xref: /third_party/mesa3d/src/compiler/nir/nir.h (revision bf215546)
1/*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28#ifndef NIR_H
29#define NIR_H
30
31#include "util/hash_table.h"
32#include "compiler/glsl/list.h"
33#include "util/list.h"
34#include "util/log.h"
35#include "util/ralloc.h"
36#include "util/set.h"
37#include "util/bitscan.h"
38#include "util/bitset.h"
39#include "util/compiler.h"
40#include "util/enum_operators.h"
41#include "util/macros.h"
42#include "util/format/u_format.h"
43#include "compiler/nir_types.h"
44#include "compiler/shader_enums.h"
45#include "compiler/shader_info.h"
46#define XXH_INLINE_ALL
47#include "util/xxhash.h"
48#include <stdio.h>
49
50#ifndef NDEBUG
51#include "util/debug.h"
52#endif /* NDEBUG */
53
54#include "nir_opcodes.h"
55
56#if defined(_WIN32) && !defined(snprintf)
57#define snprintf _snprintf
58#endif
59
60#ifdef __cplusplus
61extern "C" {
62#endif
63
64extern uint32_t nir_debug;
65extern bool nir_debug_print_shader[MESA_SHADER_KERNEL + 1];
66
67#ifndef NDEBUG
68#define NIR_DEBUG(flag) unlikely(nir_debug & (NIR_DEBUG_ ## flag))
69#else
70#define NIR_DEBUG(flag) false
71#endif
72
73#define NIR_DEBUG_CLONE                  (1u << 0)
74#define NIR_DEBUG_SERIALIZE              (1u << 1)
75#define NIR_DEBUG_NOVALIDATE             (1u << 2)
76#define NIR_DEBUG_VALIDATE_SSA_DOMINANCE (1u << 3)
77#define NIR_DEBUG_TGSI                   (1u << 4)
78#define NIR_DEBUG_PRINT_VS               (1u << 5)
79#define NIR_DEBUG_PRINT_TCS              (1u << 6)
80#define NIR_DEBUG_PRINT_TES              (1u << 7)
81#define NIR_DEBUG_PRINT_GS               (1u << 8)
82#define NIR_DEBUG_PRINT_FS               (1u << 9)
83#define NIR_DEBUG_PRINT_CS               (1u << 10)
84#define NIR_DEBUG_PRINT_TS               (1u << 11)
85#define NIR_DEBUG_PRINT_MS               (1u << 12)
86#define NIR_DEBUG_PRINT_RGS              (1u << 13)
87#define NIR_DEBUG_PRINT_AHS              (1u << 14)
88#define NIR_DEBUG_PRINT_CHS              (1u << 15)
89#define NIR_DEBUG_PRINT_MHS              (1u << 16)
90#define NIR_DEBUG_PRINT_IS               (1u << 17)
91#define NIR_DEBUG_PRINT_CBS              (1u << 18)
92#define NIR_DEBUG_PRINT_KS               (1u << 19)
93#define NIR_DEBUG_PRINT_CONSTS           (1u << 20)
94#define NIR_DEBUG_VALIDATE_GC_LIST       (1u << 21)
95
96#define NIR_DEBUG_PRINT (NIR_DEBUG_PRINT_VS  | \
97                         NIR_DEBUG_PRINT_TCS | \
98                         NIR_DEBUG_PRINT_TES | \
99                         NIR_DEBUG_PRINT_GS  | \
100                         NIR_DEBUG_PRINT_FS  | \
101                         NIR_DEBUG_PRINT_CS  | \
102                         NIR_DEBUG_PRINT_TS  | \
103                         NIR_DEBUG_PRINT_MS  | \
104                         NIR_DEBUG_PRINT_RGS | \
105                         NIR_DEBUG_PRINT_AHS | \
106                         NIR_DEBUG_PRINT_CHS | \
107                         NIR_DEBUG_PRINT_MHS | \
108                         NIR_DEBUG_PRINT_IS  | \
109                         NIR_DEBUG_PRINT_CBS | \
110                         NIR_DEBUG_PRINT_KS)
111
112#define NIR_FALSE 0u
113#define NIR_TRUE (~0u)
114#define NIR_MAX_VEC_COMPONENTS 16
115#define NIR_MAX_MATRIX_COLUMNS 4
116#define NIR_STREAM_PACKED (1 << 8)
117typedef uint16_t nir_component_mask_t;
118
119static inline bool
120nir_num_components_valid(unsigned num_components)
121{
122   return (num_components >= 1  &&
123           num_components <= 5) ||
124           num_components == 8  ||
125           num_components == 16;
126}
127
128static inline nir_component_mask_t
129nir_component_mask(unsigned num_components)
130{
131   assert(nir_num_components_valid(num_components));
132   return (1u << num_components) - 1;
133}
134
135void
136nir_process_debug_variable(void);
137
138bool nir_component_mask_can_reinterpret(nir_component_mask_t mask,
139                                        unsigned old_bit_size,
140                                        unsigned new_bit_size);
141nir_component_mask_t
142nir_component_mask_reinterpret(nir_component_mask_t mask,
143                               unsigned old_bit_size,
144                               unsigned new_bit_size);
145
146/** Defines a cast function
147 *
148 * This macro defines a cast function from in_type to out_type where
149 * out_type is some structure type that contains a field of type out_type.
150 *
151 * Note that you have to be a bit careful as the generated cast function
152 * destroys constness.
153 */
154#define NIR_DEFINE_CAST(name, in_type, out_type, field, \
155                        type_field, type_value)         \
156static inline out_type *                                \
157name(const in_type *parent)                             \
158{                                                       \
159   assert(parent && parent->type_field == type_value);  \
160   return exec_node_data(out_type, parent, field);      \
161}
162
163struct nir_function;
164struct nir_shader;
165struct nir_instr;
166struct nir_builder;
167struct nir_xfb_info;
168
169
170/**
171 * Description of built-in state associated with a uniform
172 *
173 * \sa nir_variable::state_slots
174 */
175typedef struct {
176   gl_state_index16 tokens[STATE_LENGTH];
177   uint16_t swizzle;
178} nir_state_slot;
179
180typedef enum {
181   nir_var_system_value    = (1 << 0),
182   nir_var_uniform         = (1 << 1),
183   nir_var_shader_in       = (1 << 2),
184   nir_var_shader_out      = (1 << 3),
185   nir_var_image           = (1 << 4),
186   /** Incoming call or ray payload data for ray-tracing shaders */
187   nir_var_shader_call_data = (1 << 5),
188   /** Ray hit attributes */
189   nir_var_ray_hit_attrib  = (1 << 6),
190
191   /* Modes named nir_var_mem_* have explicit data layout */
192   nir_var_mem_ubo          = (1 << 7),
193   nir_var_mem_push_const   = (1 << 8),
194   nir_var_mem_ssbo         = (1 << 9),
195   nir_var_mem_constant     = (1 << 10),
196   nir_var_mem_task_payload = (1 << 11),
197
198   /* Generic modes intentionally come last. See encode_dref_modes() in
199    * nir_serialize.c for more details.
200    */
201   nir_var_shader_temp     = (1 << 12),
202   nir_var_function_temp   = (1 << 13),
203   nir_var_mem_shared      = (1 << 14),
204   nir_var_mem_global      = (1 << 15),
205
206   nir_var_mem_generic     = (nir_var_shader_temp |
207                              nir_var_function_temp |
208                              nir_var_mem_shared |
209                              nir_var_mem_global),
210
211   nir_var_read_only_modes = nir_var_shader_in | nir_var_uniform |
212                             nir_var_system_value | nir_var_mem_constant |
213                             nir_var_mem_ubo,
214   /** Modes where vector derefs can be indexed as arrays */
215   nir_var_vec_indexable_modes = nir_var_mem_ubo | nir_var_mem_ssbo |
216                                 nir_var_mem_shared | nir_var_mem_global |
217                                 nir_var_mem_push_const,
218   nir_num_variable_modes  = 16,
219   nir_var_all             = (1 << nir_num_variable_modes) - 1,
220} nir_variable_mode;
221MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(nir_variable_mode)
222
223/**
224 * Rounding modes.
225 */
226typedef enum {
227   nir_rounding_mode_undef = 0,
228   nir_rounding_mode_rtne  = 1, /* round to nearest even */
229   nir_rounding_mode_ru    = 2, /* round up */
230   nir_rounding_mode_rd    = 3, /* round down */
231   nir_rounding_mode_rtz   = 4, /* round towards zero */
232} nir_rounding_mode;
233
234typedef union {
235   bool b;
236   float f32;
237   double f64;
238   int8_t i8;
239   uint8_t u8;
240   int16_t i16;
241   uint16_t u16;
242   int32_t i32;
243   uint32_t u32;
244   int64_t i64;
245   uint64_t u64;
246} nir_const_value;
247
248#define nir_const_value_to_array(arr, c, components, m) \
249{ \
250   for (unsigned i = 0; i < components; ++i) \
251      arr[i] = c[i].m; \
252} while (false)
253
254static inline nir_const_value
255nir_const_value_for_raw_uint(uint64_t x, unsigned bit_size)
256{
257   nir_const_value v;
258   memset(&v, 0, sizeof(v));
259
260   switch (bit_size) {
261   case 1:  v.b   = x;  break;
262   case 8:  v.u8  = x;  break;
263   case 16: v.u16 = x;  break;
264   case 32: v.u32 = x;  break;
265   case 64: v.u64 = x;  break;
266   default:
267      unreachable("Invalid bit size");
268   }
269
270   return v;
271}
272
273static inline nir_const_value
274nir_const_value_for_int(int64_t i, unsigned bit_size)
275{
276   nir_const_value v;
277   memset(&v, 0, sizeof(v));
278
279   assert(bit_size <= 64);
280   if (bit_size < 64) {
281      assert(i >= (-(1ll << (bit_size - 1))));
282      assert(i < (1ll << (bit_size - 1)));
283   }
284
285   return nir_const_value_for_raw_uint(i, bit_size);
286}
287
288static inline nir_const_value
289nir_const_value_for_uint(uint64_t u, unsigned bit_size)
290{
291   nir_const_value v;
292   memset(&v, 0, sizeof(v));
293
294   assert(bit_size <= 64);
295   if (bit_size < 64)
296      assert(u < (1ull << bit_size));
297
298   return nir_const_value_for_raw_uint(u, bit_size);
299}
300
301static inline nir_const_value
302nir_const_value_for_bool(bool b, unsigned bit_size)
303{
304   /* Booleans use a 0/-1 convention */
305   return nir_const_value_for_int(-(int)b, bit_size);
306}
307
308/* This one isn't inline because it requires half-float conversion */
309nir_const_value nir_const_value_for_float(double b, unsigned bit_size);
310
311static inline int64_t
312nir_const_value_as_int(nir_const_value value, unsigned bit_size)
313{
314   switch (bit_size) {
315   /* int1_t uses 0/-1 convention */
316   case 1:  return -(int)value.b;
317   case 8:  return value.i8;
318   case 16: return value.i16;
319   case 32: return value.i32;
320   case 64: return value.i64;
321   default:
322      unreachable("Invalid bit size");
323   }
324}
325
326static inline uint64_t
327nir_const_value_as_uint(nir_const_value value, unsigned bit_size)
328{
329   switch (bit_size) {
330   case 1:  return value.b;
331   case 8:  return value.u8;
332   case 16: return value.u16;
333   case 32: return value.u32;
334   case 64: return value.u64;
335   default:
336      unreachable("Invalid bit size");
337   }
338}
339
340static inline bool
341nir_const_value_as_bool(nir_const_value value, unsigned bit_size)
342{
343   int64_t i = nir_const_value_as_int(value, bit_size);
344
345   /* Booleans of any size use 0/-1 convention */
346   assert(i == 0 || i == -1);
347
348   return i;
349}
350
351/* This one isn't inline because it requires half-float conversion */
352double nir_const_value_as_float(nir_const_value value, unsigned bit_size);
353
354typedef struct nir_constant {
355   /**
356    * Value of the constant.
357    *
358    * The field used to back the values supplied by the constant is determined
359    * by the type associated with the \c nir_variable.  Constants may be
360    * scalars, vectors, or matrices.
361    */
362   nir_const_value values[NIR_MAX_VEC_COMPONENTS];
363
364   /* we could get this from the var->type but makes clone *much* easier to
365    * not have to care about the type.
366    */
367   unsigned num_elements;
368
369   /* Array elements / Structure Fields */
370   struct nir_constant **elements;
371} nir_constant;
372
373/**
374 * \brief Layout qualifiers for gl_FragDepth.
375 *
376 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
377 * with a layout qualifier.
378 */
379typedef enum {
380    nir_depth_layout_none, /**< No depth layout is specified. */
381    nir_depth_layout_any,
382    nir_depth_layout_greater,
383    nir_depth_layout_less,
384    nir_depth_layout_unchanged
385} nir_depth_layout;
386
387/**
388 * Enum keeping track of how a variable was declared.
389 */
390typedef enum {
391   /**
392    * Normal declaration.
393    */
394   nir_var_declared_normally = 0,
395
396   /**
397    * Variable is implicitly generated by the compiler and should not be
398    * visible via the API.
399    */
400   nir_var_hidden,
401} nir_var_declaration_type;
402
403/**
404 * Either a uniform, global variable, shader input, or shader output. Based on
405 * ir_variable - it should be easy to translate between the two.
406 */
407
408typedef struct nir_variable {
409   struct exec_node node;
410
411   /**
412    * Declared type of the variable
413    */
414   const struct glsl_type *type;
415
416   /**
417    * Declared name of the variable
418    */
419   char *name;
420
421   struct nir_variable_data {
422      /**
423       * Storage class of the variable.
424       *
425       * \sa nir_variable_mode
426       */
427      unsigned mode:16;
428
429      /**
430       * Is the variable read-only?
431       *
432       * This is set for variables declared as \c const, shader inputs,
433       * and uniforms.
434       */
435      unsigned read_only:1;
436      unsigned centroid:1;
437      unsigned sample:1;
438      unsigned patch:1;
439      unsigned invariant:1;
440
441      /**
442       * Is the variable a ray query?
443       */
444      unsigned ray_query:1;
445
446     /**
447       * Precision qualifier.
448       *
449       * In desktop GLSL we do not care about precision qualifiers at all, in
450       * fact, the spec says that precision qualifiers are ignored.
451       *
452       * To make things easy, we make it so that this field is always
453       * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
454       * have the same precision value and the checks we add in the compiler
455       * for this field will never break a desktop shader compile.
456       */
457      unsigned precision:2;
458
459      /**
460       * Has this variable been statically assigned?
461       *
462       * This answers whether the variable was assigned in any path of
463       * the shader during ast_to_hir.  This doesn't answer whether it is
464       * still written after dead code removal, nor is it maintained in
465       * non-ast_to_hir.cpp (GLSL parsing) paths.
466       */
467      unsigned assigned:1;
468
469      /**
470       * Can this variable be coalesced with another?
471       *
472       * This is set by nir_lower_io_to_temporaries to say that any
473       * copies involving this variable should stay put. Propagating it can
474       * duplicate the resulting load/store, which is not wanted, and may
475       * result in a load/store of the variable with an indirect offset which
476       * the backend may not be able to handle.
477       */
478      unsigned cannot_coalesce:1;
479
480      /**
481       * When separate shader programs are enabled, only input/outputs between
482       * the stages of a multi-stage separate program can be safely removed
483       * from the shader interface. Other input/outputs must remains active.
484       *
485       * This is also used to make sure xfb varyings that are unused by the
486       * fragment shader are not removed.
487       */
488      unsigned always_active_io:1;
489
490      /**
491       * Interpolation mode for shader inputs / outputs
492       *
493       * \sa glsl_interp_mode
494       */
495      unsigned interpolation:3;
496
497      /**
498       * If non-zero, then this variable may be packed along with other variables
499       * into a single varying slot, so this offset should be applied when
500       * accessing components.  For example, an offset of 1 means that the x
501       * component of this variable is actually stored in component y of the
502       * location specified by \c location.
503       */
504      unsigned location_frac:2;
505
506      /**
507       * If true, this variable represents an array of scalars that should
508       * be tightly packed.  In other words, consecutive array elements
509       * should be stored one component apart, rather than one slot apart.
510       */
511      unsigned compact:1;
512
513      /**
514       * Whether this is a fragment shader output implicitly initialized with
515       * the previous contents of the specified render target at the
516       * framebuffer location corresponding to this shader invocation.
517       */
518      unsigned fb_fetch_output:1;
519
520      /**
521       * Non-zero if this variable is considered bindless as defined by
522       * ARB_bindless_texture.
523       */
524      unsigned bindless:1;
525
526      /**
527       * Was an explicit binding set in the shader?
528       */
529      unsigned explicit_binding:1;
530
531      /**
532       * Was the location explicitly set in the shader?
533       *
534       * If the location is explicitly set in the shader, it \b cannot be changed
535       * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
536       * no effect).
537       */
538      unsigned explicit_location:1;
539
540      /**
541       * Is this varying used by transform feedback?
542       *
543       * This is used by the linker to decide if it's safe to pack the varying.
544       */
545      unsigned is_xfb:1;
546
547      /**
548       * Is this varying used only by transform feedback?
549       *
550       * This is used by the linker to decide if its safe to pack the varying.
551       */
552      unsigned is_xfb_only:1;
553
554      /**
555       * Was a transfer feedback buffer set in the shader?
556       */
557      unsigned explicit_xfb_buffer:1;
558
559      /**
560       * Was a transfer feedback stride set in the shader?
561       */
562      unsigned explicit_xfb_stride:1;
563
564      /**
565       * Was an explicit offset set in the shader?
566       */
567      unsigned explicit_offset:1;
568
569      /**
570       * Layout of the matrix.  Uses glsl_matrix_layout values.
571       */
572      unsigned matrix_layout:2;
573
574      /**
575       * Non-zero if this variable was created by lowering a named interface
576       * block.
577       */
578      unsigned from_named_ifc_block:1;
579
580      /**
581       * Non-zero if the variable must be a shader input. This is useful for
582       * constraints on function parameters.
583       */
584      unsigned must_be_shader_input:1;
585
586      /**
587       * How the variable was declared.  See nir_var_declaration_type.
588       *
589       * This is used to detect variables generated by the compiler, so should
590       * not be visible via the API.
591       */
592      unsigned how_declared:2;
593
594      /**
595       * Is this variable per-view?  If so, we know it must be an array with
596       * size corresponding to the number of views.
597       */
598      unsigned per_view:1;
599
600      /**
601       * Whether the variable is per-primitive.
602       * Can be use by Mesh Shader outputs and corresponding Fragment Shader inputs.
603       */
604      unsigned per_primitive:1;
605
606      /**
607       * \brief Layout qualifier for gl_FragDepth. See nir_depth_layout.
608       *
609       * This is not equal to \c ir_depth_layout_none if and only if this
610       * variable is \c gl_FragDepth and a layout qualifier is specified.
611       */
612      unsigned depth_layout:3;
613
614      /**
615       * Vertex stream output identifier.
616       *
617       * For packed outputs, NIR_STREAM_PACKED is set and bits [2*i+1,2*i]
618       * indicate the stream of the i-th component.
619       */
620      unsigned stream:9;
621
622      /**
623       * See gl_access_qualifier.
624       *
625       * Access flags for memory variables (SSBO/global), image uniforms, and
626       * bindless images in uniforms/inputs/outputs.
627       */
628      unsigned access:9;
629
630      /**
631       * Descriptor set binding for sampler or UBO.
632       */
633      unsigned descriptor_set:5;
634
635      /**
636       * output index for dual source blending.
637       */
638      unsigned index;
639
640      /**
641       * Initial binding point for a sampler or UBO.
642       *
643       * For array types, this represents the binding point for the first element.
644       */
645      unsigned binding;
646
647      /**
648       * Storage location of the base of this variable
649       *
650       * The precise meaning of this field depends on the nature of the variable.
651       *
652       *   - Vertex shader input: one of the values from \c gl_vert_attrib.
653       *   - Vertex shader output: one of the values from \c gl_varying_slot.
654       *   - Geometry shader input: one of the values from \c gl_varying_slot.
655       *   - Geometry shader output: one of the values from \c gl_varying_slot.
656       *   - Fragment shader input: one of the values from \c gl_varying_slot.
657       *   - Fragment shader output: one of the values from \c gl_frag_result.
658       *   - Task shader output: one of the values from \c gl_varying_slot.
659       *   - Mesh shader input: one of the values from \c gl_varying_slot.
660       *   - Mesh shader output: one of the values from \c gl_varying_slot.
661       *   - Uniforms: Per-stage uniform slot number for default uniform block.
662       *   - Uniforms: Index within the uniform block definition for UBO members.
663       *   - Non-UBO Uniforms: uniform slot number.
664       *   - Other: This field is not currently used.
665       *
666       * If the variable is a uniform, shader input, or shader output, and the
667       * slot has not been assigned, the value will be -1.
668       */
669      int location;
670
671      /**
672       * The actual location of the variable in the IR. Only valid for inputs,
673       * outputs, uniforms (including samplers and images), and for UBO and SSBO
674       * variables in GLSL.
675       */
676      unsigned driver_location;
677
678      /**
679       * Location an atomic counter or transform feedback is stored at.
680       */
681      unsigned offset;
682
683      union {
684         struct {
685            /** Image internal format if specified explicitly, otherwise PIPE_FORMAT_NONE. */
686            enum pipe_format format;
687         } image;
688
689         struct {
690            /**
691             * For OpenCL inline samplers. See cl_sampler_addressing_mode and cl_sampler_filter_mode
692             */
693            unsigned is_inline_sampler : 1;
694            unsigned addressing_mode : 3;
695            unsigned normalized_coordinates : 1;
696            unsigned filter_mode : 1;
697         } sampler;
698
699         struct {
700            /**
701             * Transform feedback buffer.
702             */
703            uint16_t buffer:2;
704
705            /**
706             * Transform feedback stride.
707             */
708            uint16_t stride;
709         } xfb;
710      };
711   } data;
712
713   /**
714    * Identifier for this variable generated by nir_index_vars() that is unique
715    * among other variables in the same exec_list.
716    */
717   unsigned index;
718
719   /* Number of nir_variable_data members */
720   uint16_t num_members;
721
722   /**
723    * Built-in state that backs this uniform
724    *
725    * Once set at variable creation, \c state_slots must remain invariant.
726    * This is because, ideally, this array would be shared by all clones of
727    * this variable in the IR tree.  In other words, we'd really like for it
728    * to be a fly-weight.
729    *
730    * If the variable is not a uniform, \c num_state_slots will be zero and
731    * \c state_slots will be \c NULL.
732    */
733   /*@{*/
734   uint16_t num_state_slots;    /**< Number of state slots used */
735   nir_state_slot *state_slots;  /**< State descriptors. */
736   /*@}*/
737
738   /**
739    * Constant expression assigned in the initializer of the variable
740    *
741    * This field should only be used temporarily by creators of NIR shaders
742    * and then nir_lower_variable_initializers can be used to get rid of them.
743    * Most of the rest of NIR ignores this field or asserts that it's NULL.
744    */
745   nir_constant *constant_initializer;
746
747   /**
748    * Global variable assigned in the initializer of the variable
749    * This field should only be used temporarily by creators of NIR shaders
750    * and then nir_lower_variable_initializers can be used to get rid of them.
751    * Most of the rest of NIR ignores this field or asserts that it's NULL.
752    */
753   struct nir_variable *pointer_initializer;
754
755   /**
756    * For variables that are in an interface block or are an instance of an
757    * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
758    *
759    * \sa ir_variable::location
760    */
761   const struct glsl_type *interface_type;
762
763   /**
764    * Description of per-member data for per-member struct variables
765    *
766    * This is used for variables which are actually an amalgamation of
767    * multiple entities such as a struct of built-in values or a struct of
768    * inputs each with their own layout specifier.  This is only allowed on
769    * variables with a struct or array of array of struct type.
