1bf215546Sopenharmony_ci/*
2bf215546Sopenharmony_ci * Copyright © 2018 Red Hat Inc.
3bf215546Sopenharmony_ci * Copyright © 2015 Intel Corporation
4bf215546Sopenharmony_ci *
5bf215546Sopenharmony_ci * Permission is hereby granted, free of charge, to any person obtaining a
6bf215546Sopenharmony_ci * copy of this software and associated documentation files (the "Software"),
7bf215546Sopenharmony_ci * to deal in the Software without restriction, including without limitation
8bf215546Sopenharmony_ci * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9bf215546Sopenharmony_ci * and/or sell copies of the Software, and to permit persons to whom the
10bf215546Sopenharmony_ci * Software is furnished to do so, subject to the following conditions:
11bf215546Sopenharmony_ci *
12bf215546Sopenharmony_ci * The above copyright notice and this permission notice (including the next
13bf215546Sopenharmony_ci * paragraph) shall be included in all copies or substantial portions of the
14bf215546Sopenharmony_ci * Software.
15bf215546Sopenharmony_ci *
16bf215546Sopenharmony_ci * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17bf215546Sopenharmony_ci * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18bf215546Sopenharmony_ci * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19bf215546Sopenharmony_ci * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20bf215546Sopenharmony_ci * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21bf215546Sopenharmony_ci * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22bf215546Sopenharmony_ci * IN THE SOFTWARE.
23bf215546Sopenharmony_ci */
24bf215546Sopenharmony_ci
25bf215546Sopenharmony_ci#include <math.h>
26bf215546Sopenharmony_ci
27bf215546Sopenharmony_ci#include "nir.h"
28bf215546Sopenharmony_ci#include "nir_builtin_builder.h"
29bf215546Sopenharmony_ci
30bf215546Sopenharmony_cinir_ssa_def*
31bf215546Sopenharmony_cinir_cross3(nir_builder *b, nir_ssa_def *x, nir_ssa_def *y)
32bf215546Sopenharmony_ci{
33bf215546Sopenharmony_ci   unsigned yzx[3] = { 1, 2, 0 };
34bf215546Sopenharmony_ci   unsigned zxy[3] = { 2, 0, 1 };
35bf215546Sopenharmony_ci
36bf215546Sopenharmony_ci   return nir_ffma(b, nir_swizzle(b, x, yzx, 3),
37bf215546Sopenharmony_ci                      nir_swizzle(b, y, zxy, 3),
38bf215546Sopenharmony_ci                      nir_fneg(b, nir_fmul(b, nir_swizzle(b, x, zxy, 3),
39bf215546Sopenharmony_ci                                              nir_swizzle(b, y, yzx, 3))));
40bf215546Sopenharmony_ci}
41bf215546Sopenharmony_ci
42bf215546Sopenharmony_cinir_ssa_def*
43bf215546Sopenharmony_cinir_cross4(nir_builder *b, nir_ssa_def *x, nir_ssa_def *y)
44bf215546Sopenharmony_ci{
45bf215546Sopenharmony_ci   nir_ssa_def *cross = nir_cross3(b, x, y);
46bf215546Sopenharmony_ci
47bf215546Sopenharmony_ci   return nir_vec4(b,
48bf215546Sopenharmony_ci      nir_channel(b, cross, 0),
49bf215546Sopenharmony_ci      nir_channel(b, cross, 1),
50bf215546Sopenharmony_ci      nir_channel(b, cross, 2),
51bf215546Sopenharmony_ci      nir_imm_intN_t(b, 0, cross->bit_size));
52bf215546Sopenharmony_ci}
53bf215546Sopenharmony_ci
54bf215546Sopenharmony_cinir_ssa_def*
