1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28#include "nir.h"
29#include "nir_builder.h"
30#include "nir_vla.h"
31
32/*
33 * This file implements an out-of-SSA pass as described in "Revisiting
34 * Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by
35 * Boissinot et al.
36 */
37
38struct from_ssa_state {
39   nir_builder builder;
40   void *dead_ctx;
41   struct exec_list dead_instrs;
42   bool phi_webs_only;
43   struct hash_table *merge_node_table;
44   nir_instr *instr;
45   bool progress;
46};
47
48/* Returns if def @a comes after def @b.
49 *
50 * The core observation that makes the Boissinot algorithm efficient
51 * is that, given two properly sorted sets, we can check for
52 * interference in these sets via a linear walk. This is accomplished
53 * by doing single combined walk over union of the two sets in DFS
54 * order. It doesn't matter what DFS we do so long as we're
55 * consistent. Fortunately, the dominance algorithm we ran prior to
56 * this pass did such a walk and recorded the pre- and post-indices in
57 * the blocks.
58 *
59 * We treat SSA undefs as always coming before other instruction types.
60 */
61static bool
62def_after(nir_ssa_def *a, nir_ssa_def *b)
63{
64   if (a->parent_instr->type == nir_instr_type_ssa_undef)
65      return false;
66
67   if (b->parent_instr->type == nir_instr_type_ssa_undef)
68      return true;
69
70   /* If they're in the same block, we can rely on whichever instruction
71    * comes first in the block.
72    */
73   if (a->parent_instr->block == b->parent_instr->block)
74      return a->parent_instr->index > b->parent_instr->index;
75
76   /* Otherwise, if blocks are distinct, we sort them in DFS pre-order */
77   return a->parent_instr->block->dom_pre_index >
78          b->parent_instr->block->dom_pre_index;
79}
80
81/* Returns true if a dominates b */
82static bool
83ssa_def_dominates(nir_ssa_def *a, nir_ssa_def *b)
84{
85   if (a->parent_instr->type == nir_instr_type_ssa_undef) {
86      /* SSA undefs always dominate */
87      return true;
88   } if (def_after(a, b)) {
89      return false;
90   } else if (a->parent_instr->block == b->parent_instr->block) {
91      return def_after(b, a);
92   } else {
93      return nir_block_dominates(a->parent_instr->block,
94                                 b->parent_instr->block);
95   }
96}
97
98
99/* The following data structure, which I have named merge_set is a way of
100 * representing a set registers of non-interfering registers.  This is
101 * based on the concept of a "dominance forest" presented in "Fast Copy
102 * Coalescing and Live-Range Identification" by Budimlic et al. but the
103 * implementation concept is taken from  "Revisiting Out-of-SSA Translation
104 * for Correctness, Code Quality, and Efficiency" by Boissinot et al.
105 *
106 * Each SSA definition is associated with a merge_node and the association
107 * is represented by a combination of a hash table and the "def" parameter
108 * in the merge_node structure.  The merge_set stores a linked list of
109 * merge_nodes, ordered by a pre-order DFS walk of the dominance tree.  (Since
110 * the liveness analysis pass indexes the SSA values in dominance order for
111 * us, this is an easy thing to keep up.)  It is assumed that no pair of the
112 * nodes in a given set interfere.  Merging two sets or checking for
113 * interference can be done in a single linear-time merge-sort walk of the
114 * two lists of nodes.
115 */
116struct merge_set;
117
118typedef struct {
119   struct exec_node node;
120   struct merge_set *set;
121   nir_ssa_def *def;
122} merge_node;
123
124typedef struct merge_set {
125   struct exec_list nodes;
126   unsigned size;
127   bool divergent;
128   nir_register *reg;
129} merge_set;
130
131#if 0
132static void
133merge_set_dump(merge_set *set, FILE *fp)
134{
135   nir_ssa_def *dom[set->size];
136   int dom_idx = -1;
137
138   foreach_list_typed(merge_node, node, node, &set->nodes) {
139      while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def))
140         dom_idx--;
141
142      for (int i = 0; i <= dom_idx; i++)
143         fprintf(fp, "  ");
144
145      fprintf(fp, "ssa_%d\n", node->def->index);
146
147      dom[++dom_idx] = node->def;
148   }
149}
150#endif
151
152static merge_node *
153get_merge_node(nir_ssa_def *def, struct from_ssa_state *state)
154{
155   struct hash_entry *entry =
156      _mesa_hash_table_search(state->merge_node_table, def);
157   if (entry)
158      return entry->data;
159
160   merge_set *set = ralloc(state->dead_ctx, merge_set);
161   exec_list_make_empty(&set->nodes);
162   set->size = 1;
163   set->divergent = def->divergent;
164   set->reg = NULL;
165
166   merge_node *node = ralloc(state->dead_ctx, merge_node);
167   node->set = set;
168   node->def = def;
169   exec_list_push_head(&set->nodes, &node->node);
170
171   _mesa_hash_table_insert(state->merge_node_table, def, node);
172
173   return node;
174}
175
176static bool
177merge_nodes_interfere(merge_node *a, merge_node *b)
178{
179   /* There's no need to check for interference within the same set,
180    * because we assume, that sets themselves are already
181    * interference-free.
