 570 node->set->reg->divergent = node->set->divergent; 571 } 572 573 reg = node->set->reg; 574 } else { 575 if (state->phi_webs_only) 576 return true; 577 578 /* We leave load_const SSA values alone. They act as immediates to 579 * the backend. If it got coalesced into a phi, that's ok. 580 */ 581 if (def->parent_instr->type == nir_instr_type_load_const) 582 return true; 583 584 reg = create_reg_for_ssa_def(def, state->builder.impl); 585 } 586 587 nir_ssa_def_rewrite_uses_src(def, nir_src_for_reg(reg)); 588 assert(nir_ssa_def_is_unused(def)); 589 590 if (def->parent_instr->type == nir_instr_type_ssa_undef) { 591 /* If it's an ssa_undef instruction, remove it since we know we just got 592 * rid of all its uses. 593 */ 594 nir_instr *parent_instr = def->parent_instr; 595 nir_instr_remove(parent_instr); 596 exec_list_push_tail(&state->dead_instrs, &parent_instr->node); 597 state->progress = true; 598 return true; 599 } 600 601 assert(def->parent_instr->type != nir_instr_type_load_const); 602 603 /* At this point we know a priori that this SSA def is part of a 604 * nir_dest. We can use exec_node_data to get the dest pointer. 605 */ 606 nir_dest *dest = exec_node_data(nir_dest, def, ssa); 607 608 nir_instr_rewrite_dest(state->instr, dest, nir_dest_for_reg(reg)); 609 state->progress = true; 610 return true; 611} 612 613/* Resolves ssa definitions to registers. While we're at it, we also 614 * remove phi nodes. 615 */ 616static void 617resolve_registers_block(nir_block *block, struct from_ssa_state *state) 618{ 619 nir_foreach_instr_safe(instr, block) { 620 state->instr = instr; 621 nir_foreach_ssa_def(instr, rewrite_ssa_def, state); 622 623 if (instr->type == nir_instr_type_phi) { 624 nir_instr_remove(instr); 625 exec_list_push_tail(&state->dead_instrs, &instr->node); 626 state->progress = true; 627 } 628 } 629 state->instr = NULL; 630} 631 632static void 633emit_copy(nir_builder *b, nir_src src, nir_src dest_src) 634{ 635 assert(!dest_src.is_ssa && 636 dest_src.reg.indirect == NULL && 637 dest_src.reg.base_offset == 0); 638 639 assert(!nir_src_is_divergent(src) || nir_src_is_divergent(dest_src)); 640 641 if (src.is_ssa) 642 assert(src.ssa->num_components >= dest_src.reg.reg->num_components); 643 else 644 assert(src.reg.reg->num_components >= dest_src.reg.reg->num_components); 645 646 nir_alu_instr *mov = nir_alu_instr_create(b->shader, nir_op_mov); 647 nir_src_copy(&mov->src[0].src, &src); 648 mov->dest.dest = nir_dest_for_reg(dest_src.reg.reg); 649 mov->dest.write_mask = (1 << dest_src.reg.reg->num_components) - 1; 650 651 nir_builder_instr_insert(b, &mov->instr); 652} 653 654/* Resolves a single parallel copy operation into a sequence of movs 655 * 656 * This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for 657 * Correctness, Code Quality, and Efficiency" by Boissinot et al. 658 * However, I never got the algorithm to work as written, so this version 659 * is slightly modified. 660 * 661 * The algorithm works by playing this little shell game with the values. 662 * We start by recording where every source value is and which source value 663 * each destination value should receive. We then grab any copy whose 664 * destination is "empty", i.e. not used as a source, and do the following: 665 * - Find where its source value currently lives 666 * - Emit the move instruction 667 * - Set the location of the source value to the destination 668 * - Mark the location containing the source value 669 * - Mark the destination as no longer needing to be copied 670 * 671 * When we run out of "empty" destinations, we have a cycle and so we 672 * create a temporary register, copy to that register, and mark the value 673 * we copied as living in that temporary. Now, the cycle is broken, so we 674 * can continue with the above steps. 