1/* 2 * Copyright © 2017 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24#include "nir_builder.h" 25 26#include "util/format_rgb9e5.h" 27 28static inline nir_ssa_def * 29nir_shift_imm(nir_builder *b, nir_ssa_def *value, int left_shift) 30{ 31 if (left_shift > 0) 32 return nir_ishl(b, value, nir_imm_int(b, left_shift)); 33 else if (left_shift < 0) 34 return nir_ushr(b, value, nir_imm_int(b, -left_shift)); 35 else 36 return value; 37} 38 39static inline nir_ssa_def * 40nir_shift(nir_builder *b, nir_ssa_def *value, nir_ssa_def *left_shift) 41{ 42 return nir_bcsel(b, 43 nir_ige(b, left_shift, nir_imm_int(b, 0)), 44 nir_ishl(b, value, left_shift), 45 nir_ushr(b, value, nir_ineg(b, left_shift))); 46} 47 48static inline nir_ssa_def * 49nir_mask_shift(struct nir_builder *b, nir_ssa_def *src, 50 uint32_t mask, int left_shift) 51{ 52 return nir_shift_imm(b, nir_iand(b, src, nir_imm_int(b, mask)), left_shift); 53} 54 55static inline nir_ssa_def * 56nir_mask_shift_or(struct nir_builder *b, nir_ssa_def *dst, nir_ssa_def *src, 57 uint32_t src_mask, int src_left_shift) 58{ 59 return nir_ior(b, nir_mask_shift(b, src, src_mask, src_left_shift), dst); 60} 61 62static inline nir_ssa_def * 63nir_format_mask_uvec(nir_builder *b, nir_ssa_def *src, const unsigned *bits) 64{ 65 nir_const_value mask[NIR_MAX_VEC_COMPONENTS]; 66 memset(mask, 0, sizeof(mask)); 67 for (unsigned i = 0; i < src->num_components; i++) { 68 assert(bits[i] < 32); 69 mask[i].u32 = (1u << bits[i]) - 1; 70 } 71 return nir_iand(b, src, nir_build_imm(b, src->num_components, 32, mask)); 72} 73 74static inline nir_ssa_def * 75nir_format_sign_extend_ivec(nir_builder *b, nir_ssa_def *src, 76 const unsigned *bits) 77{ 78 assert(src->num_components <= 4); 79 nir_ssa_def *comps[4]; 80 for (unsigned i = 0; i < src->num_components; i++) { 81 nir_ssa_def *shift = nir_imm_int(b, src->bit_size - bits[i]); 82 comps[i] = nir_ishr(b, nir_ishl(b, nir_channel(b, src, i), shift), shift); 83 } 84 return nir_vec(b, comps, src->num_components); 85} 86 87 88static inline nir_ssa_def * 89nir_format_unpack_int(nir_builder *b, nir_ssa_def *packed, 90 const unsigned *bits, unsigned num_components, 91 bool sign_extend) 92{ 93 assert(num_components >= 1 && num_components <= 4); 94 const unsigned bit_size = packed->bit_size; 95 nir_ssa_def *comps[4]; 96 97 if (bits[0] >= bit_size) { 98 assert(bits[0] == bit_size); 99 assert(num_components == 1); 100 return packed; 101 } 102 103 unsigned next_chan = 0; 104 unsigned offset = 0; 105 for (unsigned i = 0; i < num_components; i++) { 106 assert(bits[i] < bit_size); 107 assert(offset + bits[i] <= bit_size); 108 nir_ssa_def *chan = nir_channel(b, packed, next_chan); 109 nir_ssa_def *lshift = nir_imm_int(b, bit_size - (offset + bits[i])); 110 nir_ssa_def *rshift = nir_imm_int(b, bit_size - bits[i]); 111 if (sign_extend) 112 comps[i] = nir_ishr(b, nir_ishl(b, chan, lshift), rshift); 