55bf215546Sopenharmony_cinir_fast_length(nir_builder *b, nir_ssa_def *vec)
56bf215546Sopenharmony_ci{
57bf215546Sopenharmony_ci   return nir_fsqrt(b, nir_fdot(b, vec, vec));
58bf215546Sopenharmony_ci}
59bf215546Sopenharmony_ci
60bf215546Sopenharmony_cinir_ssa_def*
61bf215546Sopenharmony_cinir_nextafter(nir_builder *b, nir_ssa_def *x, nir_ssa_def *y)
62bf215546Sopenharmony_ci{
63bf215546Sopenharmony_ci   nir_ssa_def *zero = nir_imm_intN_t(b, 0, x->bit_size);
64bf215546Sopenharmony_ci   nir_ssa_def *one = nir_imm_intN_t(b, 1, x->bit_size);
65bf215546Sopenharmony_ci
66bf215546Sopenharmony_ci   nir_ssa_def *condeq = nir_feq(b, x, y);
67bf215546Sopenharmony_ci   nir_ssa_def *conddir = nir_flt(b, x, y);
68bf215546Sopenharmony_ci   nir_ssa_def *condzero = nir_feq(b, x, zero);
69bf215546Sopenharmony_ci
70bf215546Sopenharmony_ci   uint64_t sign_mask = 1ull << (x->bit_size - 1);
71bf215546Sopenharmony_ci   uint64_t min_abs = 1;
72bf215546Sopenharmony_ci
73bf215546Sopenharmony_ci   if (nir_is_denorm_flush_to_zero(b->shader->info.float_controls_execution_mode, x->bit_size)) {
74bf215546Sopenharmony_ci      switch (x->bit_size) {
75bf215546Sopenharmony_ci      case 16:
76bf215546Sopenharmony_ci         min_abs = 1 << 10;
77bf215546Sopenharmony_ci         break;
78bf215546Sopenharmony_ci      case 32:
79bf215546Sopenharmony_ci         min_abs = 1 << 23;
80bf215546Sopenharmony_ci         break;
81bf215546Sopenharmony_ci      case 64:
82bf215546Sopenharmony_ci         min_abs = 1ULL << 52;
83bf215546Sopenharmony_ci         break;
84bf215546Sopenharmony_ci      }
85bf215546Sopenharmony_ci
86bf215546Sopenharmony_ci      /* Flush denorm to zero to avoid returning a denorm when condeq is true. */
87bf215546Sopenharmony_ci      x = nir_fmul(b, x, nir_imm_floatN_t(b, 1.0, x->bit_size));
88bf215546Sopenharmony_ci   }
89bf215546Sopenharmony_ci
90bf215546Sopenharmony_ci   /* beware of: +/-0.0 - 1 == NaN */
91bf215546Sopenharmony_ci   nir_ssa_def *xn =
92bf215546Sopenharmony_ci      nir_bcsel(b,
93bf215546Sopenharmony_ci                condzero,
94bf215546Sopenharmony_ci                nir_imm_intN_t(b, sign_mask | min_abs, x->bit_size),
95bf215546Sopenharmony_ci                nir_isub(b, x, one));
96bf215546Sopenharmony_ci
97bf215546Sopenharmony_ci   /* beware of -0.0 + 1 == -0x1p-149 */
98bf215546Sopenharmony_ci   nir_ssa_def *xp = nir_bcsel(b, condzero,
99bf215546Sopenharmony_ci                               nir_imm_intN_t(b, min_abs, x->bit_size),
100bf215546Sopenharmony_ci                               nir_iadd(b, x, one));
101bf215546Sopenharmony_ci
102bf215546Sopenharmony_ci   /* nextafter can be implemented by just +/- 1 on the int value */
103bf215546Sopenharmony_ci   nir_ssa_def *res =
104bf215546Sopenharmony_ci      nir_bcsel(b, nir_ixor(b, conddir, nir_flt(b, x, zero)), xp, xn);
105bf215546Sopenharmony_ci
106bf215546Sopenharmony_ci   return nir_nan_check2(b, x, y, nir_bcsel(b, condeq, x, res));
107bf215546Sopenharmony_ci}
108bf215546Sopenharmony_ci
109bf215546Sopenharmony_cinir_ssa_def*
110bf215546Sopenharmony_cinir_normalize(nir_builder *b, nir_ssa_def *vec)
