1/* 2 * Copyright © 2018 Red Hat Inc. 3 * Copyright © 2015 Intel Corporation 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 22 * IN THE SOFTWARE. 23 */ 24 25#include <math.h> 26 27#include "nir.h" 28#include "nir_builtin_builder.h" 29 30nir_ssa_def* 31nir_cross3(nir_builder *b, nir_ssa_def *x, nir_ssa_def *y) 32{ 33 unsigned yzx[3] = { 1, 2, 0 }; 34 unsigned zxy[3] = { 2, 0, 1 }; 35 36 return nir_ffma(b, nir_swizzle(b, x, yzx, 3), 37 nir_swizzle(b, y, zxy, 3), 38 nir_fneg(b, nir_fmul(b, nir_swizzle(b, x, zxy, 3), 39 nir_swizzle(b, y, yzx, 3)))); 40} 41 42nir_ssa_def* 43nir_cross4(nir_builder *b, nir_ssa_def *x, nir_ssa_def *y) 44{ 45 nir_ssa_def *cross = nir_cross3(b, x, y); 46 47 return nir_vec4(b, 48 nir_channel(b, cross, 0), 49 nir_channel(b, cross, 1), 50 nir_channel(b, cross, 2), 51 nir_imm_intN_t(b, 0, cross->bit_size)); 52} 53 54nir_ssa_def* 55nir_fast_length(nir_builder *b, nir_ssa_def *vec) 56{ 57 return nir_fsqrt(b, nir_fdot(b, vec, vec)); 58} 59 60nir_ssa_def* 61nir_nextafter(nir_builder *b, nir_ssa_def *x, nir_ssa_def *y) 62{ 63 nir_ssa_def *zero = nir_imm_intN_t(b, 0, x->bit_size); 64 nir_ssa_def *one = nir_imm_intN_t(b, 1, x->bit_size); 65 66 nir_ssa_def *condeq = nir_feq(b, x, y); 67 nir_ssa_def *conddir = nir_flt(b, x, y); 68 nir_ssa_def *condzero = nir_feq(b, x, zero); 69 70 uint64_t sign_mask = 1ull << (x->bit_size - 1); 71 uint64_t min_abs = 1; 72 73 if (nir_is_denorm_flush_to_zero(b->shader->info.float_controls_execution_mode, x->bit_size)) { 74 switch (x->bit_size) { 75 case 16: 76 min_abs = 1 << 10; 77 break; 78 case 32: 79 min_abs = 1 << 23; 80 break; 81 case 64: 82 min_abs = 1ULL << 52; 83 break; 84 } 85 86 /* Flush denorm to zero to avoid returning a denorm when condeq is true. */ 87 x = nir_fmul(b, x, nir_imm_floatN_t(b, 1.0, x->bit_size)); 88 } 89 90 /* beware of: +/-0.0 - 1 == NaN */ 91 nir_ssa_def *xn = 92 nir_bcsel(b, 93 condzero, 94 nir_imm_intN_t(b, sign_mask | min_abs, x->bit_size), 95 nir_isub(b, x, one)); 96 97 /* beware of -0.0 + 1 == -0x1p-149 */ 98 nir_ssa_def *xp = nir_bcsel(b, condzero, 99 nir_imm_intN_t(b, min_abs, x->bit_size), 100 nir_iadd(b, x, one)); 101 102 /* nextafter can be implemented by just +/- 1 on the int value */ 103 nir_ssa_def *res = 104 nir_bcsel(b, nir_ixor(b, conddir, nir_flt(b, x, zero)), xp, xn); 105 106 return nir_nan_check2(b, x, y, nir_bcsel(b, condeq, x, res)); 107} 108 109nir_ssa_def* 110nir_normalize(nir_builder *b, nir_ssa_def *vec) 111{ 112 if (vec->num_components == 1) 113 return nir_fsign(b, vec); 114 115 nir_ssa_def *f0 = nir_imm_floatN_t(b, 0.0, vec->bit_size); 116 nir_ssa_def *f1 = nir_imm_floatN_t(b, 1.0, vec->bit_size); 117 nir_ssa_def *finf = nir_imm_floatN_t(b, INFINITY, vec->bit_size); 118 119 /* scale the input to increase precision */ 120 nir_ssa_def *maxc = nir_fmax_abs_vec_comp(b, vec); 121 nir_ssa_def *svec = nir_fdiv(b, vec, maxc); 122 /* for inf */ 