1/* 2 * Copyright © 2014 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Connor Abbott (cwabbott0@gmail.com) 25 * 26 */ 27 28#include "nir.h" 29#include "nir_builder.h" 30#include "nir_control_flow_private.h" 31#include "nir_worklist.h" 32#include "util/half_float.h" 33#include <limits.h> 34#include <assert.h> 35#include <math.h> 36#include "util/u_math.h" 37#include "util/u_qsort.h" 38 39#include "main/menums.h" /* BITFIELD64_MASK */ 40 41#ifndef NDEBUG 42uint32_t nir_debug = 0; 43bool nir_debug_print_shader[MESA_SHADER_KERNEL + 1] = { 0 }; 44 45static const struct debug_named_value nir_debug_control[] = { 46 { "clone", NIR_DEBUG_CLONE, 47 "Test cloning a shader at each successful lowering/optimization call" }, 48 { "serialize", NIR_DEBUG_SERIALIZE, 49 "Test serialize and deserialize shader at each successful lowering/optimization call" }, 50 { "novalidate", NIR_DEBUG_NOVALIDATE, 51 "Disable shader validation at each successful lowering/optimization call" }, 52 { "validate_ssa_dominance", NIR_DEBUG_VALIDATE_SSA_DOMINANCE, 53 "Validate SSA dominance in shader at each successful lowering/optimization call" }, 54 { "validate_gc_list", NIR_DEBUG_VALIDATE_GC_LIST, 55 "Validate the instruction GC list at each successful lowering/optimization call" }, 56 { "tgsi", NIR_DEBUG_TGSI, 57 "Dump NIR/TGSI shaders when doing a NIR<->TGSI translation" }, 58 { "print", NIR_DEBUG_PRINT, 59 "Dump resulting shader after each successful lowering/optimization call" }, 60 { "print_vs", NIR_DEBUG_PRINT_VS, 61 "Dump resulting vertex shader after each successful lowering/optimization call" }, 62 { "print_tcs", NIR_DEBUG_PRINT_TCS, 63 "Dump resulting tessellation control shader after each successful lowering/optimization call" }, 64 { "print_tes", NIR_DEBUG_PRINT_TES, 65 "Dump resulting tessellation evaluation shader after each successful lowering/optimization call" }, 66 { "print_gs", NIR_DEBUG_PRINT_GS, 67 "Dump resulting geometry shader after each successful lowering/optimization call" }, 68 { "print_fs", NIR_DEBUG_PRINT_FS, 69 "Dump resulting fragment shader after each successful lowering/optimization call" }, 70 { "print_cs", NIR_DEBUG_PRINT_CS, 71 "Dump resulting compute shader after each successful lowering/optimization call" }, 72 { "print_ts", NIR_DEBUG_PRINT_TS, 73 "Dump resulting task shader after each successful lowering/optimization call" }, 74 { "print_ms", NIR_DEBUG_PRINT_MS, 75 "Dump resulting mesh shader after each successful lowering/optimization call" }, 76 { "print_rgs", NIR_DEBUG_PRINT_RGS, 77 "Dump resulting raygen shader after each successful lowering/optimization call" }, 78 { "print_ahs", NIR_DEBUG_PRINT_AHS, 79 "Dump resulting any-hit shader after each successful lowering/optimization call" }, 80 { "print_chs", NIR_DEBUG_PRINT_CHS, 81 "Dump resulting closest-hit shader after each successful lowering/optimization call" }, 82 { "print_mhs", NIR_DEBUG_PRINT_MHS, 83 "Dump resulting miss-hit shader after each successful lowering/optimization call" }, 84 { "print_is", NIR_DEBUG_PRINT_IS, 85 "Dump resulting intersection shader after each successful lowering/optimization call" }, 86 { "print_cbs", NIR_DEBUG_PRINT_CBS, 87 "Dump resulting callable shader after each successful lowering/optimization call" }, 88 { "print_ks", NIR_DEBUG_PRINT_KS, 89 "Dump resulting kernel shader after each successful lowering/optimization call" }, 90 { "print_consts", NIR_DEBUG_PRINT_CONSTS, 91 "Print const value near each use of const SSA variable" }, 92 { NULL } 93}; 94 95DEBUG_GET_ONCE_FLAGS_OPTION(nir_debug, "NIR_DEBUG", nir_debug_control, 0) 96 97static void 98nir_process_debug_variable_once(void) 99{ 100 nir_debug = debug_get_option_nir_debug(); 101 nir_debug_print_shader[MESA_SHADER_VERTEX] = NIR_DEBUG(PRINT_VS); 102 nir_debug_print_shader[MESA_SHADER_TESS_CTRL] = NIR_DEBUG(PRINT_TCS); 103 nir_debug_print_shader[MESA_SHADER_TESS_EVAL] = NIR_DEBUG(PRINT_TES); 104 nir_debug_print_shader[MESA_SHADER_GEOMETRY] = NIR_DEBUG(PRINT_GS); 105 nir_debug_print_shader[MESA_SHADER_FRAGMENT] = NIR_DEBUG(PRINT_FS); 106 nir_debug_print_shader[MESA_SHADER_COMPUTE] = NIR_DEBUG(PRINT_CS); 107 nir_debug_print_shader[MESA_SHADER_TASK] = NIR_DEBUG(PRINT_TS); 108 nir_debug_print_shader[MESA_SHADER_MESH] = NIR_DEBUG(PRINT_MS); 109 nir_debug_print_shader[MESA_SHADER_RAYGEN] = NIR_DEBUG(PRINT_RGS); 110 nir_debug_print_shader[MESA_SHADER_ANY_HIT] = NIR_DEBUG(PRINT_AHS); 111 nir_debug_print_shader[MESA_SHADER_CLOSEST_HIT] = NIR_DEBUG(PRINT_CHS); 112 nir_debug_print_shader[MESA_SHADER_MISS] = NIR_DEBUG(PRINT_MHS); 113 nir_debug_print_shader[MESA_SHADER_INTERSECTION] = NIR_DEBUG(PRINT_IS); 114 nir_debug_print_shader[MESA_SHADER_CALLABLE] = NIR_DEBUG(PRINT_CBS); 115 nir_debug_print_shader[MESA_SHADER_KERNEL] = NIR_DEBUG(PRINT_KS); 116} 117 118void 119nir_process_debug_variable(void) 120{ 121 static once_flag flag = ONCE_FLAG_INIT; 122 call_once(&flag, nir_process_debug_variable_once); 123} 124#endif 125 126/** Return true if the component mask "mask" with bit size "old_bit_size" can 127 * be re-interpreted to be used with "new_bit_size". 128 */ 129bool 130nir_component_mask_can_reinterpret(nir_component_mask_t mask, 131 unsigned old_bit_size, 132 unsigned new_bit_size) 133{ 134 assert(util_is_power_of_two_nonzero(old_bit_size)); 135 assert(util_is_power_of_two_nonzero(new_bit_size)); 136 137 if (old_bit_size == new_bit_size) 138 return true; 139 140 if (old_bit_size == 1 || new_bit_size == 1) 141 return false; 142 143 if (old_bit_size > new_bit_size) { 144 unsigned ratio = old_bit_size / new_bit_size; 145 return util_last_bit(mask) * ratio <= NIR_MAX_VEC_COMPONENTS; 146 } 147 148 unsigned iter = mask; 149 while (iter) { 150 int start, count; 151 u_bit_scan_consecutive_range(&iter, &start, &count); 152 start *= old_bit_size; 153 count *= old_bit_size; 154 if (start % new_bit_size != 0) 155 return false; 156 if (count % new_bit_size != 0) 157 return false; 158 } 159 return true; 160} 161 162/** Re-interprets a component mask "mask" with bit size "old_bit_size" so that 163 * it can be used can be used with "new_bit_size". 