111bf215546Sopenharmony_ci{
112bf215546Sopenharmony_ci   if (vec->num_components == 1)
113bf215546Sopenharmony_ci      return nir_fsign(b, vec);
114bf215546Sopenharmony_ci
115bf215546Sopenharmony_ci   nir_ssa_def *f0 = nir_imm_floatN_t(b, 0.0, vec->bit_size);
116bf215546Sopenharmony_ci   nir_ssa_def *f1 = nir_imm_floatN_t(b, 1.0, vec->bit_size);
117bf215546Sopenharmony_ci   nir_ssa_def *finf = nir_imm_floatN_t(b, INFINITY, vec->bit_size);
118bf215546Sopenharmony_ci
119bf215546Sopenharmony_ci   /* scale the input to increase precision */
120bf215546Sopenharmony_ci   nir_ssa_def *maxc = nir_fmax_abs_vec_comp(b, vec);
121bf215546Sopenharmony_ci   nir_ssa_def *svec = nir_fdiv(b, vec, maxc);
122bf215546Sopenharmony_ci   /* for inf */
123bf215546Sopenharmony_ci   nir_ssa_def *finfvec = nir_copysign(b, nir_bcsel(b, nir_feq(b, vec, finf), f1, f0), f1);
124bf215546Sopenharmony_ci
125bf215546Sopenharmony_ci   nir_ssa_def *temp = nir_bcsel(b, nir_feq(b, maxc, finf), finfvec, svec);
126bf215546Sopenharmony_ci   nir_ssa_def *res = nir_fmul(b, temp, nir_frsq(b, nir_fdot(b, temp, temp)));
127bf215546Sopenharmony_ci
128bf215546Sopenharmony_ci   return nir_bcsel(b, nir_feq(b, maxc, f0), vec, res);
129bf215546Sopenharmony_ci}
130bf215546Sopenharmony_ci
131bf215546Sopenharmony_cinir_ssa_def*
132bf215546Sopenharmony_cinir_smoothstep(nir_builder *b, nir_ssa_def *edge0, nir_ssa_def *edge1, nir_ssa_def *x)
133bf215546Sopenharmony_ci{
134bf215546Sopenharmony_ci   nir_ssa_def *f2 = nir_imm_floatN_t(b, 2.0, x->bit_size);
135bf215546Sopenharmony_ci   nir_ssa_def *f3 = nir_imm_floatN_t(b, 3.0, x->bit_size);
136bf215546Sopenharmony_ci
137bf215546Sopenharmony_ci   /* t = clamp((x - edge0) / (edge1 - edge0), 0, 1) */
138bf215546Sopenharmony_ci   nir_ssa_def *t =
139bf215546Sopenharmony_ci      nir_fsat(b, nir_fdiv(b, nir_fsub(b, x, edge0),
140bf215546Sopenharmony_ci                              nir_fsub(b, edge1, edge0)));
141bf215546Sopenharmony_ci
142bf215546Sopenharmony_ci   /* result = t * t * (3 - 2 * t) */
143bf215546Sopenharmony_ci   return nir_fmul(b, t, nir_fmul(b, t, nir_a_minus_bc(b, f3, f2, t)));
144bf215546Sopenharmony_ci}
145bf215546Sopenharmony_ci
146bf215546Sopenharmony_cinir_ssa_def*
147bf215546Sopenharmony_cinir_upsample(nir_builder *b, nir_ssa_def *hi, nir_ssa_def *lo)
148bf215546Sopenharmony_ci{
149bf215546Sopenharmony_ci   assert(lo->num_components == hi->num_components);
150bf215546Sopenharmony_ci   assert(lo->bit_size == hi->bit_size);
151bf215546Sopenharmony_ci
152bf215546Sopenharmony_ci   nir_ssa_def *res[NIR_MAX_VEC_COMPONENTS];
153bf215546Sopenharmony_ci   for (unsigned i = 0; i < lo->num_components; ++i) {
154bf215546Sopenharmony_ci      nir_ssa_def *vec = nir_vec2(b, nir_channel(b, lo, i), nir_channel(b, hi, i));
155bf215546Sopenharmony_ci      res[i] = nir_pack_bits(b, vec, vec->bit_size * 2);
156bf215546Sopenharmony_ci   }
157bf215546Sopenharmony_ci
158bf215546Sopenharmony_ci   return nir_vec(b, res, lo->num_components);
159bf215546Sopenharmony_ci}
160bf215546Sopenharmony_ci
161bf215546Sopenharmony_ci/**
162bf215546Sopenharmony_ci * Compute xs[0] + xs[1] + xs[2] + ... using fadd.