123 nir_ssa_def *finfvec = nir_copysign(b, nir_bcsel(b, nir_feq(b, vec, finf), f1, f0), f1); 124 125 nir_ssa_def *temp = nir_bcsel(b, nir_feq(b, maxc, finf), finfvec, svec); 126 nir_ssa_def *res = nir_fmul(b, temp, nir_frsq(b, nir_fdot(b, temp, temp))); 127 128 return nir_bcsel(b, nir_feq(b, maxc, f0), vec, res); 129} 130 131nir_ssa_def* 132nir_smoothstep(nir_builder *b, nir_ssa_def *edge0, nir_ssa_def *edge1, nir_ssa_def *x) 133{ 134 nir_ssa_def *f2 = nir_imm_floatN_t(b, 2.0, x->bit_size); 135 nir_ssa_def *f3 = nir_imm_floatN_t(b, 3.0, x->bit_size); 136 137 /* t = clamp((x - edge0) / (edge1 - edge0), 0, 1) */ 138 nir_ssa_def *t = 139 nir_fsat(b, nir_fdiv(b, nir_fsub(b, x, edge0), 140 nir_fsub(b, edge1, edge0))); 141 142 /* result = t * t * (3 - 2 * t) */ 143 return nir_fmul(b, t, nir_fmul(b, t, nir_a_minus_bc(b, f3, f2, t))); 144} 145 146nir_ssa_def* 147nir_upsample(nir_builder *b, nir_ssa_def *hi, nir_ssa_def *lo) 148{ 149 assert(lo->num_components == hi->num_components); 150 assert(lo->bit_size == hi->bit_size); 151 152 nir_ssa_def *res[NIR_MAX_VEC_COMPONENTS]; 153 for (unsigned i = 0; i < lo->num_components; ++i) { 154 nir_ssa_def *vec = nir_vec2(b, nir_channel(b, lo, i), nir_channel(b, hi, i)); 155 res[i] = nir_pack_bits(b, vec, vec->bit_size * 2); 156 } 157 158 return nir_vec(b, res, lo->num_components); 159} 160 161/** 162 * Compute xs[0] + xs[1] + xs[2] + ... using fadd. 163 */ 164static nir_ssa_def * 165build_fsum(nir_builder *b, nir_ssa_def **xs, int terms) 166{ 167 nir_ssa_def *accum = xs[0]; 168 169 for (int i = 1; i < terms; i++) 170 accum = nir_fadd(b, accum, xs[i]); 171 172 return accum; 173} 174 175nir_ssa_def * 176nir_atan(nir_builder *b, nir_ssa_def *y_over_x) 177{ 178 const uint32_t bit_size = y_over_x->bit_size; 179 180 nir_ssa_def *abs_y_over_x = nir_fabs(b, y_over_x); 181 nir_ssa_def *one = nir_imm_floatN_t(b, 1.0f, bit_size); 182 183 /* 184 * range-reduction, first step: 185 * 186 * / y_over_x if |y_over_x| <= 1.0; 187 * x = < 188 * \ 1.0 / y_over_x otherwise 189 */ 190 nir_ssa_def *x = nir_fdiv(b, nir_fmin(b, abs_y_over_x, one), 191 nir_fmax(b, abs_y_over_x, one)); 192 193 /* 194 * approximate atan by evaluating polynomial: 195 * 196 * x * 0.9999793128310355 - x^3 * 0.3326756418091246 + 197 * x^5 * 0.1938924977115610 - x^7 * 0.1173503194786851 + 198 * x^9 * 0.0536813784310406 - x^11 * 0.0121323213173444 199 */ 200 nir_ssa_def *x_2 = nir_fmul(b, x, x); 201 nir_ssa_def *x_3 = nir_fmul(b, x_2, x); 202 nir_ssa_def *x_5 = nir_fmul(b, x_3, x_2); 203 nir_ssa_def *x_7 = nir_fmul(b, x_5, x_2); 204 nir_ssa_def *x_9 = nir_fmul(b, x_7, x_2); 205 nir_ssa_def *x_11 = nir_fmul(b, x_9, x_2); 206 207 nir_ssa_def *polynomial_terms[] = { 208 nir_fmul_imm(b, x, 0.9999793128310355f), 209 nir_fmul_imm(b, x_3, -0.3326756418091246f), 210 nir_fmul_imm(b, x_5, 0.1938924977115610f), 211 nir_fmul_imm(b, x_7, -0.1173503194786851f), 212 nir_fmul_imm(b, x_9, 