675 */ 676static void 677resolve_parallel_copy(nir_parallel_copy_instr *pcopy, 678 struct from_ssa_state *state) 679{ 680 unsigned num_copies = 0; 681 nir_foreach_parallel_copy_entry(entry, pcopy) { 682 /* Sources may be SSA */ 683 if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg) 684 continue; 685 686 num_copies++; 687 } 688 689 if (num_copies == 0) { 690 /* Hooray, we don't need any copies! */ 691 nir_instr_remove(&pcopy->instr); 692 exec_list_push_tail(&state->dead_instrs, &pcopy->instr.node); 693 return; 694 } 695 696 /* The register/source corresponding to the given index */ 697 NIR_VLA_ZERO(nir_src, values, num_copies * 2); 698 699 /* The current location of a given piece of data. We will use -1 for "null" */ 700 NIR_VLA_FILL(int, loc, num_copies * 2, -1); 701 702 /* The piece of data that the given piece of data is to be copied from. We will use -1 for "null" */ 703 NIR_VLA_FILL(int, pred, num_copies * 2, -1); 704 705 /* The destinations we have yet to properly fill */ 706 NIR_VLA(int, to_do, num_copies * 2); 707 int to_do_idx = -1; 708 709 state->builder.cursor = nir_before_instr(&pcopy->instr); 710 711 /* Now we set everything up: 712 * - All values get assigned a temporary index 713 * - Current locations are set from sources 714 * - Predicessors are recorded from sources and destinations 715 */ 716 int num_vals = 0; 717 nir_foreach_parallel_copy_entry(entry, pcopy) { 718 /* Sources may be SSA */ 719 if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg) 720 continue; 721 722 int src_idx = -1; 723 for (int i = 0; i < num_vals; ++i) { 724 if (nir_srcs_equal(values[i], entry->src)) 725 src_idx = i; 726 } 727 if (src_idx < 0) { 728 src_idx = num_vals++; 729 values[src_idx] = entry->src; 730 } 731 732 nir_src dest_src = nir_src_for_reg(entry->dest.reg.reg); 733 734 int dest_idx = -1; 735 for (int i = 0; i < num_vals; ++i) { 736 if (nir_srcs_equal(values[i], dest_src)) { 737 /* Each destination of a parallel copy instruction should be 738 * unique. A destination may get used as a source, so we still 739 * have to walk the list. However, the predecessor should not, 740 * at this point, be set yet, so we should have -1 here. 741 */ 742 assert(pred[i] == -1); 743 dest_idx = i; 744 } 745 } 746 if (dest_idx < 0) { 747 dest_idx = num_vals++; 748 values[dest_idx] = dest_src; 749 } 750 751 loc[src_idx] = src_idx; 752 pred[dest_idx] = src_idx; 753 754 to_do[++to_do_idx] = dest_idx; 755 } 756 757 /* Currently empty destinations we can go ahead and fill */ 758 NIR_VLA(int, ready, num_copies * 2); 759 int ready_idx = -1; 760 761 /* Mark the ones that are ready for copying. We know an index is a 762 * destination if it has a predecessor and it's ready for copying if 763 * it's not marked as containing data. 764 */ 765 for (int i = 0; i < num_vals; i++) { 766 if (pred[i] != -1 && loc[i] == -1) 767 ready[++ready_idx] = i; 768 } 769 770 while (to_do_idx >= 0) { 771 while (ready_idx >= 0) { 772 int b = ready[ready_idx--]; 773 int a = pred[b]; 774 emit_copy(&state->builder, values[loc[a]], values[b]); 775 776 /* b has been filled, mark it as not needing to be copied */ 777 pred[b] = -1; 778 779 /* The next bit only applies if the source and destination have the 780 * same divergence. If they differ (it must be convergent -> 781 * divergent), then we can't guarantee we won't need the convergent 782 * version of again. 783 */ 784 if (nir_src_is_divergent(values[a]) == 785 nir_src_is_divergent(values[b])) { 786 /* If any other copies want a they can find it at b but only if the 787 * two have the same divergence. 788 */ 789 loc[a] = b; 790 791 /* If a needs to be filled... */ 792 if (pred[a] != -1) { 793 /* If any other copies want a they can find it at b */ 794 loc[a] = b; 795 796 /* It's ready for copying now */ 797 ready[++ready_idx] = a; 798 } 799 } 800 } 801 int b = to_do[to_do_idx--]; 802 if (pred[b] == -1) 803 continue; 804 805 /* If we got here, then we don't have any more trivial copies that we 806 * can do. We have to break a cycle, so we create a new temporary 807 * register for that purpose. Normally, if going out of SSA after 808 * register allocation, you would want to avoid creating temporary 809 * registers. However, we are going out of SSA before register 810 * allocation, so we would rather not create extra register 811 * dependencies for the backend to deal with. If it wants, the 812 * backend can coalesce the (possibly multiple) temporaries. 