164 */ 165nir_component_mask_t 166nir_component_mask_reinterpret(nir_component_mask_t mask, 167 unsigned old_bit_size, 168 unsigned new_bit_size) 169{ 170 assert(nir_component_mask_can_reinterpret(mask, old_bit_size, new_bit_size)); 171 172 if (old_bit_size == new_bit_size) 173 return mask; 174 175 nir_component_mask_t new_mask = 0; 176 unsigned iter = mask; 177 while (iter) { 178 int start, count; 179 u_bit_scan_consecutive_range(&iter, &start, &count); 180 start = start * old_bit_size / new_bit_size; 181 count = count * old_bit_size / new_bit_size; 182 new_mask |= BITFIELD_RANGE(start, count); 183 } 184 return new_mask; 185} 186 187static void 188nir_shader_destructor(void *ptr) 189{ 190 nir_shader *shader = ptr; 191 192 /* Free all instrs from the shader, since they're not ralloced. */ 193 list_for_each_entry_safe(nir_instr, instr, &shader->gc_list, gc_node) { 194 nir_instr_free(instr); 195 } 196} 197 198nir_shader * 199nir_shader_create(void *mem_ctx, 200 gl_shader_stage stage, 201 const nir_shader_compiler_options *options, 202 shader_info *si) 203{ 204 nir_shader *shader = rzalloc(mem_ctx, nir_shader); 205 ralloc_set_destructor(shader, nir_shader_destructor); 206 207#ifndef NDEBUG 208 nir_process_debug_variable(); 209#endif 210 211 exec_list_make_empty(&shader->variables); 212 213 shader->options = options; 214 215 if (si) { 216 assert(si->stage == stage); 217 shader->info = *si; 218 } else { 219 shader->info.stage = stage; 220 } 221 222 exec_list_make_empty(&shader->functions); 223 224 list_inithead(&shader->gc_list); 225 226 shader->num_inputs = 0; 227 shader->num_outputs = 0; 228 shader->num_uniforms = 0; 229 230 return shader; 231} 232 233static nir_register * 234reg_create(void *mem_ctx, struct exec_list *list) 235{ 236 nir_register *reg = ralloc(mem_ctx, nir_register); 237 238 list_inithead(®->uses); 239 list_inithead(®->defs); 240 list_inithead(®->if_uses); 241 242 reg->num_components = 0; 243 reg->bit_size = 32; 244 reg->num_array_elems = 0; 245 reg->divergent = false; 246 247 exec_list_push_tail(list, ®->node); 248 249 return reg; 250} 251 252nir_register * 253nir_local_reg_create(nir_function_impl *impl) 254{ 255 nir_register *reg = reg_create(ralloc_parent(impl), &impl->registers); 256 reg->index = impl->reg_alloc++; 257 258 return reg; 259} 260 261void 262nir_reg_remove(nir_register *reg) 263{ 264 exec_node_remove(®->node); 265} 266 267void 268nir_shader_add_variable(nir_shader *shader, nir_variable *var) 269{ 270 switch (var->data.mode) { 271 case nir_var_function_temp: 272 assert(!"nir_shader_add_variable cannot be used for local variables"); 273 return; 274 275 case nir_var_shader_temp: 276 case nir_var_shader_in: 277 case nir_var_shader_out: 278 case nir_var_uniform: 279 case nir_var_mem_ubo: 280 case nir_var_mem_ssbo: 281 case nir_var_image: 282 case nir_var_mem_shared: 283 case nir_var_system_value: 284 case nir_var_mem_push_const: 285 case nir_var_mem_constant: 286 case nir_var_shader_call_data: 287 case nir_var_ray_hit_attrib: 288 case nir_var_mem_task_payload: 289 case nir_var_mem_global: 290 break; 291 292 default: 293 assert(!"invalid mode"); 294 return; 295 } 296 297 exec_list_push_tail(&shader->variables, &var->node); 298} 299 300nir_variable * 301nir_variable_create(nir_shader *shader, nir_variable_mode mode, 302 const struct glsl_type *type, const char *name) 303{ 304 nir_variable *var = rzalloc(shader, nir_variable); 305 var->name = ralloc_strdup(var, name); 306 var->type = type; 307 var->data.mode = mode; 308 var->data.how_declared = nir_var_declared_normally; 309 310 if ((mode == nir_var_shader_in && 311 shader->info.stage != MESA_SHADER_VERTEX && 312 shader->info.stage != MESA_SHADER_KERNEL) || 313 (mode == nir_var_shader_out && 314 shader->info.stage != MESA_SHADER_FRAGMENT)) 315 var->data.interpolation = INTERP_MODE_SMOOTH; 316 317 if (mode == nir_var_shader_in || mode == nir_var_uniform) 318 var->data.read_only = true; 319 320 nir_shader_add_variable(shader, var); 321 322 return var; 323} 324 325nir_variable * 326nir_local_variable_create(nir_function_impl *impl, 327 const struct glsl_type *type, const char *name) 328{ 329 nir_variable *var = rzalloc(impl->function->shader, nir_variable); 330 var->name = ralloc_strdup(var, name); 331 var->type = type; 332 var->data.mode = nir_var_function_temp; 333 334 nir_function_impl_add_variable(impl, var); 335 336 return var; 337} 338 339nir_variable * 340nir_find_variable_with_location(nir_shader *shader, 341 nir_variable_mode mode, 342 unsigned location) 343{ 344 assert(util_bitcount(mode) == 1 && mode != nir_var_function_temp); 345 nir_foreach_variable_with_modes(var, shader, mode) { 346 if (var->data.location == location) 347 return var; 348 } 349 return NULL; 350} 351 352nir_variable * 353nir_find_variable_with_driver_location(nir_shader *shader, 354 nir_variable_mode mode, 355 unsigned location) 356{ 357 assert(util_bitcount(mode) == 1 && mode != nir_var_function_temp); 358 nir_foreach_variable_with_modes(var, shader, mode) { 359 if (var->data.driver_location == location) 360 return var; 361 } 362 return NULL; 363} 364 365/* Annoyingly, qsort_r is not in the C standard library and, in particular, we 366 * can't count on it on MSV and Android. So we stuff the CMP function into 367 * each array element. It's a bit messy and burns more memory but the list of 368 * variables should hever be all that long. 369 */ 370struct var_cmp { 371 nir_variable *var; 372 int (*cmp)(const nir_variable *, const nir_variable *); 373}; 374 375static int 376var_sort_cmp(const void *_a, const void *_b, void *_cmp) 377{ 378 const struct var_cmp *a = _a; 379 const struct var_cmp *b = _b; 380 assert(a->cmp == b->cmp); 381 return a->cmp(a->var, b->var); 382} 383 384void 385nir_sort_variables_with_modes(nir_shader *shader, 386 int (*cmp)(const nir_variable *, 387 const nir_variable *), 388 nir_variable_mode modes) 389{ 390 unsigned num_vars = 0; 391 nir_foreach_variable_with_modes(var, shader, modes) { 392 ++num_vars; 393 } 394 struct var_cmp *vars = ralloc_array(shader, struct var_cmp, num_vars); 395 unsigned i = 0; 396 nir_foreach_variable_with_modes_safe(var, shader, modes) { 397 exec_node_remove(&var->node); 398 vars[i++] = (struct var_cmp){ 399 .var = var, 400 .cmp = cmp, 401 }; 402 } 403 assert(i == num_vars); 404 405 util_qsort_r(vars, num_vars, sizeof(*vars), var_sort_cmp, cmp); 406 407 for (i = 0; i < num_vars; i++) 408 exec_list_push_tail(&shader->variables, &vars[i].var->node); 409 410 ralloc_free(vars); 411} 412 413nir_function * 414nir_function_create(nir_shader *shader, const char *name) 415{ 416 nir_function *func = ralloc(shader, nir_function); 417 418 exec_list_push_tail(&shader->functions, &func->node); 419 420 func->name = ralloc_strdup(func, name); 421 func->shader = shader; 422 func->num_params = 0; 423 func->params = NULL; 424 func->impl = NULL; 425 func->is_entrypoint = false; 426 func->is_preamble = false; 427 428 return func; 429} 430 431static bool src_has_indirect(nir_src *src) 432{ 433 return !src->is_ssa && src->reg.indirect; 434} 435 436static void src_free_indirects(nir_src *src) 437{ 438 if (src_has_indirect(src)) { 439 assert(src->reg.indirect->is_ssa || !src->reg.indirect->reg.indirect); 440 free(src->reg.indirect); 441 src->reg.indirect = NULL; 442 } 443} 444 445static void dest_free_indirects(nir_dest *dest) 446{ 447 if (!dest->is_ssa && dest->reg.indirect) { 448 assert(dest->reg.indirect->is_ssa || !dest->reg.indirect->reg.indirect); 449 free(dest->reg.indirect); 450 dest->reg.indirect = NULL; 451 } 452} 453 454/* NOTE: if the instruction you are copying a src to is already added 455 * to the IR, use nir_instr_rewrite_src() instead. 