182    */
183   if (a->set == b->set)
184      return false;
185
186   return nir_ssa_defs_interfere(a->def, b->def);
187}
188
189/* Merges b into a
190 *
191 * This algorithm uses def_after to ensure that the sets always stay in the
192 * same order as the pre-order DFS done by the liveness algorithm.
193 */
194static merge_set *
195merge_merge_sets(merge_set *a, merge_set *b)
196{
197   struct exec_node *an = exec_list_get_head(&a->nodes);
198   struct exec_node *bn = exec_list_get_head(&b->nodes);
199   while (!exec_node_is_tail_sentinel(bn)) {
200      merge_node *a_node = exec_node_data(merge_node, an, node);
201      merge_node *b_node = exec_node_data(merge_node, bn, node);
202
203      if (exec_node_is_tail_sentinel(an) ||
204          def_after(a_node->def, b_node->def)) {
205         struct exec_node *next = bn->next;
206         exec_node_remove(bn);
207         exec_node_insert_node_before(an, bn);
208         exec_node_data(merge_node, bn, node)->set = a;
209         bn = next;
210      } else {
211         an = an->next;
212      }
213   }
214
215   a->size += b->size;
216   b->size = 0;
217   a->divergent |= b->divergent;
218
219   return a;
220}
221
222/* Checks for any interference between two merge sets
223 *
224 * This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA
225 * Translation for Correctness, Code Quality, and Efficiency" by
226 * Boissinot et al.
227 */
228static bool
229merge_sets_interfere(merge_set *a, merge_set *b)
230{
231   /* List of all the nodes which dominate the current node, in dominance
232    * order.
233    */
234   NIR_VLA(merge_node *, dom, a->size + b->size);
235   int dom_idx = -1;
236
237   struct exec_node *an = exec_list_get_head(&a->nodes);
238   struct exec_node *bn = exec_list_get_head(&b->nodes);
239   while (!exec_node_is_tail_sentinel(an) ||
240          !exec_node_is_tail_sentinel(bn)) {
241
242      /* We walk the union of the two sets in the same order as the pre-order
243       * DFS done by liveness analysis.
244       */
245      merge_node *current;
246      if (exec_node_is_tail_sentinel(an)) {
247         current = exec_node_data(merge_node, bn, node);
248         bn = bn->next;
249      } else if (exec_node_is_tail_sentinel(bn)) {
250         current = exec_node_data(merge_node, an, node);
251         an = an->next;
252      } else {
253         merge_node *a_node = exec_node_data(merge_node, an, node);
254         merge_node *b_node = exec_node_data(merge_node, bn, node);
255
256         if (def_after(b_node->def, a_node->def)) {
257            current = a_node;
258            an = an->next;
259         } else {
260            current = b_node;
261            bn = bn->next;
262         }
263      }
264
265      /* Because our walk is a pre-order DFS, we can maintain the list of
266       * dominating nodes as a simple stack, pushing every node onto the list
267       * after we visit it and popping any non-dominating nodes off before we
268       * visit the current node.
269       */
270      while (dom_idx >= 0 &&
271             !ssa_def_dominates(dom[dom_idx]->def, current->def))
272         dom_idx--;
273
274      /* There are three invariants of this algorithm that are important here:
275       *
276       *  1. There is no interference within either set a or set b.
277       *  2. None of the nodes processed up until this point interfere.
278       *  3. All the dominators of `current` have been processed
279       *
280       * Because of these invariants, we only need to check the current node
281       * against its minimal dominator.  If any other node N in the union
282       * interferes with current, then N must dominate current because we are
283       * in SSA form.  If N dominates current then it must also dominate our
284       * minimal dominator dom[dom_idx].  Since N is live at current it must
285       * also be live at the minimal dominator which means N interferes with
286       * the minimal dominator dom[dom_idx] and, by invariants 2 and 3 above,
287       * the algorithm would have already terminated.  Therefore, if we got
288       * here, the only node that can possibly interfere with current is the
289       * minimal dominator dom[dom_idx].
290       *
291       * This is what allows us to do a interference check of the union of the
292       * two sets with a single linear-time walk.
293       */
294      if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx]))
295         return true;
296
297      dom[++dom_idx] = current;
298   }
299
300   return false;
301}
302
303static bool
304add_parallel_copy_to_end_of_block(nir_shader *shader, nir_block *block, void *dead_ctx)
305{
306   bool need_end_copy = false;
307   if (block->successors[0]) {
308      nir_instr *instr = nir_block_first_instr(block->successors[0]);
309      if (instr && instr->type == nir_instr_type_phi)
310         need_end_copy = true;
311   }
312
313   if (block->successors[1]) {
314      nir_instr *instr = nir_block_first_instr(block->successors[1]);
315      if (instr && instr->type == nir_instr_type_phi)
316         need_end_copy = true;
317   }
318
319   if (need_end_copy) {
320      /* If one of our successors has at least one phi node, we need to
321       * create a parallel copy at the end of the block but before the jump
322       * (if there is one).