813 */ 814 assert(num_vals < num_copies * 2); 815 nir_register *reg = nir_local_reg_create(state->builder.impl); 816 reg->num_array_elems = 0; 817 if (values[b].is_ssa) { 818 reg->num_components = values[b].ssa->num_components; 819 reg->bit_size = values[b].ssa->bit_size; 820 } else { 821 reg->num_components = values[b].reg.reg->num_components; 822 reg->bit_size = values[b].reg.reg->bit_size; 823 } 824 reg->divergent = nir_src_is_divergent(values[b]); 825 values[num_vals].is_ssa = false; 826 values[num_vals].reg.reg = reg; 827 828 emit_copy(&state->builder, values[b], values[num_vals]); 829 loc[b] = num_vals; 830 ready[++ready_idx] = b; 831 num_vals++; 832 } 833 834 nir_instr_remove(&pcopy->instr); 835 exec_list_push_tail(&state->dead_instrs, &pcopy->instr.node); 836} 837 838/* Resolves the parallel copies in a block. Each block can have at most 839 * two: One at the beginning, right after all the phi noces, and one at 840 * the end (or right before the final jump if it exists). 841 */ 842static bool 843resolve_parallel_copies_block(nir_block *block, struct from_ssa_state *state) 844{ 845 /* At this point, we have removed all of the phi nodes. If a parallel 846 * copy existed right after the phi nodes in this block, it is now the 847 * first instruction. 848 */ 849 nir_instr *first_instr = nir_block_first_instr(block); 850 if (first_instr == NULL) 851 return true; /* Empty, nothing to do. */ 852 853 if (first_instr->type == nir_instr_type_parallel_copy) { 854 nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(first_instr); 855 856 resolve_parallel_copy(pcopy, state); 857 } 858 859 /* It's possible that the above code already cleaned up the end parallel 860 * copy. However, doing so removed it form the instructions list so we 861 * won't find it here. Therefore, it's safe to go ahead and just look 862 * for one and clean it up if it exists. 863 */ 864 nir_parallel_copy_instr *end_pcopy = 865 get_parallel_copy_at_end_of_block(block); 866 if (end_pcopy) 867 resolve_parallel_copy(end_pcopy, state); 868 869 return true; 870} 871 872static bool 873nir_convert_from_ssa_impl(nir_function_impl *impl, bool phi_webs_only) 874{ 875 nir_shader *shader = impl->function->shader; 876 877 struct from_ssa_state state; 878 879 nir_builder_init(&state.builder, impl); 880 state.dead_ctx = ralloc_context(NULL); 881 state.phi_webs_only = phi_webs_only; 882 state.merge_node_table = _mesa_pointer_hash_table_create(NULL); 883 state.progress = false; 884 exec_list_make_empty(&state.dead_instrs); 885 886 nir_foreach_block(block, impl) { 887 add_parallel_copy_to_end_of_block(shader, block, state.dead_ctx); 888 } 889 890 nir_foreach_block(block, impl) { 891 isolate_phi_nodes_block(shader, block, state.dead_ctx); 892 } 893 894 /* Mark metadata as dirty before we ask for liveness analysis */ 895 nir_metadata_preserve(impl, nir_metadata_block_index | 896 nir_metadata_dominance); 897 898 nir_metadata_require(impl, nir_metadata_instr_index | 899 nir_metadata_live_ssa_defs | 900 nir_metadata_dominance); 901 902 nir_foreach_block(block, impl) { 903 coalesce_phi_nodes_block(block, &state); 904 } 905 906 nir_foreach_block(block, impl) { 907 aggressive_coalesce_block(block, &state); 908 } 909 910 nir_foreach_block(block, impl) { 911 resolve_registers_block(block, &state); 912 } 913 914 nir_foreach_block(block, impl) { 915 resolve_parallel_copies_block(block, &state); 916 } 917 918 nir_metadata_preserve(impl, nir_metadata_block_index | 919 nir_metadata_dominance); 920 921 /* Clean up dead instructions