163bf215546Sopenharmony_ci */
164bf215546Sopenharmony_cistatic nir_ssa_def *
165bf215546Sopenharmony_cibuild_fsum(nir_builder *b, nir_ssa_def **xs, int terms)
166bf215546Sopenharmony_ci{
167bf215546Sopenharmony_ci   nir_ssa_def *accum = xs[0];
168bf215546Sopenharmony_ci
169bf215546Sopenharmony_ci   for (int i = 1; i < terms; i++)
170bf215546Sopenharmony_ci      accum = nir_fadd(b, accum, xs[i]);
171bf215546Sopenharmony_ci
172bf215546Sopenharmony_ci   return accum;
173bf215546Sopenharmony_ci}
174bf215546Sopenharmony_ci
175bf215546Sopenharmony_cinir_ssa_def *
176bf215546Sopenharmony_cinir_atan(nir_builder *b, nir_ssa_def *y_over_x)
177bf215546Sopenharmony_ci{
178bf215546Sopenharmony_ci   const uint32_t bit_size = y_over_x->bit_size;
179bf215546Sopenharmony_ci
180bf215546Sopenharmony_ci   nir_ssa_def *abs_y_over_x = nir_fabs(b, y_over_x);
181bf215546Sopenharmony_ci   nir_ssa_def *one = nir_imm_floatN_t(b, 1.0f, bit_size);
182bf215546Sopenharmony_ci
183bf215546Sopenharmony_ci   /*
184bf215546Sopenharmony_ci    * range-reduction, first step:
185bf215546Sopenharmony_ci    *
186bf215546Sopenharmony_ci    *      / y_over_x         if |y_over_x| <= 1.0;
187bf215546Sopenharmony_ci    * x = <
188bf215546Sopenharmony_ci    *      \ 1.0 / y_over_x   otherwise
189bf215546Sopenharmony_ci    */
190bf215546Sopenharmony_ci   nir_ssa_def *x = nir_fdiv(b, nir_fmin(b, abs_y_over_x, one),
191bf215546Sopenharmony_ci                                nir_fmax(b, abs_y_over_x, one));
192bf215546Sopenharmony_ci
193bf215546Sopenharmony_ci   /*
194bf215546Sopenharmony_ci    * approximate atan by evaluating polynomial:
195bf215546Sopenharmony_ci    *
196bf215546Sopenharmony_ci    * x   * 0.9999793128310355 - x^3  * 0.3326756418091246 +
197bf215546Sopenharmony_ci    * x^5 * 0.1938924977115610 - x^7  * 0.1173503194786851 +
198bf215546Sopenharmony_ci    * x^9 * 0.0536813784310406 - x^11 * 0.0121323213173444
199bf215546Sopenharmony_ci    */
200bf215546Sopenharmony_ci   nir_ssa_def *x_2  = nir_fmul(b, x,   x);
201bf215546Sopenharmony_ci   nir_ssa_def *x_3  = nir_fmul(b, x_2, x);
202bf215546Sopenharmony_ci   nir_ssa_def *x_5  = nir_fmul(b, x_3, x_2);
203bf215546Sopenharmony_ci   nir_ssa_def *x_7  = nir_fmul(b, x_5, x_2);
204bf215546Sopenharmony_ci   nir_ssa_def *x_9  = nir_fmul(b, x_7, x_2);
205bf215546Sopenharmony_ci   nir_ssa_def *x_11 = nir_fmul(b, x_9, x_2);
206bf215546Sopenharmony_ci
207bf215546Sopenharmony_ci   nir_ssa_def *polynomial_terms[] = {
208bf215546Sopenharmony_ci      nir_fmul_imm(b, x,     0.9999793128310355f),
209bf215546Sopenharmony_ci      nir_fmul_imm(b, x_3,  -0.3326756418091246f),
210bf215546Sopenharmony_ci      nir_fmul_imm(b, x_5,   0.1938924977115610f),
211bf215546Sopenharmony_ci      nir_fmul_imm(b, x_7,  -0.1173503194786851f),
212bf215546Sopenharmony_ci      nir_fmul_imm(b, x_9,   0.0536813784310406f),
213bf215546Sopenharmony_ci      nir_fmul_imm(b, x_11, -0.0121323213173444f),
214bf215546Sopenharmony_ci   };
215bf215546Sopenharmony_ci
216bf215546Sopenharmony_ci   nir_ssa_def *tmp =
217bf215546Sopenharmony_ci      build_fsum(b, polynomial_terms, ARRAY_SIZE(polynomial_terms));
218bf215546Sopenharmony_ci
219bf215546Sopenharmony_ci   /* range-reduction fixup */
220bf215546Sopenharmony_ci   tmp = nir_ffma(b,
221bf215546Sopenharmony_ci                  nir_b2f(b, nir_flt(b, one, abs_y_over_x), bit_size),
222bf215546Sopenharmony_ci                  nir_ffma_imm12(b, tmp, -2.0f, M_PI_2),
223bf215546Sopenharmony_ci                  tmp);
224bf215546Sopenharmony_ci
225bf215546Sopenharmony_ci   /* sign fixup */
226bf215546Sopenharmony_ci   nir_ssa_def *result = nir_fmul(b, tmp, nir_fsign(b, y_over_x));
227bf215546Sopenharmony_ci
228bf215546Sopenharmony_ci   /* The fmin and fmax above will filter out NaN values.  This leads to