323       */
324      nir_parallel_copy_instr *pcopy =
325         nir_parallel_copy_instr_create(shader);
326
327      nir_instr_insert(nir_after_block_before_jump(block), &pcopy->instr);
328   }
329
330   return true;
331}
332
333static nir_parallel_copy_instr *
334get_parallel_copy_at_end_of_block(nir_block *block)
335{
336   nir_instr *last_instr = nir_block_last_instr(block);
337   if (last_instr == NULL)
338      return NULL;
339
340   /* The last instruction may be a jump in which case the parallel copy is
341    * right before it.
342    */
343   if (last_instr->type == nir_instr_type_jump)
344      last_instr = nir_instr_prev(last_instr);
345
346   if (last_instr && last_instr->type == nir_instr_type_parallel_copy)
347      return nir_instr_as_parallel_copy(last_instr);
348   else
349      return NULL;
350}
351
352/** Isolate phi nodes with parallel copies
353 *
354 * In order to solve the dependency problems with the sources and
355 * destinations of phi nodes, we first isolate them by adding parallel
356 * copies to the beginnings and ends of basic blocks.  For every block with
357 * phi nodes, we add a parallel copy immediately following the last phi
358 * node that copies the destinations of all of the phi nodes to new SSA
359 * values.  We also add a parallel copy to the end of every block that has
360 * a successor with phi nodes that, for each phi node in each successor,
361 * copies the corresponding sorce of the phi node and adjust the phi to
362 * used the destination of the parallel copy.
363 *
364 * In SSA form, each value has exactly one definition.  What this does is
365 * ensure that each value used in a phi also has exactly one use.  The
366 * destinations of phis are only used by the parallel copy immediately
367 * following the phi nodes and.  Thanks to the parallel copy at the end of
368 * the predecessor block, the sources of phi nodes are are the only use of
369 * that value.  This allows us to immediately assign all the sources and
370 * destinations of any given phi node to the same register without worrying
371 * about interference at all.  We do coalescing to get rid of the parallel
372 * copies where possible.
373 *
374 * Before this pass can be run, we have to iterate over the blocks with
375 * add_parallel_copy_to_end_of_block to ensure that the parallel copies at
376 * the ends of blocks exist.  We can create the ones at the beginnings as
377 * we go, but the ones at the ends of blocks need to be created ahead of
378 * time because of potential back-edges in the CFG.
379 */
380static bool
381isolate_phi_nodes_block(nir_shader *shader, nir_block *block, void *dead_ctx)
382{
383   nir_instr *last_phi_instr = NULL;
384   nir_foreach_instr(instr, block) {
385      /* Phi nodes only ever come at the start of a block */
386      if (instr->type != nir_instr_type_phi)
387         break;
388
389      last_phi_instr = instr;
390   }
391
392   /* If we don't have any phis, then there's nothing for us to do. */
393   if (last_phi_instr == NULL)
394      return true;
395
396   /* If we have phi nodes, we need to create a parallel copy at the
397    * start of this block but after the phi nodes.
398    */
399   nir_parallel_copy_instr *block_pcopy =
400      nir_parallel_copy_instr_create(shader);
401   nir_instr_insert_after(last_phi_instr, &block_pcopy->instr);
402
403   nir_foreach_instr(instr, block) {
404      /* Phi nodes only ever come at the start of a block */
405      if (instr->type != nir_instr_type_phi)
406         break;
407
408      nir_phi_instr *phi = nir_instr_as_phi(instr);
409      assert(phi->dest.is_ssa);
410      nir_foreach_phi_src(src, phi) {
411         if (nir_src_is_undef(src->src))
412            continue;
413
414         nir_parallel_copy_instr *pcopy =
415            get_parallel_copy_at_end_of_block(src->pred);
416         assert(pcopy);
417
418         nir_parallel_copy_entry *entry = rzalloc(dead_ctx,
419                                                  nir_parallel_copy_entry);
420         nir_ssa_dest_init(&pcopy->instr, &entry->dest,
421                           phi->dest.ssa.num_components,
422                           phi->dest.ssa.bit_size, NULL);
423         entry->dest.ssa.divergent = nir_src_is_divergent(src->src);
424         exec_list_push_tail(&pcopy->entries, &entry->node);
425
426         assert(src->src.is_ssa);
427         nir_instr_rewrite_src(&pcopy->instr, &entry->src, src->src);
428
429         nir_instr_rewrite_src(&phi->instr, &src->src,
430                               nir_src_for_ssa(&entry->dest.ssa));
431      }
432
433      nir_parallel_copy_entry *entry = rzalloc(dead_ctx,
434                                               nir_parallel_copy_entry);
435      nir_ssa_dest_init(&block_pcopy->instr, &entry->dest,
436                        phi->dest.ssa.num_components, phi->dest.ssa.bit_size,
437                        NULL);
438      entry->dest.ssa.divergent = phi->dest.ssa.divergent;
439      exec_list_push_tail(&block_pcopy->entries, &entry->node);
440
441      nir_ssa_def_rewrite_uses(&phi->dest.ssa,
442                               &entry->dest.ssa);
443
444      nir_instr_rewrite_src(&block_pcopy->instr, &entry->src,
445                            nir_src_for_ssa(&phi->dest.ssa));
446   }
447
448   return true;
449}
450
451static bool
452coalesce_phi_nodes_block(nir_block *block, struct from_ssa_state *state)
453{
454   nir_foreach_instr(instr, block) {
455      /* Phi nodes only ever come at the start of a block */
456      if (instr->type != nir_instr_type_phi)
457         break;
458
459      nir_phi_instr *phi = nir_instr_as_phi(instr);
460
461      assert(phi->dest.is_ssa);
462      merge_node *dest_node = get_merge_node(&phi->dest.ssa, state);
463
464      nir_foreach_phi_src(src, phi) {
465         assert(src->src.is_ssa);
466         if (nir_src_is_undef(src->src))
467            continue;
468
469         merge_node *src_node = get_merge_node(src->src.ssa, state);
470         if (src_node->set != dest_node->set)
471            merge_merge_sets(dest_node->set, src_node->set);
472      }
473   }
474
475   return true;
476}
477
478static void
479aggressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy,
480                                 struct from_ssa_state *state)
481{
482   nir_foreach_parallel_copy_entry(entry, pcopy) {
483      if (!entry->src.is_ssa)
484         continue;
485
486      /* Since load_const instructions are SSA only, we can't replace their
487       * destinations with registers and, therefore, can't coalesce them.