and the hash tables */ 922 nir_instr_free_list(&state.dead_instrs); 923 _mesa_hash_table_destroy(state.merge_node_table, NULL); 924 ralloc_free(state.dead_ctx); 925 return state.progress; 926} 927 928bool 929nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only) 930{ 931 bool progress = false; 932 933 nir_foreach_function(function, shader) { 934 if (function->impl) 935 progress |= nir_convert_from_ssa_impl(function->impl, phi_webs_only); 936 } 937 938 return progress; 939} 940 941 942static void 943place_phi_read(nir_builder *b, nir_register *reg, 944 nir_ssa_def *def, nir_block *block, struct set *visited_blocks) 945{ 946 /* Search already visited blocks to avoid back edges in tree */ 947 if (_mesa_set_search(visited_blocks, block) == NULL) { 948 /* Try to go up the single-successor tree */ 949 bool all_single_successors = true; 950 set_foreach(block->predecessors, entry) { 951 nir_block *pred = (nir_block *)entry->key; 952 if (pred->successors[0] && pred->successors[1]) { 953 all_single_successors = false; 954 break; 955 } 956 } 957 958 if (all_single_successors) { 959 /* All predecessors of this block have exactly one successor and it 960 * is this block so they must eventually lead here without 961 * intersecting each other. Place the reads in the predecessors 962 * instead of this block. 963 */ 964 _mesa_set_add(visited_blocks, block); 965 966 set_foreach(block->predecessors, entry) { 967 place_phi_read(b, reg, def, (nir_block *)entry->key, visited_blocks); 968 } 969 return; 970 } 971 } 972 973 b->cursor = nir_after_block_before_jump(block); 974 nir_store_reg(b, reg, def, ~0); 975} 976 977/** Lower all of the phi nodes in a block to movs to and from a register 978 * 979 * This provides a very quick-and-dirty out-of-SSA pass that you can run on a 980 * single block to convert all of its phis to a register and some movs. 981 * The code that is generated, while not optimal for actual codegen in a 982 * back-end, is easy to generate, correct, and will turn into the same set of 983 * phis after you call regs_to_ssa and do some copy propagation. For each phi 984 * node we do the following: 985 * 986 * 1. For each phi instruction in the block, create a new nir_register 987 * 988 * 2. Insert movs at the top of the destination block for each phi and 989 * rewrite all uses of the phi to use the mov. 990 * 991 * 3. For each phi source, insert movs in the predecessor block from the phi 992 * source to the register associated with the phi. 993 * 994 * Correctness is guaranteed by the fact that we create a new register for 995 * each phi and emit movs on both sides of the control-flow edge. Because all 996 * the phis have SSA destinations (we assert this) and there is a separate 997 * temporary for each phi, all movs inserted in any particular block have 998 * unique destinations so the order of operations does not matter. 999 * 1000 * The one intelligent thing this pass does is that it places the moves from 1001 * the phi sources as high up the predecessor tree as possible instead of in 1002 * the exact predecessor. This means that, in particular, it will crawl into 1003 * the deepest nesting of any if-ladders. In order to ensure that doing so is 1004 * safe, it stops as soon as one of the predecessors has multiple successors. 1005 */ 1006bool 1007nir_lower_phis_to_regs_block(nir_block *block) 1008{ 1009 nir_builder b; 1010 nir_builder_init(&b, nir_cf_node_get_function(&block->cf_node)); 1011 struct set *visited_blocks = _mesa_set_create(NULL, _mesa_hash_pointer, 1012 _mesa_key_pointer_equal); 1013 1014 bool progress = false; 1015 nir_foreach_instr_safe(instr, block) { 1016 if (instr->type != nir_instr_type_phi) 1017 break; 1018 1019 nir_phi_instr *phi = nir_instr_as_phi(instr); 1020 assert(phi->dest.is_ssa); 1021 1022 nir_register *reg = create_reg_for_ssa_def(&phi->dest.ssa, b.impl); 1023 1024 b.cursor = nir_after_instr(&phi->instr); 1025 