456 */ 457void nir_src_copy(nir_src *dest, const nir_src *src) 458{ 459 src_free_indirects(dest); 460 461 dest->is_ssa = src->is_ssa; 462 if (src->is_ssa) { 463 dest->ssa = src->ssa; 464 } else { 465 dest->reg.base_offset = src->reg.base_offset; 466 dest->reg.reg = src->reg.reg; 467 if (src->reg.indirect) { 468 dest->reg.indirect = calloc(1, sizeof(nir_src)); 469 nir_src_copy(dest->reg.indirect, src->reg.indirect); 470 } else { 471 dest->reg.indirect = NULL; 472 } 473 } 474} 475 476void nir_dest_copy(nir_dest *dest, const nir_dest *src) 477{ 478 /* Copying an SSA definition makes no sense whatsoever. */ 479 assert(!src->is_ssa); 480 481 dest_free_indirects(dest); 482 483 dest->is_ssa = false; 484 485 dest->reg.base_offset = src->reg.base_offset; 486 dest->reg.reg = src->reg.reg; 487 if (src->reg.indirect) { 488 dest->reg.indirect = calloc(1, sizeof(nir_src)); 489 nir_src_copy(dest->reg.indirect, src->reg.indirect); 490 } else { 491 dest->reg.indirect = NULL; 492 } 493} 494 495void 496nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src) 497{ 498 nir_src_copy(&dest->src, &src->src); 499 dest->abs = src->abs; 500 dest->negate = src->negate; 501 for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) 502 dest->swizzle[i] = src->swizzle[i]; 503} 504 505void 506nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src) 507{ 508 nir_dest_copy(&dest->dest, &src->dest); 509 dest->write_mask = src->write_mask; 510 dest->saturate = src->saturate; 511} 512 513bool 514nir_alu_src_is_trivial_ssa(const nir_alu_instr *alu, unsigned srcn) 515{ 516 static uint8_t trivial_swizzle[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; 517 STATIC_ASSERT(ARRAY_SIZE(trivial_swizzle) == NIR_MAX_VEC_COMPONENTS); 518 519 const nir_alu_src *src = &alu->src[srcn]; 520 unsigned num_components = nir_ssa_alu_instr_src_components(alu, srcn); 521 522 return src->src.is_ssa && (src->src.ssa->num_components == num_components) && 523 !src->abs && !src->negate && 524 (memcmp(src->swizzle, trivial_swizzle, num_components) == 0); 525} 526 527 528static void 529cf_init(nir_cf_node *node, nir_cf_node_type type) 530{ 531 exec_node_init(&node->node); 532 node->parent = NULL; 533 node->type = type; 534} 535 536nir_function_impl * 537nir_function_impl_create_bare(nir_shader *shader) 538{ 539 nir_function_impl *impl = ralloc(shader, nir_function_impl); 540 541 impl->function = NULL; 542 impl->preamble = NULL; 543 544 cf_init(&impl->cf_node, nir_cf_node_function); 545 546 exec_list_make_empty(&impl->body); 547 exec_list_make_empty(&impl->registers); 548 exec_list_make_empty(&impl->locals); 549 impl->reg_alloc = 0; 550 impl->ssa_alloc = 0; 551 impl->num_blocks = 0; 552 impl->valid_metadata = nir_metadata_none; 553 impl->structured = true; 554 555 /* create start & end blocks */ 556 nir_block *start_block = nir_block_create(shader); 557 nir_block *end_block = nir_block_create(shader); 558 start_block->cf_node.parent = &impl->cf_node; 559 end_block->cf_node.parent = &impl->cf_node; 560 impl->end_block = end_block; 561 562 exec_list_push_tail(&impl->body, &start_block->cf_node.node); 563 564 start_block->successors[0] = end_block; 565 _mesa_set_add(end_block->predecessors, start_block); 566 return impl; 567} 568 569nir_function_impl * 570nir_function_impl_create(nir_function *function) 571{ 572 assert(function->impl == NULL); 573 574 nir_function_impl *impl = nir_function_impl_create_bare(function->shader); 575 576 function->impl = impl; 577 impl->function = function; 578 579 return impl; 580} 581 582nir_block * 583nir_block_create(nir_shader *shader) 584{ 585 nir_block *block = rzalloc(shader, nir_block); 586 587 cf_init(&block->cf_node, nir_cf_node_block); 588 589 block->successors[0] = block->successors[1] = NULL; 590 block->predecessors = _mesa_pointer_set_create(block); 591 block->imm_dom = NULL; 592 /* XXX maybe it would be worth it to defer allocation? This 593 * way it doesn't get allocated for shader refs that never run 594 * nir_calc_dominance? For example, state-tracker creates an 595 * initial IR, clones that, runs appropriate lowering pass, passes 596 * to driver which does common lowering/opt, and then stores ref 597 * which is later used to do state specific lowering and futher 598 * opt. Do any of the references not need dominance metadata? 599 */ 600 block->dom_frontier = _mesa_pointer_set_create(block); 601 602 exec_list_make_empty(&block->instr_list); 603 604 return block; 605} 606 607static inline void 608src_init(nir_src *src) 609{ 610 src->is_ssa = false; 611 src->reg.reg = NULL; 612 src->reg.indirect = NULL; 613 src->reg.base_offset = 0; 614} 615 616nir_if * 617nir_if_create(nir_shader *shader) 618{ 619 nir_if *if_stmt = ralloc(shader, nir_if); 620 621 if_stmt->control = nir_selection_control_none; 622 623 cf_init(&if_stmt->cf_node, nir_cf_node_if); 624 src_init(&if_stmt->condition); 625 626 nir_block *then = nir_block_create(shader); 627 exec_list_make_empty(&if_stmt->then_list); 628 exec_list_push_tail(&if_stmt->then_list, &then->cf_node.node); 629 then->cf_node.parent = &if_stmt->cf_node; 630 631 nir_block *else_stmt = nir_block_create(shader); 632 exec_list_make_empty(&if_stmt->else_list); 633 exec_list_push_tail(&if_stmt->else_list, &else_stmt->cf_node.node); 634 else_stmt->cf_node.parent = &if_stmt->cf_node; 635 636 return if_stmt; 637} 638 639nir_loop * 640nir_loop_create(nir_shader *shader) 641{ 642 nir_loop *loop = rzalloc(shader, nir_loop); 643 644 cf_init(&loop->cf_node, nir_cf_node_loop); 645 /* Assume that loops are divergent until proven otherwise */ 646 loop->divergent = true; 647 648 nir_block *body = nir_block_create(shader); 649 exec_list_make_empty(&loop->body); 650 exec_list_push_tail(&loop->body, &body->cf_node.node); 651 body->cf_node.parent = &loop->cf_node; 652 653 body->successors[0] = body; 654 _mesa_set_add(body->predecessors, body); 655 656 return loop; 657} 658 659static void 660instr_init(nir_instr *instr, nir_instr_type type) 661{ 662 instr->type = type; 663 instr->block = NULL; 664 exec_node_init(&instr->node); 665} 666 667static void 668dest_init(nir_dest *dest) 669{ 670 dest->is_ssa = false; 671 dest->reg.reg = NULL; 672 dest->reg.indirect = NULL; 673 dest->reg.base_offset = 0; 674} 675 676static void 677alu_dest_init(nir_alu_dest *dest) 678{ 679 dest_init(&dest->dest); 680 dest->saturate = false; 681 dest->write_mask = 0xf; 682} 683 684static void 685alu_src_init(nir_alu_src *src) 686{ 687 src_init(&src->src); 688 src->abs = src->negate = false; 689 for (int i = 0; i < NIR_MAX_VEC_COMPONENTS; ++i) 690 src->swizzle[i] = i; 691} 692 693nir_alu_instr * 694nir_alu_instr_create(nir_shader *shader, nir_op op) 695{ 696 unsigned num_srcs = nir_op_infos[op].num_inputs; 697 /* TODO: don't use calloc */ 698 nir_alu_instr *instr = calloc(1, sizeof(nir_alu_instr) + num_srcs * sizeof(nir_alu_src)); 699 700 instr_init(&instr->instr, nir_instr_type_alu); 701 instr->op = op; 702 alu_dest_init(&instr->dest); 703 for (unsigned i = 0; i < num_srcs; i++) 704 alu_src_init(&instr->src[i]); 705 706 list_add(&instr->instr.gc_node, &shader->gc_list); 707 708 return instr; 709} 710 711nir_deref_instr * 712nir_deref_instr_create(nir_shader *shader, nir_deref_type deref_type) 713{ 714 nir_deref_instr *instr = calloc(1, sizeof(*instr)); 715 716 instr_init(&instr->instr, nir_instr_type_deref); 717 718 instr->deref_type = deref_type; 719 if (deref_type != nir_deref_type_var) 720 src_init(&instr->parent); 721 722 if (deref_type == nir_deref_type_array || 723 deref_type == nir_deref_type_ptr_as_array) 724 src_init(&instr->arr.index); 725 726 dest_init(&instr->dest); 727 728 list_add(&instr->instr.gc_node, &shader->gc_list); 729 730 return instr; 731} 732 733nir_jump_instr * 734nir_jump_instr_create(nir_shader *shader, nir_jump_type type) 735{ 736 nir_jump_instr *instr = malloc(sizeof(*instr)); 737 instr_init(&instr->instr, nir_instr_type_jump); 738 src_init(&instr->condition); 739 instr->type = type; 740 instr->target = NULL; 741 instr->else_target = NULL; 742 743 list_add(&instr->instr.gc_node, &shader->gc_list); 744 745 return instr; 746} 747 748nir_load_const_instr * 749nir_load_const_instr_create(nir_shader *shader, unsigned num_components, 750 unsigned bit_size) 751{ 752 nir_load_const_instr *instr = 753 calloc(1, sizeof(*instr) + num_components * sizeof(*instr->value)); 754 instr_init(&instr->instr, nir_instr_type_load_const); 755 756 nir_ssa_def_init(&instr->instr, &instr->def, num_components, bit_size); 757 758 list_add(&instr->instr.gc_node, &shader->gc_list); 759 760 return instr; 761} 762 763nir_intrinsic_instr * 764nir_intrinsic_instr_create(nir_shader *shader, nir_intrinsic_op op) 765{ 766 unsigned num_srcs = nir_intrinsic_infos[op].num_srcs; 767 /* TODO: don't use calloc */ 768 nir_intrinsic_instr *instr = 769 calloc(1, sizeof(nir_intrinsic_instr) + num_srcs * sizeof(nir_src)); 770 771 instr_init(&instr->instr, nir_instr_type_intrinsic); 772 instr->intrinsic = op; 773 774 if (nir_intrinsic_infos[op].has_dest) 775 dest_init(&instr->dest); 776 777 for (unsigned i = 0; i < num_srcs; i++) 778 src_init(&instr->src[i]); 779 780 list_add(&instr->instr.gc_node, &shader->gc_list); 781 782 return instr; 783} 784 785nir_call_instr * 786nir_call_instr_create(nir_shader *shader, nir_function *callee) 787{ 788 const unsigned num_params = callee->num_params; 789 nir_call_instr *instr = 790 calloc(1, sizeof(*instr) + num_params * sizeof(instr->params[0])); 791 792 instr_init(&instr->instr, nir_instr_type_call); 793 instr->callee = callee; 794 instr->num_params = num_params; 795 for (unsigned i = 0; i < num_params; i++) 796 src_init(&instr->params[i]); 797 798 list_add(&instr->instr.gc_node, &shader->gc_list); 799 800 return instr; 801} 802 803static int8_t default_tg4_offsets[4][2] = 804{ 805 { 0, 1 }, 806 { 1, 1 }, 807 { 1, 0 }, 808 { 0, 0 }, 809}; 810 811nir_tex_instr * 812nir_tex_instr_create(nir_shader *shader, unsigned num_srcs) 813{ 814 nir_tex_instr *instr = calloc(1, sizeof(*instr)); 815 instr_init(&instr->instr, nir_instr_type_tex); 816 817 dest_init(&instr->dest); 818 819 instr->num_srcs = num_srcs; 820 instr->src = malloc(sizeof(nir_tex_src) * num_srcs); 821 for (unsigned i = 0; i < num_srcs; i++) 822 src_init(&instr->src[i].src); 823 824 instr->texture_index = 0; 825 instr->sampler_index = 0; 826 memcpy(instr->tg4_offsets, default_tg4_offsets, sizeof(instr->tg4_offsets)); 827 828 list_add(&instr->instr.gc_node, &shader->gc_list); 829 830 return instr; 831} 832 833void 834nir_tex_instr_add_src(nir_tex_instr *tex, 835 nir_tex_src_type src_type, 836 nir_src src) 837{ 838 nir_tex_src *new_srcs = calloc(sizeof(*new_srcs), 839 tex->num_srcs + 1); 840 841 for (unsigned i = 0; i < tex->num_srcs; i++) { 842 new_srcs[i].src_type = tex->src[i].src_type; 843 nir_instr_move_src(&tex->instr, &new_srcs[i].src, 844 &tex->src[i].src); 845 } 846 847 free(tex->src); 848 tex->src = new_srcs; 849 850 tex->src[tex->num_srcs].src_type = src_type; 851 nir_instr_rewrite_src(&tex->instr, &tex->src[tex->num_srcs].src, src); 852 tex->num_srcs++; 853} 854 855void 856nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx) 857{ 858 assert(src_idx < tex->num_srcs); 859 860 /* First rewrite the source to NIR_SRC_INIT */ 861 nir_instr_rewrite_src(&tex->instr, &tex->src[src_idx].src, NIR_SRC_INIT); 862 863 /* Now, move all of the other sources down */ 864 for (unsigned i = src_idx + 1; i < tex->num_srcs; i++) { 865 tex->src[i-1].src_type = tex->src[i].src_type; 866 nir_instr_move_src(&tex->instr, &tex->src[i-1].src, &tex->src[i].src); 867 } 868 tex->num_srcs--; 869} 870 871bool 872nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex) 873{ 874 if (tex->op != nir_texop_tg4) 875 return false; 876 return memcmp(tex->tg4_offsets, default_tg4_offsets, 877 sizeof(tex->tg4_offsets)) != 0; 878} 879 880nir_phi_instr * 881nir_phi_instr_create(nir_shader *shader) 882{ 883 nir_phi_instr *instr = malloc(sizeof(*instr)); 884 instr_init(&instr->instr, nir_instr_type_phi); 885 886 dest_init(&instr->dest); 887 exec_list_make_empty(&instr->srcs); 888 889 list_add(&instr->instr.gc_node, &shader->gc_list); 890 891 return instr; 892} 893 894/** 895 * Adds a new source to a NIR instruction. 896 * 897 * Note that this does not update the def/use relationship for src, assuming 898 * that the instr is not in the shader. If it is, you have to do: 899 * 900 * list_addtail(&phi_src->src.use_link, &src.ssa->uses); 901 */ 902nir_phi_src * 903nir_phi_instr_add_src(nir_phi_instr *instr, nir_block *pred, nir_src src) 904{ 905 nir_phi_src *phi_src; 906 907 phi_src = calloc(1, sizeof(nir_phi_src)); 908 phi_src->pred = pred; 909 phi_src->src = src; 910 phi_src->src.parent_instr = &instr->instr; 911 exec_list_push_tail(&instr->srcs, &phi_src->node); 912 913 return phi_src; 914} 915 916nir_parallel_copy_instr * 917nir_parallel_copy_instr_create(nir_shader *shader) 918{ 919 nir_parallel_copy_instr *instr = malloc(sizeof(*instr)); 920 instr_init(&instr->instr, nir_instr_type_parallel_copy); 921 922 exec_list_make_empty(&instr->entries); 923 924 list_add(&instr->instr.gc_node, &shader->gc_list); 925 926 return instr; 927} 928 929nir_ssa_undef_instr * 930nir_ssa_undef_instr_create(nir_shader *shader, 931 unsigned num_components, 932 unsigned bit_size) 933{ 934 nir_ssa_undef_instr *instr = malloc(sizeof(*instr)); 935 instr_init(&instr->instr, nir_instr_type_ssa_undef); 936 937 nir_ssa_def_init(&instr->instr, &instr->def, num_components, bit_size); 938 939 list_add(&instr->instr.gc_node, &shader->gc_list); 940 941 return instr; 942} 943 944static nir_const_value 945const_value_float(double d, unsigned bit_size) 946{ 947 nir_const_value v; 948 memset(&v, 0, sizeof(v)); 949 switch (bit_size) { 950 case 16: v.u16 = _mesa_float_to_half(d); break; 951 case 32: v.f32 = d; break; 952 case 64: v.f64 = d; break; 953 default: 954 unreachable("Invalid bit size"); 955 } 956 return v; 957} 958 959static nir_const_value 960const_value_int(int64_t i, unsigned bit_size) 961{ 962 nir_const_value v; 963 memset(&v, 0, sizeof(v)); 964 switch (bit_size) { 965 case 1: v.b = i & 1; break; 966 case 8: v.i8 = i; break; 967 case 16: v.i16 = i; break; 968 case 32: v.i32 = i; break; 969 case 64: v.i64 = i; break; 970 default: 971 unreachable("Invalid bit size"); 972 } 973 return v; 974} 975 976nir_const_value 977nir_alu_binop_identity(nir_op binop, unsigned bit_size) 978{ 979 const int64_t max_int = (1ull << (bit_size - 1)) - 1; 980 const int64_t min_int = -max_int - 1; 981 switch (binop) { 982 case nir_op_iadd: 983 return const_value_int(0, bit_size); 984 case nir_op_fadd: 985 return const_value_float(0, bit_size); 986 case nir_op_imul: 987 return const_value_int(1, bit_size); 988 case nir_op_fmul: 989 return const_value_float(1, bit_size); 990 case nir_op_imin: 991 return const_value_int(max_int, bit_size); 992 case nir_op_umin: 993 return const_value_int(~0ull, bit_size); 994 case nir_op_fmin: 995 return const_value_float(INFINITY, bit_size); 996 case nir_op_imax: 997 return const_value_int(min_int, bit_size); 998 case nir_op_umax: 999 return const_value_int(0, bit_size); 1000 case nir_op_fmax: 1001 return const_value_float(-INFINITY, bit_size); 1002 case nir_op_iand: 1003 return const_value_int(~0ull, bit_size); 1004 case nir_op_ior: 1005 return const_value_int(0, bit_size); 1006 case nir_op_ixor: 1007 return const_value_int(0, bit_size); 1008 default: 1009 unreachable("Invalid reduction operation"); 1010 } 1011} 1012 1013nir_function_impl * 1014nir_cf_node_get_function(nir_cf_node *node) 1015{ 1016 while (node->type != nir_cf_node_function) { 1017 node = node->parent; 1018 } 1019 1020 return nir_cf_node_as_function(node); 1021} 1022 1023/* Reduces a cursor by trying to convert everything to after and trying to 1024 * go up to block granularity when possible. 1025 */ 1026static nir_cursor 1027reduce_cursor(nir_cursor cursor) 1028{ 1029 switch (cursor.option) { 1030 case nir_cursor_before_block: 1031 if (exec_list_is_empty(&cursor.block->instr_list)) { 1032 /* Empty block. After is as good as before. */ 1033 cursor.option = nir_cursor_after_block; 1034 } 1035 return cursor; 1036 1037 case nir_cursor_after_block: 1038 return cursor; 1039 1040 case nir_cursor_before_instr: { 1041 nir_instr *prev_instr = nir_instr_prev(cursor.instr); 1042 if (prev_instr) { 1043 /* Before this instruction is after the previous */ 1044 cursor.instr = prev_instr; 1045 cursor.option = nir_cursor_after_instr; 1046 } else { 1047 /* No previous instruction. Switch to before block */ 1048 cursor.block = cursor.instr->block; 1049 cursor.option = nir_cursor_before_block; 1050 } 1051 return reduce_cursor(cursor); 1052 } 1053 1054 case nir_cursor_after_instr: 1055 if (nir_instr_next(cursor.instr) == NULL) { 1056 /* This is the last instruction, switch to after block */ 1057 cursor.option = nir_cursor_after_block; 1058 cursor.block = cursor.instr->block; 1059 } 1060 return cursor; 1061 1062 default: 1063 unreachable("Inavlid cursor option"); 1064 } 1065} 1066 1067bool 1068nir_cursors_equal(nir_cursor a, nir_cursor b) 1069{ 1070 /* Reduced cursors should be unique */ 1071 a = reduce_cursor(a); 1072 b = reduce_cursor(b); 1073 1074 return a.block == b.block && a.option == b.option; 1075} 1076 1077static bool 1078add_use_cb(nir_src *src, void *state) 1079{ 1080 nir_instr *instr = state; 1081 1082 src->parent_instr = instr; 1083 list_addtail(&src->use_link, 1084 src->is_ssa ? &src->ssa->uses : &src->reg.reg->uses); 1085 1086 return true; 1087} 1088 1089static bool 1090add_ssa_def_cb(nir_ssa_def *def, void *state) 1091{ 1092 nir_instr *instr = state; 1093 1094 if (instr->block && def->index == UINT_MAX) { 1095 nir_function_impl *impl = 1096 nir_cf_node_get_function(&instr->block->cf_node); 1097 1098 def->index = impl->ssa_alloc++; 1099 1100 impl->valid_metadata &= ~nir_metadata_live_ssa_defs; 1101 } 1102 1103 return true; 1104} 1105 1106static bool 1107add_reg_def_cb(nir_dest *dest, void *state) 1108{ 1109 nir_instr *instr = state; 1110 1111 if (!dest->is_ssa) { 1112 dest->reg.parent_instr = instr; 1113 list_addtail(&dest->reg.def_link, &dest->reg.reg->defs); 1114 } 1115 1116 return true; 1117} 1118 1119static void 1120add_defs_uses(nir_instr *instr) 1121{ 1122 nir_foreach_src(instr, add_use_cb, instr); 1123 nir_foreach_dest(instr, add_reg_def_cb, instr); 1124 nir_foreach_ssa_def(instr, add_ssa_def_cb, instr); 1125} 1126 1127void 1128nir_instr_insert(nir_cursor cursor, nir_instr *instr) 1129{ 1130 switch (cursor.option) { 1131 case nir_cursor_before_block: 1132 /* Only allow inserting jumps into empty blocks. */ 1133 if (instr->type == nir_instr_type_jump) 1134 assert(exec_list_is_empty(&cursor.block->instr_list)); 1135 1136 instr->block = cursor.block; 1137 add_defs_uses(instr); 1138 exec_list_push_head(&cursor.block->instr_list, &instr->node); 1139 break; 1140 case nir_cursor_after_block: { 1141 /* Inserting instructions after a jump is illegal. */ 1142 nir_instr *last = nir_block_last_instr(cursor.block); 1143 assert(last == NULL || last->type != nir_instr_type_jump); 1144 (void) last; 1145 1146 instr->block = cursor.block; 1147 add_defs_uses(instr); 1148 exec_list_push_tail(&cursor.block->instr_list, &instr->node); 1149 break; 1150 } 1151 case nir_cursor_before_instr: 1152 assert(instr->type != nir_instr_type_jump); 1153 instr->block = cursor.instr->block; 1154 add_defs_uses(instr); 1155 exec_node_insert_node_before(&cursor.instr->node, &instr->node); 1156 break; 1157 case nir_cursor_after_instr: 1158 /* Inserting instructions after a jump is illegal. */ 1159 assert(cursor.instr->type != nir_instr_type_jump); 1160 1161 /* Only allow inserting jumps at the end of the block. */ 1162 if (instr->type == nir_instr_type_jump) 1163 assert(cursor.instr == nir_block_last_instr(cursor.instr->block)); 1164 1165 instr->block = cursor.instr->block; 1166 add_defs_uses(instr); 1167 exec_node_insert_after(&cursor.instr->node, &instr->node); 1168 break; 1169 } 1170 1171 if (instr->type == nir_instr_type_jump) 1172 nir_handle_add_jump(instr->block); 1173 1174 nir_function_impl *impl = nir_cf_node_get_function(&instr->block->cf_node); 1175 impl->valid_metadata &= ~nir_metadata_instr_index; 1176} 1177 1178bool 1179nir_instr_move(nir_cursor cursor, nir_instr *instr) 1180{ 1181 /* If the cursor happens to refer to this instruction (either before or 1182 * after), don't do anything. 