113 else 114 comps[i] = nir_ushr(b, nir_ishl(b, chan, lshift), rshift); 115 offset += bits[i]; 116 if (offset >= bit_size) { 117 next_chan++; 118 offset -= bit_size; 119 } 120 } 121 122 return nir_vec(b, comps, num_components); 123} 124 125static inline nir_ssa_def * 126nir_format_unpack_uint(nir_builder *b, nir_ssa_def *packed, 127 const unsigned *bits, unsigned num_components) 128{ 129 return nir_format_unpack_int(b, packed, bits, num_components, false); 130} 131 132static inline nir_ssa_def * 133nir_format_unpack_sint(nir_builder *b, nir_ssa_def *packed, 134 const unsigned *bits, unsigned num_components) 135{ 136 return nir_format_unpack_int(b, packed, bits, num_components, true); 137} 138 139static inline nir_ssa_def * 140nir_format_pack_uint_unmasked(nir_builder *b, nir_ssa_def *color, 141 const unsigned *bits, unsigned num_components) 142{ 143 assert(num_components >= 1 && num_components <= 4); 144 nir_ssa_def *packed = nir_imm_int(b, 0); 145 unsigned offset = 0; 146 for (unsigned i = 0; i < num_components; i++) { 147 packed = nir_ior(b, packed, nir_shift_imm(b, nir_channel(b, color, i), 148 offset)); 149 offset += bits[i]; 150 } 151 assert(offset <= packed->bit_size); 152 153 return packed; 154} 155 156static inline nir_ssa_def * 157nir_format_pack_uint_unmasked_ssa(nir_builder *b, nir_ssa_def *color, 158 nir_ssa_def *bits) 159{ 160 nir_ssa_def *packed = nir_imm_int(b, 0); 161 nir_ssa_def *offset = nir_imm_int(b, 0); 162 for (unsigned i = 0; i < bits->num_components; i++) { 163 packed = nir_ior(b, packed, nir_ishl(b, nir_channel(b, color, i), offset)); 164 offset = nir_iadd(b, offset, nir_channel(b, bits, i)); 165 } 166 return packed; 167} 168 169static inline nir_ssa_def * 170nir_format_pack_uint(nir_builder *b, nir_ssa_def *color, 171 const unsigned *bits, unsigned num_components) 172{ 173 return nir_format_pack_uint_unmasked(b, nir_format_mask_uvec(b, color, bits), 174 bits, num_components); 175} 176 177static inline nir_ssa_def * 178nir_format_bitcast_uvec_unmasked(nir_builder *b, nir_ssa_def *src, 179 unsigned src_bits, unsigned dst_bits) 180{ 181 assert(src->bit_size >= src_bits && src->bit_size >= dst_bits); 182 assert(src_bits == 8 || src_bits == 16 || src_bits == 32); 183 assert(dst_bits == 8 || dst_bits == 16 || dst_bits == 32); 184 185 if (src_bits == dst_bits) 186 return src; 187 188 const unsigned dst_components = 189 DIV_ROUND_UP(src->num_components * src_bits, dst_bits); 190 assert(dst_components <= 4); 191 192 nir_ssa_def *dst_chan[4] = {0}; 193 if (dst_bits > src_bits) { 194 unsigned shift = 0; 195 unsigned dst_idx = 0; 196 for (unsigned i = 0; i < src->num_components; i++) { 197 nir_ssa_def *shifted = nir_ishl(b, nir_channel(b, src, i), 198 nir_imm_int(b, shift)); 199 if (shift == 0) { 200 dst_chan[dst_idx] = shifted; 201 } else { 202 dst_chan[dst_idx] = nir_ior(b, dst_chan[dst_idx], shifted); 