nir_ssa_def *def = nir_load_reg(&b, reg); 1026 1027 nir_ssa_def_rewrite_uses(&phi->dest.ssa, def); 1028 1029 nir_foreach_phi_src(src, phi) { 1030 if (src->src.is_ssa) { 1031 _mesa_set_add(visited_blocks, src->src.ssa->parent_instr->block); 1032 place_phi_read(&b, reg, src->src.ssa, src->pred, visited_blocks); 1033 _mesa_set_clear(visited_blocks, NULL); 1034 } else { 1035 b.cursor = nir_after_block_before_jump(src->pred); 1036 nir_ssa_def *src_ssa = 1037 nir_ssa_for_src(&b, src->src, phi->dest.ssa.num_components); 1038 nir_store_reg(&b, reg, src_ssa, ~0); 1039 } 1040 } 1041 1042 nir_instr_remove(&phi->instr); 1043 1044 progress = true; 1045 } 1046 1047 _mesa_set_destroy(visited_blocks, NULL); 1048 1049 return progress; 1050} 1051 1052struct ssa_def_to_reg_state { 1053 nir_function_impl *impl; 1054 bool progress; 1055}; 1056 1057static bool 1058dest_replace_ssa_with_reg(nir_dest *dest, void *void_state) 1059{ 1060 struct ssa_def_to_reg_state *state = void_state; 1061 1062 if (!dest->is_ssa) 1063 return true; 1064 1065 nir_register *reg = create_reg_for_ssa_def(&dest->ssa, state->impl); 1066 1067 nir_ssa_def_rewrite_uses_src(&dest->ssa, nir_src_for_reg(reg)); 1068 1069 nir_instr *instr = dest->ssa.parent_instr; 1070 *dest = nir_dest_for_reg(reg); 1071 dest->reg.parent_instr = instr; 1072 list_addtail(&dest->reg.def_link, ®->defs); 1073 1074 state->progress = true; 1075 1076 return true; 1077} 1078 1079static bool 1080ssa_def_is_local_to_block(nir_ssa_def *def, UNUSED void *state) 1081{ 1082 nir_block *block = def->parent_instr->block; 1083 nir_foreach_use(use_src, def) { 1084 if (use_src->parent_instr->block != block || 1085 use_src->parent_instr->type == nir_instr_type_phi) { 1086 return false; 1087 } 1088 } 1089 1090 if (!list_is_empty(&def->if_uses)) 1091 return false; 1092 1093 return true; 1094} 1095 1096/** Lower all of the SSA defs in a block to registers 1097 * 1098 * This performs the very simple operation of blindly replacing all of the SSA 1099 * defs in the given block with registers. If not used carefully, this may 1100 * result in phi nodes with register sources which is technically invalid. 1101 * Fortunately, the register-based into-SSA pass handles them anyway. 1102 */ 1103bool 1104nir_lower_ssa_defs_to_regs_block(nir_block *block) 1105{ 1106 nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node); 1107 nir_shader *shader = impl->function->shader; 1108 1109 struct ssa_def_to_reg_state state = { 1110 .impl = impl, 1111 .progress = false, 1112 }; 1113 1114 nir_foreach_instr(instr, block) { 1115 if (instr->type == nir_instr_type_ssa_undef) { 1116 /* Undefs are just a read of something never written. */ 1117 nir_ssa_undef_instr *undef = nir_instr_as_ssa_undef(instr); 1118 nir_register *reg = create_reg_for_ssa_def(&undef->def, state.impl); 1119 nir_ssa_def_rewrite_uses_src(&undef->def, nir_src_for_reg(reg)); 1120 } else if (instr->type == nir_instr_type_load_const) { 1121 /* Constant loads are SSA-only, we need to insert a move */ 1122 nir_load_const_instr *load = nir_instr_as_load_const(instr); 1123 nir_register *reg = create_reg_for_ssa_def(&load->def, state.impl); 1124 nir_ssa_def_rewrite_uses_src(&load->def, nir_src_for_reg(reg)); 1125 1126 nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_mov); 1127 mov->src[0].src = nir_src_for_ssa(&load->def); 1128 mov->dest.dest = nir_dest_for_reg(reg); 1129 mov->dest.write_mask = (1 << reg->num_components) - 1; 1130 nir_instr_insert(nir_after_instr(&load->instr), &mov->instr); 1131 } else if (nir_foreach_ssa_def(instr, ssa_def_is_local_to_block, NULL)) { 1132 /* If the SSA def produced by this instruction is only in the block 1133 * in which it is defined and is not used by ifs or phis, then we 1134 * don't have a reason to convert it to a register. 1135 */ 1136 } else { 1137 nir_foreach_dest(instr, dest_replace_ssa_with_reg, &state); 1138 } 1139 } 1140 1141 return state.progress; 1142} 1143