1183 */ 1184 if ((cursor.option == nir_cursor_before_instr || 1185 cursor.option == nir_cursor_after_instr) && 1186 cursor.instr == instr) 1187 return false; 1188 1189 nir_instr_remove(instr); 1190 nir_instr_insert(cursor, instr); 1191 return true; 1192} 1193 1194static bool 1195src_is_valid(const nir_src *src) 1196{ 1197 return src->is_ssa ? (src->ssa != NULL) : (src->reg.reg != NULL); 1198} 1199 1200static bool 1201remove_use_cb(nir_src *src, void *state) 1202{ 1203 (void) state; 1204 1205 if (src_is_valid(src)) 1206 list_del(&src->use_link); 1207 1208 return true; 1209} 1210 1211static bool 1212remove_def_cb(nir_dest *dest, void *state) 1213{ 1214 (void) state; 1215 1216 if (!dest->is_ssa) 1217 list_del(&dest->reg.def_link); 1218 1219 return true; 1220} 1221 1222static void 1223remove_defs_uses(nir_instr *instr) 1224{ 1225 nir_foreach_dest(instr, remove_def_cb, instr); 1226 nir_foreach_src(instr, remove_use_cb, instr); 1227} 1228 1229void nir_instr_remove_v(nir_instr *instr) 1230{ 1231 remove_defs_uses(instr); 1232 exec_node_remove(&instr->node); 1233 1234 if (instr->type == nir_instr_type_jump) { 1235 nir_jump_instr *jump_instr = nir_instr_as_jump(instr); 1236 nir_handle_remove_jump(instr->block, jump_instr->type); 1237 } 1238} 1239 1240static bool free_src_indirects_cb(nir_src *src, void *state) 1241{ 1242 src_free_indirects(src); 1243 return true; 1244} 1245 1246static bool free_dest_indirects_cb(nir_dest *dest, void *state) 1247{ 1248 dest_free_indirects(dest); 1249 return true; 1250} 1251 1252void nir_instr_free(nir_instr *instr) 1253{ 1254 nir_foreach_src(instr, free_src_indirects_cb, NULL); 1255 nir_foreach_dest(instr, free_dest_indirects_cb, NULL); 1256 1257 switch (instr->type) { 1258 case nir_instr_type_tex: 1259 free(nir_instr_as_tex(instr)->src); 1260 break; 1261 1262 case nir_instr_type_phi: { 1263 nir_phi_instr *phi = nir_instr_as_phi(instr); 1264 nir_foreach_phi_src_safe(phi_src, phi) { 1265 free(phi_src); 1266 } 1267 break; 1268 } 1269 1270 default: 1271 break; 1272 } 1273 1274 list_del(&instr->gc_node); 1275 free(instr); 1276} 1277 1278void 1279nir_instr_free_list(struct exec_list *list) 1280{ 1281 struct exec_node *node; 1282 while ((node = exec_list_pop_head(list))) { 1283 nir_instr *removed_instr = exec_node_data(nir_instr, node, node); 1284 nir_instr_free(removed_instr); 1285 } 1286} 1287 1288static bool nir_instr_free_and_dce_live_cb(nir_ssa_def *def, void *state) 1289{ 1290 bool *live = state; 1291 1292 if (!nir_ssa_def_is_unused(def)) { 1293 *live = true; 1294 return false; 1295 } else { 1296 return true; 1297 } 1298} 1299 1300static bool nir_instr_free_and_dce_is_live(nir_instr *instr) 1301{ 1302 /* Note: don't have to worry about jumps because they don't have dests to 1303 * become unused. 1304 */ 1305 if (instr->type == nir_instr_type_intrinsic) { 1306 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr); 1307 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic]; 1308 if (!(info->flags & NIR_INTRINSIC_CAN_ELIMINATE)) 1309 return true; 1310 } 1311 1312 bool live = false; 1313 nir_foreach_ssa_def(instr, nir_instr_free_and_dce_live_cb, &live); 1314 return live; 1315} 1316 1317static bool 1318nir_instr_dce_add_dead_srcs_cb(nir_src *src, void *state) 1319{ 1320 nir_instr_worklist *wl = state; 1321 1322 if (src->is_ssa) { 1323 list_del(&src->use_link); 1324 if (!nir_instr_free_and_dce_is_live(src->ssa->parent_instr)) 1325 nir_instr_worklist_push_tail(wl, src->ssa->parent_instr); 1326 1327 /* Stop nir_instr_remove from trying to delete the link again. */ 1328 src->ssa = NULL; 1329 } 1330 1331 return true; 1332} 1333 1334static void 1335nir_instr_dce_add_dead_ssa_srcs(nir_instr_worklist *wl, nir_instr *instr) 1336{ 1337 nir_foreach_src(instr, nir_instr_dce_add_dead_srcs_cb, wl); 1338} 1339 1340/** 1341 * Frees an instruction and any SSA defs that it used that are now dead, 1342 * returning a nir_cursor where the instruction previously was. 1343 */ 1344nir_cursor 1345nir_instr_free_and_dce(nir_instr *instr) 1346{ 1347 nir_instr_worklist *worklist = nir_instr_worklist_create(); 1348 1349 nir_instr_dce_add_dead_ssa_srcs(worklist, instr); 1350 nir_cursor c = nir_instr_remove(instr); 1351 1352 struct exec_list to_free; 1353 exec_list_make_empty(&to_free); 1354 1355 nir_instr *dce_instr; 1356 while ((dce_instr = nir_instr_worklist_pop_head(worklist))) { 1357 nir_instr_dce_add_dead_ssa_srcs(worklist, dce_instr); 1358 1359 /* If we're removing the instr where our cursor is, then we have to 1360 * point the cursor elsewhere. 1361 */ 1362 if ((c.option == nir_cursor_before_instr || 1363 c.option == nir_cursor_after_instr) && 1364 c.instr == dce_instr) 1365 c = nir_instr_remove(dce_instr); 1366 else 1367 nir_instr_remove(dce_instr); 1368 exec_list_push_tail(&to_free, &dce_instr->node); 1369 } 1370 1371 nir_instr_free_list(&to_free); 1372 1373 nir_instr_worklist_destroy(worklist); 1374 1375 return c; 1376} 1377 1378/*@}*/ 1379 1380void 1381nir_index_local_regs(nir_function_impl *impl) 1382{ 1383 unsigned index = 0; 1384 foreach_list_typed(nir_register, reg, node, &impl->registers) { 1385 reg->index = index++; 1386 } 1387 impl->reg_alloc = index; 1388} 1389 1390struct foreach_ssa_def_state { 1391 nir_foreach_ssa_def_cb cb; 1392 void *client_state; 1393}; 1394 1395static inline bool 1396nir_ssa_def_visitor(nir_dest *dest, void *void_state) 1397{ 1398 struct foreach_ssa_def_state *state = void_state; 1399 1400 if (dest->is_ssa) 1401 return state->cb(&dest->ssa, state->client_state); 1402 else 1403 return true; 1404} 1405 1406bool 1407nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb, void *state) 1408{ 1409 switch (instr->type) { 1410 case nir_instr_type_alu: 1411 case nir_instr_type_deref: 1412 case nir_instr_type_tex: 1413 case nir_instr_type_intrinsic: 1414 case nir_instr_type_phi: 1415 case nir_instr_type_parallel_copy: { 1416 struct foreach_ssa_def_state foreach_state = {cb, state}; 1417 return nir_foreach_dest(instr, nir_ssa_def_visitor, &foreach_state); 1418 } 1419 1420 case nir_instr_type_load_const: 1421 return cb(&nir_instr_as_load_const(instr)->def, state); 1422 case nir_instr_type_ssa_undef: 1423 return cb(&nir_instr_as_ssa_undef(instr)->def, state); 1424 case nir_instr_type_call: 1425 case nir_instr_type_jump: 1426 return true; 1427 default: 1428 unreachable("Invalid instruction type"); 1429 } 1430} 1431 1432nir_ssa_def * 1433nir_instr_ssa_def(nir_instr *instr) 1434{ 1435 switch (instr->type) { 1436 case nir_instr_type_alu: 1437 assert(nir_instr_as_alu(instr)->dest.dest.is_ssa); 1438 return &nir_instr_as_alu(instr)->dest.dest.ssa; 1439 1440 case nir_instr_type_deref: 1441 assert(nir_instr_as_deref(instr)->dest.is_ssa); 1442 return &nir_instr_as_deref(instr)->dest.ssa; 1443 1444 case nir_instr_type_tex: 1445 assert(nir_instr_as_tex(instr)->dest.is_ssa); 1446 return &nir_instr_as_tex(instr)->dest.ssa; 1447 1448 case nir_instr_type_intrinsic: { 1449 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); 1450 if (nir_intrinsic_infos[intrin->intrinsic].has_dest) { 1451 assert(intrin->dest.is_ssa); 