770    */
771   struct nir_variable_data *members;
772} nir_variable;
773
774static inline bool
775_nir_shader_variable_has_mode(nir_variable *var, unsigned modes)
776{
777   /* This isn't a shader variable */
778   assert(!(modes & nir_var_function_temp));
779   return var->data.mode & modes;
780}
781
782#define nir_foreach_variable_in_list(var, var_list) \
783   foreach_list_typed(nir_variable, var, node, var_list)
784
785#define nir_foreach_variable_in_list_safe(var, var_list) \
786   foreach_list_typed_safe(nir_variable, var, node, var_list)
787
788#define nir_foreach_variable_in_shader(var, shader) \
789   nir_foreach_variable_in_list(var, &(shader)->variables)
790
791#define nir_foreach_variable_in_shader_safe(var, shader) \
792   nir_foreach_variable_in_list_safe(var, &(shader)->variables)
793
794#define nir_foreach_variable_with_modes(var, shader, modes) \
795   nir_foreach_variable_in_shader(var, shader) \
796      if (_nir_shader_variable_has_mode(var, modes))
797
798#define nir_foreach_variable_with_modes_safe(var, shader, modes) \
799   nir_foreach_variable_in_shader_safe(var, shader) \
800      if (_nir_shader_variable_has_mode(var, modes))
801
802#define nir_foreach_shader_in_variable(var, shader) \
803   nir_foreach_variable_with_modes(var, shader, nir_var_shader_in)
804
805#define nir_foreach_shader_in_variable_safe(var, shader) \
806   nir_foreach_variable_with_modes_safe(var, shader, nir_var_shader_in)
807
808#define nir_foreach_shader_out_variable(var, shader) \
809   nir_foreach_variable_with_modes(var, shader, nir_var_shader_out)
810
811#define nir_foreach_shader_out_variable_safe(var, shader) \
812   nir_foreach_variable_with_modes_safe(var, shader, nir_var_shader_out)
813
814#define nir_foreach_uniform_variable(var, shader) \
815   nir_foreach_variable_with_modes(var, shader, nir_var_uniform)
816
817#define nir_foreach_uniform_variable_safe(var, shader) \
818   nir_foreach_variable_with_modes_safe(var, shader, nir_var_uniform)
819
820#define nir_foreach_image_variable(var, shader) \
821   nir_foreach_variable_with_modes(var, shader, nir_var_image)
822
823#define nir_foreach_image_variable_safe(var, shader) \
824   nir_foreach_variable_with_modes_safe(var, shader, nir_var_image)
825
826static inline bool
827nir_variable_is_global(const nir_variable *var)
828{
829   return var->data.mode != nir_var_function_temp;
830}
831
832typedef struct nir_register {
833   struct exec_node node;
834
835   unsigned num_components; /** < number of vector components */
836   unsigned num_array_elems; /** < size of array (0 for no array) */
837
838   /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
839   uint8_t bit_size;
840
841   /**
842    * True if this register may have different values in different SIMD
843    * invocations of the shader.
844    */
845   bool divergent;
846
847   /** generic register index. */
848   unsigned index;
849
850   /** set of nir_srcs where this register is used (read from) */
851   struct list_head uses;
852
853   /** set of nir_dests where this register is defined (written to) */
854   struct list_head defs;
855
856   /** set of nir_ifs where this register is used as a condition */
857   struct list_head if_uses;
858} nir_register;
859
860#define nir_foreach_register(reg, reg_list) \
861   foreach_list_typed(nir_register, reg, node, reg_list)
862#define nir_foreach_register_safe(reg, reg_list) \
863   foreach_list_typed_safe(nir_register, reg, node, reg_list)
864
865typedef enum PACKED {
866   nir_instr_type_alu,
867   nir_instr_type_deref,
868   nir_instr_type_call,
869   nir_instr_type_tex,
870   nir_instr_type_intrinsic,
871   nir_instr_type_load_const,
872   nir_instr_type_jump,
873   nir_instr_type_ssa_undef,
874   nir_instr_type_phi,
875   nir_instr_type_parallel_copy,
876} nir_instr_type;
877
878typedef struct nir_instr {
879   struct exec_node node;
880   struct list_head gc_node;
881   struct nir_block *block;
882   nir_instr_type type;
883
884   /* A temporary for optimization and analysis passes to use for storing
885    * flags.  For instance, DCE uses this to store the "dead/live" info.
886    */
887   uint8_t pass_flags;
888
889   /** generic instruction index. */
890   uint32_t index;
891} nir_instr;
892
893static inline nir_instr *
894nir_instr_next(nir_instr *instr)
895{
896   struct exec_node *next = exec_node_get_next(&instr->node);
897   if (exec_node_is_tail_sentinel(next))
898      return NULL;
899   else
900      return exec_node_data(nir_instr, next, node);
901}
902
903static inline nir_instr *
904nir_instr_prev(nir_instr *instr)
905{
906   struct exec_node *prev = exec_node_get_prev(&instr->node);
907   if (exec_node_is_head_sentinel(prev))
908      return NULL;
909   else
910      return exec_node_data(nir_instr, prev, node);
911}
912
913static inline bool
914nir_instr_is_first(const nir_instr *instr)
915{
916   return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
917}
918
919static inline bool
920nir_instr_is_last(const nir_instr *instr)
921{
922   return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
923}
924
925typedef struct nir_ssa_def {
926   /** Instruction which produces this SSA value. */
927   nir_instr *parent_instr;
928
929   /** set of nir_instrs where this register is used (read from) */
930   struct list_head uses;
931
932   /** set of nir_ifs where this register is used as a condition */
933   struct list_head if_uses;
934
935   /** generic SSA definition index. */
936   unsigned index;
937
938   uint8_t num_components;
939
940   /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
941   uint8_t bit_size;
942
943   /**
944    * True if this SSA value may have different values in different SIMD
945    * invocations of the shader.  This is set by nir_divergence_analysis.
946    */
947   bool divergent;
948} nir_ssa_def;
949
950struct nir_src;
951
952typedef struct {
953   nir_register *reg;
954   struct nir_src *indirect; /** < NULL for no indirect offset */
955   unsigned base_offset;
956
957   /* TODO use-def chain goes here */
958} nir_reg_src;
959
960typedef struct {
961   nir_instr *parent_instr;
962   struct list_head def_link;
963
964   nir_register *reg;
965   struct nir_src *indirect; /** < NULL for no indirect offset */
966   unsigned base_offset;
967
968   /* TODO def-use chain goes here */
969} nir_reg_dest;
970
971struct nir_if;
972
973typedef struct nir_src {
974   union {
975      /** Instruction that consumes this value as a source. */
976      nir_instr *parent_instr;
977      struct nir_if *parent_if;
978   };
979
980   struct list_head use_link;
981
982   union {
983      nir_reg_src reg;
984      nir_ssa_def *ssa;
985   };
986
987   bool is_ssa;
988} nir_src;
989
990static inline nir_src
991nir_src_init(void)
992{
993   nir_src src = { { NULL } };
994   return src;
995}
996
997#define NIR_SRC_INIT nir_src_init()
998
999#define nir_foreach_use(src, reg_or_ssa_def) \
1000   list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
1001
1002#define nir_foreach_use_safe(src, reg_or_ssa_def) \
1003   list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
1004
1005#define nir_foreach_if_use(src, reg_or_ssa_def) \
1006   list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
1007
1008#define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
1009   list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
1010
1011typedef struct {
1012   union {
1013      nir_reg_dest reg;
1014      nir_ssa_def ssa;
1015   };
1016
1017   bool is_ssa;
1018} nir_dest;
1019
1020static inline nir_dest
1021nir_dest_init(void)
1022{
1023   nir_dest dest = { { { NULL } } };
1024   return dest;
1025}
1026
1027#define NIR_DEST_INIT nir_dest_init()
1028
1029#define nir_foreach_def(dest, reg) \
1030   list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
1031
1032#define nir_foreach_def_safe(dest, reg) \
1033   list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
1034
1035static inline nir_src
1036nir_src_for_ssa(nir_ssa_def *def)
1037{
1038   nir_src src = NIR_SRC_INIT;
1039
1040   src.is_ssa = true;
1041   src.ssa = def;
1042
1043   return src;
1044}
1045
1046static inline nir_src
1047nir_src_for_reg(nir_register *reg)
1048{
1049   nir_src src = NIR_SRC_INIT;
1050
1051   src.is_ssa = false;
1052   src.reg.reg = reg;
1053   src.reg.indirect = NULL;
1054   src.reg.base_offset = 0;
1055
1056   return src;
1057}
1058
1059static inline nir_dest
1060nir_dest_for_reg(nir_register *reg)
1061{
1062   nir_dest dest = NIR_DEST_INIT;
1063
1064   dest.reg.reg = reg;
1065
1066   return dest;
1067}
1068
1069static inline unsigned
1070nir_src_bit_size(nir_src src)
1071{
1072   return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
1073}
1074
1075static inline unsigned
1076nir_src_num_components(nir_src src)
1077{
1078   return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
1079}
1080
1081static inline bool
1082nir_src_is_const(nir_src src)
1083{
1084   return src.is_ssa &&
1085          src.ssa->parent_instr->type == nir_instr_type_load_const;
1086}
1087
1088static inline bool
1089nir_src_is_undef(nir_src src)
1090{
1091   return src.is_ssa &&
1092          src.ssa->parent_instr->type == nir_instr_type_ssa_undef;
1093}
1094
1095static inline bool
1096nir_src_is_divergent(nir_src src)
1097{
1098   return src.is_ssa ? src.ssa->divergent : src.reg.reg->divergent;
1099}
1100
1101static inline unsigned
1102nir_dest_bit_size(nir_dest dest)
1103{
1104   return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
1105}
1106
1107static inline unsigned
1108nir_dest_num_components(nir_dest dest)
1109{
1110   return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
1111}
1112
1113static inline bool
1114nir_dest_is_divergent(nir_dest dest)
1115{
1116   return dest.is_ssa ? dest.ssa.divergent : dest.reg.reg->divergent;
1117}
1118
1119/* Are all components the same, ie. .xxxx */
1120static inline bool
1121nir_is_same_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
1122{
1123   for (unsigned i = 1; i < nr_comp; i++)
1124      if (swiz[i] != swiz[0])
1125         return false;
1126   return true;
1127}
1128
1129/* Are all components sequential, ie. .yzw */
1130static inline bool
1131nir_is_sequential_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
1132{
1133   for (unsigned i = 1; i < nr_comp; i++)
1134      if (swiz[i] != (swiz[0] + i))
1135         return false;
1136   return true;
1137}
1138
1139void nir_src_copy(nir_src *dest, const nir_src *src);
1140void nir_dest_copy(nir_dest *dest, const nir_dest *src);
1141
1142typedef struct {
1143   /** Base source */
1144   nir_src src;
1145
1146   /**
1147    * \name input modifiers
1148    */
1149   /*@{*/
1150   /**
1151    * For inputs interpreted as floating point, flips the sign bit. For
1152    * inputs interpreted as integers, performs the two's complement negation.
1153    */
1154   bool negate;
1155
1156   /**
1157    * Clears the sign bit for floating point values, and computes the integer
1158    * absolute value for integers. Note that the negate modifier acts after
1159    * the absolute value modifier, therefore if both are set then all inputs
1160    * will become negative.
1161    */
1162   bool abs;
1163   /*@}*/
1164
1165   /**
1166    * For each input component, says which component of the register it is
1167    * chosen from.
1168    *
1169    * Note that which elements of the swizzle are used and which are ignored
1170    * are based on the write mask for most opcodes - for example, a statement
1171    * like "foo.xzw = bar.zyx" would have a writemask of 1101b and a swizzle
1172    * of {2, 1, x, 0} where x means "don't care."
1173    */
1174   uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
1175} nir_alu_src;
1176
1177typedef struct {
1178   /** Base destination */
1179   nir_dest dest;
1180
1181   /**
1182    * Saturate output modifier
1183    *
1184    * Only valid for opcodes that output floating-point numbers. Clamps the
1185    * output to between 0.0 and 1.0 inclusive.
1186    */
1187   bool saturate;
1188
1189   /**
1190    * Write-mask
1191    *
1192    * Ignored if dest.is_ssa is true
1193    */
1194   unsigned write_mask : NIR_MAX_VEC_COMPONENTS;
1195} nir_alu_dest;
1196
1197/** NIR sized and unsized types
1198 *
1199 * The values in this enum are carefully chosen so that the sized type is
1200 * just the unsized type OR the number of bits.
1201 */
1202typedef enum PACKED {
1203   nir_type_invalid = 0, /* Not a valid type */
1204   nir_type_int =       2,
1205   nir_type_uint =      4,
1206   nir_type_bool =      6,
1207   nir_type_float =     128,
1208   nir_type_bool1 =     1  | nir_type_bool,
1209   nir_type_bool8 =     8  | nir_type_bool,
1210   nir_type_bool16 =    16 | nir_type_bool,
1211   nir_type_bool32 =    32 | nir_type_bool,
1212   nir_type_int1 =      1  | nir_type_int,
1213   nir_type_int8 =      8  | nir_type_int,
1214   nir_type_int16 =     16 | nir_type_int,
1215   nir_type_int32 =     32 | nir_type_int,
1216   nir_type_int64 =     64 | nir_type_int,
1217   nir_type_uint1 =     1  | nir_type_uint,
1218   nir_type_uint8 =     8  | nir_type_uint,
1219   nir_type_uint16 =    16 | nir_type_uint,
1220   nir_type_uint32 =    32 | nir_type_uint,
1221   nir_type_uint64 =    64 | nir_type_uint,
1222   nir_type_float16 =   16 | nir_type_float,
1223   nir_type_float32 =   32 | nir_type_float,
1224   nir_type_float64 =   64 | nir_type_float,
1225} nir_alu_type;
1226
1227#define NIR_ALU_TYPE_SIZE_MASK 0x79
1228#define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
1229
1230static inline unsigned
1231nir_alu_type_get_type_size(nir_alu_type type)
1232{
1233   return type & NIR_ALU_TYPE_SIZE_MASK;
1234}
1235
1236static inline nir_alu_type
1237nir_alu_type_get_base_type(nir_alu_type type)
1238{
1239   return (nir_alu_type)(type & NIR_ALU_TYPE_BASE_TYPE_MASK);
1240}
1241
1242nir_alu_type
1243nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type);
1244
1245static inline nir_alu_type
1246nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
1247{
1248   return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
1249}
1250
1251enum glsl_base_type
1252nir_get_glsl_base_type_for_nir_type(nir_alu_type base_type);
1253
1254nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
1255                              nir_rounding_mode rnd);
1256
1257nir_op
1258nir_op_vec(unsigned components);
1259
1260bool
1261nir_op_is_vec(nir_op op);
1262
1263static inline bool
1264nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode, unsigned bit_size)
1265{
1266    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16) ||
1267        (32 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32) ||
1268        (64 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
1269}
1270
1271static inline bool
1272nir_is_denorm_flush_to_zero(unsigned execution_mode, unsigned bit_size)
1273{
1274    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16) ||
1275        (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32) ||
1276        (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
1277}
1278
1279static inline bool
1280nir_is_denorm_preserve(unsigned execution_mode, unsigned bit_size)
1281{
1282    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP16) ||
1283        (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) ||
1284        (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP64);
1285}
1286
1287static inline bool
1288nir_is_rounding_mode_rtne(unsigned execution_mode, unsigned bit_size)
1289{
1290    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1291        (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1292        (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1293}
1294
1295static inline bool
1296nir_is_rounding_mode_rtz(unsigned execution_mode, unsigned bit_size)
1297{
1298    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1299        (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1300        (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1301}
1302
1303static inline bool
1304nir_has_any_rounding_mode_rtz(unsigned execution_mode)
1305{
1306    return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1307        (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1308        (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1309}
1310
1311static inline bool
1312nir_has_any_rounding_mode_rtne(unsigned execution_mode)
1313{
1314    return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1315        (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1316        (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1317}
1318
1319static inline nir_rounding_mode
1320nir_get_rounding_mode_from_float_controls(unsigned execution_mode,
1321                                          nir_alu_type type)
1322{
1323   if (nir_alu_type_get_base_type(type) != nir_type_float)
1324      return nir_rounding_mode_undef;
1325
1326   unsigned bit_size = nir_alu_type_get_type_size(type);
1327
1328   if (nir_is_rounding_mode_rtz(execution_mode, bit_size))
1329      return nir_rounding_mode_rtz;
1330   if (nir_is_rounding_mode_rtne(execution_mode, bit_size))
1331      return nir_rounding_mode_rtne;
1332   return nir_rounding_mode_undef;
1333}
1334
1335static inline bool
1336nir_has_any_rounding_mode_enabled(unsigned execution_mode)
1337{
1338   bool result =
1339      nir_has_any_rounding_mode_rtne(execution_mode) ||
1340      nir_has_any_rounding_mode_rtz(execution_mode);
1341   return result;
1342}
1343
1344typedef enum {
1345   /**
1346    * Operation where the first two sources are commutative.
1347    *
1348    * For 2-source operations, this just mathematical commutativity.  Some
1349    * 3-source operations, like ffma, are only commutative in the first two
1350    * sources.
1351    */
1352   NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
1353
1354   /**
1355    * Operation is associative
1356    */
1357   NIR_OP_IS_ASSOCIATIVE = (1 << 1),
1358
1359   /**
1360    * Operation where src[0] is used to select src[1] on true or src[2] false.
1361    * src[0] may be Boolean, or it may be another type used in an implicit
1362    * comparison.
1363    */
1364   NIR_OP_IS_SELECTION = (1 << 2),
1365} nir_op_algebraic_property;
1366
1367/* vec16 is the widest ALU op in NIR, making the max number of input of ALU
1368 * instructions to be the same as NIR_MAX_VEC_COMPONENTS.
1369 */
1370#define NIR_ALU_MAX_INPUTS NIR_MAX_VEC_COMPONENTS
1371
1372typedef struct nir_op_info {
1373   /** Name of the NIR ALU opcode */
1374   const char *name;
1375
1376   /** Number of inputs (sources) */
1377   uint8_t num_inputs;
1378
1379   /**
1380    * The number of components in the output
1381    *
1382    * If non-zero, this is the size of the output and input sizes are
1383    * explicitly given; swizzle and writemask are still in effect, but if
1384    * the output component is masked out, then the input component may
1385    * still be in use.
1386    *
1387    * If zero, the opcode acts in the standard, per-component manner; the
1388    * operation is performed on each component (except the ones that are
1389    * masked out) with the input being taken from the input swizzle for
1390    * that component.
1391    *
1392    * The size of some of the inputs may be given (i.e. non-zero) even
1393    * though output_size is zero; in that case, the inputs with a zero
1394    * size act per-component, while the inputs with non-zero size don't.
1395    */
1396   uint8_t output_size;
1397
1398   /**
1399    * The type of vector that the instruction outputs. Note that the
1400    * staurate modifier is only allowed on outputs with the float type.
1401    */
1402   nir_alu_type output_type;
1403
1404   /**
1405    * The number of components in each input
1406    *
1407    * See nir_op_infos::output_size for more detail about the relationship
1408    * between input and output sizes.
1409    */
1410   uint8_t input_sizes[NIR_ALU_MAX_INPUTS];
1411
1412   /**
1413    * The type of vector that each input takes. Note that negate and
1414    * absolute value are only allowed on inputs with int or float type and
1415    * behave differently on the two.
1416    */
1417   nir_alu_type input_types[NIR_ALU_MAX_INPUTS];
1418
1419   /** Algebraic properties of this opcode */
1420   nir_op_algebraic_property algebraic_properties;
1421
1422   /** Whether this represents a numeric conversion opcode */
1423   bool is_conversion;
1424} nir_op_info;
1425
1426/** Metadata for each nir_op, indexed by opcode */
1427extern const nir_op_info nir_op_infos[nir_num_opcodes];
1428
1429static inline bool
1430nir_op_is_selection(nir_op op)
1431{
1432   return (nir_op_infos[op].algebraic_properties & NIR_OP_IS_SELECTION) != 0;
1433}
1434
1435typedef struct nir_alu_instr {
1436   /** Base instruction */
1437   nir_instr instr;
1438
1439   /** Opcode */
1440   nir_op op;
1441
1442   /** Indicates that this ALU instruction generates an exact value
1443    *
1444    * This is kind of a mixture of GLSL "precise" and "invariant" and not
1445    * really equivalent to either.  This indicates that the value generated by
1446    * this operation is high-precision and any code transformations that touch
1447    * it must ensure that the resulting value is bit-for-bit identical to the
1448    * original.
1449    */
1450   bool exact:1;
1451
1452   /**
1453    * Indicates that this instruction doese not cause signed integer wrapping
1454    * to occur, in the form of overflow or underflow.
1455    */
1456   bool no_signed_wrap:1;
1457
1458   /**
1459    * Indicates that this instruction does not cause unsigned integer wrapping
1460    * to occur, in the form of overflow or underflow.
1461    */
1462   bool no_unsigned_wrap:1;
1463
1464   /** Destination */
1465   nir_alu_dest dest;
1466
1467   /** Sources
1468    *
1469    * The size of the array is given by nir_op_info::num_inputs.
1470    */
1471   nir_alu_src src[];
1472} nir_alu_instr;
1473
1474void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src);
1475void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src);
1476
1477bool nir_alu_instr_is_copy(nir_alu_instr *instr);
1478
1479/* is this source channel used? */
1480bool
1481nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
1482                           unsigned channel);
1483nir_component_mask_t
1484nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src);
1485/**
1486 * Get the number of channels used for a source
1487 */
1488unsigned
1489nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src);
1490
1491bool
1492nir_alu_instr_is_comparison(const nir_alu_instr *instr);
1493
1494bool nir_const_value_negative_equal(nir_const_value c1, nir_const_value c2,
1495                                    nir_alu_type full_type);
1496
1497bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1498                        unsigned src1, unsigned src2);
1499
1500bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1501                                 const nir_alu_instr *alu2,
1502                                 unsigned src1, unsigned src2);
1503
1504bool nir_alu_src_is_trivial_ssa(const nir_alu_instr *alu, unsigned srcn);
1505
1506typedef enum {
1507   nir_deref_type_var,
1508   nir_deref_type_array,
1509   nir_deref_type_array_wildcard,
1510   nir_deref_type_ptr_as_array,
1511   nir_deref_type_struct,
1512   nir_deref_type_cast,
1513} nir_deref_type;
1514
1515typedef struct {
1516   nir_instr instr;
1517
1518   /** The type of this deref instruction */
1519   nir_deref_type deref_type;
1520
1521   /** Bitmask what modes the underlying variable might be
1522    *
1523    * For OpenCL-style generic pointers, we may not know exactly what mode it
1524    * is at any given point in time in the compile process.  This bitfield
1525    * contains the set of modes which it MAY be.
1526    *
1527    * Generally, this field should not be accessed directly.  Use one of the
1528    * nir_deref_mode_ helpers instead.
1529    */
1530   nir_variable_mode modes;
1531
1532   /** The dereferenced type of the resulting pointer value */
1533   const struct glsl_type *type;
1534
1535   union {
1536      /** Variable being dereferenced if deref_type is a deref_var */
1537      nir_variable *var;
1538
1539      /** Parent deref if deref_type is not deref_var */
1540      nir_src parent;
1541   };
1542
1543   /** Additional deref parameters */
1544   union {
1545      struct {
1546         nir_src index;
1547         bool in_bounds;
1548      } arr;
1549
1550      struct {
1551         unsigned index;
1552      } strct;
1553
1554      struct {
1555         unsigned ptr_stride;
1556         unsigned align_mul;
1557         unsigned align_offset;
1558      } cast;
1559   };
1560
1561   /** Destination to store the resulting "pointer" */
1562   nir_dest dest;
1563} nir_deref_instr;
1564
1565/** Returns true if deref might have one of the given modes
1566 *
1567 * For multi-mode derefs, this returns true if any of the possible modes for
1568 * the deref to have any of the specified modes.  This function returning true
1569 * does NOT mean that the deref definitely has one of those modes.  It simply
1570 * means that, with the best information we have at the time, it might.
1571 */
1572static inline bool
1573nir_deref_mode_may_be(const nir_deref_instr *deref, nir_variable_mode modes)
1574{
1575   assert(!(modes & ~nir_var_all));
1576   assert(deref->modes != 0);
1577   return deref->modes & modes;
1578}
1579
1580/** Returns true if deref must have one of the given modes
1581 *
1582 * For multi-mode derefs, this returns true if NIR can prove that the given
1583 * deref has one of the specified modes.  This function returning false does
1584 * NOT mean that deref doesn't have one of the given mode.  It very well may
1585 * have one of those modes, we just don't have enough information to prove
1586 * that it does for sure.
1587 */
1588static inline bool
1589nir_deref_mode_must_be(const nir_deref_instr *deref, nir_variable_mode modes)
1590{
1591   assert(!(modes & ~nir_var_all));
1592   assert(deref->modes != 0);
1593   return !(deref->modes & ~modes);
1594}
1595
1596/** Returns true if deref has the given mode
1597 *
1598 * This returns true if the deref has exactly the mode specified.  If the
1599 * deref may have that mode but may also have a different mode (i.e. modes has
1600 * multiple bits set), this will assert-fail.
1601 *
1602 * If you're confused about which nir_deref_mode_ helper to use, use this one
1603 * or nir_deref_mode_is_one_of below.
1604 */
1605static inline bool
1606nir_deref_mode_is(const nir_deref_instr *deref, nir_variable_mode mode)
1607{
1608   assert(util_bitcount(mode) == 1 && (mode & nir_var_all));
1609   assert(deref->modes != 0);
1610
1611   /* This is only for "simple" cases so, if modes might interact with this
1612    * deref then the deref has to have a single mode.
1613    */
1614   if (nir_deref_mode_may_be(deref, mode)) {
1615      assert(util_bitcount(deref->modes) == 1);
1616      assert(deref->modes == mode);
1617   }
1618
1619   return deref->modes == mode;
1620}
1621
1622/** Returns true if deref has one of the given modes
1623 *
1624 * This returns true if the deref has exactly one possible mode and that mode
1625 * is one of the modes specified.  If the deref may have one of those modes
1626 * but may also have a different mode (i.e. modes has multiple bits set), this
1627 * will assert-fail.