488       */
489      if (entry->src.ssa->parent_instr->type == nir_instr_type_load_const)
490         continue;
491
492      /* Don't try and coalesce these */
493      if (entry->dest.ssa.num_components != entry->src.ssa->num_components)
494         continue;
495
496      merge_node *src_node = get_merge_node(entry->src.ssa, state);
497      merge_node *dest_node = get_merge_node(&entry->dest.ssa, state);
498
499      if (src_node->set == dest_node->set)
500         continue;
501
502      /* TODO: We can probably do better here but for now we should be safe if
503       * we just don't coalesce things with different divergence.
504       */
505      if (dest_node->set->divergent != src_node->set->divergent)
506         continue;
507
508      if (!merge_sets_interfere(src_node->set, dest_node->set))
509         merge_merge_sets(src_node->set, dest_node->set);
510   }
511}
512
513static bool
514aggressive_coalesce_block(nir_block *block, struct from_ssa_state *state)
515{
516   nir_parallel_copy_instr *start_pcopy = NULL;
517   nir_foreach_instr(instr, block) {
518      /* Phi nodes only ever come at the start of a block */
519      if (instr->type != nir_instr_type_phi) {
520         if (instr->type != nir_instr_type_parallel_copy)
521            break; /* The parallel copy must be right after the phis */
522
523         start_pcopy = nir_instr_as_parallel_copy(instr);
524
525         aggressive_coalesce_parallel_copy(start_pcopy, state);
526
527         break;
528      }
529   }
530
531   nir_parallel_copy_instr *end_pcopy =
532      get_parallel_copy_at_end_of_block(block);
533
534   if (end_pcopy && end_pcopy != start_pcopy)
535      aggressive_coalesce_parallel_copy(end_pcopy, state);
536
537   return true;
538}
539
540static nir_register *
541create_reg_for_ssa_def(nir_ssa_def *def, nir_function_impl *impl)
542{
543   nir_register *reg = nir_local_reg_create(impl);
544
545   reg->num_components = def->num_components;
546   reg->bit_size = def->bit_size;
547   reg->num_array_elems = 0;
548
549   return reg;
550}
551
552static bool
553rewrite_ssa_def(nir_ssa_def *def, void *void_state)
554{
555   struct from_ssa_state *state = void_state;
556   nir_register *reg;
557
558   struct hash_entry *entry =
559      _mesa_hash_table_search(state->merge_node_table, def);
560   if (entry) {
561      /* In this case, we're part of a phi web.  Use the web's register. */
562      merge_node *node = (merge_node *)entry->data;
563
564      /* If it doesn't have a register yet, create one.  Note that all of
565       * the things in the merge set should be the same so it doesn't
566       * matter which node's definition we use.
567       */
568      if (node->set->reg == NULL) {
569         node->set->reg = create_reg_for_ssa_def(def, state->builder.impl);
570         node->set->reg->divergent = node->set->divergent;
571      }
572
573      reg = node->set->reg;
574   } else {
575      if (state->phi_webs_only)
576         return true;
577
578      /* We leave load_const SSA values alone.  They act as immediates to
579       * the backend.  If it got coalesced into a phi, that's ok.
580       */
581      if (def->parent_instr->type == nir_instr_type_load_const)
582         return true;
583
584      reg = create_reg_for_ssa_def(def, state->builder.impl);
585   }
586
587   nir_ssa_def_rewrite_uses_src(def, nir_src_for_reg(reg));
588   assert(nir_ssa_def_is_unused(def));
589
590   if (def->parent_instr->type == nir_instr_type_ssa_undef) {
591      /* If it's an ssa_undef instruction, remove it since we know we just got
592       * rid of all its uses.