203 } 204 205 shift += src_bits; 206 if (shift >= dst_bits) { 207 dst_idx++; 208 shift = 0; 209 } 210 } 211 } else { 212 nir_ssa_def *mask = nir_imm_int(b, ~0u >> (32 - dst_bits)); 213 214 unsigned src_idx = 0; 215 unsigned shift = 0; 216 for (unsigned i = 0; i < dst_components; i++) { 217 dst_chan[i] = nir_iand(b, nir_ushr_imm(b, nir_channel(b, src, src_idx), 218 shift), 219 mask); 220 shift += dst_bits; 221 if (shift >= src_bits) { 222 src_idx++; 223 shift = 0; 224 } 225 } 226 } 227 228 return nir_vec(b, dst_chan, dst_components); 229} 230 231static inline nir_ssa_def * 232_nir_format_norm_factor(nir_builder *b, const unsigned *bits, 233 unsigned num_components, 234 bool is_signed) 235{ 236 nir_const_value factor[NIR_MAX_VEC_COMPONENTS]; 237 memset(factor, 0, sizeof(factor)); 238 for (unsigned i = 0; i < num_components; i++) { 239 assert(bits[i] <= 32); 240 factor[i].f32 = (1ull << (bits[i] - is_signed)) - 1; 241 } 242 return nir_build_imm(b, num_components, 32, factor); 243} 244 245static inline nir_ssa_def * 246nir_format_unorm_to_float(nir_builder *b, nir_ssa_def *u, const unsigned *bits) 247{ 248 nir_ssa_def *factor = 249 _nir_format_norm_factor(b, bits, u->num_components, false); 250 251 return nir_fdiv(b, nir_u2f32(b, u), factor); 252} 253 254static inline nir_ssa_def * 255nir_format_snorm_to_float(nir_builder *b, nir_ssa_def *s, const unsigned *bits) 256{ 257 nir_ssa_def *factor = 258 _nir_format_norm_factor(b, bits, s->num_components, true); 259 260 return nir_fmax(b, nir_fdiv(b, nir_i2f32(b, s), factor), 261 nir_imm_float(b, -1.0f)); 262} 263 264static inline nir_ssa_def * 265nir_format_float_to_unorm(nir_builder *b, nir_ssa_def *f, const unsigned *bits) 266{ 267 nir_ssa_def *factor = 268 _nir_format_norm_factor(b, bits, f->num_components, false); 269 270 /* Clamp to the range [0, 1] */ 271 f = nir_fsat(b, f); 272 273 return nir_f2u32(b, nir_fround_even(b, nir_fmul(b, f, factor))); 274} 275 276static inline nir_ssa_def * 277nir_format_float_to_snorm(nir_builder *b, nir_ssa_def *f, const unsigned *bits) 278{ 279 nir_ssa_def *factor = 280 _nir_format_norm_factor(b, bits, f->num_components, true); 281 282 /* Clamp to the range [-1, 1] */ 283 f = nir_fmin(b, nir_fmax(b, f, nir_imm_float(b, -1)), nir_imm_float(b, 1)); 284 285 return nir_f2i32(b, nir_fround_even(b, nir_fmul(b, f, factor))); 286} 287 288/* Converts a vector of floats to a vector of half-floats packed in the low 16 289 * bits. 290 */ 291static inline nir_ssa_def * 292nir_format_float_to_half(nir_builder *b, nir_ssa_def *f) 293{ 294 nir_ssa_def *zero = nir_imm_float(b, 0); 295 nir_ssa_def *f16comps[4]; 296 for (unsigned i = 0; i < f->num_components; i++) 297 f16comps[i] = nir_pack_half_2x16_split(b, nir_channel(b, f, i), zero); 298 return nir_vec(b, f16comps, f->num_components); 299} 300 301static inline nir_ssa_def * 