0.0536813784310406f), 213 nir_fmul_imm(b, x_11, -0.0121323213173444f), 214 }; 215 216 nir_ssa_def *tmp = 217 build_fsum(b, polynomial_terms, ARRAY_SIZE(polynomial_terms)); 218 219 /* range-reduction fixup */ 220 tmp = nir_ffma(b, 221 nir_b2f(b, nir_flt(b, one, abs_y_over_x), bit_size), 222 nir_ffma_imm12(b, tmp, -2.0f, M_PI_2), 223 tmp); 224 225 /* sign fixup */ 226 nir_ssa_def *result = nir_fmul(b, tmp, nir_fsign(b, y_over_x)); 227 228 /* The fmin and fmax above will filter out NaN values. This leads to 229 * non-NaN results for NaN inputs. Work around this by doing 230 * 231 * !isnan(y_over_x) ? ... : y_over_x; 232 */ 233 if (b->exact || 234 nir_is_float_control_signed_zero_inf_nan_preserve(b->shader->info.float_controls_execution_mode, bit_size)) { 235 const bool exact = b->exact; 236 237 b->exact = true; 238 nir_ssa_def *is_not_nan = nir_feq(b, y_over_x, y_over_x); 239 b->exact = exact; 240 241 /* The extra 1.0*y_over_x ensures that subnormal results are flushed to 242 * zero. 243 */ 244 result = nir_bcsel(b, is_not_nan, result, nir_fmul_imm(b, y_over_x, 1.0)); 245 } 246 247 return result; 248} 249 250nir_ssa_def * 251nir_atan2(nir_builder *b, nir_ssa_def *y, nir_ssa_def *x) 252{ 253 assert(y->bit_size == x->bit_size); 254 const uint32_t bit_size = x->bit_size; 255 256 nir_ssa_def *zero = nir_imm_floatN_t(b, 0, bit_size); 257 nir_ssa_def *one = nir_imm_floatN_t(b, 1, bit_size); 258 259 /* If we're on the left half-plane rotate the coordinates π/2 clock-wise 260 * for the y=0 discontinuity to end up aligned with the vertical 261 * discontinuity of atan(s/t) along t=0. This also makes sure that we 262 * don't attempt to divide by zero along the vertical line, which may give 263 * unspecified results on non-GLSL 4.1-capable hardware. 264 */ 265 nir_ssa_def *flip = nir_fge(b, zero, x); 266 nir_ssa_def *s = nir_bcsel(b, flip, nir_fabs(b, x), y); 267 nir_ssa_def *t = nir_bcsel(b, flip, y, nir_fabs(b, x)); 268 269 /* If the magnitude of the denominator exceeds some huge value, scale down 270 * the arguments in order to prevent the reciprocal operation from flushing 271 * its result to zero, which would cause precision problems, and for s 272 * infinite would cause us to return a NaN instead of the correct finite 273 * value. 274 * 275 * If fmin and fmax are respectively the smallest and largest positive 276 * normalized floating point values representable by the implementation, 277 * the constants below should be in agreement with: 278 * 279 * huge <= 1 / fmin 280 * scale <= 1 / fmin / fmax (for |t| >= huge) 281 * 282 * In addition scale should be a negative power of two in order to avoid 283 * loss of precision. The values chosen below should work for most usual 284 * floating point representations with at least the dynamic range of ATI's 285 * 24-bit representation. 286 */ 287 const double huge_val = bit_size >= 32 ? 