593       */
594      nir_instr *parent_instr = def->parent_instr;
595      nir_instr_remove(parent_instr);
596      exec_list_push_tail(&state->dead_instrs, &parent_instr->node);
597      state->progress = true;
598      return true;
599   }
600
601   assert(def->parent_instr->type != nir_instr_type_load_const);
602
603   /* At this point we know a priori that this SSA def is part of a
604    * nir_dest.  We can use exec_node_data to get the dest pointer.
605    */
606   nir_dest *dest = exec_node_data(nir_dest, def, ssa);
607
608   nir_instr_rewrite_dest(state->instr, dest, nir_dest_for_reg(reg));
609   state->progress = true;
610   return true;
611}
612
613/* Resolves ssa definitions to registers.  While we're at it, we also
614 * remove phi nodes.
615 */
616static void
617resolve_registers_block(nir_block *block, struct from_ssa_state *state)
618{
619   nir_foreach_instr_safe(instr, block) {
620      state->instr = instr;
621      nir_foreach_ssa_def(instr, rewrite_ssa_def, state);
622
623      if (instr->type == nir_instr_type_phi) {
624         nir_instr_remove(instr);
625         exec_list_push_tail(&state->dead_instrs, &instr->node);
626         state->progress = true;
627      }
628   }
629   state->instr = NULL;
630}
631
632static void
633emit_copy(nir_builder *b, nir_src src, nir_src dest_src)
634{
635   assert(!dest_src.is_ssa &&
636          dest_src.reg.indirect == NULL &&
637          dest_src.reg.base_offset == 0);
638
639   assert(!nir_src_is_divergent(src) || nir_src_is_divergent(dest_src));
640
641   if (src.is_ssa)
642      assert(src.ssa->num_components >= dest_src.reg.reg->num_components);
643   else
644      assert(src.reg.reg->num_components >= dest_src.reg.reg->num_components);
645
646   nir_alu_instr *mov = nir_alu_instr_create(b->shader, nir_op_mov);
647   nir_src_copy(&mov->src[0].src, &src);
648   mov->dest.dest = nir_dest_for_reg(dest_src.reg.reg);
649   mov->dest.write_mask = (1 << dest_src.reg.reg->num_components) - 1;
650
651   nir_builder_instr_insert(b, &mov->instr);
652}
653
654/* Resolves a single parallel copy operation into a sequence of movs
655 *
656 * This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for
657 * Correctness, Code Quality, and Efficiency" by Boissinot et al.
658 * However, I never got the algorithm to work as written, so this version
659 * is slightly modified.
660 *
661 * The algorithm works by playing this little shell game with the values.
662 * We start by recording where every source value is and which source value
663 * each destination value should receive.  We then grab any copy whose
664 * destination is "empty", i.e. not used as a source, and do the following:
665 *  - Find where its source value currently lives
666 *  - Emit the move instruction
667 *  - Set the location of the source value to the destination
668 *  - Mark the location containing the source value
669 *  - Mark the destination as no longer needing to be copied
670 *
671 * When we run out of "empty" destinations, we have a cycle and so we
672 * create a temporary register, copy to that register, and mark the value
673 * we copied as living in that temporary.  Now, the cycle is broken, so we
674 * can continue with the above steps.
675 */
676static void
677resolve_parallel_copy(nir_parallel_copy_instr *pcopy,
678                      struct from_ssa_state *state)
679{
680   unsigned num_copies = 0;
681   nir_foreach_parallel_copy_entry(entry, pcopy) {
682      /* Sources may be SSA */
683      if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
684         continue;
685
686      num_copies++;
687   }
688
689   if (num_copies == 0) {
690      /* Hooray, we don't need any copies! */
691      nir_instr_remove(&pcopy->instr);
692      exec_list_push_tail(&state->dead_instrs, &pcopy->instr.node);
693      return;
694   }
695
696   /* The register/source corresponding to the given index */
697   NIR_VLA_ZERO(nir_src, values, num_copies * 2);
698
699   /* The current location of a given piece of data.  We will use -1 for "null" */
700   NIR_VLA_FILL(int, loc, num_copies * 2, -1);
701
702   /* The piece of data that the given piece of data is to be copied from.  We will use -1 for "null" */
703   NIR_VLA_FILL(int, pred, num_copies * 2, -1);
704
705   /* The destinations we have yet to properly fill */
706   NIR_VLA(int, to_do, num_copies * 2);
707   int to_do_idx = -1;
708
709   state->builder.cursor = nir_before_instr(&pcopy->instr);
710
711   /* Now we set everything up:
712    *  - All values get assigned a temporary index
713    *  - Current locations are set from sources
714    *  - Predicessors are recorded from sources and destinations
715    */
716   int num_vals = 0;
717   nir_foreach_parallel_copy_entry(entry, pcopy) {
718      /* Sources may be SSA */
719      if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
720         continue;
721
722      int src_idx = -1;
723      for (int i = 0; i < num_vals; ++i) {
724         if (nir_srcs_equal(values[i], entry->src))
725            src_idx = i;
726      }
727      if (src_idx < 0) {
728         src_idx = num_vals++;
729         values[src_idx] = entry->src;
730      }
731
732      nir_src dest_src = nir_src_for_reg(entry->dest.reg.reg);
733
734      int dest_idx = -1;
735      for (int i = 0; i < num_vals; ++i) {
736         if (nir_srcs_equal(values[i], dest_src)) {
737            /* Each destination of a parallel copy instruction should be
738             * unique.  A destination may get used as a source, so we still
739             * have to walk the list.  However, the predecessor should not,
740             * at this point, be set yet, so we should have -1 here.