1628 */
1629static inline bool
1630nir_deref_mode_is_one_of(const nir_deref_instr *deref, nir_variable_mode modes)
1631{
1632   /* This is only for "simple" cases so, if modes might interact with this
1633    * deref then the deref has to have a single mode.
1634    */
1635   if (nir_deref_mode_may_be(deref, modes)) {
1636      assert(util_bitcount(deref->modes) == 1);
1637      assert(nir_deref_mode_must_be(deref, modes));
1638   }
1639
1640   return nir_deref_mode_may_be(deref, modes);
1641}
1642
1643/** Returns true if deref's possible modes lie in the given set of modes
1644 *
1645 * This returns true if the deref's modes lie in the given set of modes.  If
1646 * the deref's modes overlap with the specified modes but aren't entirely
1647 * contained in the specified set of modes, this will assert-fail.  In
1648 * particular, if this is used in a generic pointers scenario, the specified
1649 * modes has to contain all or none of the possible generic pointer modes.
1650 *
1651 * This is intended mostly for mass-lowering of derefs which might have
1652 * generic pointers.
1653 */
1654static inline bool
1655nir_deref_mode_is_in_set(const nir_deref_instr *deref, nir_variable_mode modes)
1656{
1657   if (nir_deref_mode_may_be(deref, modes))
1658      assert(nir_deref_mode_must_be(deref, modes));
1659
1660   return nir_deref_mode_may_be(deref, modes);
1661}
1662
1663static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1664
1665static inline nir_deref_instr *
1666nir_deref_instr_parent(const nir_deref_instr *instr)
1667{
1668   if (instr->deref_type == nir_deref_type_var)
1669      return NULL;
1670   else
1671      return nir_src_as_deref(instr->parent);
1672}
1673
1674static inline nir_variable *
1675nir_deref_instr_get_variable(const nir_deref_instr *instr)
1676{
1677   while (instr->deref_type != nir_deref_type_var) {
1678      if (instr->deref_type == nir_deref_type_cast)
1679         return NULL;
1680
1681      instr = nir_deref_instr_parent(instr);
1682   }
1683
1684   return instr->var;
1685}
1686
1687bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1688bool nir_deref_instr_is_known_out_of_bounds(nir_deref_instr *instr);
1689
1690typedef enum {
1691   nir_deref_instr_has_complex_use_allow_memcpy_src = (1 << 0),
1692   nir_deref_instr_has_complex_use_allow_memcpy_dst = (1 << 1),
1693} nir_deref_instr_has_complex_use_options;
1694
1695bool nir_deref_instr_has_complex_use(nir_deref_instr *instr,
1696                                     nir_deref_instr_has_complex_use_options opts);
1697
1698bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1699
1700unsigned nir_deref_instr_array_stride(nir_deref_instr *instr);
1701
1702typedef struct {
1703   nir_instr instr;
1704
1705   struct nir_function *callee;
1706
1707   unsigned num_params;
1708   nir_src params[];
1709} nir_call_instr;
1710
1711#include "nir_intrinsics.h"
1712
1713#define NIR_INTRINSIC_MAX_CONST_INDEX 7
1714
1715/** Represents an intrinsic
1716 *
1717 * An intrinsic is an instruction type for handling things that are
1718 * more-or-less regular operations but don't just consume and produce SSA
1719 * values like ALU operations do.  Intrinsics are not for things that have
1720 * special semantic meaning such as phi nodes and parallel copies.
1721 * Examples of intrinsics include variable load/store operations, system
1722 * value loads, and the like.  Even though texturing more-or-less falls
1723 * under this category, texturing is its own instruction type because
1724 * trying to represent texturing with intrinsics would lead to a
1725 * combinatorial explosion of intrinsic opcodes.
1726 *
1727 * By having a single instruction type for handling a lot of different
1728 * cases, optimization passes can look for intrinsics and, for the most
1729 * part, completely ignore them.  Each intrinsic type also has a few
1730 * possible flags that govern whether or not they can be reordered or
1731 * eliminated.  That way passes like dead code elimination can still work
1732 * on intrisics without understanding the meaning of each.
1733 *
1734 * Each intrinsic has some number of constant indices, some number of
1735 * variables, and some number of sources.  What these sources, variables,
1736 * and indices mean depends on the intrinsic and is documented with the
1737 * intrinsic declaration in nir_intrinsics.h.  Intrinsics and texture
1738 * instructions are the only types of instruction that can operate on
1739 * variables.
1740 */
1741typedef struct {
1742   nir_instr instr;
1743
1744   nir_intrinsic_op intrinsic;
1745
1746   nir_dest dest;
1747
1748   /** number of components if this is a vectorized intrinsic
1749    *
1750    * Similarly to ALU operations, some intrinsics are vectorized.
1751    * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1752    * For vectorized intrinsics, the num_components field specifies the
1753    * number of destination components and the number of source components
1754    * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1755    */
1756   uint8_t num_components;
1757
1758   int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1759
1760   nir_src src[];
1761} nir_intrinsic_instr;
1762
1763static inline nir_variable *
1764nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1765{
1766   return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1767}
1768
1769typedef enum {
1770   /* Memory ordering. */
1771   NIR_MEMORY_ACQUIRE        = 1 << 0,
1772   NIR_MEMORY_RELEASE        = 1 << 1,
1773   NIR_MEMORY_ACQ_REL        = NIR_MEMORY_ACQUIRE | NIR_MEMORY_RELEASE,
1774
1775   /* Memory visibility operations. */
1776   NIR_MEMORY_MAKE_AVAILABLE = 1 << 2,
1777   NIR_MEMORY_MAKE_VISIBLE   = 1 << 3,
1778} nir_memory_semantics;
1779
1780typedef enum {
1781   NIR_SCOPE_NONE,
1782   NIR_SCOPE_INVOCATION,
1783   NIR_SCOPE_SUBGROUP,
1784   NIR_SCOPE_SHADER_CALL,
1785   NIR_SCOPE_WORKGROUP,
1786   NIR_SCOPE_QUEUE_FAMILY,
1787   NIR_SCOPE_DEVICE,
1788} nir_scope;
1789
1790/**
1791 * \name NIR intrinsics semantic flags
1792 *
1793 * information about what the compiler can do with the intrinsics.
1794 *
1795 * \sa nir_intrinsic_info::flags
1796 */
1797typedef enum {
1798   /**
1799    * whether the intrinsic can be safely eliminated if none of its output
1800    * value is not being used.
1801    */
1802   NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1803
1804   /**
1805    * Whether the intrinsic can be reordered with respect to any other
1806    * intrinsic, i.e. whether the only reordering dependencies of the
1807    * intrinsic are due to the register reads/writes.
1808    */
1809   NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1810} nir_intrinsic_semantic_flag;
1811
1812/**
1813 * Maximum valid value for a nir align_mul value (in intrinsics or derefs).
1814 *
1815 * Offsets can be signed, so this is the largest power of two in int32_t.
1816 */
1817#define NIR_ALIGN_MUL_MAX 0x40000000
1818
1819typedef struct nir_io_semantics {
1820   unsigned location:7; /* gl_vert_attrib, gl_varying_slot, or gl_frag_result */
1821   unsigned num_slots:6;  /* max 32, may be pessimistic with const indexing */
1822   unsigned dual_source_blend_index:1;
1823   unsigned fb_fetch_output:1; /* for GL_KHR_blend_equation_advanced */
1824   unsigned gs_streams:8; /* xxyyzzww: 2-bit stream index for each component */
1825   unsigned medium_precision:1; /* GLSL mediump qualifier */
1826   unsigned per_view:1;
1827   unsigned high_16bits:1; /* whether accessing low or high half of the slot */
1828   unsigned invariant:1; /* The variable has the invariant flag set */
1829   /* CLIP_DISTn, LAYER, VIEWPORT, and TESS_LEVEL_* have up to 3 uses:
1830    * - an output consumed by the next stage
1831    * - a system value output affecting fixed-func hardware, e.g. the clipper
1832    * - a transform feedback output written to memory
1833    * The following fields disable the first two. Transform feedback is disabled
1834    * by transform feedback info.
1835    */
1836   unsigned no_varying:1; /* whether this output isn't consumed by the next stage */
1837   unsigned no_sysval_output:1; /* whether this system value output has no
1838                                   effect due to current pipeline states */
1839   unsigned _pad:3;
1840} nir_io_semantics;
1841
1842/* Transform feedback info for 2 outputs. nir_intrinsic_store_output contains
1843 * this structure twice to support up to 4 outputs. The structure is limited
1844 * to 32 bits because it's stored in nir_intrinsic_instr::const_index[].
1845 */
1846typedef struct nir_io_xfb {
1847   struct {
1848      /* start_component is equal to the index of out[]; add 2 for io_xfb2 */
1849      /* start_component is not relative to nir_intrinsic_component */
1850      /* get the stream index from nir_io_semantics */
1851      uint8_t num_components:4;  /* max 4; if this is 0, xfb is disabled */
1852      uint8_t buffer:4;  /* buffer index, max 3 */
1853      uint8_t offset;    /* transform feedback buffer offset in dwords,
1854                            max (1K - 4) bytes */
1855   } out[2];
1856} nir_io_xfb;
1857
1858unsigned
1859nir_instr_xfb_write_mask(nir_intrinsic_instr *instr);
1860
1861#define NIR_INTRINSIC_MAX_INPUTS 11
1862
1863typedef struct {
1864   const char *name;
1865
1866   uint8_t num_srcs; /** < number of register/SSA inputs */
1867
1868   /** number of components of each input register
1869    *
1870    * If this value is 0, the number of components is given by the
1871    * num_components field of nir_intrinsic_instr.  If this value is -1, the
1872    * intrinsic consumes however many components are provided and it is not
1873    * validated at all.
1874    */
1875   int8_t src_components[NIR_INTRINSIC_MAX_INPUTS];
1876
1877   bool has_dest;
1878
1879   /** number of components of the output register
1880    *
1881    * If this value is 0, the number of components is given by the
1882    * num_components field of nir_intrinsic_instr.
1883    */
1884   uint8_t dest_components;
1885
1886   /** bitfield of legal bit sizes */
1887   uint8_t dest_bit_sizes;
1888
1889   /** source which the destination bit size must match
1890    *
1891    * Some intrinsics, such as subgroup intrinsics, are data manipulation
1892    * intrinsics and they have similar bit-size rules to ALU ops. This enables
1893    * validation to validate a bit more and enables auto-generated builder code
1894    * to properly determine destination bit sizes automatically.
1895    */
1896   int8_t bit_size_src;
1897
1898   /** the number of constant indices used by the intrinsic */
1899   uint8_t num_indices;
1900
1901   /** list of indices */
1902   uint8_t indices[NIR_INTRINSIC_MAX_CONST_INDEX];
1903
1904   /** indicates the usage of intr->const_index[n] */
1905   uint8_t index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1906
1907   /** semantic flags for calls to this intrinsic */
1908   nir_intrinsic_semantic_flag flags;
1909} nir_intrinsic_info;
1910
1911extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1912
1913unsigned
1914nir_intrinsic_src_components(const nir_intrinsic_instr *intr, unsigned srcn);
1915
1916unsigned
1917nir_intrinsic_dest_components(nir_intrinsic_instr *intr);
1918
1919/**
1920 * Helper to copy const_index[] from src to dst, without assuming they
1921 * match in order.
1922 */
1923void nir_intrinsic_copy_const_indices(nir_intrinsic_instr *dst, nir_intrinsic_instr *src);
1924
1925#include "nir_intrinsics_indices.h"
1926
1927static inline void
1928nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1929                        unsigned align_mul, unsigned align_offset)
1930{
1931   assert(util_is_power_of_two_nonzero(align_mul));
1932   assert(align_offset < align_mul);
1933   nir_intrinsic_set_align_mul(intrin, align_mul);
1934   nir_intrinsic_set_align_offset(intrin, align_offset);
1935}
1936
1937/** Returns a simple alignment for a load/store intrinsic offset
1938 *
1939 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1940 * and ALIGN_OFFSET parameters, this helper takes both into account and
1941 * provides a single simple alignment parameter.  The offset X is guaranteed
1942 * to satisfy X % align == 0.
1943 */
1944static inline unsigned
1945nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1946{
1947   const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1948   const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1949   assert(align_offset < align_mul);
1950   return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1951}
1952
1953static inline bool
1954nir_intrinsic_has_align(const nir_intrinsic_instr *intrin)
1955{
1956   return nir_intrinsic_has_align_mul(intrin) &&
1957          nir_intrinsic_has_align_offset(intrin);
1958}
1959
1960unsigned
1961nir_image_intrinsic_coord_components(const nir_intrinsic_instr *instr);
1962
1963/* Converts a image_deref_* intrinsic into a image_* one */
1964void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1965                                 nir_ssa_def *handle, bool bindless);
1966
1967/* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
1968static inline bool
1969nir_intrinsic_can_reorder(nir_intrinsic_instr *instr)
1970{
1971   if (nir_intrinsic_has_access(instr) &&
1972       nir_intrinsic_access(instr) & ACCESS_VOLATILE)
1973      return false;
1974   if (instr->intrinsic == nir_intrinsic_load_deref) {
1975      nir_deref_instr *deref = nir_src_as_deref(instr->src[0]);
1976      return nir_deref_mode_is_in_set(deref, nir_var_read_only_modes) ||
1977             (nir_intrinsic_access(instr) & ACCESS_CAN_REORDER);
1978   } else if (instr->intrinsic == nir_intrinsic_load_ssbo ||
1979              instr->intrinsic == nir_intrinsic_bindless_image_load ||
1980              instr->intrinsic == nir_intrinsic_image_deref_load ||
1981              instr->intrinsic == nir_intrinsic_image_load) {
1982      return nir_intrinsic_access(instr) & ACCESS_CAN_REORDER;
1983   } else {
1984      const nir_intrinsic_info *info =
1985         &nir_intrinsic_infos[instr->intrinsic];
1986      return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
1987             (info->flags & NIR_INTRINSIC_CAN_REORDER);
1988   }
1989}
1990
1991bool nir_intrinsic_writes_external_memory(const nir_intrinsic_instr *instr);
1992
1993/** Texture instruction source type */
1994typedef enum {
1995   /** Texture coordinate
1996    *
1997    * Must have nir_tex_instr::coord_components components.
1998    */
1999   nir_tex_src_coord,
2000
2001   /** Projector
2002    *
2003    * The texture coordinate (except for the array component, if any) is
2004    * divided by this value before LOD computation and sampling.
2005    *
2006    * Must be a float scalar.
2007    */
2008   nir_tex_src_projector,
2009
2010   /** Shadow comparator
2011    *
2012    * For shadow sampling, the fetched texel values are compared against the
2013    * shadow comparator using the compare op specified by the sampler object
2014    * and converted to 1.0 if the comparison succeeds and 0.0 if it fails.
2015    * Interpolation happens after this conversion so the actual result may be
2016    * anywhere in the range [0.0, 1.0].
2017    *
2018    * Only valid if nir_tex_instr::is_shadow and must be a float scalar.
2019    */
2020   nir_tex_src_comparator,
2021
2022   /** Coordinate offset
2023    *
2024    * An integer value that is added to the texel address before sampling.
2025    * This is only allowed with operations that take an explicit LOD as it is
2026    * applied in integer texel space after LOD selection and not normalized
2027    * coordinate space.
2028    */
2029   nir_tex_src_offset,
2030
2031   /** LOD bias
2032    *
2033    * This value is added to the computed LOD before mip-mapping.
2034    */
2035   nir_tex_src_bias,
2036
2037   /** Explicit LOD */
2038   nir_tex_src_lod,
2039
2040   /** Min LOD
2041    *
2042    * The computed LOD is clamped to be at least as large as min_lod before
2043    * mip-mapping.
2044    */
2045   nir_tex_src_min_lod,
2046
2047   /** MSAA sample index */
2048   nir_tex_src_ms_index,
2049
2050   /** Intel-specific MSAA compression data */
2051   nir_tex_src_ms_mcs_intel,
2052
2053   /** Explicit horizontal (X-major) coordinate derivative */
2054   nir_tex_src_ddx,
2055
2056   /** Explicit vertical (Y-major) coordinate derivative */
2057   nir_tex_src_ddy,
2058
2059   /** Texture variable dereference */
2060   nir_tex_src_texture_deref,
2061
2062   /** Sampler variable dereference */
2063   nir_tex_src_sampler_deref,
2064
2065   /** Texture index offset
2066    *
2067    * This is added to nir_tex_instr::texture_index.  Unless
2068    * nir_tex_instr::texture_non_uniform is set, this is guaranteed to be
2069    * dynamically uniform.
2070    */
2071   nir_tex_src_texture_offset,
2072
2073   /** Dynamically uniform sampler index offset
2074    *
2075    * This is added to nir_tex_instr::sampler_index.  Unless
2076    * nir_tex_instr::sampler_non_uniform is set, this is guaranteed to be
2077    * dynamically uniform.  This should not be present until GLSL ES 3.20, GLSL
2078    * 4.00, or ARB_gpu_shader5, because in ES 3.10 and GL 3.30 samplers said
2079    * "When aggregated into arrays within a shader, samplers can only be indexed
2080    * with a constant integral expression."
2081    */
2082   nir_tex_src_sampler_offset,
2083
2084   /** Bindless texture handle
2085    *
2086    * This is, unfortunately, a bit overloaded at the moment.  There are
2087    * generally two types of bindless handles:
2088    *
2089    *  1. For GL_ARB_bindless bindless handles. These are part of the
2090    *     GL/Gallium-level API and are always a 64-bit integer.
2091    *
2092    *  2. HW-specific handles.  GL_ARB_bindless handles may be lowered to
2093    *     these.  Also, these are used by many Vulkan drivers to implement
2094    *     descriptor sets, especially for UPDATE_AFTER_BIND descriptors.
2095    *     The details of hardware handles (bit size, format, etc.) is
2096    *     HW-specific.
2097    *
2098    * Because of this overloading and the resulting ambiguity, we currently
2099    * don't validate anything for these.
2100    */
2101   nir_tex_src_texture_handle,
2102
2103   /** Bindless sampler handle
2104    *
2105    * See nir_tex_src_texture_handle,
2106    */
2107   nir_tex_src_sampler_handle,
2108
2109   /** Plane index for multi-plane YCbCr textures */
2110   nir_tex_src_plane,
2111
2112   /**
2113    * Backend-specific vec4 tex src argument.
2114    *
2115    * Can be used to have NIR optimization (copy propagation, lower_vec_to_movs)
2116    * apply to the packing of the tex srcs.  This lowering must only happen
2117    * after nir_lower_tex().
2118    *
2119    * The nir_tex_instr_src_type() of this argument is float, so no lowering
2120    * will happen if nir_lower_int_to_float is used.
2121    */
2122   nir_tex_src_backend1,
2123
2124   /** Second backend-specific vec4 tex src argument, see nir_tex_src_backend1. */
2125   nir_tex_src_backend2,
2126
2127   nir_num_tex_src_types
2128} nir_tex_src_type;
2129
2130/** A texture instruction source */
2131typedef struct {
2132   /** Base source */
2133   nir_src src;
2134
2135   /** Type of this source */
2136   nir_tex_src_type src_type;
2137} nir_tex_src;
2138
2139/** Texture instruction opcode */
2140typedef enum {
2141   nir_texop_tex,                /**< Regular texture look-up */
2142   nir_texop_txb,                /**< Texture look-up with LOD bias */
2143   nir_texop_txl,                /**< Texture look-up with explicit LOD */
2144   nir_texop_txd,                /**< Texture look-up with partial derivatives */
2145   nir_texop_txf,                /**< Texel fetch with explicit LOD */
2146   nir_texop_txf_ms,             /**< Multisample texture fetch */
2147   nir_texop_txf_ms_fb,          /**< Multisample texture fetch from framebuffer */
2148   nir_texop_txf_ms_mcs_intel,   /**< Multisample compression value fetch */
2149   nir_texop_txs,                /**< Texture size */
2150   nir_texop_lod,                /**< Texture lod query */
2151   nir_texop_tg4,                /**< Texture gather */
2152   nir_texop_query_levels,       /**< Texture levels query */
2153   nir_texop_texture_samples,    /**< Texture samples query */
2154   nir_texop_samples_identical,  /**< Query whether all samples are definitely
2155                                  * identical.
2156                                  */
2157   nir_texop_tex_prefetch,       /**< Regular texture look-up, eligible for pre-dispatch */
2158   nir_texop_fragment_fetch_amd,      /**< Multisample fragment color texture fetch */
2159   nir_texop_fragment_mask_fetch_amd, /**< Multisample fragment mask texture fetch */
2160} nir_texop;
2161
2162/** Represents a texture instruction */
2163typedef struct {
2164   /** Base instruction */
2165   nir_instr instr;
2166
2167   /** Dimensionality of the texture operation
2168    *
2169    * This will typically match the dimensionality of the texture deref type
2170    * if a nir_tex_src_texture_deref is present.  However, it may not if
2171    * texture lowering has occurred.
2172    */
2173   enum glsl_sampler_dim sampler_dim;
2174
2175   /** ALU type of the destination
2176    *
2177    * This is the canonical sampled type for this texture operation and may
2178    * not exactly match the sampled type of the deref type when a
2179    * nir_tex_src_texture_deref is present.  For OpenCL, the sampled type of
2180    * the texture deref will be GLSL_TYPE_VOID and this is allowed to be
2181    * anything.  With SPIR-V, the signedness of integer types is allowed to
2182    * differ.  For all APIs, the bit size may differ if the driver has done
2183    * any sort of mediump or similar lowering since texture types always have
2184    * 32-bit sampled types.
2185    */
2186   nir_alu_type dest_type;
2187
2188   /** Texture opcode */
2189   nir_texop op;
2190
2191   /** Destination */
2192   nir_dest dest;
2193
2194   /** Array of sources
2195    *
2196    * This array has nir_tex_instr::num_srcs elements
2197    */
2198   nir_tex_src *src;
2199
2200   /** Number of sources */
2201   unsigned num_srcs;
2202
2203   /** Number of components in the coordinate, if any */
2204   unsigned coord_components;
2205
2206   /** True if the texture instruction acts on an array texture */
2207   bool is_array;
2208
2209   /** True if the texture instruction performs a shadow comparison
2210    *
2211    * If this is true, the texture instruction must have a
2212    * nir_tex_src_comparator.
2213    */
2214   bool is_shadow;
2215
2216   /**
2217    * If is_shadow is true, whether this is the old-style shadow that outputs
2218    * 4 components or the new-style shadow that outputs 1 component.
2219    */
2220   bool is_new_style_shadow;
2221
2222   /**
2223    * True if this texture instruction should return a sparse residency code.
2224    * The code is in the last component of the result.
2225    */
2226   bool is_sparse;
2227
2228   /** nir_texop_tg4 component selector
2229    *
2230    * This determines which RGBA component is gathered.
2231    */
2232   unsigned component : 2;
2233
2234   /** Validation needs to know this for gradient component count */
2235   unsigned array_is_lowered_cube : 1;
2236
2237   /** Gather offsets */
2238   int8_t tg4_offsets[4][2];
2239
2240   /** True if the texture index or handle is not dynamically uniform */
2241   bool texture_non_uniform;
2242
2243   /** True if the sampler index or handle is not dynamically uniform.
2244    *
2245    * This may be set when VK_EXT_descriptor_indexing is supported and the
2246    * appropriate capability is enabled.
2247    *
2248    * This should always be false in GLSL (GLSL ES 3.20 says "When aggregated
2249    * into arrays within a shader, opaque types can only be indexed with a
2250    * dynamically uniform integral expression", and GLSL 4.60 says "When
2251    * aggregated into arrays within a shader, [texture, sampler, and
2252    * samplerShadow] types can only be indexed with a dynamically uniform
2253    * expression, or texture lookup will result in undefined values.").
2254    */
2255   bool sampler_non_uniform;
2256
2257   /** The texture index
2258    *
2259    * If this texture instruction has a nir_tex_src_texture_offset source,
2260    * then the texture index is given by texture_index + texture_offset.
2261    */
2262   unsigned texture_index;
2263
2264   /** The sampler index
2265    *
2266    * The following operations do not require a sampler and, as such, this
2267    * field should be ignored:
2268    *    - nir_texop_txf
2269    *    - nir_texop_txf_ms
2270    *    - nir_texop_txs
2271    *    - nir_texop_query_levels
2272    *    - nir_texop_texture_samples
2273    *    - nir_texop_samples_identical
2274    *
2275    * If this texture instruction has a nir_tex_src_sampler_offset source,
2276    * then the sampler index is given by sampler_index + sampler_offset.
2277    */
2278   unsigned sampler_index;
2279} nir_tex_instr;
2280
2281/**
2282 * Returns true if the texture operation requires a sampler as a general rule
2283 *
2284 * Note that the specific hw/driver backend could require to a sampler
2285 * object/configuration packet in any case, for some other reason.