229bf215546Sopenharmony_ci    * non-NaN results for NaN inputs.  Work around this by doing
230bf215546Sopenharmony_ci    *
231bf215546Sopenharmony_ci    *    !isnan(y_over_x) ? ... : y_over_x;
232bf215546Sopenharmony_ci    */
233bf215546Sopenharmony_ci   if (b->exact ||
234bf215546Sopenharmony_ci       nir_is_float_control_signed_zero_inf_nan_preserve(b->shader->info.float_controls_execution_mode, bit_size)) {
235bf215546Sopenharmony_ci      const bool exact = b->exact;
236bf215546Sopenharmony_ci
237bf215546Sopenharmony_ci      b->exact = true;
238bf215546Sopenharmony_ci      nir_ssa_def *is_not_nan = nir_feq(b, y_over_x, y_over_x);
239bf215546Sopenharmony_ci      b->exact = exact;
240bf215546Sopenharmony_ci
241bf215546Sopenharmony_ci      /* The extra 1.0*y_over_x ensures that subnormal results are flushed to
242bf215546Sopenharmony_ci       * zero.
243bf215546Sopenharmony_ci       */
244bf215546Sopenharmony_ci      result = nir_bcsel(b, is_not_nan, result, nir_fmul_imm(b, y_over_x, 1.0));
245bf215546Sopenharmony_ci   }
246bf215546Sopenharmony_ci
247bf215546Sopenharmony_ci   return result;
248bf215546Sopenharmony_ci}
249bf215546Sopenharmony_ci
250bf215546Sopenharmony_cinir_ssa_def *
251bf215546Sopenharmony_cinir_atan2(nir_builder *b, nir_ssa_def *y, nir_ssa_def *x)
252bf215546Sopenharmony_ci{
253bf215546Sopenharmony_ci   assert(y->bit_size == x->bit_size);
254bf215546Sopenharmony_ci   const uint32_t bit_size = x->bit_size;
255bf215546Sopenharmony_ci
256bf215546Sopenharmony_ci   nir_ssa_def *zero = nir_imm_floatN_t(b, 0, bit_size);
257bf215546Sopenharmony_ci   nir_ssa_def *one = nir_imm_floatN_t(b, 1, bit_size);
258bf215546Sopenharmony_ci
259bf215546Sopenharmony_ci   /* If we're on the left half-plane rotate the coordinates π/2 clock-wise
260bf215546Sopenharmony_ci    * for the y=0 discontinuity to end up aligned with the vertical
261bf215546Sopenharmony_ci    * discontinuity of atan(s/t) along t=0.  This also makes sure that we
262bf215546Sopenharmony_ci    * don't attempt to divide by zero along the vertical line, which may give
263bf215546Sopenharmony_ci    * unspecified results on non-GLSL 4.1-capable hardware.
264bf215546Sopenharmony_ci    */
265bf215546Sopenharmony_ci   nir_ssa_def *flip = nir_fge(b, zero, x);
266bf215546Sopenharmony_ci   nir_ssa_def *s = nir_bcsel(b, flip, nir_fabs(b, x), y);
267bf215546Sopenharmony_ci   nir_ssa_def *t = nir_bcsel(b, flip, y, nir_fabs(b, x));
268bf215546Sopenharmony_ci
269bf215546Sopenharmony_ci   /* If the magnitude of the denominator exceeds some huge value, scale down
270bf215546Sopenharmony_ci    * the arguments in order to prevent the reciprocal operation from flushing
271bf215546Sopenharmony_ci    * its result to zero, which would cause precision problems, and for s
272bf215546Sopenharmony_ci    * infinite would cause us to return a NaN instead of the correct finite
273bf215546Sopenharmony_ci    * value.
274bf215546Sopenharmony_ci    *
275bf215546Sopenharmony_ci    * If fmin and fmax are respectively the smallest and largest positive
276bf215546Sopenharmony_ci    * normalized floating point values representable by the implementation,
277bf215546Sopenharmony_ci    * the constants below should be in agreement with:
278bf215546Sopenharmony_ci    *
279bf215546Sopenharmony_ci    *    huge <= 1 / fmin
280bf215546Sopenharmony_ci    *    scale <= 1 / fmin / fmax (for |t| >= huge)
281bf215546Sopenharmony_ci    *
282bf215546Sopenharmony_ci    * In addition scale should be a negative power of two in order to avoid
283bf215546Sopenharmony_ci    * loss of precision.  The values chosen below should work for most usual
284bf215546Sopenharmony_ci    * floating point representations with at least the dynamic range of ATI's
285bf215546Sopenharmony_ci    * 24-bit representation.