741             */
742            assert(pred[i] == -1);
743            dest_idx = i;
744         }
745      }
746      if (dest_idx < 0) {
747         dest_idx = num_vals++;
748         values[dest_idx] = dest_src;
749      }
750
751      loc[src_idx] = src_idx;
752      pred[dest_idx] = src_idx;
753
754      to_do[++to_do_idx] = dest_idx;
755   }
756
757   /* Currently empty destinations we can go ahead and fill */
758   NIR_VLA(int, ready, num_copies * 2);
759   int ready_idx = -1;
760
761   /* Mark the ones that are ready for copying.  We know an index is a
762    * destination if it has a predecessor and it's ready for copying if
763    * it's not marked as containing data.
764    */
765   for (int i = 0; i < num_vals; i++) {
766      if (pred[i] != -1 && loc[i] == -1)
767         ready[++ready_idx] = i;
768   }
769
770   while (to_do_idx >= 0) {
771      while (ready_idx >= 0) {
772         int b = ready[ready_idx--];
773         int a = pred[b];
774         emit_copy(&state->builder, values[loc[a]], values[b]);
775
776         /* b has been filled, mark it as not needing to be copied */
777         pred[b] = -1;
778
779         /* The next bit only applies if the source and destination have the
780          * same divergence.  If they differ (it must be convergent ->
781          * divergent), then we can't guarantee we won't need the convergent
782          * version of again.
783          */
784         if (nir_src_is_divergent(values[a]) ==
785             nir_src_is_divergent(values[b])) {
786            /* If any other copies want a they can find it at b but only if the
787             * two have the same divergence.
788             */
789            loc[a] = b;
790
791            /* If a needs to be filled... */
792            if (pred[a] != -1) {
793               /* If any other copies want a they can find it at b */
794               loc[a] = b;
795
796               /* It's ready for copying now */
797               ready[++ready_idx] = a;
798            }
799         }
800      }
801      int b = to_do[to_do_idx--];
802      if (pred[b] == -1)
803         continue;
804
805      /* If we got here, then we don't have any more trivial copies that we
806       * can do.  We have to break a cycle, so we create a new temporary
807       * register for that purpose.  Normally, if going out of SSA after
808       * register allocation, you would want to avoid creating temporary
809       * registers.  However, we are going out of SSA before register
810       * allocation, so we would rather not create extra register
811       * dependencies for the backend to deal with.  If it wants, the
812       * backend can coalesce the (possibly multiple) temporaries.
813       */
814      assert(num_vals < num_copies * 2);
815      nir_register *reg = nir_local_reg_create(state->builder.impl);
816      reg->num_array_elems = 0;
817      if (values[b].is_ssa) {
818         reg->num_components = values[b].ssa->num_components;
819         reg->bit_size = values[b].ssa->bit_size;
820      } else {
821         reg->num_components = values[b].reg.reg->num_components;
822         reg->bit_size = values[b].reg.reg->bit_size;
823      }
824      reg->divergent = nir_src_is_divergent(values[b]);
825      values[num_vals].is_ssa = false;
826      values[num_vals].reg.reg = reg;
827
828      emit_copy(&state->builder, values[b], values[num_vals]);
829      loc[b] = num_vals;
830      ready[++ready_idx] = b;
831      num_vals++;
832   }
833
834   nir_instr_remove(&pcopy->instr);
835   exec_list_push_tail(&state->dead_instrs, &pcopy->instr.node);
836}
837
838/* Resolves the parallel copies in a block.  Each block can have at most
839 * two:  One at the beginning, right after all the phi noces, and one at
840 * the end (or right before the final jump if it exists).
841 */
842static bool
843resolve_parallel_copies_block(nir_block *block, struct from_ssa_state *state)
844{
845   /* At this point, we have removed all of the phi nodes.  If a parallel
846    * copy existed right after the phi nodes in this block, it is now the
847    * first instruction.
848    */
849   nir_instr *first_instr = nir_block_first_instr(block);
850   if (first_instr == NULL)
851      return true; /* Empty, nothing to do. */
852
853   if (first_instr->type == nir_instr_type_parallel_copy) {
854      nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(first_instr);
855
856      resolve_parallel_copy(pcopy, state);
857   }
858
859   /* It's possible that the above code already cleaned up the end parallel
860    * copy.  However, doing so removed it form the instructions list so we
861    * won't find it here.  Therefore, it's safe to go ahead and just look
862    * for one and clean it up if it exists.