2286 *
2287 * @see nir_tex_instr::sampler_index.
2288 */
2289bool nir_tex_instr_need_sampler(const nir_tex_instr *instr);
2290
2291/** Returns the number of components returned by this nir_tex_instr
2292 *
2293 * Useful for code building texture instructions when you don't want to think
2294 * about how many components a particular texture op returns.  This does not
2295 * include the sparse residency code.
2296 */
2297unsigned
2298nir_tex_instr_result_size(const nir_tex_instr *instr);
2299
2300/**
2301 * Returns the destination size of this nir_tex_instr including the sparse
2302 * residency code, if any.
2303 */
2304static inline unsigned
2305nir_tex_instr_dest_size(const nir_tex_instr *instr)
2306{
2307   /* One more component is needed for the residency code. */
2308   return nir_tex_instr_result_size(instr) + instr->is_sparse;
2309}
2310
2311/**
2312 * Returns true if this texture operation queries something about the texture
2313 * rather than actually sampling it.
2314 */
2315bool
2316nir_tex_instr_is_query(const nir_tex_instr *instr);
2317
2318/** Returns true if this texture instruction does implicit derivatives
2319 *
2320 * This is important as there are extra control-flow rules around derivatives
2321 * and texture instructions which perform them implicitly.
2322 */
2323bool
2324nir_tex_instr_has_implicit_derivative(const nir_tex_instr *instr);
2325
2326/** Returns the ALU type of the given texture instruction source */
2327nir_alu_type
2328nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src);
2329
2330/**
2331 * Returns the number of components required by the given texture instruction
2332 * source
2333 */
2334unsigned
2335nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src);
2336
2337/**
2338 * Returns the index of the texture instruction source with the given
2339 * nir_tex_src_type or -1 if no such source exists.
2340 */
2341static inline int
2342nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
2343{
2344   for (unsigned i = 0; i < instr->num_srcs; i++)
2345      if (instr->src[i].src_type == type)
2346         return (int) i;
2347
2348   return -1;
2349}
2350
2351/** Adds a source to a texture instruction */
2352void nir_tex_instr_add_src(nir_tex_instr *tex,
2353                           nir_tex_src_type src_type,
2354                           nir_src src);
2355
2356/** Removes a source from a texture instruction */
2357void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
2358
2359bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
2360
2361typedef struct {
2362   nir_instr instr;
2363
2364   nir_ssa_def def;
2365
2366   nir_const_value value[];
2367} nir_load_const_instr;
2368
2369typedef enum {
2370   /** Return from a function
2371    *
2372    * This instruction is a classic function return.  It jumps to
2373    * nir_function_impl::end_block.  No return value is provided in this
2374    * instruction.  Instead, the function is expected to write any return
2375    * data to a deref passed in from the caller.
2376    */
2377   nir_jump_return,
2378
2379   /** Immediately exit the current shader
2380    *
2381    * This instruction is roughly the equivalent of C's "exit()" in that it
2382    * immediately terminates the current shader invocation.  From a CFG
2383    * perspective, it looks like a jump to nir_function_impl::end_block but
2384    * it actually jumps to the end block of the shader entrypoint.  A halt
2385    * instruction in the shader entrypoint itself is semantically identical
2386    * to a return.
2387    *
2388    * For shaders with built-in I/O, any outputs written prior to a halt
2389    * instruction remain written and any outputs not written prior to the
2390    * halt have undefined values.  It does NOT cause an implicit discard of
2391    * written results.  If one wants discard results in a fragment shader,
2392    * for instance, a discard or demote intrinsic is required.
2393    */
2394   nir_jump_halt,
2395
2396   /** Break out of the inner-most loop
2397    *
2398    * This has the same semantics as C's "break" statement.
2399    */
2400   nir_jump_break,
2401
2402   /** Jump back to the top of the inner-most loop
2403    *
2404    * This has the same semantics as C's "continue" statement assuming that a
2405    * NIR loop is implemented as "while (1) { body }".
2406    */
2407   nir_jump_continue,
2408
2409   /** Jumps for unstructured CFG.
2410    *
2411    * As within an unstructured CFG we can't rely on block ordering we need to
2412    * place explicit jumps at the end of every block.
2413    */
2414   nir_jump_goto,
2415   nir_jump_goto_if,
2416} nir_jump_type;
2417
2418typedef struct {
2419   nir_instr instr;
2420   nir_jump_type type;
2421   nir_src condition;
2422   struct nir_block *target;
2423   struct nir_block *else_target;
2424} nir_jump_instr;
2425
2426/* creates a new SSA variable in an undefined state */
2427
2428typedef struct {
2429   nir_instr instr;
2430   nir_ssa_def def;
2431} nir_ssa_undef_instr;
2432
2433typedef struct {
2434   struct exec_node node;
2435
2436   /* The predecessor block corresponding to this source */
2437   struct nir_block *pred;
2438
2439   nir_src src;
2440} nir_phi_src;
2441
2442#define nir_foreach_phi_src(phi_src, phi) \
2443   foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
2444#define nir_foreach_phi_src_safe(phi_src, phi) \
2445   foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
2446
2447typedef struct {
2448   nir_instr instr;
2449
2450   struct exec_list srcs; /** < list of nir_phi_src */
2451
2452   nir_dest dest;
2453} nir_phi_instr;
2454
2455static inline nir_phi_src *
2456nir_phi_get_src_from_block(nir_phi_instr *phi, struct nir_block *block)
2457{
2458   nir_foreach_phi_src(src, phi) {
2459      if (src->pred == block)
2460         return src;
2461   }
2462
2463   assert(!"Block is not a predecessor of phi.");
2464   return NULL;
2465}
2466
2467typedef struct {
2468   struct exec_node node;
2469   nir_src src;
2470   nir_dest dest;
2471} nir_parallel_copy_entry;
2472
2473#define nir_foreach_parallel_copy_entry(entry, pcopy) \
2474   foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
2475
2476typedef struct {
2477   nir_instr instr;
2478
2479   /* A list of nir_parallel_copy_entrys.  The sources of all of the
2480    * entries are copied to the corresponding destinations "in parallel".
2481    * In other words, if we have two entries: a -> b and b -> a, the values
2482    * get swapped.
2483    */
2484   struct exec_list entries;
2485} nir_parallel_copy_instr;
2486
2487NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
2488                type, nir_instr_type_alu)
2489NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
2490                type, nir_instr_type_deref)
2491NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
2492                type, nir_instr_type_call)
2493NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
2494                type, nir_instr_type_jump)
2495NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
2496                type, nir_instr_type_tex)
2497NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
2498                type, nir_instr_type_intrinsic)
2499NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
2500                type, nir_instr_type_load_const)
2501NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
2502                type, nir_instr_type_ssa_undef)
2503NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
2504                type, nir_instr_type_phi)
2505NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
2506                nir_parallel_copy_instr, instr,
2507                type, nir_instr_type_parallel_copy)
2508
2509
2510#define NIR_DEFINE_SRC_AS_CONST(type, suffix)               \
2511static inline type                                          \
2512nir_src_comp_as_##suffix(nir_src src, unsigned comp)        \
2513{                                                           \
2514   assert(nir_src_is_const(src));                           \
2515   nir_load_const_instr *load =                             \
2516      nir_instr_as_load_const(src.ssa->parent_instr);       \
2517   assert(comp < load->def.num_components);                 \
2518   return nir_const_value_as_##suffix(load->value[comp],    \
2519                                      load->def.bit_size);  \
2520}                                                           \
2521                                                            \
2522static inline type                                          \
2523nir_src_as_##suffix(nir_src src)                            \
2524{                                                           \
2525   assert(nir_src_num_components(src) == 1);                \
2526   return nir_src_comp_as_##suffix(src, 0);                 \
2527}
2528
2529NIR_DEFINE_SRC_AS_CONST(int64_t,    int)
2530NIR_DEFINE_SRC_AS_CONST(uint64_t,   uint)
2531NIR_DEFINE_SRC_AS_CONST(bool,       bool)
2532NIR_DEFINE_SRC_AS_CONST(double,     float)
2533
2534#undef NIR_DEFINE_SRC_AS_CONST
2535
2536
2537typedef struct {
2538   nir_ssa_def *def;
2539   unsigned comp;
2540} nir_ssa_scalar;
2541
2542static inline bool
2543nir_ssa_scalar_is_const(nir_ssa_scalar s)
2544{
2545   return s.def->parent_instr->type == nir_instr_type_load_const;
2546}
2547
2548static inline nir_const_value
2549nir_ssa_scalar_as_const_value(nir_ssa_scalar s)
2550{
2551   assert(s.comp < s.def->num_components);
2552   nir_load_const_instr *load = nir_instr_as_load_const(s.def->parent_instr);
2553   return load->value[s.comp];
2554}
2555
2556#define NIR_DEFINE_SCALAR_AS_CONST(type, suffix)                     \
2557static inline type                                                   \
2558nir_ssa_scalar_as_##suffix(nir_ssa_scalar s)                         \
2559{                                                                    \
2560   return nir_const_value_as_##suffix(                               \
2561      nir_ssa_scalar_as_const_value(s), s.def->bit_size);            \
2562}
2563
2564NIR_DEFINE_SCALAR_AS_CONST(int64_t,    int)
2565NIR_DEFINE_SCALAR_AS_CONST(uint64_t,   uint)
2566NIR_DEFINE_SCALAR_AS_CONST(bool,       bool)
2567NIR_DEFINE_SCALAR_AS_CONST(double,     float)
2568
2569#undef NIR_DEFINE_SCALAR_AS_CONST
2570
2571static inline bool
2572nir_ssa_scalar_is_alu(nir_ssa_scalar s)
2573{
2574   return s.def->parent_instr->type == nir_instr_type_alu;
2575}
2576
2577static inline nir_op
2578nir_ssa_scalar_alu_op(nir_ssa_scalar s)
2579{
2580   return nir_instr_as_alu(s.def->parent_instr)->op;
2581}
2582
2583static inline nir_ssa_scalar
2584nir_ssa_scalar_chase_alu_src(nir_ssa_scalar s, unsigned alu_src_idx)
2585{
2586   nir_ssa_scalar out = { NULL, 0 };
2587
2588   nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
2589   assert(alu_src_idx < nir_op_infos[alu->op].num_inputs);
2590
2591   /* Our component must be written */
2592   assert(s.comp < s.def->num_components);
2593   assert(alu->dest.write_mask & (1u << s.comp));
2594
2595   assert(alu->src[alu_src_idx].src.is_ssa);
2596   out.def = alu->src[alu_src_idx].src.ssa;
2597
2598   if (nir_op_infos[alu->op].input_sizes[alu_src_idx] == 0) {
2599      /* The ALU src is unsized so the source component follows the
2600       * destination component.
2601       */
2602      out.comp = alu->src[alu_src_idx].swizzle[s.comp];
2603   } else {
2604      /* This is a sized source so all source components work together to
2605       * produce all the destination components.  Since we need to return a
2606       * scalar, this only works if the source is a scalar.
2607       */
2608      assert(nir_op_infos[alu->op].input_sizes[alu_src_idx] == 1);
2609      out.comp = alu->src[alu_src_idx].swizzle[0];
2610   }
2611   assert(out.comp < out.def->num_components);
2612
2613   return out;
2614}
2615
2616nir_ssa_scalar nir_ssa_scalar_chase_movs(nir_ssa_scalar s);
2617
2618static inline nir_ssa_scalar
2619nir_get_ssa_scalar(nir_ssa_def *def, unsigned channel)
2620{
2621   nir_ssa_scalar s = { def, channel };
2622   return s;
2623}
2624
2625/** Returns a nir_ssa_scalar where we've followed the bit-exact mov/vec use chain to the original definition */
2626static inline nir_ssa_scalar
2627nir_ssa_scalar_resolved(nir_ssa_def *def, unsigned channel)
2628{
2629   return nir_ssa_scalar_chase_movs(nir_get_ssa_scalar(def, channel));
2630}
2631
2632
2633typedef struct {
2634   bool success;
2635
2636   nir_variable *var;
2637   unsigned desc_set;
2638   unsigned binding;
2639   unsigned num_indices;
2640   nir_src indices[4];
2641   bool read_first_invocation;
2642} nir_binding;
2643
2644nir_binding nir_chase_binding(nir_src rsrc);
2645nir_variable *nir_get_binding_variable(struct nir_shader *shader, nir_binding binding);
2646
2647
2648/*
2649 * Control flow
2650 *
2651 * Control flow consists of a tree of control flow nodes, which include
2652 * if-statements and loops. The leaves of the tree are basic blocks, lists of
2653 * instructions that always run start-to-finish. Each basic block also keeps
2654 * track of its successors (blocks which may run immediately after the current
2655 * block) and predecessors (blocks which could have run immediately before the
2656 * current block). Each function also has a start block and an end block which
2657 * all return statements point to (which is always empty). Together, all the
2658 * blocks with their predecessors and successors make up the control flow
2659 * graph (CFG) of the function. There are helpers that modify the tree of
2660 * control flow nodes while modifying the CFG appropriately; these should be
2661 * used instead of modifying the tree directly.
2662 */
2663
2664typedef enum {
2665   nir_cf_node_block,
2666   nir_cf_node_if,
2667   nir_cf_node_loop,
2668   nir_cf_node_function
2669} nir_cf_node_type;
2670
2671typedef struct nir_cf_node {
2672   struct exec_node node;
2673   nir_cf_node_type type;
2674   struct nir_cf_node *parent;
2675} nir_cf_node;
2676
2677typedef struct nir_block {
2678   nir_cf_node cf_node;
2679
2680   struct exec_list instr_list; /** < list of nir_instr */
2681
2682   /** generic block index; generated by nir_index_blocks */
2683   unsigned index;
2684
2685   /*
2686    * Each block can only have up to 2 successors, so we put them in a simple
2687    * array - no need for anything more complicated.
2688    */
2689   struct nir_block *successors[2];
2690
2691   /* Set of nir_block predecessors in the CFG */
2692   struct set *predecessors;
2693
2694   /*
2695    * this node's immediate dominator in the dominance tree - set to NULL for
2696    * the start block.
2697    */
2698   struct nir_block *imm_dom;
2699
2700   /* This node's children in the dominance tree */
2701   unsigned num_dom_children;
2702   struct nir_block **dom_children;
2703
2704   /* Set of nir_blocks on the dominance frontier of this block */
2705   struct set *dom_frontier;
2706
2707   /*
2708    * These two indices have the property that dom_{pre,post}_index for each
2709    * child of this block in the dominance tree will always be between
2710    * dom_pre_index and dom_post_index for this block, which makes testing if
2711    * a given block is dominated by another block an O(1) operation.
2712    */
2713   uint32_t dom_pre_index, dom_post_index;
2714
2715   /**
2716    * Value just before the first nir_instr->index in the block, but after
2717    * end_ip that of any predecessor block.
2718    */
2719   uint32_t start_ip;
2720   /**
2721    * Value just after the last nir_instr->index in the block, but before the
2722    * start_ip of any successor block.
2723    */
2724   uint32_t end_ip;
2725
2726   /* SSA def live in and out for this block; used for liveness analysis.
2727    * Indexed by ssa_def->index
2728    */
2729   BITSET_WORD *live_in;
2730   BITSET_WORD *live_out;
2731} nir_block;
2732
2733static inline bool
2734nir_block_is_reachable(nir_block *b)
2735{
2736   /* See also nir_block_dominates */
2737   return b->dom_post_index != 0;
2738}
2739
2740static inline nir_instr *
2741nir_block_first_instr(nir_block *block)
2742{
2743   struct exec_node *head = exec_list_get_head(&block->instr_list);
2744   return exec_node_data(nir_instr, head, node);
2745}
2746
2747static inline nir_instr *
2748nir_block_last_instr(nir_block *block)
2749{
2750   struct exec_node *tail = exec_list_get_tail(&block->instr_list);
2751   return exec_node_data(nir_instr, tail, node);
2752}
2753
2754static inline bool
2755nir_block_ends_in_jump(nir_block *block)
2756{
2757   return !exec_list_is_empty(&block->instr_list) &&
2758          nir_block_last_instr(block)->type == nir_instr_type_jump;
2759}
2760
2761static inline bool
2762nir_block_ends_in_return_or_halt(nir_block *block)
2763{
2764   if (exec_list_is_empty(&block->instr_list))
2765      return false;
2766
2767   nir_instr *instr = nir_block_last_instr(block);
2768   if (instr->type != nir_instr_type_jump)
2769      return false;
2770
2771   nir_jump_instr *jump_instr = nir_instr_as_jump(instr);
2772   return jump_instr->type == nir_jump_return ||
2773          jump_instr->type == nir_jump_halt;
2774}
2775
2776static inline bool
2777nir_block_ends_in_break(nir_block *block)
2778{
2779   if (exec_list_is_empty(&block->instr_list))
2780      return false;
2781
2782   nir_instr *instr = nir_block_last_instr(block);
2783   return instr->type == nir_instr_type_jump &&
2784      nir_instr_as_jump(instr)->type == nir_jump_break;
2785}
2786
2787#define nir_foreach_instr(instr, block) \
2788   foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
2789#define nir_foreach_instr_reverse(instr, block) \
2790   foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
2791#define nir_foreach_instr_safe(instr, block) \
2792   foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
2793#define nir_foreach_instr_reverse_safe(instr, block) \
2794   foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
2795
2796static inline nir_phi_instr *
2797nir_block_last_phi_instr(nir_block *block)
2798{
2799   nir_phi_instr *last_phi = NULL;
2800   nir_foreach_instr(instr, block) {
2801      if (instr->type == nir_instr_type_phi)
2802         last_phi = nir_instr_as_phi(instr);
2803      else
2804         return last_phi;
2805   }
2806   return last_phi;
2807}
2808
2809typedef enum {
2810   nir_selection_control_none = 0x0,
2811   nir_selection_control_flatten = 0x1,
2812   nir_selection_control_dont_flatten = 0x2,
2813} nir_selection_control;
2814
2815typedef struct nir_if {
2816   nir_cf_node cf_node;
2817   nir_src condition;
2818   nir_selection_control control;
2819
2820   struct exec_list then_list; /** < list of nir_cf_node */
2821   struct exec_list else_list; /** < list of nir_cf_node */
2822} nir_if;
2823
2824typedef struct {
2825   nir_if *nif;
2826
2827   /** Instruction that generates nif::condition. */
2828   nir_instr *conditional_instr;
2829
2830   /** Block within ::nif that has the break instruction. */
2831   nir_block *break_block;
2832
2833   /** Last block for the then- or else-path that does not contain the break. */
2834   nir_block *continue_from_block;
2835
2836   /** True when ::break_block is in the else-path of ::nif. */
2837   bool continue_from_then;
2838   bool induction_rhs;
2839
2840   /* This is true if the terminators exact trip count is unknown. For
2841    * example:
2842    *
2843    *    for (int i = 0; i < imin(x, 4); i++)
2844    *       ...
2845    *
2846    * Here loop analysis would have set a max_trip_count of 4 however we dont
2847    * know for sure that this is the exact trip count.
2848    */
2849   bool exact_trip_count_unknown;
2850
2851   struct list_head loop_terminator_link;
2852} nir_loop_terminator;
2853
2854typedef struct {
2855   /* Induction variable. */
2856   nir_ssa_def *def;
2857
2858   /* Init statement with only uniform. */
2859   nir_src *init_src;
2860
2861   /* Update statement with only uniform. */
2862   nir_alu_src *update_src;
2863} nir_loop_induction_variable;
2864
2865typedef struct {
2866   /* Estimated cost (in number of instructions) of the loop */
2867   unsigned instr_cost;
2868
2869   /* Guessed trip count based on array indexing */
2870   unsigned guessed_trip_count;
2871
2872   /* Maximum number of times the loop is run (if known) */
2873   unsigned max_trip_count;
2874
2875   /* Do we know the exact number of times the loop will be run */
2876   bool exact_trip_count_known;
2877
2878   /* Unroll the loop regardless of its size */
2879   bool force_unroll;
2880
2881   /* Does the loop contain complex loop terminators, continues or other
2882    * complex behaviours? If this is true we can't rely on
2883    * loop_terminator_list to be complete or accurate.
2884    */
2885   bool complex_loop;
2886
2887   nir_loop_terminator *limiting_terminator;
2888
2889   /* A list of loop_terminators terminating this loop. */
2890   struct list_head loop_terminator_list;
2891
2892   /* array of induction variables for this loop */
2893   nir_loop_induction_variable *induction_vars;
2894   unsigned num_induction_vars;
2895} nir_loop_info;
2896
2897typedef enum {
2898   nir_loop_control_none = 0x0,
2899   nir_loop_control_unroll = 0x1,
2900   nir_loop_control_dont_unroll = 0x2,
2901} nir_loop_control;
2902
2903typedef struct {
2904   nir_cf_node cf_node;
2905
2906   struct exec_list body; /** < list of nir_cf_node */
2907
2908   nir_loop_info *info;
2909   nir_loop_control control;
2910   bool partially_unrolled;
2911   bool divergent;
2912} nir_loop;
2913
2914/**
2915 * Various bits of metadata that can may be created or required by
2916 * optimization and analysis passes
2917 */
2918typedef enum {
2919   nir_metadata_none = 0x0,
2920
2921   /** Indicates that nir_block::index values are valid.
2922    *
2923    * The start block has index 0 and they increase through a natural walk of
2924    * the CFG.  nir_function_impl::num_blocks is the number of blocks and
2925    * every block index is in the range [0, nir_function_impl::num_blocks].
2926    *
2927    * A pass can preserve this metadata type if it doesn't touch the CFG.
2928    */
2929   nir_metadata_block_index = 0x1,
2930
2931   /** Indicates that block dominance information is valid
2932    *
2933    * This includes:
2934    *
2935    *   - nir_block::num_dom_children
2936    *   - nir_block::dom_children
2937    *   - nir_block::dom_frontier
2938    *   - nir_block::dom_pre_index
2939    *   - nir_block::dom_post_index
2940    *
2941    * A pass can preserve this metadata type if it doesn't touch the CFG.
2942    */
2943   nir_metadata_dominance = 0x2,
2944
2945   /** Indicates that SSA def data-flow liveness information is valid
2946    *
2947    * This includes:
2948    *
2949    *   - nir_block::live_in
2950    *   - nir_block::live_out
2951    *
2952    * A pass can preserve this metadata type if it never adds or removes any
2953    * SSA defs or uses of SSA defs (most passes shouldn't preserve this
2954    * metadata type).
2955    */
2956   nir_metadata_live_ssa_defs = 0x4,
2957
2958   /** A dummy metadata value to track when a pass forgot to call
2959    * nir_metadata_preserve.
2960    *
2961    * A pass should always clear this value even if it doesn't make any
2962    * progress to indicate that it thought about preserving metadata.
2963    */
2964   nir_metadata_not_properly_reset = 0x8,
2965
2966   /** Indicates that loop analysis information is valid.
2967    *
2968    * This includes everything pointed to by nir_loop::info.
2969    *
2970    * A pass can preserve this metadata type if it is guaranteed to not affect
2971    * any loop metadata.  However, since loop metadata includes things like
2972    * loop counts which depend on arithmetic in the loop, this is very hard to
2973    * determine.  Most passes shouldn't preserve this metadata type.
2974    */
2975   nir_metadata_loop_analysis = 0x10,
2976
2977   /** Indicates that nir_instr::index values are valid.
2978    *
2979    * The start instruction has index 0 and they increase through a natural
2980    * walk of instructions in blocks in the CFG.  The indices my have holes
2981    * after passes such as DCE.
2982    *
2983    * A pass can preserve this metadata type if it never adds or moves any
2984    * instructions (most passes shouldn't preserve this metadata type), but
2985    * can preserve it if it only removes instructions.
2986    */
2987   nir_metadata_instr_index = 0x20,
2988
2989   /** All metadata
2990    *
2991    * This includes all nir_metadata flags except not_properly_reset.  Passes
2992    * which do not change the shader in any way should call
2993    *
2994    *    nir_metadata_preserve(impl, nir_metadata_all);
2995    */
2996   nir_metadata_all = ~nir_metadata_not_properly_reset,
2997} nir_metadata;
2998MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(nir_metadata)
2999
3000typedef struct {
3001   nir_cf_node cf_node;
3002
3003   /** pointer to the function of which this is an implementation */
3004   struct nir_function *function;
3005
3006   /**
3007    * For entrypoints, a pointer to a nir_function_impl which runs before
3008    * it, once per draw or dispatch, communicating via store_preamble and
3009    * load_preamble intrinsics. If NULL then there is no preamble.