1e18 : 16384; 288 nir_ssa_def *huge = nir_imm_floatN_t(b, huge_val, bit_size); 289 nir_ssa_def *scale = nir_bcsel(b, nir_fge(b, nir_fabs(b, t), huge), 290 nir_imm_floatN_t(b, 0.25, bit_size), one); 291 nir_ssa_def *rcp_scaled_t = nir_frcp(b, nir_fmul(b, t, scale)); 292 nir_ssa_def *s_over_t = nir_fmul(b, nir_fmul(b, s, scale), rcp_scaled_t); 293 294 /* For |x| = |y| assume tan = 1 even if infinite (i.e. pretend momentarily 295 * that ∞/∞ = 1) in order to comply with the rather artificial rules 296 * inherited from IEEE 754-2008, namely: 297 * 298 * "atan2(±∞, −∞) is ±3π/4 299 * atan2(±∞, +∞) is ±π/4" 300 * 301 * Note that this is inconsistent with the rules for the neighborhood of 302 * zero that are based on iterated limits: 303 * 304 * "atan2(±0, −0) is ±π 305 * atan2(±0, +0) is ±0" 306 * 307 * but GLSL specifically allows implementations to deviate from IEEE rules 308 * at (0,0), so we take that license (i.e. pretend that 0/0 = 1 here as 309 * well). 310 */ 311 nir_ssa_def *tan = nir_bcsel(b, nir_feq(b, nir_fabs(b, x), nir_fabs(b, y)), 312 one, nir_fabs(b, s_over_t)); 313 314 /* Calculate the arctangent and fix up the result if we had flipped the 315 * coordinate system. 316 */ 317 nir_ssa_def *arc = 318 nir_ffma_imm1(b, nir_b2f(b, flip, bit_size), M_PI_2, nir_atan(b, tan)); 319 320 /* Rather convoluted calculation of the sign of the result. When x < 0 we 321 * cannot use fsign because we need to be able to distinguish between 322 * negative and positive zero. We don't use bitwise arithmetic tricks for 323 * consistency with the GLSL front-end. When x >= 0 rcp_scaled_t will 324 * always be non-negative so this won't be able to distinguish between 325 * negative and positive zero, but we don't care because atan2 is 326 * continuous along the whole positive y = 0 half-line, so it won't affect 327 * the result significantly. 328 */ 329 return nir_bcsel(b, nir_flt(b, nir_fmin(b, y, rcp_scaled_t), zero), 330 nir_fneg(b, arc), arc); 331} 332 333nir_ssa_def * 334nir_get_texture_size(nir_builder *b, nir_tex_instr *tex) 335{ 336 b->cursor = nir_before_instr(&tex->instr); 337 338 nir_tex_instr *txs; 339 340 unsigned num_srcs = 1; /* One for the LOD */ 341 for (unsigned i = 0; i < tex->num_srcs; i++) { 342 if (tex->src[i].src_type == nir_tex_src_texture_deref || 343 tex->src[i].src_type == nir_tex_src_sampler_deref || 344 tex->src[i].src_type == nir_tex_src_texture_offset || 345 tex->src[i].src_type == nir_tex_src_sampler_offset || 346 tex->src[i].src_type == nir_tex_src_texture_handle || 347 tex->src[i].src_type == nir_tex_src_sampler_handle) 348 num_srcs++; 349 } 350 351 txs = nir_tex_instr_create(b->shader, num_srcs); 352 txs->op = nir_texop_txs; 353 txs->sampler_dim = tex->sampler_dim; 354 txs->is_array = tex->is_array; 355 txs->is_shadow = tex->is_shadow; 356 txs->is_new_style_shadow = tex->is_new_style_shadow; 357 txs->texture_index = tex->texture_index; 358 