286bf215546Sopenharmony_ci    */
287bf215546Sopenharmony_ci   const double huge_val = bit_size >= 32 ? 1e18 : 16384;
288bf215546Sopenharmony_ci   nir_ssa_def *huge = nir_imm_floatN_t(b,  huge_val, bit_size);
289bf215546Sopenharmony_ci   nir_ssa_def *scale = nir_bcsel(b, nir_fge(b, nir_fabs(b, t), huge),
290bf215546Sopenharmony_ci                                  nir_imm_floatN_t(b, 0.25, bit_size), one);
291bf215546Sopenharmony_ci   nir_ssa_def *rcp_scaled_t = nir_frcp(b, nir_fmul(b, t, scale));
292bf215546Sopenharmony_ci   nir_ssa_def *s_over_t = nir_fmul(b, nir_fmul(b, s, scale), rcp_scaled_t);
293bf215546Sopenharmony_ci
294bf215546Sopenharmony_ci   /* For |x| = |y| assume tan = 1 even if infinite (i.e. pretend momentarily
295bf215546Sopenharmony_ci    * that ∞/∞ = 1) in order to comply with the rather artificial rules
296bf215546Sopenharmony_ci    * inherited from IEEE 754-2008, namely:
297bf215546Sopenharmony_ci    *
298bf215546Sopenharmony_ci    *  "atan2(±∞, −∞) is ±3π/4
299bf215546Sopenharmony_ci    *   atan2(±∞, +∞) is ±π/4"
300bf215546Sopenharmony_ci    *
301bf215546Sopenharmony_ci    * Note that this is inconsistent with the rules for the neighborhood of
302bf215546Sopenharmony_ci    * zero that are based on iterated limits:
303bf215546Sopenharmony_ci    *
304bf215546Sopenharmony_ci    *  "atan2(±0, −0) is ±π
305bf215546Sopenharmony_ci    *   atan2(±0, +0) is ±0"
306bf215546Sopenharmony_ci    *
307bf215546Sopenharmony_ci    * but GLSL specifically allows implementations to deviate from IEEE rules
308bf215546Sopenharmony_ci    * at (0,0), so we take that license (i.e. pretend that 0/0 = 1 here as
309bf215546Sopenharmony_ci    * well).
310bf215546Sopenharmony_ci    */
311bf215546Sopenharmony_ci   nir_ssa_def *tan = nir_bcsel(b, nir_feq(b, nir_fabs(b, x), nir_fabs(b, y)),
312bf215546Sopenharmony_ci                                one, nir_fabs(b, s_over_t));
313bf215546Sopenharmony_ci
314bf215546Sopenharmony_ci   /* Calculate the arctangent and fix up the result if we had flipped the
315bf215546Sopenharmony_ci    * coordinate system.
316bf215546Sopenharmony_ci    */
317bf215546Sopenharmony_ci   nir_ssa_def *arc =
318bf215546Sopenharmony_ci      nir_ffma_imm1(b, nir_b2f(b, flip, bit_size), M_PI_2, nir_atan(b, tan));
319bf215546Sopenharmony_ci
320bf215546Sopenharmony_ci   /* Rather convoluted calculation of the sign of the result.  When x < 0 we
321bf215546Sopenharmony_ci    * cannot use fsign because we need to be able to distinguish between
322bf215546Sopenharmony_ci    * negative and positive zero.  We don't use bitwise arithmetic tricks for
323bf215546Sopenharmony_ci    * consistency with the GLSL front-end.  When x >= 0 rcp_scaled_t will
324bf215546Sopenharmony_ci    * always be non-negative so this won't be able to distinguish between
325bf215546Sopenharmony_ci    * negative and positive zero, but we don't care because atan2 is
326bf215546Sopenharmony_ci    * continuous along the whole positive y = 0 half-line, so it won't affect
327bf215546Sopenharmony_ci    * the result significantly.