3010    */
3011   struct nir_function *preamble;
3012
3013   struct exec_list body; /** < list of nir_cf_node */
3014
3015   nir_block *end_block;
3016
3017   /** list for all local variables in the function */
3018   struct exec_list locals;
3019
3020   /** list of local registers in the function */
3021   struct exec_list registers;
3022
3023   /** next available local register index */
3024   unsigned reg_alloc;
3025
3026   /** next available SSA value index */
3027   unsigned ssa_alloc;
3028
3029   /* total number of basic blocks, only valid when block_index_dirty = false */
3030   unsigned num_blocks;
3031
3032   /** True if this nir_function_impl uses structured control-flow
3033    *
3034    * Structured nir_function_impls have different validation rules.
3035    */
3036   bool structured;
3037
3038   nir_metadata valid_metadata;
3039} nir_function_impl;
3040
3041#define nir_foreach_function_temp_variable(var, impl) \
3042   foreach_list_typed(nir_variable, var, node, &(impl)->locals)
3043
3044#define nir_foreach_function_temp_variable_safe(var, impl) \
3045   foreach_list_typed_safe(nir_variable, var, node, &(impl)->locals)
3046
3047ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
3048nir_start_block(nir_function_impl *impl)
3049{
3050   return (nir_block *) impl->body.head_sentinel.next;
3051}
3052
3053ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
3054nir_impl_last_block(nir_function_impl *impl)
3055{
3056   return (nir_block *) impl->body.tail_sentinel.prev;
3057}
3058
3059static inline nir_cf_node *
3060nir_cf_node_next(nir_cf_node *node)
3061{
3062   struct exec_node *next = exec_node_get_next(&node->node);
3063   if (exec_node_is_tail_sentinel(next))
3064      return NULL;
3065   else
3066      return exec_node_data(nir_cf_node, next, node);
3067}
3068
3069static inline nir_cf_node *
3070nir_cf_node_prev(nir_cf_node *node)
3071{
3072   struct exec_node *prev = exec_node_get_prev(&node->node);
3073   if (exec_node_is_head_sentinel(prev))
3074      return NULL;
3075   else
3076      return exec_node_data(nir_cf_node, prev, node);
3077}
3078
3079static inline bool
3080nir_cf_node_is_first(const nir_cf_node *node)
3081{
3082   return exec_node_is_head_sentinel(node->node.prev);
3083}
3084
3085static inline bool
3086nir_cf_node_is_last(const nir_cf_node *node)
3087{
3088   return exec_node_is_tail_sentinel(node->node.next);
3089}
3090
3091NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
3092                type, nir_cf_node_block)
3093NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
3094                type, nir_cf_node_if)
3095NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
3096                type, nir_cf_node_loop)
3097NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
3098                nir_function_impl, cf_node, type, nir_cf_node_function)
3099
3100static inline nir_block *
3101nir_if_first_then_block(nir_if *if_stmt)
3102{
3103   struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
3104   return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3105}
3106
3107static inline nir_block *
3108nir_if_last_then_block(nir_if *if_stmt)
3109{
3110   struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
3111   return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3112}
3113
3114static inline nir_block *
3115nir_if_first_else_block(nir_if *if_stmt)
3116{
3117   struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
3118   return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3119}
3120
3121static inline nir_block *
3122nir_if_last_else_block(nir_if *if_stmt)
3123{
3124   struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
3125   return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3126}
3127
3128static inline nir_block *
3129nir_loop_first_block(nir_loop *loop)
3130{
3131   struct exec_node *head = exec_list_get_head(&loop->body);
3132   return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3133}
3134
3135static inline nir_block *
3136nir_loop_last_block(nir_loop *loop)
3137{
3138   struct exec_node *tail = exec_list_get_tail(&loop->body);
3139   return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3140}
3141
3142/**
3143 * Return true if this list of cf_nodes contains a single empty block.
3144 */
3145static inline bool
3146nir_cf_list_is_empty_block(struct exec_list *cf_list)
3147{
3148   if (exec_list_is_singular(cf_list)) {
3149      struct exec_node *head = exec_list_get_head(cf_list);
3150      nir_block *block =
3151         nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3152      return exec_list_is_empty(&block->instr_list);
3153   }
3154   return false;
3155}
3156
3157typedef struct {
3158   uint8_t num_components;
3159   uint8_t bit_size;
3160} nir_parameter;
3161
3162typedef struct nir_printf_info {
3163   unsigned num_args;
3164   unsigned *arg_sizes;
3165   unsigned string_size;
3166   char *strings;
3167} nir_printf_info;
3168
3169typedef struct nir_function {
3170   struct exec_node node;
3171
3172   const char *name;
3173   struct nir_shader *shader;
3174
3175   unsigned num_params;
3176   nir_parameter *params;
3177
3178   /** The implementation of this function.
3179    *
3180    * If the function is only declared and not implemented, this is NULL.
3181    */
3182   nir_function_impl *impl;
3183
3184   bool is_entrypoint;
3185   bool is_preamble;
3186} nir_function;
3187
3188typedef enum {
3189   nir_lower_imul64 = (1 << 0),
3190   nir_lower_isign64 = (1 << 1),
3191   /** Lower all int64 modulus and division opcodes */
3192   nir_lower_divmod64 = (1 << 2),
3193   /** Lower all 64-bit umul_high and imul_high opcodes */
3194   nir_lower_imul_high64 = (1 << 3),
3195   nir_lower_mov64 = (1 << 4),
3196   nir_lower_icmp64 = (1 << 5),
3197   nir_lower_iadd64 = (1 << 6),
3198   nir_lower_iabs64 = (1 << 7),
3199   nir_lower_ineg64 = (1 << 8),
3200   nir_lower_logic64 = (1 << 9),
3201   nir_lower_minmax64 = (1 << 10),
3202   nir_lower_shift64 = (1 << 11),
3203   nir_lower_imul_2x32_64 = (1 << 12),
3204   nir_lower_extract64 = (1 << 13),
3205   nir_lower_ufind_msb64 = (1 << 14),
3206   nir_lower_bit_count64 = (1 << 15),
3207   nir_lower_subgroup_shuffle64 = (1 << 16),
3208   nir_lower_scan_reduce_bitwise64 = (1 << 17),
3209   nir_lower_scan_reduce_iadd64 = (1 << 18),
3210   nir_lower_vote_ieq64 = (1 << 19),
3211   nir_lower_usub_sat64 = (1 << 20),
3212   nir_lower_iadd_sat64 = (1 << 21),
3213} nir_lower_int64_options;
3214
3215typedef enum {
3216   nir_lower_drcp = (1 << 0),
3217   nir_lower_dsqrt = (1 << 1),
3218   nir_lower_drsq = (1 << 2),
3219   nir_lower_dtrunc = (1 << 3),
3220   nir_lower_dfloor = (1 << 4),
3221   nir_lower_dceil = (1 << 5),
3222   nir_lower_dfract = (1 << 6),
3223   nir_lower_dround_even = (1 << 7),
3224   nir_lower_dmod = (1 << 8),
3225   nir_lower_dsub = (1 << 9),
3226   nir_lower_ddiv = (1 << 10),
3227   nir_lower_fp64_full_software = (1 << 11),
3228} nir_lower_doubles_options;
3229
3230typedef enum {
3231   nir_divergence_single_prim_per_subgroup = (1 << 0),
3232   nir_divergence_single_patch_per_tcs_subgroup = (1 << 1),
3233   nir_divergence_single_patch_per_tes_subgroup = (1 << 2),
3234   nir_divergence_view_index_uniform = (1 << 3),
3235   nir_divergence_single_frag_shading_rate_per_subgroup = (1 << 4),
3236   nir_divergence_multiple_workgroup_per_compute_subgroup = (1 << 5),
3237} nir_divergence_options;
3238
3239typedef enum {
3240   nir_pack_varying_interp_mode_none          = (1 << 0),
3241   nir_pack_varying_interp_mode_smooth        = (1 << 1),
3242   nir_pack_varying_interp_mode_flat          = (1 << 2),
3243   nir_pack_varying_interp_mode_noperspective = (1 << 3),
3244   nir_pack_varying_interp_loc_sample         = (1 << 16),
3245   nir_pack_varying_interp_loc_centroid       = (1 << 17),
3246   nir_pack_varying_interp_loc_center         = (1 << 18),
3247} nir_pack_varying_options;
3248
3249/** An instruction filtering callback
3250 *
3251 * Returns true if the instruction should be processed and false otherwise.
3252 */
3253typedef bool (*nir_instr_filter_cb)(const nir_instr *, const void *);
3254
3255/** A vectorization width callback
3256 *
3257 * Returns the maximum vectorization width per instruction.
3258 * 0, if the instruction must not be modified.
3259 *
3260 * The vectorization width must be a power of 2.
3261 */
3262typedef uint8_t (*nir_vectorize_cb)(const nir_instr *, const void *);
3263
3264typedef struct nir_shader_compiler_options {
3265   bool lower_fdiv;
3266   bool lower_ffma16;
3267   bool lower_ffma32;
3268   bool lower_ffma64;
3269   bool fuse_ffma16;
3270   bool fuse_ffma32;
3271   bool fuse_ffma64;
3272   bool lower_flrp16;
3273   bool lower_flrp32;
3274   /** Lowers flrp when it does not support doubles */
3275   bool lower_flrp64;
3276   bool lower_fpow;
3277   bool lower_fsat;
3278   bool lower_fsqrt;
3279   bool lower_sincos;
3280   bool lower_fmod;
3281   /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
3282   bool lower_bitfield_extract;
3283   /** Lowers ibitfield_extract/ubitfield_extract to compares, shifts. */
3284   bool lower_bitfield_extract_to_shifts;
3285   /** Lowers bitfield_insert to bfi/bfm */
3286   bool lower_bitfield_insert;
3287   /** Lowers bitfield_insert to compares, and shifts. */
3288   bool lower_bitfield_insert_to_shifts;
3289   /** Lowers bitfield_insert to bfm/bitfield_select. */
3290   bool lower_bitfield_insert_to_bitfield_select;
3291   /** Lowers bitfield_reverse to shifts. */
3292   bool lower_bitfield_reverse;
3293   /** Lowers bit_count to shifts. */
3294   bool lower_bit_count;
3295   /** Lowers ifind_msb to compare and ufind_msb */
3296   bool lower_ifind_msb;
3297   /** Lowers ifind_msb and ufind_msb to reverse variants */
3298   bool lower_find_msb_to_reverse;
3299   /** Lowers find_lsb to ufind_msb and logic ops */
3300   bool lower_find_lsb;
3301   bool lower_uadd_carry;
3302   bool lower_usub_borrow;
3303   /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
3304   bool lower_mul_high;
3305   /** lowers fneg to fmul(x, -1.0). Driver must call nir_opt_algebraic_late() */
3306   bool lower_fneg;
3307   /** lowers ineg to isub. Driver must call nir_opt_algebraic_late(). */
3308   bool lower_ineg;
3309   /** lowers fisnormal to alu ops. */
3310   bool lower_fisnormal;
3311
3312   /* lower {slt,sge,seq,sne} to {flt,fge,feq,fneu} + b2f: */
3313   bool lower_scmp;
3314
3315   /* lower b/fall_equalN/b/fany_nequalN (ex:fany_nequal4 to sne+fdot4+fsat) */
3316   bool lower_vector_cmp;
3317
3318   /** enable rules to avoid bit ops */
3319   bool lower_bitops;
3320
3321   /** enables rules to lower isign to imin+imax */
3322   bool lower_isign;
3323
3324   /** enables rules to lower fsign to fsub and flt */
3325   bool lower_fsign;
3326
3327   /** enables rules to lower iabs to ineg+imax */
3328   bool lower_iabs;
3329
3330   /** enable rules that avoid generating umax from signed integer ops */
3331   bool lower_umax;
3332
3333   /** enable rules that avoid generating umin from signed integer ops */
3334   bool lower_umin;
3335
3336   /* lower fdph to fdot4 */
3337   bool lower_fdph;
3338
3339   /** lower fdot to fmul and fsum/fadd. */
3340   bool lower_fdot;
3341
3342   /* Does the native fdot instruction replicate its result for four
3343    * components?  If so, then opt_algebraic_late will turn all fdotN
3344    * instructions into fdotN_replicated instructions.
3345    */
3346   bool fdot_replicates;
3347
3348   /** lowers ffloor to fsub+ffract: */
3349   bool lower_ffloor;
3350
3351   /** lowers ffract to fsub+ffloor: */
3352   bool lower_ffract;
3353
3354   /** lowers fceil to fneg+ffloor+fneg: */
3355   bool lower_fceil;
3356
3357   bool lower_ftrunc;
3358
3359   /** Lowers fround_even to ffract+feq+csel.
3360    *
3361    * Not correct in that it doesn't correctly handle the "_even" part of the
3362    * rounding, but good enough for DX9 array indexing handling on DX9-class
3363    * hardware.
3364    */
3365   bool lower_fround_even;
3366
3367   bool lower_ldexp;
3368
3369   bool lower_pack_half_2x16;
3370   bool lower_pack_unorm_2x16;
3371   bool lower_pack_snorm_2x16;
3372   bool lower_pack_unorm_4x8;
3373   bool lower_pack_snorm_4x8;
3374   bool lower_pack_64_2x32;
3375   bool lower_pack_64_4x16;
3376   bool lower_pack_32_2x16;
3377   bool lower_pack_64_2x32_split;
3378   bool lower_pack_32_2x16_split;
3379   bool lower_unpack_half_2x16;
3380   bool lower_unpack_unorm_2x16;
3381   bool lower_unpack_snorm_2x16;
3382   bool lower_unpack_unorm_4x8;
3383   bool lower_unpack_snorm_4x8;
3384   bool lower_unpack_64_2x32_split;
3385   bool lower_unpack_32_2x16_split;
3386
3387   bool lower_pack_split;
3388
3389   bool lower_extract_byte;
3390   bool lower_extract_word;
3391   bool lower_insert_byte;
3392   bool lower_insert_word;
3393
3394   bool lower_all_io_to_temps;
3395   bool lower_all_io_to_elements;
3396
3397   /* Indicates that the driver only has zero-based vertex id */
3398   bool vertex_id_zero_based;
3399
3400   /**
3401    * If enabled, gl_BaseVertex will be lowered as:
3402    * is_indexed_draw (~0/0) & firstvertex
3403    */
3404   bool lower_base_vertex;
3405
3406   /**
3407    * If enabled, gl_HelperInvocation will be lowered as:
3408    *
3409    *   !((1 << sample_id) & sample_mask_in))
3410    *
3411    * This depends on some possibly hw implementation details, which may
3412    * not be true for all hw.  In particular that the FS is only executed
3413    * for covered samples or for helper invocations.  So, do not blindly
3414    * enable this option.
3415    *
3416    * Note: See also issue #22 in ARB_shader_image_load_store
3417    */
3418   bool lower_helper_invocation;
3419
3420   /**
3421    * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
3422    *
3423    *   gl_SampleMaskIn == 0 ---> gl_HelperInvocation
3424    *   gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
3425    */
3426   bool optimize_sample_mask_in;
3427
3428   bool lower_cs_local_index_to_id;
3429   bool lower_cs_local_id_to_index;
3430
3431   /* Prevents lowering global_invocation_id to be in terms of workgroup_id */
3432   bool has_cs_global_id;
3433
3434   bool lower_device_index_to_zero;
3435
3436   /* Set if nir_lower_pntc_ytransform() should invert gl_PointCoord.
3437    * Either when frame buffer is flipped or GL_POINT_SPRITE_COORD_ORIGIN
3438    * is GL_LOWER_LEFT.
3439    */
3440   bool lower_wpos_pntc;
3441
3442   /**
3443    * Set if nir_op_[iu]hadd and nir_op_[iu]rhadd instructions should be
3444    * lowered to simple arithmetic.
3445    *
3446    * If this flag is set, the lowering will be applied to all bit-sizes of
3447    * these instructions.
3448    *
3449    * \sa ::lower_hadd64
3450    */
3451   bool lower_hadd;
3452
3453   /**
3454    * Set if only 64-bit nir_op_[iu]hadd and nir_op_[iu]rhadd instructions
3455    * should be lowered to simple arithmetic.
3456    *
3457    * If this flag is set, the lowering will be applied to only 64-bit
3458    * versions of these instructions.
3459    *
3460    * \sa ::lower_hadd
3461    */
3462   bool lower_hadd64;
3463
3464   /**
3465    * Set if nir_op_uadd_sat should be lowered to simple arithmetic.
3466    *
3467    * If this flag is set, the lowering will be applied to all bit-sizes of
3468    * these instructions.
3469    */
3470   bool lower_uadd_sat;
3471
3472   /**
3473    * Set if nir_op_usub_sat should be lowered to simple arithmetic.
3474    *
3475    * If this flag is set, the lowering will be applied to all bit-sizes of
3476    * these instructions.
3477    */
3478   bool lower_usub_sat;
3479
3480   /**
3481    * Set if nir_op_iadd_sat and nir_op_isub_sat should be lowered to simple
3482    * arithmetic.
3483    *
3484    * If this flag is set, the lowering will be applied to all bit-sizes of
3485    * these instructions.
3486    */
3487   bool lower_iadd_sat;
3488
3489   /**
3490    * Set if imul_32x16 and umul_32x16 should be lowered to simple
3491    * arithmetic.
3492    */
3493   bool lower_mul_32x16;
3494
3495   /**
3496    * Should IO be re-vectorized?  Some scalar ISAs still operate on vec4's
3497    * for IO purposes and would prefer loads/stores be vectorized.
3498    */
3499   bool vectorize_io;
3500   bool lower_to_scalar;
3501   nir_instr_filter_cb lower_to_scalar_filter;
3502
3503   /**
3504    * Disables potentially harmful algebraic transformations for architectures
3505    * with SIMD-within-a-register semantics.
3506    *
3507    * Note, to actually vectorize 16bit instructions, use nir_opt_vectorize()
3508    * with a suitable callback function.
3509    */
3510   bool vectorize_vec2_16bit;
3511
3512   /**
3513    * Should the linker unify inputs_read/outputs_written between adjacent
3514    * shader stages which are linked into a single program?
3515    */
3516   bool unify_interfaces;
3517
3518   /**
3519    * Should nir_lower_io() create load_interpolated_input intrinsics?
3520    *
3521    * If not, it generates regular load_input intrinsics and interpolation
3522    * information must be inferred from the list of input nir_variables.
3523    */
3524   bool use_interpolated_input_intrinsics;
3525
3526
3527   /**
3528    * Whether nir_lower_io() will lower interpolateAt functions to
3529    * load_interpolated_input intrinsics.
3530    *
3531    * Unlike use_interpolated_input_intrinsics this will only lower these
3532    * functions and leave input load intrinsics untouched.
3533    */
3534   bool lower_interpolate_at;
3535
3536   /* Lowers when 32x32->64 bit multiplication is not supported */
3537   bool lower_mul_2x32_64;
3538
3539   /* Lowers when rotate instruction is not supported */
3540   bool lower_rotate;
3541
3542   /** Backend supports ternary addition */
3543   bool has_iadd3;
3544
3545   /**
3546    * Backend supports imul24, and would like to use it (when possible)
3547    * for address/offset calculation.  If true, driver should call
3548    * nir_lower_amul().  (If not set, amul will automatically be lowered
3549    * to imul.)
3550    */
3551   bool has_imul24;
3552
3553   /** Backend supports umul24, if not set  umul24 will automatically be lowered
3554    * to imul with masked inputs */
3555   bool has_umul24;
3556
3557   /** Backend supports umad24, if not set  umad24 will automatically be lowered
3558    * to imul with masked inputs and iadd */
3559   bool has_umad24;
3560
3561   /* Backend supports fused comapre against zero and csel */
3562   bool has_fused_comp_and_csel;
3563
3564   /** Backend supports fsub, if not set fsub will automatically be lowered to
3565    * fadd(x, fneg(y)). If true, driver should call nir_opt_algebraic_late(). */
3566   bool has_fsub;
3567
3568   /** Backend supports isub, if not set isub will automatically be lowered to
3569    * iadd(x, ineg(y)). If true, driver should call nir_opt_algebraic_late(). */
3570   bool has_isub;
3571
3572   /** Backend supports pack_32_4x8 or pack_32_4x8_split. */
3573   bool has_pack_32_4x8;
3574
3575   /** Backend supports txs, if not nir_lower_tex(..) uses txs-free variants
3576    * for rect texture lowering. */
3577   bool has_txs;
3578
3579   /** Backend supports sdot_4x8 opcodes. */
3580   bool has_sdot_4x8;
3581
3582   /** Backend supports udot_4x8 opcodes. */
3583   bool has_udot_4x8;
3584
3585   /** Backend supports sudot_4x8 opcodes. */
3586   bool has_sudot_4x8;
3587
3588   /** Backend supports sdot_2x16 and udot_2x16 opcodes. */
3589   bool has_dot_2x16;
3590
3591   /* Whether to generate only scoped_barrier intrinsics instead of the set of
3592    * memory and control barrier intrinsics based on GLSL.
3593    */
3594   bool use_scoped_barrier;
3595
3596   /** Backend supports fmulz (and ffmaz if lower_ffma32=false) */
3597   bool has_fmulz;
3598
3599   /**
3600    * Is this the Intel vec4 backend?
3601    *
3602    * Used to inhibit algebraic optimizations that are known to be harmful on
3603    * the Intel vec4 backend.  This is generally applicable to any
3604    * optimization that might cause more immediate values to be used in
3605    * 3-source (e.g., ffma and flrp) instructions.
3606    */
3607   bool intel_vec4;
3608
3609   /**
3610    * For most Intel GPUs, all ternary operations such as FMA and BFE cannot
3611    * have immediates, so two to three instructions may eventually be needed.
3612    */
3613   bool avoid_ternary_with_two_constants;
3614
3615   /** Whether 8-bit ALU is supported. */
3616   bool support_8bit_alu;
3617
3618   /** Whether 16-bit ALU is supported. */
3619   bool support_16bit_alu;
3620
3621   unsigned max_unroll_iterations;
3622   unsigned max_unroll_iterations_aggressive;
3623
3624   bool lower_uniforms_to_ubo;
3625
3626   /* If the precision is ignored, backends that don't handle
3627    * different precisions when passing data between stages and use
3628    * vectorized IO can pack more varyings when linking. */
3629   bool linker_ignore_precision;
3630
3631   /* Specifies if indirect sampler array access will trigger forced loop
3632    * unrolling.
3633    */
3634   bool force_indirect_unrolling_sampler;
3635
3636   /* Some older drivers don't support GLSL versions with the concept of flat
3637    * varyings and also don't support integers. This setting helps us avoid
3638    * marking varyings as flat and potentially having them changed to ints via
3639    * varying packing.
3640    */
3641   bool no_integers;
3642
3643   /**
3644    * Specifies which type of indirectly accessed variables should force
3645    * loop unrolling.
3646    */
3647   nir_variable_mode force_indirect_unrolling;
3648
3649   nir_lower_int64_options lower_int64_options;
3650   nir_lower_doubles_options lower_doubles_options;
3651   nir_divergence_options divergence_analysis_options;
3652
3653   /**
3654    * Support pack varyings with different interpolation location
3655    * (center, centroid, sample) and mode (flat, noperspective, smooth)
3656    * into same slot.
3657    */
3658   nir_pack_varying_options pack_varying_options;
3659
3660   /**
3661    * Lower load_deref/store_deref of inputs and outputs into
3662    * load_input/store_input intrinsics. This is used by nir_lower_io_passes.
3663    */
3664   bool lower_io_variables;
3665
3666   /**
3667    * Lower color inputs to load_colorN that are kind of like system values
3668    * if lower_io_variables is also set. shader_info will contain
3669    * the interpolation settings. This is used by nir_lower_io_passes.
3670    */
3671   bool lower_fs_color_inputs;
3672
3673   /**
3674    * The masks of shader stages that support indirect indexing with
3675    * load_input and store_output intrinsics. It's used when
3676    * lower_io_variables is true. This is used by nir_lower_io_passes.
3677    */
3678   uint8_t support_indirect_inputs;
3679   uint8_t support_indirect_outputs;
3680
3681   /**
3682    * Remove varying loaded from uniform, let fragment shader load the
3683    * uniform directly. GPU passing varying by memory can benifit from it
3684    * for sure; but GPU passing varying by on chip resource may not.
3685    * Because it saves on chip resource but may increase memory pressure when
3686    * fragment task is far more than vertex one, so better left it disabled.
3687    */
3688   bool lower_varying_from_uniform;
3689} nir_shader_compiler_options;
3690
3691typedef struct nir_shader {
3692   /** list of uniforms (nir_variable) */
3693   struct exec_list variables;
3694
3695   /** Set of driver-specific options for the shader.
3696    *
3697    * The memory for the options is expected to be kept in a single static
3698    * copy by the driver.
3699    */
3700   const struct nir_shader_compiler_options *options;
3701
3702   /** Various bits of compile-time information about a given shader */
3703   struct shader_info info;
3704
3705   struct exec_list functions; /** < list of nir_function */
3706
3707   struct list_head gc_list; /** < list of all nir_instrs allocated on the shader but not yet freed. */
3708
3709   /**
3710    * The size of the variable space for load_input_*, load_uniform_*, etc.