txs->sampler_index = tex->sampler_index; 359 txs->dest_type = nir_type_int32; 360 361 unsigned idx = 0; 362 for (unsigned i = 0; i < tex->num_srcs; i++) { 363 if (tex->src[i].src_type == nir_tex_src_texture_deref || 364 tex->src[i].src_type == nir_tex_src_sampler_deref || 365 tex->src[i].src_type == nir_tex_src_texture_offset || 366 tex->src[i].src_type == nir_tex_src_sampler_offset || 367 tex->src[i].src_type == nir_tex_src_texture_handle || 368 tex->src[i].src_type == nir_tex_src_sampler_handle) { 369 nir_src_copy(&txs->src[idx].src, &tex->src[i].src); 370 txs->src[idx].src_type = tex->src[i].src_type; 371 idx++; 372 } 373 } 374 /* Add in an LOD because some back-ends require it */ 375 txs->src[idx].src = nir_src_for_ssa(nir_imm_int(b, 0)); 376 txs->src[idx].src_type = nir_tex_src_lod; 377 378 nir_ssa_dest_init(&txs->instr, &txs->dest, 379 nir_tex_instr_dest_size(txs), 32, NULL); 380 nir_builder_instr_insert(b, &txs->instr); 381 382 return &txs->dest.ssa; 383} 384 385nir_ssa_def * 386nir_get_texture_lod(nir_builder *b, nir_tex_instr *tex) 387{ 388 b->cursor = nir_before_instr(&tex->instr); 389 390 nir_tex_instr *tql; 391 392 unsigned num_srcs = 0; 393 for (unsigned i = 0; i < tex->num_srcs; i++) { 394 if (tex->src[i].src_type == nir_tex_src_coord || 395 tex->src[i].src_type == nir_tex_src_texture_deref || 396 tex->src[i].src_type == nir_tex_src_sampler_deref || 397 tex->src[i].src_type == nir_tex_src_texture_offset || 398 tex->src[i].src_type == nir_tex_src_sampler_offset || 399 tex->src[i].src_type == nir_tex_src_texture_handle || 400 tex->src[i].src_type == nir_tex_src_sampler_handle) 401 num_srcs++; 402 } 403 404 tql = nir_tex_instr_create(b->shader, num_srcs); 405 tql->op = nir_texop_lod; 406 tql->coord_components = tex->coord_components; 407 tql->sampler_dim = tex->sampler_dim; 408 tql->is_array = tex->is_array; 409 tql->is_shadow = tex->is_shadow; 410 tql->is_new_style_shadow = tex->is_new_style_shadow; 411 tql->texture_index = tex->texture_index; 412 tql->sampler_index = tex->sampler_index; 413 tql->dest_type = nir_type_float32; 414 415 unsigned idx = 0; 416 for (unsigned i = 0; i < tex->num_srcs; i++) { 417 if (tex->src[i].src_type == nir_tex_src_coord || 418 tex->src[i].src_type == nir_tex_src_texture_deref || 419 tex->src[i].src_type == nir_tex_src_sampler_deref || 420 tex->src[i].src_type == nir_tex_src_texture_offset || 421 tex->src[i].src_type == nir_tex_src_sampler_offset || 422 tex->src[i].src_type == nir_tex_src_texture_handle || 423 tex->src[i].src_type == nir_tex_src_sampler_handle) { 424 nir_src_copy(&tql->src[idx].src, &tex->src[i].src); 425 tql->src[idx].src_type = tex->src[i].src_type; 426 idx++; 427 } 428 } 429 430 nir_ssa_dest_init(&tql->instr, &tql->dest, 2, 32, NULL); 431 nir_builder_instr_insert(b, &tql->instr); 432 433 /* The LOD is the y component of the result */ 434 return nir_channel(b, &tql->dest.ssa, 1); 435} 436