863    */
864   nir_parallel_copy_instr *end_pcopy =
865      get_parallel_copy_at_end_of_block(block);
866   if (end_pcopy)
867      resolve_parallel_copy(end_pcopy, state);
868
869   return true;
870}
871
872static bool
873nir_convert_from_ssa_impl(nir_function_impl *impl, bool phi_webs_only)
874{
875   nir_shader *shader = impl->function->shader;
876
877   struct from_ssa_state state;
878
879   nir_builder_init(&state.builder, impl);
880   state.dead_ctx = ralloc_context(NULL);
881   state.phi_webs_only = phi_webs_only;
882   state.merge_node_table = _mesa_pointer_hash_table_create(NULL);
883   state.progress = false;
884   exec_list_make_empty(&state.dead_instrs);
885
886   nir_foreach_block(block, impl) {
887      add_parallel_copy_to_end_of_block(shader, block, state.dead_ctx);
888   }
889
890   nir_foreach_block(block, impl) {
891      isolate_phi_nodes_block(shader, block, state.dead_ctx);
892   }
893
894   /* Mark metadata as dirty before we ask for liveness analysis */
895   nir_metadata_preserve(impl, nir_metadata_block_index |
896                               nir_metadata_dominance);
897
898   nir_metadata_require(impl, nir_metadata_instr_index |
899                              nir_metadata_live_ssa_defs |
900                              nir_metadata_dominance);
901
902   nir_foreach_block(block, impl) {
903      coalesce_phi_nodes_block(block, &state);
904   }
905
906   nir_foreach_block(block, impl) {
907      aggressive_coalesce_block(block, &state);
908   }
909
910   nir_foreach_block(block, impl) {
911      resolve_registers_block(block, &state);
912   }
913
914   nir_foreach_block(block, impl) {
915      resolve_parallel_copies_block(block, &state);
916   }
917
918   nir_metadata_preserve(impl, nir_metadata_block_index |
919                               nir_metadata_dominance);
920
921   /* Clean up dead instructions and the hash tables */
922   nir_instr_free_list(&state.dead_instrs);
923   _mesa_hash_table_destroy(state.merge_node_table, NULL);
924   ralloc_free(state.dead_ctx);
925   return state.progress;
926}
927
928bool
929nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only)
930{
931   bool progress = false;
932
933   nir_foreach_function(function, shader) {
934      if (function->impl)
935         progress |= nir_convert_from_ssa_impl(function->impl, phi_webs_only);
936   }
937
938   return progress;
939}
940
941
942static void
943place_phi_read(nir_builder *b, nir_register *reg,
944               nir_ssa_def *def, nir_block *block, struct set *visited_blocks)
945{
946  /* Search already visited blocks to avoid back edges in tree */
947  if (_mesa_set_search(visited_blocks, block) == NULL) {
948      /* Try to go up the single-successor tree */
949      bool all_single_successors = true;
950      set_foreach(block->predecessors, entry) {
951         nir_block *pred = (nir_block *)entry->key;
952         if (pred->successors[0] && pred->successors[1]) {
953            all_single_successors = false;
954            break;
955         }
956      }
957
958      if (all_single_successors) {
959         /* All predecessors of this block have exactly one successor and it
960          * is this block so they must eventually lead here without
961          * intersecting each other.  Place the reads in the predecessors
962          * instead of this block.
963          */
964         _mesa_set_add(visited_blocks, block);
965
966         set_foreach(block->predecessors, entry) {
967            place_phi_read(b, reg, def, (nir_block *)entry->key, visited_blocks);
968         }
969         return;
970      }
971   }
972
973   b->cursor = nir_after_block_before_jump(block);
974   nir_store_reg(b, reg, def, ~0);
975}
976
977/** Lower all of the phi nodes in a block to movs to and from a register
978 *
979 * This provides a very quick-and-dirty out-of-SSA pass that you can run on a
980 * single block to convert all of its phis to a register and some movs.
981 * The code that is generated, while not optimal for actual codegen in a
982 * back-end, is easy to generate, correct, and will turn into the same set of
983 * phis after you call regs_to_ssa and do some copy propagation.  For each phi
984 * node we do the following:
985 *
986 *  1. For each phi instruction in the block, create a new nir_register
987 *
988 *  2. Insert movs at the top of the destination block for each phi and
989 *     rewrite all uses of the phi to use the mov.
990 *
991 *  3. For each phi source, insert movs in the predecessor block from the phi
992 *     source to the register associated with the phi.
993 *
994 * Correctness is guaranteed by the fact that we create a new register for
995 * each phi and emit movs on both sides of the control-flow edge.  Because all
996 * the phis have SSA destinations (we assert this) and there is a separate
997 * temporary for each phi, all movs inserted in any particular block have
998 * unique destinations so the order of operations does not matter.
999 *
1000 * The one intelligent thing this pass does is that it places the moves from
1001 * the phi sources as high up the predecessor tree as possible instead of in
1002 * the exact predecessor.  This means that, in particular, it will crawl into
1003 * the deepest nesting of any if-ladders.  In order to ensure that doing so is
1004 * safe, it stops as soon as one of the predecessors has multiple successors.