302nir_format_linear_to_srgb(nir_builder *b, nir_ssa_def *c) 303{ 304 nir_ssa_def *linear = nir_fmul(b, c, nir_imm_float(b, 12.92f)); 305 nir_ssa_def *curved = 306 nir_fsub(b, nir_fmul(b, nir_imm_float(b, 1.055f), 307 nir_fpow(b, c, nir_imm_float(b, 1.0 / 2.4))), 308 nir_imm_float(b, 0.055f)); 309 310 return nir_fsat(b, nir_bcsel(b, nir_flt(b, c, nir_imm_float(b, 0.0031308f)), 311 linear, curved)); 312} 313 314static inline nir_ssa_def * 315nir_format_srgb_to_linear(nir_builder *b, nir_ssa_def *c) 316{ 317 nir_ssa_def *linear = nir_fdiv(b, c, nir_imm_float(b, 12.92f)); 318 nir_ssa_def *curved = 319 nir_fpow(b, nir_fdiv(b, nir_fadd(b, c, nir_imm_float(b, 0.055f)), 320 nir_imm_float(b, 1.055f)), 321 nir_imm_float(b, 2.4f)); 322 323 return nir_fsat(b, nir_bcsel(b, nir_fge(b, nir_imm_float(b, 0.04045f), c), 324 linear, curved)); 325} 326 327/* Clamps a vector of uints so they don't extend beyond the given number of 328 * bits per channel. 329 */ 330static inline nir_ssa_def * 331nir_format_clamp_uint(nir_builder *b, nir_ssa_def *f, const unsigned *bits) 332{ 333 if (bits[0] == 32) 334 return f; 335 336 nir_const_value max[NIR_MAX_VEC_COMPONENTS]; 337 memset(max, 0, sizeof(max)); 338 for (unsigned i = 0; i < f->num_components; i++) { 339 assert(bits[i] < 32); 340 max[i].u32 = (1 << bits[i]) - 1; 341 } 342 return nir_umin(b, f, nir_build_imm(b, f->num_components, 32, max)); 343} 344 345/* Clamps a vector of sints so they don't extend beyond the given number of 346 * bits per channel. 347 */ 348static inline nir_ssa_def * 349nir_format_clamp_sint(nir_builder *b, nir_ssa_def *f, const unsigned *bits) 350{ 351 if (bits[0] == 32) 352 return f; 353 354 nir_const_value min[NIR_MAX_VEC_COMPONENTS], max[NIR_MAX_VEC_COMPONENTS]; 355 memset(min, 0, sizeof(min)); 356 memset(max, 0, sizeof(max)); 357 for (unsigned i = 0; i < f->num_components; i++) { 358 assert(bits[i] < 32); 359 max[i].i32 = (1 << (bits[i] - 1)) - 1; 360 min[i].i32 = -(1 << (bits[i] - 1)); 361 } 362 f = nir_imin(b, f, nir_build_imm(b, f->num_components, 32, max)); 363 f = nir_imax(b, f, nir_build_imm(b, f->num_components, 32, min)); 364 365 return f; 366} 367 368static inline nir_ssa_def * 369nir_format_unpack_11f11f10f(nir_builder *b, nir_ssa_def *packed) 370{ 371 nir_ssa_def *chans[3]; 372 chans[0] = nir_mask_shift(b, packed, 0x000007ff, 4); 373 chans[1] = nir_mask_shift(b, packed, 0x003ff800, -7); 374 chans[2] = nir_mask_shift(b, packed, 0xffc00000, -17); 375 376 for (unsigned i = 0; i < 3; i++) 377 chans[i] = nir_unpack_half_2x16_split_x(b, chans[i]); 378 379 return nir_vec(b, chans, 3); 380} 381 382static inline nir_ssa_def * 383nir_format_pack_11f11f10f(nir_builder *b, nir_ssa_def *color) 384{ 385 /* 10 and 11-bit floats are unsigned. Clamp to non-negative */ 386 nir_ssa_def *clamped = nir_fmax(b, color, nir_imm_float(b, 0)); 387 388 nir_ssa_def *undef = nir_ssa_undef(b, 