3711    * intrinsics.  This is in back-end specific units which is likely one of
3712    * bytes, dwords, or vec4s depending on context and back-end.
3713    */
3714   unsigned num_inputs, num_uniforms, num_outputs;
3715
3716   /** Size in bytes of required implicitly bound global memory */
3717   unsigned global_mem_size;
3718
3719   /** Size in bytes of required scratch space */
3720   unsigned scratch_size;
3721
3722   /** Constant data associated with this shader.
3723    *
3724    * Constant data is loaded through load_constant intrinsics (as compared to
3725    * the NIR load_const instructions which have the constant value inlined
3726    * into them).  This is usually generated by nir_opt_large_constants (so
3727    * shaders don't have to load_const into a temporary array when they want
3728    * to indirect on a const array).
3729    */
3730   void *constant_data;
3731   /** Size of the constant data associated with the shader, in bytes */
3732   unsigned constant_data_size;
3733
3734   struct nir_xfb_info *xfb_info;
3735
3736   unsigned printf_info_count;
3737   nir_printf_info *printf_info;
3738} nir_shader;
3739
3740#define nir_foreach_function(func, shader) \
3741   foreach_list_typed(nir_function, func, node, &(shader)->functions)
3742
3743static inline nir_function_impl *
3744nir_shader_get_entrypoint(const nir_shader *shader)
3745{
3746   nir_function *func = NULL;
3747
3748   nir_foreach_function(function, shader) {
3749      assert(func == NULL);
3750      if (function->is_entrypoint) {
3751         func = function;
3752#ifndef NDEBUG
3753         break;
3754#endif
3755      }
3756   }
3757
3758   if (!func)
3759      return NULL;
3760
3761   assert(func->num_params == 0);
3762   assert(func->impl);
3763   return func->impl;
3764}
3765
3766void nir_remove_non_entrypoints(nir_shader *shader);
3767
3768nir_shader *nir_shader_create(void *mem_ctx,
3769                              gl_shader_stage stage,
3770                              const nir_shader_compiler_options *options,
3771                              shader_info *si);
3772
3773nir_register *nir_local_reg_create(nir_function_impl *impl);
3774
3775void nir_reg_remove(nir_register *reg);
3776
3777/** Adds a variable to the appropriate list in nir_shader */
3778void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
3779
3780static inline void
3781nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
3782{
3783   assert(var->data.mode == nir_var_function_temp);
3784   exec_list_push_tail(&impl->locals, &var->node);
3785}
3786
3787/** creates a variable, sets a few defaults, and adds it to the list */
3788nir_variable *nir_variable_create(nir_shader *shader,
3789                                  nir_variable_mode mode,
3790                                  const struct glsl_type *type,
3791                                  const char *name);
3792/** creates a local variable and adds it to the list */
3793nir_variable *nir_local_variable_create(nir_function_impl *impl,
3794                                        const struct glsl_type *type,
3795                                        const char *name);
3796
3797nir_variable *nir_find_variable_with_location(nir_shader *shader,
3798                                              nir_variable_mode mode,
3799                                              unsigned location);
3800
3801nir_variable *nir_find_variable_with_driver_location(nir_shader *shader,
3802                                                     nir_variable_mode mode,
3803                                                     unsigned location);
3804
3805void nir_sort_variables_with_modes(nir_shader *shader,
3806                                   int (*compar)(const nir_variable *,
3807                                                 const nir_variable *),
3808                                   nir_variable_mode modes);
3809
3810/** creates a function and adds it to the shader's list of functions */
3811nir_function *nir_function_create(nir_shader *shader, const char *name);
3812
3813nir_function_impl *nir_function_impl_create(nir_function *func);
3814/** creates a function_impl that isn't tied to any particular function */
3815nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
3816
3817nir_block *nir_block_create(nir_shader *shader);
3818nir_if *nir_if_create(nir_shader *shader);
3819nir_loop *nir_loop_create(nir_shader *shader);
3820
3821nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
3822
3823/** requests that the given pieces of metadata be generated */
3824void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
3825/** dirties all but the preserved metadata */
3826void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
3827/** Preserves all metadata for the given shader */
3828void nir_shader_preserve_all_metadata(nir_shader *shader);
3829
3830/** creates an instruction with default swizzle/writemask/etc. with NULL registers */
3831nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
3832
3833nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
3834                                        nir_deref_type deref_type);
3835
3836nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
3837
3838nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
3839                                                  unsigned num_components,
3840                                                  unsigned bit_size);
3841
3842nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
3843                                                nir_intrinsic_op op);
3844
3845nir_call_instr *nir_call_instr_create(nir_shader *shader,
3846                                      nir_function *callee);
3847
3848/** Creates a NIR texture instruction */
3849nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
3850
3851nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
3852nir_phi_src *nir_phi_instr_add_src(nir_phi_instr *instr, nir_block *pred, nir_src src);
3853
3854nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
3855
3856nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
3857                                                unsigned num_components,
3858                                                unsigned bit_size);
3859
3860nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
3861
3862/**
3863 * NIR Cursors and Instruction Insertion API
3864 * @{
3865 *
3866 * A tiny struct representing a point to insert/extract instructions or
3867 * control flow nodes.  Helps reduce the combinatorial explosion of possible
3868 * points to insert/extract.
3869 *
3870 * \sa nir_control_flow.h
3871 */
3872typedef enum {
3873   nir_cursor_before_block,
3874   nir_cursor_after_block,
3875   nir_cursor_before_instr,
3876   nir_cursor_after_instr,
3877} nir_cursor_option;
3878
3879typedef struct {
3880   nir_cursor_option option;
3881   union {
3882      nir_block *block;
3883      nir_instr *instr;
3884   };
3885} nir_cursor;
3886
3887static inline nir_block *
3888nir_cursor_current_block(nir_cursor cursor)
3889{
3890   if (cursor.option == nir_cursor_before_instr ||
3891       cursor.option == nir_cursor_after_instr) {
3892      return cursor.instr->block;
3893   } else {
3894      return cursor.block;
3895   }
3896}
3897
3898bool nir_cursors_equal(nir_cursor a, nir_cursor b);
3899
3900static inline nir_cursor
3901nir_before_block(nir_block *block)
3902{
3903   nir_cursor cursor;
3904   cursor.option = nir_cursor_before_block;
3905   cursor.block = block;
3906   return cursor;
3907}
3908
3909static inline nir_cursor
3910nir_after_block(nir_block *block)
3911{
3912   nir_cursor cursor;
3913   cursor.option = nir_cursor_after_block;
3914   cursor.block = block;
3915   return cursor;
3916}
3917
3918static inline nir_cursor
3919nir_before_instr(nir_instr *instr)
3920{
3921   nir_cursor cursor;
3922   cursor.option = nir_cursor_before_instr;
3923   cursor.instr = instr;
3924   return cursor;
3925}
3926
3927static inline nir_cursor
3928nir_after_instr(nir_instr *instr)
3929{
3930   nir_cursor cursor;
3931   cursor.option = nir_cursor_after_instr;
3932   cursor.instr = instr;
3933   return cursor;
3934}
3935
3936static inline nir_cursor
3937nir_before_block_after_phis(nir_block *block)
3938{
3939   nir_phi_instr *last_phi = nir_block_last_phi_instr(block);
3940   if (last_phi)
3941      return nir_after_instr(&last_phi->instr);
3942   else
3943      return nir_before_block(block);
3944}
3945
3946static inline nir_cursor
3947nir_after_block_before_jump(nir_block *block)
3948{
3949   nir_instr *last_instr = nir_block_last_instr(block);
3950   if (last_instr && last_instr->type == nir_instr_type_jump) {
3951      return nir_before_instr(last_instr);
3952   } else {
3953      return nir_after_block(block);
3954   }
3955}
3956
3957static inline nir_cursor
3958nir_before_src(nir_src *src, bool is_if_condition)
3959{
3960   if (is_if_condition) {
3961      nir_block *prev_block =
3962         nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
3963      assert(!nir_block_ends_in_jump(prev_block));
3964      return nir_after_block(prev_block);
3965   } else if (src->parent_instr->type == nir_instr_type_phi) {
3966#ifndef NDEBUG
3967      nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
3968      bool found = false;
3969      nir_foreach_phi_src(phi_src, cond_phi) {
3970         if (phi_src->src.ssa == src->ssa) {
3971            found = true;
3972            break;
3973         }
3974      }
3975      assert(found);
3976#endif
3977      /* The list_entry() macro is a generic container-of macro, it just happens
3978       * to have a more specific name.
3979       */
3980      nir_phi_src *phi_src = list_entry(src, nir_phi_src, src);
3981      return nir_after_block_before_jump(phi_src->pred);
3982   } else {
3983      return nir_before_instr(src->parent_instr);
3984   }
3985}
3986
3987static inline nir_cursor
3988nir_before_cf_node(nir_cf_node *node)
3989{
3990   if (node->type == nir_cf_node_block)
3991      return nir_before_block(nir_cf_node_as_block(node));
3992
3993   return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
3994}
3995
3996static inline nir_cursor
3997nir_after_cf_node(nir_cf_node *node)
3998{
3999   if (node->type == nir_cf_node_block)
4000      return nir_after_block(nir_cf_node_as_block(node));
4001
4002   return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
4003}
4004
4005static inline nir_cursor
4006nir_after_phis(nir_block *block)
4007{
4008   nir_foreach_instr(instr, block) {
4009      if (instr->type != nir_instr_type_phi)
4010         return nir_before_instr(instr);
4011   }
4012   return nir_after_block(block);
4013}
4014
4015static inline nir_cursor
4016nir_after_instr_and_phis(nir_instr *instr)
4017{
4018   if (instr->type == nir_instr_type_phi)
4019      return nir_after_phis(instr->block);
4020   else
4021      return nir_after_instr(instr);
4022}
4023
4024static inline nir_cursor
4025nir_after_cf_node_and_phis(nir_cf_node *node)
4026{
4027   if (node->type == nir_cf_node_block)
4028      return nir_after_block(nir_cf_node_as_block(node));
4029
4030   nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
4031
4032   return nir_after_phis(block);
4033}
4034
4035static inline nir_cursor
4036nir_before_cf_list(struct exec_list *cf_list)
4037{
4038   nir_cf_node *first_node = exec_node_data(nir_cf_node,
4039                                            exec_list_get_head(cf_list), node);
4040   return nir_before_cf_node(first_node);
4041}
4042
4043static inline nir_cursor
4044nir_after_cf_list(struct exec_list *cf_list)
4045{
4046   nir_cf_node *last_node = exec_node_data(nir_cf_node,
4047                                           exec_list_get_tail(cf_list), node);
4048   return nir_after_cf_node(last_node);
4049}
4050
4051/**
4052 * Insert a NIR instruction at the given cursor.
4053 *
4054 * Note: This does not update the cursor.
4055 */
4056void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
4057
4058bool nir_instr_move(nir_cursor cursor, nir_instr *instr);
4059
4060static inline void
4061nir_instr_insert_before(nir_instr *instr, nir_instr *before)
4062{
4063   nir_instr_insert(nir_before_instr(instr), before);
4064}
4065
4066static inline void
4067nir_instr_insert_after(nir_instr *instr, nir_instr *after)
4068{
4069   nir_instr_insert(nir_after_instr(instr), after);
4070}
4071
4072static inline void
4073nir_instr_insert_before_block(nir_block *block, nir_instr *before)
4074{
4075   nir_instr_insert(nir_before_block(block), before);
4076}
4077
4078static inline void
4079nir_instr_insert_after_block(nir_block *block, nir_instr *after)
4080{
4081   nir_instr_insert(nir_after_block(block), after);
4082}
4083
4084static inline void
4085nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
4086{
4087   nir_instr_insert(nir_before_cf_node(node), before);
4088}
4089
4090static inline void
4091nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
4092{
4093   nir_instr_insert(nir_after_cf_node(node), after);
4094}
4095
4096static inline void
4097nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
4098{
4099   nir_instr_insert(nir_before_cf_list(list), before);
4100}
4101
4102static inline void
4103nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
4104{
4105   nir_instr_insert(nir_after_cf_list(list), after);
4106}
4107
4108void nir_instr_remove_v(nir_instr *instr);
4109void nir_instr_free(nir_instr *instr);
4110void nir_instr_free_list(struct exec_list *list);
4111
4112static inline nir_cursor
4113nir_instr_remove(nir_instr *instr)
4114{
4115   nir_cursor cursor;
4116   nir_instr *prev = nir_instr_prev(instr);
4117   if (prev) {
4118      cursor = nir_after_instr(prev);
4119   } else {
4120      cursor = nir_before_block(instr->block);
4121   }
4122   nir_instr_remove_v(instr);
4123   return cursor;
4124}
4125
4126nir_cursor nir_instr_free_and_dce(nir_instr *instr);
4127
4128/** @} */
4129
4130nir_ssa_def *nir_instr_ssa_def(nir_instr *instr);
4131bool nir_instr_def_is_register(nir_instr *instr);
4132
4133typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
4134typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
4135typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
4136bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
4137                         void *state);
4138static inline bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
4139static inline bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
4140bool nir_foreach_phi_src_leaving_block(nir_block *instr,
4141                                       nir_foreach_src_cb cb,
4142                                       void *state);
4143
4144nir_const_value *nir_src_as_const_value(nir_src src);
4145
4146#define NIR_SRC_AS_(name, c_type, type_enum, cast_macro)                \
4147static inline c_type *                                                  \
4148nir_src_as_ ## name (nir_src src)                                       \
4149{                                                                       \
4150    return src.is_ssa && src.ssa->parent_instr->type == type_enum       \
4151           ? cast_macro(src.ssa->parent_instr) : NULL;                  \
4152}
4153
4154NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
4155NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
4156            nir_instr_type_intrinsic, nir_instr_as_intrinsic)
4157NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
4158
4159bool nir_src_is_always_uniform(nir_src src);
4160bool nir_srcs_equal(nir_src src1, nir_src src2);
4161bool nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2);
4162
4163static inline void
4164nir_instr_rewrite_src_ssa(ASSERTED nir_instr *instr,
4165                          nir_src *src, nir_ssa_def *new_ssa)
4166{
4167   assert(src->parent_instr == instr);
4168   assert(src->is_ssa && src->ssa);
4169   list_del(&src->use_link);
4170   src->ssa = new_ssa;
4171   list_addtail(&src->use_link, &new_ssa->uses);
4172}
4173
4174void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
4175void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
4176
4177static inline void
4178nir_if_rewrite_condition_ssa(ASSERTED nir_if *if_stmt,
4179                             nir_src *src, nir_ssa_def *new_ssa)
4180{
4181   assert(src->parent_if == if_stmt);
4182   assert(src->is_ssa && src->ssa);
4183   list_del(&src->use_link);
4184   src->ssa = new_ssa;
4185   list_addtail(&src->use_link, &new_ssa->if_uses);
4186}
4187
4188void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
4189void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
4190                            nir_dest new_dest);
4191
4192void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
4193                       unsigned num_components, unsigned bit_size,
4194                       const char *name);
4195void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
4196                      unsigned num_components, unsigned bit_size);
4197static inline void
4198nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
4199                           const struct glsl_type *type,
4200                           const char *name)
4201{
4202   assert(glsl_type_is_vector_or_scalar(type));
4203   nir_ssa_dest_init(instr, dest, glsl_get_components(type),
4204                     glsl_get_bit_size(type), name);
4205}
4206void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_ssa_def *new_ssa);
4207void nir_ssa_def_rewrite_uses_src(nir_ssa_def *def, nir_src new_src);
4208void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_ssa_def *new_ssa,
4209                                    nir_instr *after_me);
4210
4211nir_component_mask_t nir_src_components_read(const nir_src *src);
4212nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
4213
4214static inline bool
4215nir_ssa_def_is_unused(nir_ssa_def *ssa)
4216{
4217   return list_is_empty(&ssa->uses) && list_is_empty(&ssa->if_uses);
4218}
4219
4220
4221/** Returns the next block, disregarding structure
4222 *
4223 * The ordering is deterministic but has no guarantees beyond that.  In
4224 * particular, it is not guaranteed to be dominance-preserving.
4225 */
4226nir_block *nir_block_unstructured_next(nir_block *block);
4227nir_block *nir_unstructured_start_block(nir_function_impl *impl);
4228
4229#define nir_foreach_block_unstructured(block, impl) \
4230   for (nir_block *block = nir_unstructured_start_block(impl); block != NULL; \
4231        block = nir_block_unstructured_next(block))
4232
4233#define nir_foreach_block_unstructured_safe(block, impl) \
4234   for (nir_block *block = nir_unstructured_start_block(impl), \
4235        *next = nir_block_unstructured_next(block); \
4236        block != NULL; \
4237        block = next, next = nir_block_unstructured_next(block))
4238
4239/*
4240 * finds the next basic block in source-code order, returns NULL if there is
4241 * none
4242 */
4243
4244nir_block *nir_block_cf_tree_next(nir_block *block);
4245
4246/* Performs the opposite of nir_block_cf_tree_next() */
4247
4248nir_block *nir_block_cf_tree_prev(nir_block *block);
4249
4250/* Gets the first block in a CF node in source-code order */
4251
4252nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
4253
4254/* Gets the last block in a CF node in source-code order */
4255
4256nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
4257
4258/* Gets the next block after a CF node in source-code order */
4259
4260nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
4261
4262/* Macros for loops that visit blocks in source-code order */
4263
4264#define nir_foreach_block(block, impl) \
4265   for (nir_block *block = nir_start_block(impl); block != NULL; \
4266        block = nir_block_cf_tree_next(block))
4267
4268#define nir_foreach_block_safe(block, impl) \
4269   for (nir_block *block = nir_start_block(impl), \
4270        *next = nir_block_cf_tree_next(block); \
4271        block != NULL; \
4272        block = next, next = nir_block_cf_tree_next(block))
4273
4274#define nir_foreach_block_reverse(block, impl) \
4275   for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
4276        block = nir_block_cf_tree_prev(block))
4277
4278#define nir_foreach_block_reverse_safe(block, impl) \
4279   for (nir_block *block = nir_impl_last_block(impl), \
4280        *prev = nir_block_cf_tree_prev(block); \
4281        block != NULL; \
4282        block = prev, prev = nir_block_cf_tree_prev(block))
4283
4284#define nir_foreach_block_in_cf_node(block, node) \
4285   for (nir_block *block = nir_cf_node_cf_tree_first(node); \
4286        block != nir_cf_node_cf_tree_next(node); \
4287        block = nir_block_cf_tree_next(block))
4288
4289/* If the following CF node is an if, this function returns that if.
4290 * Otherwise, it returns NULL.
4291 */
4292nir_if *nir_block_get_following_if(nir_block *block);
4293
4294nir_loop *nir_block_get_following_loop(nir_block *block);
4295
4296nir_block **nir_block_get_predecessors_sorted(const nir_block *block, void *mem_ctx);
4297
4298void nir_index_local_regs(nir_function_impl *impl);
4299void nir_index_ssa_defs(nir_function_impl *impl);
4300unsigned nir_index_instrs(nir_function_impl *impl);
4301
4302void nir_index_blocks(nir_function_impl *impl);
4303
4304unsigned nir_shader_index_vars(nir_shader *shader, nir_variable_mode modes);
4305unsigned nir_function_impl_index_vars(nir_function_impl *impl);
4306
4307void nir_print_shader(nir_shader *shader, FILE *fp);
4308void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
4309void nir_print_instr(const nir_instr *instr, FILE *fp);
4310void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
4311void nir_log_shader_annotated_tagged(enum mesa_log_level level, const char *tag, nir_shader *shader, struct hash_table *annotations);
4312#define nir_log_shadere(s) nir_log_shader_annotated_tagged(MESA_LOG_ERROR, (MESA_LOG_TAG), (s), NULL)
4313#define nir_log_shaderw(s) nir_log_shader_annotated_tagged(MESA_LOG_WARN, (MESA_LOG_TAG), (s), NULL)
4314#define nir_log_shaderi(s) nir_log_shader_annotated_tagged(MESA_LOG_INFO, (MESA_LOG_TAG), (s), NULL)
4315#define nir_log_shader_annotated(s, annotations) nir_log_shader_annotated_tagged(MESA_LOG_ERROR, (MESA_LOG_TAG), (s), annotations)
4316
4317char *nir_shader_as_str(nir_shader *nir, void *mem_ctx);
4318char *nir_shader_as_str_annotated(nir_shader *nir, struct hash_table *annotations, void *mem_ctx);
4319
4320/** Shallow clone of a single instruction. */
4321nir_instr *nir_instr_clone(nir_shader *s, const nir_instr *orig);
4322
4323/** Clone a single instruction, including a remap table to rewrite sources. */
4324nir_instr *nir_instr_clone_deep(nir_shader *s, const nir_instr *orig,
4325                                struct hash_table *remap_table);
4326
4327/** Shallow clone of a single ALU instruction. */
4328nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
4329
4330nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
4331nir_function_impl *nir_function_impl_clone(nir_shader *shader,
4332                                           const nir_function_impl *fi);
4333nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
4334nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
4335
4336void nir_shader_replace(nir_shader *dest, nir_shader *src);
4337
4338void nir_shader_serialize_deserialize(nir_shader *s);
4339
4340#ifndef NDEBUG
4341void nir_validate_shader(nir_shader *shader, const char *when);
4342void nir_validate_ssa_dominance(nir_shader *shader, const char *when);
4343void nir_metadata_set_validation_flag(nir_shader *shader);
4344void nir_metadata_check_validation_flag(nir_shader *shader);
4345
4346static inline bool
4347should_skip_nir(const char *name)
4348{
4349   static const char *list = NULL;
4350   if (!list) {
4351      /* Comma separated list of names to skip. */
4352      list = getenv("NIR_SKIP");
4353      if (!list)
4354         list = "";
4355   }
4356
4357   if (!list[0])
4358      return false;
4359
4360   return comma_separated_list_contains(list, name);
4361}
4362
4363static inline bool
4364should_print_nir(nir_shader *shader)
4365{
4366   if (shader->info.internal ||
4367       shader->info.stage < 0 ||
4368       shader->info.stage > MESA_SHADER_KERNEL)
4369      return false;
4370
4371   return unlikely(nir_debug_print_shader[shader->info.stage]);
4372}
4373#else
4374static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
4375static inline void nir_validate_ssa_dominance(nir_shader *shader, const char *when) { (void) shader; (void)when; }
4376static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
4377static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
4378static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
4379static inline bool should_print_nir(UNUSED nir_shader *shader) { return false; }
4380#endif /* NDEBUG */
4381
4382#define _PASS(pass, nir, do_pass) do {                               \
4383   if (should_skip_nir(#pass)) {                                     \
4384      printf("skipping %s\n", #pass);                                \
4385      break;                                                         \
4386   }                                                                 \
4387   do_pass                                                           \
4388   if (NIR_DEBUG(CLONE)) {                                           \
4389      nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
4390      nir_shader_replace(nir, clone);                                \
4391   }                                                                 \
4392   if (NIR_DEBUG(SERIALIZE)) {                                       \
4393      nir_shader_serialize_deserialize(nir);                         \
4394   }                                                                 \
4395} while (0)
4396
4397#define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir,          \
4398   nir_metadata_set_validation_flag(nir);                            \
4399   if (should_print_nir(nir))                                        \
4400      printf("%s\n", #pass);                                         \
4401   if (pass(nir, ##__VA_ARGS__)) {                                   \
4402      nir_validate_shader(nir, "after " #pass " in " __FILE__);      \
4403      UNUSED bool _;                                                 \
4404      progress = true;                                               \
4405      if (should_print_nir(nir))                                     \
4406         nir_print_shader(nir, stdout);                              \
4407      nir_metadata_check_validation_flag(nir);                       \
4408   }                                                                 \
4409)
4410
4411#define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir,                  \
4412   if (should_print_nir(nir))                                        \
4413      printf("%s\n", #pass);                                         \
4414   pass(nir, ##__VA_ARGS__);                                         \
4415   nir_validate_shader(nir, "after " #pass " in " __FILE__);         \
4416   if (should_print_nir(nir))                                        \
4417      nir_print_shader(nir, stdout);                                 \
4418)
4419
4420#define NIR_SKIP(name) should_skip_nir(#name)
4421
4422/** An instruction filtering callback with writemask
4423 *
4424 * Returns true if the instruction should be processed with the associated
4425 * writemask and false otherwise.
4426 */
4427typedef bool (*nir_instr_writemask_filter_cb)(const nir_instr *,
4428                                              unsigned writemask, const void *);
4429
4430/** A simple instruction lowering callback
4431 *
4432 * Many instruction lowering passes can be written as a simple function which
4433 * takes an instruction as its input and returns a sequence of instructions
4434 * that implement the consumed instruction.  This function type represents
4435 * such a lowering function.  When called, a function with this prototype
4436 * should either return NULL indicating that no lowering needs to be done or
4437 * emit a sequence of instructions using the provided builder (whose cursor
4438 * will already be placed after the instruction to be lowered) and return the
4439 * resulting nir_ssa_def.