328bf215546Sopenharmony_ci    */
329bf215546Sopenharmony_ci   return nir_bcsel(b, nir_flt(b, nir_fmin(b, y, rcp_scaled_t), zero),
330bf215546Sopenharmony_ci                    nir_fneg(b, arc), arc);
331bf215546Sopenharmony_ci}
332bf215546Sopenharmony_ci
333bf215546Sopenharmony_cinir_ssa_def *
334bf215546Sopenharmony_cinir_get_texture_size(nir_builder *b, nir_tex_instr *tex)
335bf215546Sopenharmony_ci{
336bf215546Sopenharmony_ci   b->cursor = nir_before_instr(&tex->instr);
337bf215546Sopenharmony_ci
338bf215546Sopenharmony_ci   nir_tex_instr *txs;
339bf215546Sopenharmony_ci
340bf215546Sopenharmony_ci   unsigned num_srcs = 1; /* One for the LOD */
341bf215546Sopenharmony_ci   for (unsigned i = 0; i < tex->num_srcs; i++) {
342bf215546Sopenharmony_ci      if (tex->src[i].src_type == nir_tex_src_texture_deref ||
343bf215546Sopenharmony_ci          tex->src[i].src_type == nir_tex_src_sampler_deref ||
344bf215546Sopenharmony_ci          tex->src[i].src_type == nir_tex_src_texture_offset ||
345bf215546Sopenharmony_ci          tex->src[i].src_type == nir_tex_src_sampler_offset ||
346bf215546Sopenharmony_ci          tex->src[i].src_type == nir_tex_src_texture_handle ||
347bf215546Sopenharmony_ci          tex->src[i].src_type == nir_tex_src_sampler_handle)
348bf215546Sopenharmony_ci         num_srcs++;
349bf215546Sopenharmony_ci   }
350bf215546Sopenharmony_ci
351bf215546Sopenharmony_ci   txs = nir_tex_instr_create(b->shader, num_srcs);
352bf215546Sopenharmony_ci   txs->op = nir_texop_txs;
353bf215546Sopenharmony_ci   txs->sampler_dim = tex->sampler_dim;
354bf215546Sopenharmony_ci   txs->is_array = tex->is_array;
355bf215546Sopenharmony_ci   txs->is_shadow = tex->is_shadow;
356bf215546Sopenharmony_ci   txs->is_new_style_shadow = tex->is_new_style_shadow;
357bf215546Sopenharmony_ci   txs->texture_index = tex->texture_index;
358bf215546Sopenharmony_ci   txs->sampler_index = tex->sampler_index;
359bf215546Sopenharmony_ci   txs->dest_type = nir_type_int32;
360bf215546Sopenharmony_ci
361bf215546Sopenharmony_ci   unsigned idx = 0;
362bf215546Sopenharmony_ci   for (unsigned i = 0; i < tex->num_srcs; i++) {
363bf215546Sopenharmony_ci      if (tex->src[i].src_type == nir_tex_src_texture_deref ||
364bf215546Sopenharmony_ci          tex->src[i].src_type == nir_tex_src_sampler_deref ||
365bf215546Sopenharmony_ci          tex->src[i].src_type == nir_tex_src_texture_offset ||
366bf215546Sopenharmony_ci          tex->src[i].src_type == nir_tex_src_sampler_offset ||
367bf215546Sopenharmony_ci          tex->src[i].src_type == nir_tex_src_texture_handle ||
368bf215546Sopenharmony_ci          tex->src[i].src_type == nir_tex_src_sampler_handle) {
369bf215546Sopenharmony_ci         nir_src_copy(&txs->src[idx].src, &tex->src[i].src);
370bf215546Sopenharmony_ci         txs->src[idx].src_type = tex->src[i].src_type;
371bf215546Sopenharmony_ci         idx++;
372bf215546Sopenharmony_ci      }
373bf215546Sopenharmony_ci   }
374bf215546Sopenharmony_ci   /* Add in an LOD because some back-ends require it */
375bf215546Sopenharmony_ci   txs->src[idx].src = nir_src_for_ssa(nir_imm_int(b, 0));
376bf215546Sopenharmony_ci   txs->src[idx].src_type = nir_tex_src_lod;
377bf215546Sopenharmony_ci
378bf215546Sopenharmony_ci   nir_ssa_dest_init(&txs->instr, &txs->dest,
379bf215546Sopenharmony_ci                     nir_tex_instr_dest_size(txs), 32, NULL);
380bf215546Sopenharmony_ci   nir_builder_instr_insert(b, &txs->instr);