1452 return &intrin->dest.ssa; 1453 } else { 1454 return NULL; 1455 } 1456 } 1457 1458 case nir_instr_type_phi: 1459 assert(nir_instr_as_phi(instr)->dest.is_ssa); 1460 return &nir_instr_as_phi(instr)->dest.ssa; 1461 1462 case nir_instr_type_parallel_copy: 1463 unreachable("Parallel copies are unsupported by this function"); 1464 1465 case nir_instr_type_load_const: 1466 return &nir_instr_as_load_const(instr)->def; 1467 1468 case nir_instr_type_ssa_undef: 1469 return &nir_instr_as_ssa_undef(instr)->def; 1470 1471 case nir_instr_type_call: 1472 case nir_instr_type_jump: 1473 return NULL; 1474 } 1475 1476 unreachable("Invalid instruction type"); 1477} 1478 1479bool 1480nir_instr_def_is_register(nir_instr *instr) 1481{ 1482 switch (instr->type) { 1483 case nir_instr_type_alu: 1484 return !nir_instr_as_alu(instr)->dest.dest.is_ssa; 1485 1486 case nir_instr_type_deref: 1487 return !nir_instr_as_deref(instr)->dest.is_ssa; 1488 1489 case nir_instr_type_tex: 1490 return !nir_instr_as_tex(instr)->dest.is_ssa; 1491 1492 case nir_instr_type_intrinsic: { 1493 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); 1494 return nir_intrinsic_infos[intrin->intrinsic].has_dest && 1495 !intrin->dest.is_ssa; 1496 } 1497 1498 case nir_instr_type_phi: 1499 return !nir_instr_as_phi(instr)->dest.is_ssa; 1500 1501 case nir_instr_type_parallel_copy: 1502 unreachable("Parallel copies are unsupported by this function"); 1503 1504 case nir_instr_type_load_const: 1505 case nir_instr_type_ssa_undef: 1506 return false; 1507 1508 case nir_instr_type_call: 1509 case nir_instr_type_jump: 1510 return false; 1511 } 1512 1513 unreachable("Invalid instruction type"); 1514} 1515 1516bool 1517nir_foreach_phi_src_leaving_block(nir_block *block, 1518 nir_foreach_src_cb cb, 1519 void *state) 1520{ 1521 for (unsigned i = 0; i < ARRAY_SIZE(block->successors); i++) { 1522 if (block->successors[i] == NULL) 1523 continue; 1524 1525 nir_foreach_instr(instr, block->successors[i]) { 1526 if (instr->type != nir_instr_type_phi) 1527 break; 1528 1529 nir_phi_instr *phi = nir_instr_as_phi(instr); 1530 nir_foreach_phi_src(phi_src, phi) { 1531 if (phi_src->pred == block) { 1532 if (!cb(&phi_src->src, state)) 1533 return false; 1534 } 1535 } 1536 } 1537 } 1538 1539 return true; 1540} 1541 1542nir_const_value 1543nir_const_value_for_float(double f, unsigned bit_size) 1544{ 1545 nir_const_value v; 1546 memset(&v, 0, sizeof(v)); 1547 1548 switch (bit_size) { 1549 case 16: 1550 v.u16 = _mesa_float_to_half(f); 1551 break; 1552 case 32: 1553 v.f32 = f; 1554 break; 1555 case 64: 1556 v.f64 = f; 1557 break; 1558 default: 1559 unreachable("Invalid bit size"); 1560 } 1561 1562 return v; 1563} 1564 1565double 1566nir_const_value_as_float(nir_const_value value, unsigned bit_size) 1567{ 1568 switch (bit_size) { 1569 case 16: return _mesa_half_to_float(value.u16); 1570 case 32: return value.f32; 1571 case 64: return value.f64; 1572 default: 1573 unreachable("Invalid bit size"); 1574 } 1575} 1576 1577nir_const_value * 1578nir_src_as_const_value(nir_src src) 1579{ 1580 if (!src.is_ssa) 1581 return NULL; 1582 1583 if (src.ssa->parent_instr->type != nir_instr_type_load_const) 1584 return NULL; 1585 1586 nir_load_const_instr *load = nir_instr_as_load_const(src.ssa->parent_instr); 1587 1588 return load->value; 1589} 1590 1591/** 1592 * Returns true if the source is known to be always uniform. Otherwise it 1593 * returns false which means it may or may not be uniform but it can't be 1594 * determined. 1595 * 1596 * For a more precise analysis of uniform values, use nir_divergence_analysis. 1597 */ 1598bool 1599nir_src_is_always_uniform(nir_src src) 1600{ 1601 if (!src.is_ssa) 1602 return false; 1603 1604 /* Constants are trivially uniform */ 1605 if (src.ssa->parent_instr->type == nir_instr_type_load_const) 1606 return true; 1607 1608 if (src.ssa->parent_instr->type == nir_instr_type_intrinsic) { 1609 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(src.ssa->parent_instr); 1610 /* As are uniform variables */ 1611 if (intr->intrinsic == nir_intrinsic_load_uniform && 1612 nir_src_is_always_uniform(intr->src[0])) 1613 return true; 1614 /* From the Vulkan specification 15.6.1. Push Constant Interface: 1615 * "Any member of a push constant block that is declared as an array must 1616 * only be accessed with dynamically uniform indices." 1617 */ 1618 if (intr->intrinsic == nir_intrinsic_load_push_constant) 1619 return true; 1620 if (intr->intrinsic == nir_intrinsic_load_deref && 1621 nir_deref_mode_is(nir_src_as_deref(intr->src[0]), nir_var_mem_push_const)) 1622 return true; 1623 } 1624 1625 /* Operating together uniform expressions produces a uniform result */ 1626 if (src.ssa->parent_instr->type == nir_instr_type_alu) { 1627 nir_alu_instr *alu = nir_instr_as_alu(src.ssa->parent_instr); 1628 for (int i = 0; i < nir_op_infos[alu->op].num_inputs; i++) { 1629 if (!nir_src_is_always_uniform(alu->src[i].src)) 1630 return false; 1631 } 1632 1633 return true; 1634 } 1635 1636 /* XXX: this could have many more tests, such as when a sampler function is 1637 * called with uniform arguments. 1638 */ 1639 return false; 1640} 1641 1642static void 1643src_remove_all_uses(nir_src *src) 1644{ 1645 for (; src; src = src->is_ssa ? NULL : src->reg.indirect) { 1646 if (!src_is_valid(src)) 1647 continue; 1648 1649 list_del(&src->use_link); 1650 } 1651} 1652 1653static void 1654src_add_all_uses(nir_src *src, nir_instr *parent_instr, nir_if *parent_if) 1655{ 1656 for (; src; src = src->is_ssa ? NULL : src->reg.indirect) { 1657 if (!src_is_valid(src)) 1658 continue; 1659 1660 if (parent_instr) { 1661 src->parent_instr = parent_instr; 1662 if (src->is_ssa) 1663 list_addtail(&src->use_link, &src->ssa->uses); 1664 else 1665 list_addtail(&src->use_link, &src->reg.reg->uses); 1666 } else { 1667 assert(parent_if); 1668 src->parent_if = parent_if; 1669 if (src->is_ssa) 1670 list_addtail(&src->use_link, &src->ssa->if_uses); 1671 else 1672 list_addtail(&src->use_link, &src->reg.reg->if_uses); 1673 } 1674 } 1675} 1676 1677void 1678nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src) 1679{ 1680 assert(!src_is_valid(src) || src->parent_instr == instr); 1681 1682 src_remove_all_uses(src); 1683 nir_src_copy(src, &new_src); 1684 src_add_all_uses(src, instr, NULL); 1685} 1686 1687void 1688nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src) 1689{ 1690 assert(!src_is_valid(dest) || dest->parent_instr == dest_instr); 1691 1692 src_remove_all_uses(dest); 1693 src_free_indirects(dest); 1694 src_remove_all_uses(src); 1695 *dest = *src; 1696 *src = NIR_SRC_INIT; 1697 src_add_all_uses(dest, dest_instr, NULL); 1698} 1699 1700void 1701nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src) 1702{ 1703 nir_src *src = &if_stmt->condition; 1704 assert(!src_is_valid(src) || src->parent_if == if_stmt); 1705 1706 src_remove_all_uses(src); 