4440 */
4441typedef nir_ssa_def *(*nir_lower_instr_cb)(struct nir_builder *,
4442                                           nir_instr *, void *);
4443
4444/**
4445 * Special return value for nir_lower_instr_cb when some progress occurred
4446 * (like changing an input to the instr) that didn't result in a replacement
4447 * SSA def being generated.
4448 */
4449#define NIR_LOWER_INSTR_PROGRESS ((nir_ssa_def *)(uintptr_t)1)
4450
4451/**
4452 * Special return value for nir_lower_instr_cb when some progress occurred
4453 * that should remove the current instruction that doesn't create an output
4454 * (like a store)
4455 */
4456
4457#define NIR_LOWER_INSTR_PROGRESS_REPLACE ((nir_ssa_def *)(uintptr_t)2)
4458
4459/** Iterate over all the instructions in a nir_function_impl and lower them
4460 *  using the provided callbacks
4461 *
4462 * This function implements the guts of a standard lowering pass for you.  It
4463 * iterates over all of the instructions in a nir_function_impl and calls the
4464 * filter callback on each one.  If the filter callback returns true, it then
4465 * calls the lowering call back on the instruction.  (Splitting it this way
4466 * allows us to avoid some save/restore work for instructions we know won't be
4467 * lowered.)  If the instruction is dead after the lowering is complete, it
4468 * will be removed.  If new instructions are added, the lowering callback will
4469 * also be called on them in case multiple lowerings are required.
4470 *
4471 * If the callback indicates that the original instruction is replaced (either
4472 * through a new SSA def or NIR_LOWER_INSTR_PROGRESS_REPLACE), then the
4473 * instruction is removed along with any now-dead SSA defs it used.
4474 *
4475 * The metadata for the nir_function_impl will also be updated.  If any blocks
4476 * are added (they cannot be removed), dominance and block indices will be
4477 * invalidated.
4478 */
4479bool nir_function_impl_lower_instructions(nir_function_impl *impl,
4480                                          nir_instr_filter_cb filter,
4481                                          nir_lower_instr_cb lower,
4482                                          void *cb_data);
4483bool nir_shader_lower_instructions(nir_shader *shader,
4484                                   nir_instr_filter_cb filter,
4485                                   nir_lower_instr_cb lower,
4486                                   void *cb_data);
4487
4488void nir_calc_dominance_impl(nir_function_impl *impl);
4489void nir_calc_dominance(nir_shader *shader);
4490
4491nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
4492bool nir_block_dominates(nir_block *parent, nir_block *child);
4493bool nir_block_is_unreachable(nir_block *block);
4494
4495void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
4496void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
4497
4498void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
4499void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
4500
4501void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
4502void nir_dump_cfg(nir_shader *shader, FILE *fp);
4503
4504void nir_gs_count_vertices_and_primitives(const nir_shader *shader,
4505                                          int *out_vtxcnt,
4506                                          int *out_prmcnt,
4507                                          unsigned num_streams);
4508
4509typedef enum {
4510   nir_group_all,
4511   nir_group_same_resource_only,
4512} nir_load_grouping;
4513
4514void nir_group_loads(nir_shader *shader, nir_load_grouping grouping,
4515                     unsigned max_distance);
4516
4517bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
4518bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
4519bool nir_split_var_copies(nir_shader *shader);
4520bool nir_split_per_member_structs(nir_shader *shader);
4521bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
4522
4523bool nir_lower_returns_impl(nir_function_impl *impl);
4524bool nir_lower_returns(nir_shader *shader);
4525
4526void nir_inline_function_impl(struct nir_builder *b,
4527                              const nir_function_impl *impl,
4528                              nir_ssa_def **params,
4529                              struct hash_table *shader_var_remap);
4530bool nir_inline_functions(nir_shader *shader);
4531
4532void nir_find_inlinable_uniforms(nir_shader *shader);
4533void nir_inline_uniforms(nir_shader *shader, unsigned num_uniforms,
4534                         const uint32_t *uniform_values,
4535                         const uint16_t *uniform_dw_offsets);
4536
4537bool nir_propagate_invariant(nir_shader *shader, bool invariant_prim);
4538
4539void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
4540void nir_lower_deref_copy_instr(struct nir_builder *b,
4541                                nir_intrinsic_instr *copy);
4542bool nir_lower_var_copies(nir_shader *shader);
4543
4544bool nir_opt_memcpy(nir_shader *shader);
4545bool nir_lower_memcpy(nir_shader *shader);
4546
4547void nir_fixup_deref_modes(nir_shader *shader);
4548
4549bool nir_lower_global_vars_to_local(nir_shader *shader);
4550
4551typedef enum {
4552   nir_lower_direct_array_deref_of_vec_load     = (1 << 0),
4553   nir_lower_indirect_array_deref_of_vec_load   = (1 << 1),
4554   nir_lower_direct_array_deref_of_vec_store    = (1 << 2),
4555   nir_lower_indirect_array_deref_of_vec_store  = (1 << 3),
4556} nir_lower_array_deref_of_vec_options;
4557
4558bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
4559                                  nir_lower_array_deref_of_vec_options options);
4560
4561bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes,
4562                               uint32_t max_lower_array_len);
4563
4564bool nir_lower_indirect_var_derefs(nir_shader *shader,
4565                                   const struct set *vars);
4566
4567bool nir_lower_locals_to_regs(nir_shader *shader);
4568
4569void nir_lower_io_to_temporaries(nir_shader *shader,
4570                                 nir_function_impl *entrypoint,
4571                                 bool outputs, bool inputs);
4572
4573bool nir_lower_vars_to_scratch(nir_shader *shader,
4574                               nir_variable_mode modes,
4575                               int size_threshold,
4576                               glsl_type_size_align_func size_align);
4577
4578void nir_lower_clip_halfz(nir_shader *shader);
4579
4580void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
4581
4582void nir_gather_ssa_types(nir_function_impl *impl,
4583                          BITSET_WORD *float_types,
4584                          BITSET_WORD *int_types);
4585
4586void nir_assign_var_locations(nir_shader *shader, nir_variable_mode mode,
4587                              unsigned *size,
4588                              int (*type_size)(const struct glsl_type *, bool));
4589
4590/* Some helpers to do very simple linking */
4591bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
4592bool nir_remove_unused_io_vars(nir_shader *shader, nir_variable_mode mode,
4593                               uint64_t *used_by_other_stage,
4594                               uint64_t *used_by_other_stage_patches);
4595void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
4596                          bool default_to_smooth_interp);
4597void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
4598bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
4599void nir_link_varying_precision(nir_shader *producer, nir_shader *consumer);
4600
4601bool nir_slot_is_sysval_output(gl_varying_slot slot);
4602bool nir_slot_is_varying(gl_varying_slot slot);
4603bool nir_slot_is_sysval_output_and_varying(gl_varying_slot slot);
4604void nir_remove_varying(nir_intrinsic_instr *intr);
4605void nir_remove_sysval_output(nir_intrinsic_instr *intr);
4606
4607bool nir_lower_amul(nir_shader *shader,
4608                    int (*type_size)(const struct glsl_type *, bool));
4609
4610bool nir_lower_ubo_vec4(nir_shader *shader);
4611
4612void nir_assign_io_var_locations(nir_shader *shader,
4613                                 nir_variable_mode mode,
4614                                 unsigned *size,
4615                                 gl_shader_stage stage);
4616
4617typedef struct {
4618   uint8_t num_linked_io_vars;
4619   uint8_t num_linked_patch_io_vars;
4620} nir_linked_io_var_info;
4621
4622nir_linked_io_var_info
4623nir_assign_linked_io_var_locations(nir_shader *producer,
4624                                   nir_shader *consumer);
4625
4626typedef enum {
4627   /* If set, this causes all 64-bit IO operations to be lowered on-the-fly
4628    * to 32-bit operations.  This is only valid for nir_var_shader_in/out
4629    * modes.
4630    */
4631   nir_lower_io_lower_64bit_to_32 = (1 << 0),
4632
4633   /* If set, this forces all non-flat fragment shader inputs to be
4634    * interpolated as if with the "sample" qualifier.  This requires
4635    * nir_shader_compiler_options::use_interpolated_input_intrinsics.
4636    */
4637   nir_lower_io_force_sample_interpolation = (1 << 1),
4638} nir_lower_io_options;
4639bool nir_lower_io(nir_shader *shader,
4640                  nir_variable_mode modes,
4641                  int (*type_size)(const struct glsl_type *, bool),
4642                  nir_lower_io_options);
4643
4644bool nir_io_add_const_offset_to_base(nir_shader *nir, nir_variable_mode modes);
4645
4646void
4647nir_lower_io_passes(nir_shader *nir);
4648
4649bool nir_io_add_intrinsic_xfb_info(nir_shader *nir);
4650
4651bool
4652nir_lower_vars_to_explicit_types(nir_shader *shader,
4653                                 nir_variable_mode modes,
4654                                 glsl_type_size_align_func type_info);
4655void
4656nir_gather_explicit_io_initializers(nir_shader *shader,
4657                                    void *dst, size_t dst_size,
4658                                    nir_variable_mode mode);
4659
4660bool nir_lower_vec3_to_vec4(nir_shader *shader, nir_variable_mode modes);
4661
4662typedef enum {
4663   /**
4664    * An address format which is a simple 32-bit global GPU address.
4665    */
4666   nir_address_format_32bit_global,
4667
4668   /**
4669    * An address format which is a simple 64-bit global GPU address.
4670    */
4671   nir_address_format_64bit_global,
4672
4673   /**
4674    * An address format which is a 64-bit global GPU address encoded as a
4675    * 2x32-bit vector.
4676    */
4677   nir_address_format_2x32bit_global,
4678
4679   /**
4680    * An address format which is a 64-bit global base address and a 32-bit
4681    * offset.
4682    *
4683    * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
4684    * address stored with the low bits in .x and high bits in .y, .z is
4685    * undefined, and .w is an offset.  This is intended to match
4686    * 64bit_bounded_global but without the bounds checking.
4687    */
4688   nir_address_format_64bit_global_32bit_offset,
4689
4690   /**
4691    * An address format which is a bounds-checked 64-bit global GPU address.
4692    *
4693    * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
4694    * address stored with the low bits in .x and high bits in .y, .z is a
4695    * size, and .w is an offset.  When the final I/O operation is lowered, .w
4696    * is checked against .z and the operation is predicated on the result.
4697    */
4698   nir_address_format_64bit_bounded_global,
4699
4700   /**
4701    * An address format which is comprised of a vec2 where the first
4702    * component is a buffer index and the second is an offset.
4703    */
4704   nir_address_format_32bit_index_offset,
4705
4706   /**
4707    * An address format which is a 64-bit value, where the high 32 bits
4708    * are a buffer index, and the low 32 bits are an offset.
4709    */
4710    nir_address_format_32bit_index_offset_pack64,
4711
4712   /**
4713    * An address format which is comprised of a vec3 where the first two
4714    * components specify the buffer and the third is an offset.
4715    */
4716   nir_address_format_vec2_index_32bit_offset,
4717
4718   /**
4719    * An address format which represents generic pointers with a 62-bit
4720    * pointer and a 2-bit enum in the top two bits.  The top two bits have
4721    * the following meanings:
4722    *
4723    *  - 0x0: Global memory
4724    *  - 0x1: Shared memory
4725    *  - 0x2: Scratch memory
4726    *  - 0x3: Global memory
4727    *
4728    * The redundancy between 0x0 and 0x3 is because of Intel sign-extension of
4729    * addresses.  Valid global memory addresses may naturally have either 0 or
4730    * ~0 as their high bits.
4731    *
4732    * Shared and scratch pointers are represented as 32-bit offsets with the
4733    * top 32 bits only being used for the enum.  This allows us to avoid
4734    * 64-bit address calculations in a bunch of cases.
4735    */
4736   nir_address_format_62bit_generic,
4737
4738   /**
4739    * An address format which is a simple 32-bit offset.
4740    */
4741   nir_address_format_32bit_offset,
4742
4743   /**
4744    * An address format which is a simple 32-bit offset cast to 64-bit.
4745    */
4746    nir_address_format_32bit_offset_as_64bit,
4747
4748   /**
4749    * An address format representing a purely logical addressing model.  In
4750    * this model, all deref chains must be complete from the dereference
4751    * operation to the variable.  Cast derefs are not allowed.  These
4752    * addresses will be 32-bit scalars but the format is immaterial because
4753    * you can always chase the chain.
4754    */
4755   nir_address_format_logical,
4756} nir_address_format;
4757
4758unsigned
4759nir_address_format_bit_size(nir_address_format addr_format);
4760
4761unsigned
4762nir_address_format_num_components(nir_address_format addr_format);
4763
4764static inline const struct glsl_type *
4765nir_address_format_to_glsl_type(nir_address_format addr_format)
4766{
4767   unsigned bit_size = nir_address_format_bit_size(addr_format);
4768   assert(bit_size == 32 || bit_size == 64);
4769   return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
4770                           nir_address_format_num_components(addr_format));
4771}
4772
4773const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
4774
4775nir_ssa_def *nir_build_addr_ieq(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
4776                                nir_address_format addr_format);
4777
4778nir_ssa_def *nir_build_addr_isub(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
4779                                 nir_address_format addr_format);
4780
4781nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
4782                                                 nir_deref_instr *deref,
4783                                                 nir_ssa_def *base_addr,
4784                                                 nir_address_format addr_format);
4785
4786bool nir_get_explicit_deref_align(nir_deref_instr *deref,
4787                                  bool default_to_type_align,
4788                                  uint32_t *align_mul,
4789                                  uint32_t *align_offset);
4790
4791void nir_lower_explicit_io_instr(struct nir_builder *b,
4792                                 nir_intrinsic_instr *io_instr,
4793                                 nir_ssa_def *addr,
4794                                 nir_address_format addr_format);
4795
4796bool nir_lower_explicit_io(nir_shader *shader,
4797                           nir_variable_mode modes,
4798                           nir_address_format);
4799
4800bool
4801nir_lower_shader_calls(nir_shader *shader,
4802                       nir_address_format address_format,
4803                       unsigned stack_alignment,
4804                       nir_shader ***resume_shaders_out,
4805                       uint32_t *num_resume_shaders_out,
4806                       void *mem_ctx);
4807
4808nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
4809nir_src *nir_get_io_arrayed_index_src(nir_intrinsic_instr *instr);
4810nir_src *nir_get_shader_call_payload_src(nir_intrinsic_instr *call);
4811
4812bool nir_is_arrayed_io(const nir_variable *var, gl_shader_stage stage);
4813
4814bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
4815bool nir_lower_regs_to_ssa(nir_shader *shader);
4816bool nir_lower_vars_to_ssa(nir_shader *shader);
4817
4818bool nir_remove_dead_derefs(nir_shader *shader);
4819bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
4820
4821typedef struct nir_remove_dead_variables_options {
4822   bool (*can_remove_var)(nir_variable *var, void *data);
4823   void *can_remove_var_data;
4824} nir_remove_dead_variables_options;
4825
4826bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes,
4827                               const nir_remove_dead_variables_options *options);
4828
4829bool nir_lower_variable_initializers(nir_shader *shader,
4830                                     nir_variable_mode modes);
4831bool nir_zero_initialize_shared_memory(nir_shader *shader,
4832                                       const unsigned shared_size,
4833                                       const unsigned chunk_size);
4834
4835bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
4836bool nir_lower_vec_to_movs(nir_shader *shader, nir_instr_writemask_filter_cb cb,
4837                           const void *_data);
4838void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
4839                          bool alpha_to_one,
4840                          const gl_state_index16 *alpha_ref_state_tokens);
4841bool nir_lower_alu(nir_shader *shader);
4842
4843bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
4844                    bool always_precise);
4845
4846bool nir_scale_fdiv(nir_shader *shader);
4847
4848bool nir_lower_alu_to_scalar(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
4849bool nir_lower_alu_width(nir_shader *shader, nir_vectorize_cb cb, const void *data);
4850bool nir_lower_bool_to_bitsize(nir_shader *shader);
4851bool nir_lower_bool_to_float(nir_shader *shader);
4852bool nir_lower_bool_to_int32(nir_shader *shader);
4853bool nir_opt_simplify_convert_alu_types(nir_shader *shader);
4854bool nir_lower_const_arrays_to_uniforms(nir_shader *shader,
4855                                        unsigned max_uniform_components);
4856bool nir_lower_convert_alu_types(nir_shader *shader,
4857                                 bool (*should_lower)(nir_intrinsic_instr *));
4858bool nir_lower_constant_convert_alu_types(nir_shader *shader);
4859bool nir_lower_alu_conversion_to_intrinsic(nir_shader *shader);
4860bool nir_lower_int_to_float(nir_shader *shader);
4861bool nir_lower_load_const_to_scalar(nir_shader *shader);
4862bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
4863bool nir_lower_phis_to_scalar(nir_shader *shader, bool lower_all);
4864void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
4865void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
4866                                                  bool outputs_only);
4867void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
4868bool nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
4869bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
4870bool nir_vectorize_tess_levels(nir_shader *shader);
4871
4872bool nir_lower_fragcolor(nir_shader *shader, unsigned max_cbufs);
4873bool nir_lower_fragcoord_wtrans(nir_shader *shader);
4874void nir_lower_viewport_transform(nir_shader *shader);
4875bool nir_lower_uniforms_to_ubo(nir_shader *shader, bool dword_packed, bool load_vec4);
4876
4877bool nir_lower_is_helper_invocation(nir_shader *shader);
4878
4879bool nir_lower_single_sampled(nir_shader *shader);
4880
4881typedef struct nir_lower_subgroups_options {
4882   uint8_t subgroup_size;
4883   uint8_t ballot_bit_size;
4884   uint8_t ballot_components;
4885   bool lower_to_scalar:1;
4886   bool lower_vote_trivial:1;
4887   bool lower_vote_eq:1;
4888   bool lower_subgroup_masks:1;
4889   bool lower_relative_shuffle:1;
4890   bool lower_shuffle_to_32bit:1;
4891   bool lower_shuffle_to_swizzle_amd:1;
4892   bool lower_shuffle:1;
4893   bool lower_quad:1;
4894   bool lower_quad_broadcast_dynamic:1;
4895   bool lower_quad_broadcast_dynamic_to_const:1;
4896   bool lower_elect:1;
4897   bool lower_read_invocation_to_cond:1;
4898} nir_lower_subgroups_options;
4899
4900bool nir_lower_subgroups(nir_shader *shader,
4901                         const nir_lower_subgroups_options *options);
4902
4903bool nir_lower_system_values(nir_shader *shader);
4904
4905typedef struct nir_lower_compute_system_values_options {
4906   bool has_base_global_invocation_id:1;
4907   bool has_base_workgroup_id:1;
4908   bool shuffle_local_ids_for_quad_derivatives:1;
4909   bool lower_local_invocation_index:1;
4910   bool lower_cs_local_id_to_index:1;
4911   bool lower_workgroup_id_to_index:1;
4912} nir_lower_compute_system_values_options;
4913
4914bool nir_lower_compute_system_values(nir_shader *shader,
4915                                     const nir_lower_compute_system_values_options *options);
4916
4917struct nir_lower_sysvals_to_varyings_options {
4918   bool frag_coord:1;
4919   bool front_face:1;
4920   bool point_coord:1;
4921};
4922
4923bool
4924nir_lower_sysvals_to_varyings(nir_shader *shader,
4925                              const struct nir_lower_sysvals_to_varyings_options *options);
4926
4927enum PACKED nir_lower_tex_packing {
4928   /** No packing */
4929   nir_lower_tex_packing_none = 0,
4930   /**
4931    * The sampler returns up to 2 32-bit words of half floats or 16-bit signed
4932    * or unsigned ints based on the sampler type
4933    */
4934   nir_lower_tex_packing_16,
4935   /** The sampler returns 1 32-bit word of 4x8 unorm */
4936   nir_lower_tex_packing_8,
4937};
4938
4939typedef struct nir_lower_tex_options {
4940   /**
4941    * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
4942    * sampler types a texture projector is lowered.
4943    */
4944   unsigned lower_txp;
4945
4946   /**
4947    * If true, lower texture projector for any array sampler dims
4948    */
4949   bool lower_txp_array;
4950
4951   /**
4952    * If true, lower away nir_tex_src_offset for all texelfetch instructions.
4953    */
4954   bool lower_txf_offset;
4955
4956   /**
4957    * If true, lower away nir_tex_src_offset for all rect textures.
4958    */
4959   bool lower_rect_offset;
4960
4961   /**
4962    * If not NULL, this filter will return true for tex instructions that
4963    * should lower away nir_tex_src_offset.
4964    */
4965   nir_instr_filter_cb lower_offset_filter;
4966
4967   /**
4968    * If true, lower rect textures to 2D, using txs to fetch the
4969    * texture dimensions and dividing the texture coords by the
4970    * texture dims to normalize.
4971    */
4972   bool lower_rect;
4973
4974   /**
4975    * If true, convert yuv to rgb.
4976    */
4977   unsigned lower_y_uv_external;
4978   unsigned lower_y_u_v_external;
4979   unsigned lower_yx_xuxv_external;
4980   unsigned lower_xy_uxvx_external;
4981   unsigned lower_ayuv_external;
4982   unsigned lower_xyuv_external;
4983   unsigned lower_yuv_external;
4984   unsigned lower_yu_yv_external;
4985   unsigned lower_y41x_external;
4986   unsigned bt709_external;
4987   unsigned bt2020_external;
4988   unsigned yuv_full_range_external;
4989
4990   /**
4991    * To emulate certain texture wrap modes, this can be used
4992    * to saturate the specified tex coord to [0.0, 1.0].  The
4993    * bits are according to sampler #, ie. if, for example:
4994    *
4995    *   (conf->saturate_s & (1 << n))
4996    *
4997    * is true, then the s coord for sampler n is saturated.
4998    *
4999    * Note that clamping must happen *after* projector lowering
5000    * so any projected texture sample instruction with a clamped
5001    * coordinate gets automatically lowered, regardless of the
5002    * 'lower_txp' setting.
5003    */
5004   unsigned saturate_s;
5005   unsigned saturate_t;
5006   unsigned saturate_r;
5007
5008   /* Bitmask of textures that need swizzling.
5009    *
5010    * If (swizzle_result & (1 << texture_index)), then the swizzle in
5011    * swizzles[texture_index] is applied to the result of the texturing
5012    * operation.
5013    */
5014   unsigned swizzle_result;
5015
5016   /* A swizzle for each texture.  Values 0-3 represent x, y, z, or w swizzles
5017    * while 4 and 5 represent 0 and 1 respectively.
5018    *
5019    * Indexed by texture-id.
5020    */
5021   uint8_t swizzles[32][4];
5022
5023   /* Can be used to scale sampled values in range required by the
5024    * format.
5025    *
5026    * Indexed by texture-id.
5027    */
5028   float scale_factors[32];
5029
5030   /**
5031    * Bitmap of textures that need srgb to linear conversion.  If
5032    * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
5033    * of the texture are lowered to linear.
5034    */
5035   unsigned lower_srgb;
5036
5037   /**
5038    * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
5039    */
5040   bool lower_txd_cube_map;
5041
5042   /**
5043    * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
5044    */
5045   bool lower_txd_3d;
5046
5047   /**
5048    * If true, lower nir_texop_txd any array surfaces with nir_texop_txl.
5049    */
5050   bool lower_txd_array;
5051
5052   /**
5053    * If true, lower nir_texop_txd on shadow samplers (except cube maps)
5054    * with nir_texop_txl. Notice that cube map shadow samplers are lowered
5055    * with lower_txd_cube_map.
5056    */
5057   bool lower_txd_shadow;
5058
5059   /**
5060    * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
5061    * Implies lower_txd_cube_map and lower_txd_shadow.
5062    */
5063   bool lower_txd;
5064
5065   /**
5066    * If true, lower nir_texop_txb that try to use shadow compare and min_lod
5067    * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
5068    */
5069   bool lower_txb_shadow_clamp;
5070
5071   /**
5072    * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
5073    * with nir_texop_txl.  This includes cube maps.
5074    */
5075   bool lower_txd_shadow_clamp;
5076
5077   /**
5078    * If true, lower nir_texop_txd on when it uses both offset and min_lod
5079    * with nir_texop_txl.  This includes cube maps.
5080    */
5081   bool lower_txd_offset_clamp;
5082
5083   /**
5084    * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
5085    * sampler is bindless.
5086    */
5087   bool lower_txd_clamp_bindless_sampler;
5088
5089   /**
5090    * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
5091    * sampler index is not statically determinable to be less than 16.
5092    */
5093   bool lower_txd_clamp_if_sampler_index_not_lt_16;
5094
5095   /**
5096    * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
5097    * 0-lod followed by a nir_ishr.
5098    */
5099   bool lower_txs_lod;
5100
5101   /**
5102    * If true, lower nir_texop_txs for cube arrays to a nir_texop_txs with a
5103    * 2D array type followed by a nir_idiv by 6.