381bf215546Sopenharmony_ci
382bf215546Sopenharmony_ci   return &txs->dest.ssa;
383bf215546Sopenharmony_ci}
384bf215546Sopenharmony_ci
385bf215546Sopenharmony_cinir_ssa_def *
386bf215546Sopenharmony_cinir_get_texture_lod(nir_builder *b, nir_tex_instr *tex)
387bf215546Sopenharmony_ci{
388bf215546Sopenharmony_ci   b->cursor = nir_before_instr(&tex->instr);
389bf215546Sopenharmony_ci
390bf215546Sopenharmony_ci   nir_tex_instr *tql;
391bf215546Sopenharmony_ci
392bf215546Sopenharmony_ci   unsigned num_srcs = 0;
393bf215546Sopenharmony_ci   for (unsigned i = 0; i < tex->num_srcs; i++) {
394bf215546Sopenharmony_ci      if (tex->src[i].src_type == nir_tex_src_coord ||
395bf215546Sopenharmony_ci          tex->src[i].src_type == nir_tex_src_texture_deref ||
396bf215546Sopenharmony_ci          tex->src[i].src_type == nir_tex_src_sampler_deref ||
397bf215546Sopenharmony_ci          tex->src[i].src_type == nir_tex_src_texture_offset ||
398bf215546Sopenharmony_ci          tex->src[i].src_type == nir_tex_src_sampler_offset ||
399bf215546Sopenharmony_ci          tex->src[i].src_type == nir_tex_src_texture_handle ||
400bf215546Sopenharmony_ci          tex->src[i].src_type == nir_tex_src_sampler_handle)
401bf215546Sopenharmony_ci         num_srcs++;
402bf215546Sopenharmony_ci   }
403bf215546Sopenharmony_ci
404bf215546Sopenharmony_ci   tql = nir_tex_instr_create(b->shader, num_srcs);
405bf215546Sopenharmony_ci   tql->op = nir_texop_lod;
406bf215546Sopenharmony_ci   tql->coord_components = tex->coord_components;
407bf215546Sopenharmony_ci   tql->sampler_dim = tex->sampler_dim;
408bf215546Sopenharmony_ci   tql->is_array = tex->is_array;
409bf215546Sopenharmony_ci   tql->is_shadow = tex->is_shadow;
410bf215546Sopenharmony_ci   tql->is_new_style_shadow = tex->is_new_style_shadow;
411bf215546Sopenharmony_ci   tql->texture_index = tex->texture_index;
412bf215546Sopenharmony_ci   tql->sampler_index = tex->sampler_index;
413bf215546Sopenharmony_ci   tql->dest_type = nir_type_float32;
414bf215546Sopenharmony_ci
415bf215546Sopenharmony_ci   unsigned idx = 0;
416bf215546Sopenharmony_ci   for (unsigned i = 0; i < tex->num_srcs; i++) {
417bf215546Sopenharmony_ci      if (tex->src[i].src_type == nir_tex_src_coord ||
418bf215546Sopenharmony_ci          tex->src[i].src_type == nir_tex_src_texture_deref ||
419bf215546Sopenharmony_ci          tex->src[i].src_type == nir_tex_src_sampler_deref ||
420bf215546Sopenharmony_ci          tex->src[i].src_type == nir_tex_src_texture_offset ||
421bf215546Sopenharmony_ci          tex->src[i].src_type == nir_tex_src_sampler_offset ||
422bf215546Sopenharmony_ci          tex->src[i].src_type == nir_tex_src_texture_handle ||
423bf215546Sopenharmony_ci          tex->src[i].src_type == nir_tex_src_sampler_handle) {
424bf215546Sopenharmony_ci         nir_src_copy(&tql->src[idx].src, &tex->src[i].src);
425bf215546Sopenharmony_ci         tql->src[idx].src_type = tex->src[i].src_type;
426bf215546Sopenharmony_ci         idx++;
427bf215546Sopenharmony_ci      }
428bf215546Sopenharmony_ci   }
429bf215546Sopenharmony_ci
430bf215546Sopenharmony_ci   nir_ssa_dest_init(&tql->instr, &tql->dest, 2, 32, NULL);
431bf215546Sopenharmony_ci   nir_builder_instr_insert(b, &tql->instr);
432bf215546Sopenharmony_ci
433bf215546Sopenharmony_ci   /* The LOD is the y component of the result */
434bf215546Sopenharmony_ci   return nir_channel(b, &tql->dest.ssa, 1);
435bf215546Sopenharmony_ci}
436