1005 */
1006bool
1007nir_lower_phis_to_regs_block(nir_block *block)
1008{
1009   nir_builder b;
1010   nir_builder_init(&b, nir_cf_node_get_function(&block->cf_node));
1011   struct set *visited_blocks = _mesa_set_create(NULL, _mesa_hash_pointer,
1012                                                 _mesa_key_pointer_equal);
1013
1014   bool progress = false;
1015   nir_foreach_instr_safe(instr, block) {
1016      if (instr->type != nir_instr_type_phi)
1017         break;
1018
1019      nir_phi_instr *phi = nir_instr_as_phi(instr);
1020      assert(phi->dest.is_ssa);
1021
1022      nir_register *reg = create_reg_for_ssa_def(&phi->dest.ssa, b.impl);
1023
1024      b.cursor = nir_after_instr(&phi->instr);
1025      nir_ssa_def *def = nir_load_reg(&b, reg);
1026
1027      nir_ssa_def_rewrite_uses(&phi->dest.ssa, def);
1028
1029      nir_foreach_phi_src(src, phi) {
1030         if (src->src.is_ssa) {
1031            _mesa_set_add(visited_blocks, src->src.ssa->parent_instr->block);
1032            place_phi_read(&b, reg, src->src.ssa, src->pred, visited_blocks);
1033            _mesa_set_clear(visited_blocks, NULL);
1034         } else {
1035            b.cursor = nir_after_block_before_jump(src->pred);
1036            nir_ssa_def *src_ssa =
1037               nir_ssa_for_src(&b, src->src, phi->dest.ssa.num_components);
1038            nir_store_reg(&b, reg, src_ssa, ~0);
1039         }
1040      }
1041
1042      nir_instr_remove(&phi->instr);
1043
1044      progress = true;
1045   }
1046
1047   _mesa_set_destroy(visited_blocks, NULL);
1048
1049   return progress;
1050}
1051
1052struct ssa_def_to_reg_state {
1053   nir_function_impl *impl;
1054   bool progress;
1055};
1056
1057static bool
1058dest_replace_ssa_with_reg(nir_dest *dest, void *void_state)
1059{
1060   struct ssa_def_to_reg_state *state = void_state;
1061
1062   if (!dest->is_ssa)
1063      return true;
1064
1065   nir_register *reg = create_reg_for_ssa_def(&dest->ssa, state->impl);
1066
1067   nir_ssa_def_rewrite_uses_src(&dest->ssa, nir_src_for_reg(reg));
1068
1069   nir_instr *instr = dest->ssa.parent_instr;
1070   *dest = nir_dest_for_reg(reg);
1071   dest->reg.parent_instr = instr;
1072   list_addtail(&dest->reg.def_link, &reg->defs);
1073
1074   state->progress = true;
1075
1076   return true;
1077}
1078
1079static bool
1080ssa_def_is_local_to_block(nir_ssa_def *def, UNUSED void *state)
1081{
1082   nir_block *block = def->parent_instr->block;
1083   nir_foreach_use(use_src, def) {
1084      if (use_src->parent_instr->block != block ||
1085          use_src->parent_instr->type == nir_instr_type_phi) {
1086         return false;
1087      }
1088   }
1089
1090   if (!list_is_empty(&def->if_uses))
1091      return false;
1092
1093   return true;
1094}
1095
1096/** Lower all of the SSA defs in a block to registers
1097 *
1098 * This performs the very simple operation of blindly replacing all of the SSA
1099 * defs in the given block with registers.  If not used carefully, this may
1100 * result in phi nodes with register sources which is technically invalid.
1101 * Fortunately, the register-based into-SSA pass handles them anyway.
1102 */
1103bool
1104nir_lower_ssa_defs_to_regs_block(nir_block *block)
1105{
1106   nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node);
1107   nir_shader *shader = impl->function->shader;
1108
1109   struct ssa_def_to_reg_state state = {
1110      .impl = impl,
1111      .progress = false,
1112   };
1113
1114   nir_foreach_instr(instr, block) {
1115      if (instr->type == nir_instr_type_ssa_undef) {
1116         /* Undefs are just a read of something never written. */
1117         nir_ssa_undef_instr *undef = nir_instr_as_ssa_undef(instr);
1118         nir_register *reg = create_reg_for_ssa_def(&undef->def, state.impl);
1119         nir_ssa_def_rewrite_uses_src(&undef->def, nir_src_for_reg(reg));
1120      } else if (instr->type == nir_instr_type_load_const) {
1121         /* Constant loads are SSA-only, we need to insert a move */
1122         nir_load_const_instr *load = nir_instr_as_load_const(instr);
1123         nir_register *reg = create_reg_for_ssa_def(&load->def, state.impl);
1124         nir_ssa_def_rewrite_uses_src(&load->def, nir_src_for_reg(reg));
1125
1126         nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_mov);
1127         mov->src[0].src = nir_src_for_ssa(&load->def);
1128         mov->dest.dest = nir_dest_for_reg(reg);
1129         mov->dest.write_mask = (1 << reg->num_components) - 1;
1130         nir_instr_insert(nir_after_instr(&load->instr), &mov->instr);
1131      } else if (nir_foreach_ssa_def(instr, ssa_def_is_local_to_block, NULL)) {
1132         /* If the SSA def produced by this instruction is only in the block
1133          * in which it is defined and is not used by ifs or phis, then we
1134          * don't have a reason to convert it to a register.
1135          */
1136      } else {
1137         nir_foreach_dest(instr, dest_replace_ssa_with_reg, &state);
1138      }
1139   }
1140
1141   return state.progress;
1142}
1143