5104    */
5105   bool lower_txs_cube_array;
5106
5107   /**
5108    * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
5109    * mixed-up tg4 locations.
5110    */
5111   bool lower_tg4_broadcom_swizzle;
5112
5113   /**
5114    * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
5115    */
5116   bool lower_tg4_offsets;
5117
5118   /**
5119    * Lower txf_ms to fragment_mask_fetch and fragment_fetch and samples_identical to
5120    * fragment_mask_fetch.
5121    */
5122   bool lower_to_fragment_fetch_amd;
5123
5124   /**
5125    * To lower packed sampler return formats.
5126    *
5127    * Indexed by sampler-id.
5128    */
5129   enum nir_lower_tex_packing lower_tex_packing[32];
5130
5131   /**
5132    * If true, lower nir_texop_lod to return -FLT_MAX if the sum of the
5133    * absolute values of derivatives is 0 for all coordinates.
5134    */
5135   bool lower_lod_zero_width;
5136
5137   /* Turns nir_op_tex and other ops with an implicit derivative, in stages
5138    * without implicit derivatives (like the vertex shader) to have an explicit
5139    * LOD with a value of 0.
5140    */
5141   bool lower_invalid_implicit_lod;
5142
5143   /* If true, round the layer component of the coordinates source to the nearest
5144    * integer for all array ops.
5145    */
5146   bool lower_array_layer_round_even;
5147
5148   /**
5149    * Payload data to be sent to callback / filter functions.
5150    */
5151   void *callback_data;
5152} nir_lower_tex_options;
5153
5154/** Lowers complex texture instructions to simpler ones */
5155bool nir_lower_tex(nir_shader *shader,
5156                   const nir_lower_tex_options *options);
5157
5158
5159typedef struct nir_lower_tex_shadow_swizzle {
5160   unsigned swizzle_r:3;
5161   unsigned swizzle_g:3;
5162   unsigned swizzle_b:3;
5163   unsigned swizzle_a:3;
5164} nir_lower_tex_shadow_swizzle;
5165
5166bool
5167nir_lower_tex_shadow(nir_shader *s,
5168                     unsigned n_states,
5169                     enum compare_func *compare_func,
5170                     nir_lower_tex_shadow_swizzle *tex_swizzles);
5171
5172typedef struct nir_lower_image_options {
5173   /**
5174    * If true, lower cube size operations.
5175    */
5176   bool lower_cube_size;
5177} nir_lower_image_options;
5178
5179bool nir_lower_image(nir_shader *nir,
5180                     const nir_lower_image_options *options);
5181
5182bool nir_lower_readonly_images_to_tex(nir_shader *shader, bool per_variable);
5183
5184enum nir_lower_non_uniform_access_type {
5185   nir_lower_non_uniform_ubo_access     = (1 << 0),
5186   nir_lower_non_uniform_ssbo_access    = (1 << 1),
5187   nir_lower_non_uniform_texture_access = (1 << 2),
5188   nir_lower_non_uniform_image_access   = (1 << 3),
5189};
5190
5191/* Given the nir_src used for the resource, return the channels which might be non-uniform. */
5192typedef nir_component_mask_t (*nir_lower_non_uniform_access_callback)(const nir_src *, void *);
5193
5194typedef struct nir_lower_non_uniform_access_options {
5195   enum nir_lower_non_uniform_access_type types;
5196   nir_lower_non_uniform_access_callback callback;
5197   void *callback_data;
5198} nir_lower_non_uniform_access_options;
5199
5200bool nir_lower_non_uniform_access(nir_shader *shader,
5201                                  const nir_lower_non_uniform_access_options *options);
5202
5203typedef struct {
5204   /* If true, a 32-bit division lowering based on NV50LegalizeSSA::handleDIV()
5205    * is used. It is the faster of the two but it is not exact in some cases
5206    * (for example, 1091317713u / 1034u gives 5209173 instead of 1055432).
5207    *
5208    * If false, a lowering based on AMDGPUTargetLowering::LowerUDIVREM() and
5209    * AMDGPUTargetLowering::LowerSDIVREM() is used. It requires more
5210    * instructions than the nv50 path and many of them are integer
5211    * multiplications, so it is probably slower. It should always return the
5212    * correct result, though.
5213    */
5214   bool imprecise_32bit_lowering;
5215
5216   /* Whether 16-bit floating point arithmetic should be allowed in 8-bit
5217    * division lowering
5218    */
5219   bool allow_fp16;
5220} nir_lower_idiv_options;
5221
5222bool nir_lower_idiv(nir_shader *shader, const nir_lower_idiv_options *options);
5223
5224typedef struct nir_input_attachment_options {
5225   bool use_fragcoord_sysval;
5226   bool use_layer_id_sysval;
5227   bool use_view_id_for_layer;
5228} nir_input_attachment_options;
5229
5230bool nir_lower_input_attachments(nir_shader *shader,
5231                                 const nir_input_attachment_options *options);
5232
5233bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables,
5234                       bool use_vars,
5235                       bool use_clipdist_array,
5236                       const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
5237bool nir_lower_clip_gs(nir_shader *shader, unsigned ucp_enables,
5238                       bool use_clipdist_array,
5239                       const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
5240bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables,
5241                       bool use_clipdist_array);
5242bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
5243bool nir_lower_clip_disable(nir_shader *shader, unsigned clip_plane_enable);
5244
5245void nir_lower_point_size_mov(nir_shader *shader,
5246                              const gl_state_index16 *pointsize_state_tokens);
5247
5248bool nir_lower_frexp(nir_shader *nir);
5249
5250void nir_lower_two_sided_color(nir_shader *shader, bool face_sysval);
5251
5252bool nir_lower_clamp_color_outputs(nir_shader *shader);
5253
5254bool nir_lower_flatshade(nir_shader *shader);
5255
5256void nir_lower_passthrough_edgeflags(nir_shader *shader);
5257bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
5258                              const gl_state_index16 *uniform_state_tokens);
5259
5260typedef struct nir_lower_wpos_ytransform_options {
5261   gl_state_index16 state_tokens[STATE_LENGTH];
5262   bool fs_coord_origin_upper_left :1;
5263   bool fs_coord_origin_lower_left :1;
5264   bool fs_coord_pixel_center_integer :1;
5265   bool fs_coord_pixel_center_half_integer :1;
5266} nir_lower_wpos_ytransform_options;
5267
5268bool nir_lower_wpos_ytransform(nir_shader *shader,
5269                               const nir_lower_wpos_ytransform_options *options);
5270bool nir_lower_wpos_center(nir_shader *shader);
5271
5272bool nir_lower_pntc_ytransform(nir_shader *shader,
5273                               const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
5274
5275bool nir_lower_wrmasks(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
5276
5277bool nir_lower_fb_read(nir_shader *shader);
5278
5279typedef struct nir_lower_drawpixels_options {
5280   gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
5281   gl_state_index16 scale_state_tokens[STATE_LENGTH];
5282   gl_state_index16 bias_state_tokens[STATE_LENGTH];
5283   unsigned drawpix_sampler;
5284   unsigned pixelmap_sampler;
5285   bool pixel_maps :1;
5286   bool scale_and_bias :1;
5287} nir_lower_drawpixels_options;
5288
5289void nir_lower_drawpixels(nir_shader *shader,
5290                          const nir_lower_drawpixels_options *options);
5291
5292typedef struct nir_lower_bitmap_options {
5293   unsigned sampler;
5294   bool swizzle_xxxx;
5295} nir_lower_bitmap_options;
5296
5297void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
5298
5299bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned offset_align_state);
5300
5301typedef enum  {
5302   nir_lower_int_source_mods = 1 << 0,
5303   nir_lower_fabs_source_mods = 1 << 1,
5304   nir_lower_fneg_source_mods = 1 << 2,
5305   nir_lower_64bit_source_mods = 1 << 3,
5306   nir_lower_triop_abs = 1 << 4,
5307   nir_lower_all_source_mods = (1 << 5) - 1
5308} nir_lower_to_source_mods_flags;
5309
5310#define nir_lower_float_source_mods (nir_lower_fabs_source_mods | nir_lower_fneg_source_mods)
5311
5312bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
5313
5314typedef enum {
5315   nir_lower_gs_intrinsics_per_stream = 1 << 0,
5316   nir_lower_gs_intrinsics_count_primitives = 1 << 1,
5317   nir_lower_gs_intrinsics_count_vertices_per_primitive = 1 << 2,
5318   nir_lower_gs_intrinsics_overwrite_incomplete = 1 << 3,
5319} nir_lower_gs_intrinsics_flags;
5320
5321bool nir_lower_gs_intrinsics(nir_shader *shader, nir_lower_gs_intrinsics_flags options);
5322
5323typedef struct {
5324   bool payload_to_shared_for_atomics : 1;
5325} nir_lower_task_shader_options;
5326
5327bool nir_lower_task_shader(nir_shader *shader, nir_lower_task_shader_options options);
5328
5329typedef unsigned (*nir_lower_bit_size_callback)(const nir_instr *, void *);
5330
5331bool nir_lower_bit_size(nir_shader *shader,
5332                        nir_lower_bit_size_callback callback,
5333                        void *callback_data);
5334bool nir_lower_64bit_phis(nir_shader *shader);
5335
5336bool nir_split_64bit_vec3_and_vec4(nir_shader *shader);
5337
5338nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
5339bool nir_lower_int64(nir_shader *shader);
5340
5341nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
5342bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
5343                       nir_lower_doubles_options options);
5344bool nir_lower_pack(nir_shader *shader);
5345
5346bool nir_recompute_io_bases(nir_shader *nir, nir_variable_mode modes);
5347bool nir_lower_mediump_io(nir_shader *nir, nir_variable_mode modes,
5348                          uint64_t varying_mask, bool use_16bit_slots);
5349bool nir_force_mediump_io(nir_shader *nir, nir_variable_mode modes,
5350                          nir_alu_type types);
5351bool nir_unpack_16bit_varying_slots(nir_shader *nir, nir_variable_mode modes);
5352
5353struct nir_fold_tex_srcs_options {
5354   unsigned sampler_dims;
5355   unsigned src_types;
5356};
5357
5358struct nir_fold_16bit_tex_image_options {
5359   nir_rounding_mode rounding_mode;
5360   bool fold_tex_dest;
5361   bool fold_image_load_store_data;
5362   unsigned fold_srcs_options_count;
5363   struct nir_fold_tex_srcs_options *fold_srcs_options;
5364};
5365
5366bool nir_fold_16bit_tex_image(nir_shader *nir,
5367                              struct nir_fold_16bit_tex_image_options *options);
5368
5369typedef struct {
5370   bool legalize_type;         /* whether this src should be legalized */
5371   uint8_t bit_size;           /* bit_size to enforce */
5372   nir_tex_src_type match_src; /* if bit_size is 0, match bit size of this */
5373} nir_tex_src_type_constraint, nir_tex_src_type_constraints[nir_num_tex_src_types];
5374
5375bool nir_legalize_16bit_sampler_srcs(nir_shader *nir,
5376                                     nir_tex_src_type_constraints constraints);
5377
5378bool nir_lower_point_size(nir_shader *shader, float min, float max);
5379
5380void nir_lower_texcoord_replace(nir_shader *s, unsigned coord_replace,
5381                                bool point_coord_is_sysval, bool yinvert);
5382
5383typedef enum {
5384   nir_lower_interpolation_at_sample = (1 << 1),
5385   nir_lower_interpolation_at_offset = (1 << 2),
5386   nir_lower_interpolation_centroid  = (1 << 3),
5387   nir_lower_interpolation_pixel     = (1 << 4),
5388   nir_lower_interpolation_sample    = (1 << 5),
5389} nir_lower_interpolation_options;
5390
5391bool nir_lower_interpolation(nir_shader *shader,
5392                             nir_lower_interpolation_options options);
5393
5394bool nir_lower_discard_if(nir_shader *shader);
5395
5396bool nir_lower_discard_or_demote(nir_shader *shader,
5397                                 bool force_correct_quad_ops_after_discard);
5398
5399bool nir_lower_memory_model(nir_shader *shader);
5400
5401bool nir_lower_goto_ifs(nir_shader *shader);
5402
5403bool nir_shader_uses_view_index(nir_shader *shader);
5404bool nir_can_lower_multiview(nir_shader *shader);
5405bool nir_lower_multiview(nir_shader *shader, uint32_t view_mask);
5406
5407
5408bool nir_lower_fp16_casts(nir_shader *shader);
5409bool nir_normalize_cubemap_coords(nir_shader *shader);
5410
5411bool nir_shader_supports_implicit_lod(nir_shader *shader);
5412
5413void nir_live_ssa_defs_impl(nir_function_impl *impl);
5414
5415const BITSET_WORD *nir_get_live_ssa_defs(nir_cursor cursor, void *mem_ctx);
5416
5417void nir_loop_analyze_impl(nir_function_impl *impl,
5418                           nir_variable_mode indirect_mask,
5419                           bool force_unroll_sampler_indirect);
5420
5421bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
5422
5423bool nir_repair_ssa_impl(nir_function_impl *impl);
5424bool nir_repair_ssa(nir_shader *shader);
5425
5426void nir_convert_loop_to_lcssa(nir_loop *loop);
5427bool nir_convert_to_lcssa(nir_shader *shader, bool skip_invariants, bool skip_bool_invariants);
5428void nir_divergence_analysis(nir_shader *shader);
5429bool nir_update_instr_divergence(nir_shader *shader, nir_instr *instr);
5430bool nir_has_divergent_loop(nir_shader *shader);
5431
5432/* If phi_webs_only is true, only convert SSA values involved in phi nodes to
5433 * registers.  If false, convert all values (even those not involved in a phi
5434 * node) to registers.
5435 */
5436bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
5437
5438bool nir_lower_phis_to_regs_block(nir_block *block);
5439bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
5440bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
5441
5442bool nir_lower_samplers(nir_shader *shader);
5443bool nir_lower_ssbo(nir_shader *shader);
5444
5445typedef struct nir_lower_printf_options {
5446   bool treat_doubles_as_floats : 1;
5447   unsigned max_buffer_size;
5448} nir_lower_printf_options;
5449
5450bool nir_lower_printf(nir_shader *nir, const nir_lower_printf_options *options);
5451
5452/* This is here for unit tests. */
5453bool nir_opt_comparison_pre_impl(nir_function_impl *impl);
5454
5455bool nir_opt_comparison_pre(nir_shader *shader);
5456
5457typedef struct nir_opt_access_options {
5458   bool is_vulkan;
5459   bool infer_non_readable;
5460} nir_opt_access_options;
5461
5462bool nir_opt_access(nir_shader *shader, const nir_opt_access_options *options);
5463bool nir_opt_algebraic(nir_shader *shader);
5464bool nir_opt_algebraic_before_ffma(nir_shader *shader);
5465bool nir_opt_algebraic_late(nir_shader *shader);
5466bool nir_opt_algebraic_distribute_src_mods(nir_shader *shader);
5467bool nir_opt_constant_folding(nir_shader *shader);
5468
5469/* Try to combine a and b into a.  Return true if combination was possible,
5470 * which will result in b being removed by the pass.  Return false if
5471 * combination wasn't possible.
5472 */
5473typedef bool (*nir_combine_memory_barrier_cb)(
5474   nir_intrinsic_instr *a, nir_intrinsic_instr *b, void *data);
5475
5476bool nir_opt_combine_memory_barriers(nir_shader *shader,
5477                                     nir_combine_memory_barrier_cb combine_cb,
5478                                     void *data);
5479
5480bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
5481
5482bool nir_copy_prop_impl(nir_function_impl *impl);
5483bool nir_copy_prop(nir_shader *shader);
5484
5485bool nir_opt_copy_prop_vars(nir_shader *shader);
5486
5487bool nir_opt_cse(nir_shader *shader);
5488
5489bool nir_opt_dce(nir_shader *shader);
5490
5491bool nir_opt_dead_cf(nir_shader *shader);
5492
5493bool nir_opt_dead_write_vars(nir_shader *shader);
5494
5495bool nir_opt_deref_impl(nir_function_impl *impl);
5496bool nir_opt_deref(nir_shader *shader);
5497
5498bool nir_opt_find_array_copies(nir_shader *shader);
5499
5500bool nir_opt_fragdepth(nir_shader *shader);
5501
5502bool nir_opt_gcm(nir_shader *shader, bool value_number);
5503
5504bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
5505
5506typedef enum {
5507   nir_opt_if_aggressive_last_continue = (1 << 0),
5508   nir_opt_if_optimize_phi_true_false = (1 << 1),
5509} nir_opt_if_options;
5510
5511bool nir_opt_if(nir_shader *shader, nir_opt_if_options options);
5512
5513bool nir_opt_intrinsics(nir_shader *shader);
5514
5515bool nir_opt_large_constants(nir_shader *shader,
5516                             glsl_type_size_align_func size_align,
5517                             unsigned threshold);
5518
5519bool nir_opt_loop_unroll(nir_shader *shader);
5520
5521typedef enum {
5522    nir_move_const_undef  = (1 << 0),
5523    nir_move_load_ubo     = (1 << 1),
5524    nir_move_load_input   = (1 << 2),
5525    nir_move_comparisons  = (1 << 3),
5526    nir_move_copies       = (1 << 4),
5527    nir_move_load_ssbo    = (1 << 5),
5528    nir_move_load_uniform = (1 << 6),
5529} nir_move_options;
5530
5531bool nir_can_move_instr(nir_instr *instr, nir_move_options options);
5532
5533bool nir_opt_sink(nir_shader *shader, nir_move_options options);
5534
5535bool nir_opt_move(nir_shader *shader, nir_move_options options);
5536
5537typedef struct {
5538   /** nir_load_uniform max base offset */
5539   uint32_t uniform_max;
5540
5541   /** nir_load_ubo_vec4 max base offset */
5542   uint32_t ubo_vec4_max;
5543
5544   /** nir_var_mem_shared max base offset */
5545   uint32_t shared_max;
5546
5547   /** nir_load/store_buffer_amd max base offset */
5548   uint32_t buffer_max;
5549} nir_opt_offsets_options;
5550
5551bool nir_opt_offsets(nir_shader *shader, const nir_opt_offsets_options *options);
5552
5553bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
5554                             bool indirect_load_ok, bool expensive_alu_ok);
5555
5556bool nir_opt_rematerialize_compares(nir_shader *shader);
5557
5558bool nir_opt_remove_phis(nir_shader *shader);
5559bool nir_opt_remove_phis_block(nir_block *block);
5560
5561bool nir_opt_phi_precision(nir_shader *shader);
5562
5563bool nir_opt_shrink_stores(nir_shader *shader, bool shrink_image_store);
5564
5565bool nir_opt_shrink_vectors(nir_shader *shader);
5566
5567bool nir_opt_trivial_continues(nir_shader *shader);
5568
5569bool nir_opt_undef(nir_shader *shader);
5570
5571bool nir_lower_undef_to_zero(nir_shader *shader);
5572
5573bool nir_opt_uniform_atomics(nir_shader *shader);
5574
5575bool nir_opt_vectorize(nir_shader *shader, nir_vectorize_cb filter,
5576                       void *data);
5577
5578bool nir_opt_conditional_discard(nir_shader *shader);
5579bool nir_opt_move_discards_to_top(nir_shader *shader);
5580
5581bool nir_opt_ray_queries(nir_shader *shader);
5582
5583typedef bool (*nir_should_vectorize_mem_func)(unsigned align_mul,
5584                                              unsigned align_offset,
5585                                              unsigned bit_size,
5586                                              unsigned num_components,
5587                                              nir_intrinsic_instr *low, nir_intrinsic_instr *high,
5588                                              void *data);
5589
5590typedef struct {
5591   nir_should_vectorize_mem_func callback;
5592   nir_variable_mode modes;
5593   nir_variable_mode robust_modes;
5594   void *cb_data;
5595   bool has_shared2_amd;
5596} nir_load_store_vectorize_options;
5597
5598bool nir_opt_load_store_vectorize(nir_shader *shader, const nir_load_store_vectorize_options *options);
5599
5600void nir_sweep(nir_shader *shader);
5601
5602void nir_remap_dual_slot_attributes(nir_shader *shader,
5603                                    uint64_t *dual_slot_inputs);
5604uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
5605
5606nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
5607gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
5608
5609static inline bool
5610nir_variable_is_in_ubo(const nir_variable *var)
5611{
5612   return (var->data.mode == nir_var_mem_ubo &&
5613           var->interface_type != NULL);
5614}
5615
5616static inline bool
5617nir_variable_is_in_ssbo(const nir_variable *var)
5618{
5619   return (var->data.mode == nir_var_mem_ssbo &&
5620           var->interface_type != NULL);
5621}
5622
5623static inline bool
5624nir_variable_is_in_block(const nir_variable *var)
5625{
5626   return nir_variable_is_in_ubo(var) || nir_variable_is_in_ssbo(var);
5627}
5628
5629typedef struct nir_unsigned_upper_bound_config {
5630   unsigned min_subgroup_size;
5631   unsigned max_subgroup_size;
5632   unsigned max_workgroup_invocations;
5633   unsigned max_workgroup_count[3];
5634   unsigned max_workgroup_size[3];
5635
5636   uint32_t vertex_attrib_max[32];
5637} nir_unsigned_upper_bound_config;
5638
5639uint32_t
5640nir_unsigned_upper_bound(nir_shader *shader, struct hash_table *range_ht,
5641                         nir_ssa_scalar scalar,
5642                         const nir_unsigned_upper_bound_config *config);
5643
5644bool
5645nir_addition_might_overflow(nir_shader *shader, struct hash_table *range_ht,
5646                            nir_ssa_scalar ssa, unsigned const_val,
5647                            const nir_unsigned_upper_bound_config *config);
5648
5649typedef enum {
5650   nir_ray_query_value_intersection_type,
5651   nir_ray_query_value_intersection_t,
5652   nir_ray_query_value_intersection_instance_custom_index,
5653   nir_ray_query_value_intersection_instance_id,
5654   nir_ray_query_value_intersection_instance_sbt_index,
5655   nir_ray_query_value_intersection_geometry_index,
5656   nir_ray_query_value_intersection_primitive_index,
5657   nir_ray_query_value_intersection_barycentrics,
5658   nir_ray_query_value_intersection_front_face,
5659   nir_ray_query_value_intersection_object_ray_direction,
5660   nir_ray_query_value_intersection_object_ray_origin,
5661   nir_ray_query_value_intersection_object_to_world,
5662   nir_ray_query_value_intersection_world_to_object,
5663   nir_ray_query_value_intersection_candidate_aabb_opaque,
5664   nir_ray_query_value_tmin,
5665   nir_ray_query_value_flags,
5666   nir_ray_query_value_world_ray_direction,
5667   nir_ray_query_value_world_ray_origin,
5668} nir_ray_query_value;
5669
5670typedef struct {
5671   /* True if gl_DrawID is considered uniform, i.e. if the preamble is run
5672    * at least once per "internal" draw rather than per user-visible draw.
5673    */
5674   bool drawid_uniform;
5675
5676   /* True if the subgroup size is uniform. */
5677   bool subgroup_size_uniform;
5678
5679   /* size/align for load/store_preamble. */
5680   void (*def_size)(nir_ssa_def *def, unsigned *size, unsigned *align);
5681
5682   /* Total available size for load/store_preamble storage, in units
5683    * determined by def_size.
5684    */
5685   unsigned preamble_storage_size;
5686
5687   /* Give the cost for an instruction. nir_opt_preamble will prioritize
5688    * instructions with higher costs. Instructions with cost 0 may still be
5689    * lifted, but only when required to lift other instructions with non-0
5690    * cost (e.g. a load_const source of an expression).
5691    */
5692   float (*instr_cost_cb)(nir_instr *instr, const void *data);
5693
5694   /* Give the cost of rewriting the instruction to use load_preamble. This
5695    * may happen from inserting move instructions, etc. If the benefit doesn't
5696    * exceed the cost here then we won't rewrite it.
5697    */
5698   float (*rewrite_cost_cb)(nir_ssa_def *def, const void *data);
5699
5700   /* Instructions whose definitions should not be rewritten. These could
5701    * still be moved to the preamble, but they shouldn't be the root of a
5702    * replacement expression. Instructions with cost 0 and derefs are
5703    * automatically included by the pass.
5704    */
5705   nir_instr_filter_cb avoid_instr_cb;
5706
5707   const void *cb_data;
5708} nir_opt_preamble_options;
5709
5710bool
5711nir_opt_preamble(nir_shader *shader,
5712                 const nir_opt_preamble_options *options,
5713                 unsigned *size);
5714
5715nir_function_impl *nir_shader_get_preamble(nir_shader *shader);
5716
5717bool nir_lower_point_smooth(nir_shader *shader);
5718bool nir_lower_poly_line_smooth(nir_shader *shader, unsigned num_smooth_aa_sample);
5719
5720#include "nir_inline_helpers.h"
5721
5722#ifdef __cplusplus
5723} /* extern "C" */
5724#endif
5725
5726#endif /* NIR_H */
5727