1, color->bit_size); 389 nir_ssa_def *p1 = nir_pack_half_2x16_split(b, nir_channel(b, clamped, 0), 390 nir_channel(b, clamped, 1)); 391 nir_ssa_def *p2 = nir_pack_half_2x16_split(b, nir_channel(b, clamped, 2), 392 undef); 393 394 /* A 10 or 11-bit float has the same exponent as a 16-bit float but with 395 * fewer mantissa bits and no sign bit. All we have to do is throw away 396 * the sign bit and the bottom mantissa bits and shift it into place. 397 */ 398 nir_ssa_def *packed = nir_imm_int(b, 0); 399 packed = nir_mask_shift_or(b, packed, p1, 0x00007ff0, -4); 400 packed = nir_mask_shift_or(b, packed, p1, 0x7ff00000, -9); 401 packed = nir_mask_shift_or(b, packed, p2, 0x00007fe0, 17); 402 403 return packed; 404} 405 406static inline nir_ssa_def * 407nir_format_pack_r9g9b9e5(nir_builder *b, nir_ssa_def *color) 408{ 409 /* See also float3_to_rgb9e5 */ 410 411 /* First, we need to clamp it to range. */ 412 nir_ssa_def *clamped = nir_fmin(b, color, nir_imm_float(b, MAX_RGB9E5)); 413 414 /* Get rid of negatives and NaN */ 415 clamped = nir_bcsel(b, nir_ult(b, nir_imm_int(b, 0x7f800000), color), 416 nir_imm_float(b, 0), clamped); 417 418 /* maxrgb.u = MAX3(rc.u, gc.u, bc.u); */ 419 nir_ssa_def *maxu = nir_umax(b, nir_channel(b, clamped, 0), 420 nir_umax(b, nir_channel(b, clamped, 1), 421 nir_channel(b, clamped, 2))); 422 423 /* maxrgb.u += maxrgb.u & (1 << (23-9)); */ 424 maxu = nir_iadd(b, maxu, nir_iand(b, maxu, nir_imm_int(b, 1 << 14))); 425 426 /* exp_shared = MAX2((maxrgb.u >> 23), -RGB9E5_EXP_BIAS - 1 + 127) + 427 * 1 + RGB9E5_EXP_BIAS - 127; 428 */ 429 nir_ssa_def *exp_shared = 430 nir_iadd(b, nir_umax(b, nir_ushr_imm(b, maxu, 23), 431 nir_imm_int(b, -RGB9E5_EXP_BIAS - 1 + 127)), 432 nir_imm_int(b, 1 + RGB9E5_EXP_BIAS - 127)); 433 434 /* revdenom_biasedexp = 127 - (exp_shared - RGB9E5_EXP_BIAS - 435 * RGB9E5_MANTISSA_BITS) + 1; 436 */ 437 nir_ssa_def *revdenom_biasedexp = 438 nir_isub(b, nir_imm_int(b, 127 + RGB9E5_EXP_BIAS + 439 RGB9E5_MANTISSA_BITS + 1), 440 exp_shared); 441 442 /* revdenom.u = revdenom_biasedexp << 23; */ 443 nir_ssa_def *revdenom = 444 nir_ishl(b, revdenom_biasedexp, nir_imm_int(b, 23)); 445 446 /* rm = (int) (rc.f * revdenom.f); 447 * gm = (int) (gc.f * revdenom.f); 448 * bm = (int) (bc.f * revdenom.f); 449 */ 450 nir_ssa_def *mantissa = 451 nir_f2i32(b, nir_fmul(b, clamped, revdenom)); 452 453 /* rm = (rm & 1) + (rm >> 1); 454 * gm = (gm & 1) + (gm >> 1); 455 * bm = (bm & 1) + (bm >> 1); 456 */ 457 mantissa = nir_iadd(b, nir_iand_imm(b, mantissa, 1), 458 nir_ushr_imm(b, mantissa, 1)); 459 460 nir_ssa_def *packed = nir_channel(b, mantissa, 0); 461 packed = nir_mask_shift_or(b, packed, nir_channel(b, mantissa, 1), ~0, 9); 462 packed = nir_mask_shift_or(b, packed, nir_channel(b, mantissa, 2), ~0, 18); 463 packed = nir_mask_shift_or(b, packed, exp_shared, ~0, 27); 464 465 return packed; 466} 467