1707 nir_src_copy(src, &new_src); 1708 src_add_all_uses(src, NULL, if_stmt); 1709} 1710 1711void 1712nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest, nir_dest new_dest) 1713{ 1714 if (dest->is_ssa) { 1715 /* We can only overwrite an SSA destination if it has no uses. */ 1716 assert(nir_ssa_def_is_unused(&dest->ssa)); 1717 } else { 1718 list_del(&dest->reg.def_link); 1719 if (dest->reg.indirect) 1720 src_remove_all_uses(dest->reg.indirect); 1721 } 1722 1723 /* We can't re-write with an SSA def */ 1724 assert(!new_dest.is_ssa); 1725 1726 nir_dest_copy(dest, &new_dest); 1727 1728 dest->reg.parent_instr = instr; 1729 list_addtail(&dest->reg.def_link, &new_dest.reg.reg->defs); 1730 1731 if (dest->reg.indirect) 1732 src_add_all_uses(dest->reg.indirect, instr, NULL); 1733} 1734 1735/* note: does *not* take ownership of 'name' */ 1736void 1737nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def, 1738 unsigned num_components, 1739 unsigned bit_size) 1740{ 1741 def->parent_instr = instr; 1742 list_inithead(&def->uses); 1743 list_inithead(&def->if_uses); 1744 def->num_components = num_components; 1745 def->bit_size = bit_size; 1746 def->divergent = true; /* This is the safer default */ 1747 1748 if (instr->block) { 1749 nir_function_impl *impl = 1750 nir_cf_node_get_function(&instr->block->cf_node); 1751 1752 def->index = impl->ssa_alloc++; 1753 1754 impl->valid_metadata &= ~nir_metadata_live_ssa_defs; 1755 } else { 1756 def->index = UINT_MAX; 1757 } 1758} 1759 1760/* note: does *not* take ownership of 'name' */ 1761void 1762nir_ssa_dest_init(nir_instr *instr, nir_dest *dest, 1763 unsigned num_components, unsigned bit_size, 1764 const char *name) 1765{ 1766 dest->is_ssa = true; 1767 nir_ssa_def_init(instr, &dest->ssa, num_components, bit_size); 1768} 1769 1770void 1771nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_ssa_def *new_ssa) 1772{ 1773 assert(def != new_ssa); 1774 nir_foreach_use_safe(use_src, def) 1775 nir_instr_rewrite_src_ssa(use_src->parent_instr, use_src, new_ssa); 1776 1777 nir_foreach_if_use_safe(use_src, def) 1778 nir_if_rewrite_condition_ssa(use_src->parent_if, use_src, new_ssa); 1779} 1780 1781void 1782nir_ssa_def_rewrite_uses_src(nir_ssa_def *def, nir_src new_src) 1783{ 1784 if (new_src.is_ssa) { 1785 nir_ssa_def_rewrite_uses(def, new_src.ssa); 1786 } else { 1787 nir_foreach_use_safe(use_src, def) 1788 nir_instr_rewrite_src(use_src->parent_instr, use_src, new_src); 1789 1790 nir_foreach_if_use_safe(use_src, def) 1791 nir_if_rewrite_condition(use_src->parent_if, new_src); 1792 } 1793} 1794 1795static bool 1796is_instr_between(nir_instr *start, nir_instr *end, nir_instr *between) 1797{ 1798 assert(start->block == end->block); 1799 1800 if (between->block != start->block) 1801 return false; 1802 1803 /* Search backwards looking for "between" */ 1804 while (start != end) { 1805 if (between == end) 1806 return true; 1807 1808 end = nir_instr_prev(end); 1809 assert(end); 1810 } 1811 1812 return false; 1813} 1814 1815/* Replaces all uses of the given SSA def with the given source but only if 1816 * the use comes after the after_me instruction. This can be useful if you 1817 * are emitting code to fix up the result of some instruction: you can freely 1818 * use the result in that code and then call rewrite_uses_after and pass the 1819 * last fixup instruction as after_me and it will replace all of the uses you 1820 * want without touching the fixup code. 1821 * 1822 * This function assumes that after_me is in the same block as 1823 * def->parent_instr and that after_me comes after def->parent_instr. 1824 */ 1825void 1826nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_ssa_def *new_ssa, 1827 nir_instr *after_me) 1828{ 1829 if (def == new_ssa) 1830 return; 1831 1832 nir_foreach_use_safe(use_src, def) { 1833 assert(use_src->parent_instr != def->parent_instr); 1834 /* Since def already dominates all of its uses, the only way a use can 1835 * not be dominated by after_me is if it is between def and after_me in 1836 * the instruction list. 1837 */ 1838 if (!is_instr_between(def->parent_instr, after_me, use_src->parent_instr)) 1839 nir_instr_rewrite_src_ssa(use_src->parent_instr, use_src, new_ssa); 1840 } 1841 1842 nir_foreach_if_use_safe(use_src, def) { 1843 nir_if_rewrite_condition_ssa(use_src->parent_if, 1844 &use_src->parent_if->condition, 1845 new_ssa); 1846 } 1847} 1848 1849static nir_ssa_def * 1850get_store_value(nir_intrinsic_instr *intrin) 1851{ 1852 assert(nir_intrinsic_has_write_mask(intrin)); 1853 /* deref stores have the deref in src[0] and the store value in src[1] */ 1854 if (intrin->intrinsic == nir_intrinsic_store_deref || 1855 intrin->intrinsic == nir_intrinsic_store_deref_block_intel) 1856 return intrin->src[1].ssa; 1857 1858 /* all other stores have the store value in src[0] */ 1859 return intrin->src[0].ssa; 1860} 1861 1862nir_component_mask_t 1863nir_src_components_read(const nir_src *src) 1864{ 1865 assert(src->is_ssa && src->parent_instr); 1866 1867 if (src->parent_instr->type == nir_instr_type_alu) { 1868 nir_alu_instr *alu = nir_instr_as_alu(src->parent_instr); 1869 nir_alu_src *alu_src = exec_node_data(nir_alu_src, src, src); 1870 int src_idx = alu_src - &alu->src[0]; 1871 assert(src_idx >= 0 && src_idx < nir_op_infos[alu->op].num_inputs); 1872 return nir_alu_instr_src_read_mask(alu, src_idx); 1873 } else if (src->parent_instr->type == nir_instr_type_intrinsic) { 1874 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(src->parent_instr); 1875 if (nir_intrinsic_has_write_mask(intrin) && src->ssa == get_store_value(intrin)) 1876 return nir_intrinsic_write_mask(intrin); 1877 else 1878 return (1 << src->ssa->num_components) - 1; 1879 } else { 1880 return (1 << src->ssa->num_components) - 1; 1881 } 1882} 1883 1884nir_component_mask_t 1885nir_ssa_def_components_read(const nir_ssa_def *def) 1886{ 1887 nir_component_mask_t read_mask = 0; 1888 1889 if (!list_is_empty(&def->if_uses)) 1890 read_mask |= 1; 1891 1892 nir_foreach_use(use, def) { 1893 read_mask |= nir_src_components_read(use); 1894 if (read_mask == (1 << def->num_components) - 1) 1895 return read_mask; 1896 } 1897 1898 return read_mask; 1899} 1900 1901nir_block * 1902nir_block_unstructured_next(nir_block *block) 1903{ 1904 if (block == NULL) { 1905 /* nir_foreach_block_unstructured_safe() will call this function on a 1906 * NULL block after the last iteration, but it won't use the result so 1907 * just return NULL here. 1908 */ 1909 return NULL; 1910 } 1911 1912 nir_cf_node *cf_next = nir_cf_node_next(&block->cf_node); 1913 if (cf_next == NULL && block->cf_node.parent->type == nir_cf_node_function) 1914 return NULL; 1915 1916 if (cf_next && cf_next->type == nir_cf_node_block) 1917 return nir_cf_node_as_block(cf_next); 1918 1919 return nir_block_cf_tree_next(block); 1920} 1921 1922nir_block * 1923nir_unstructured_start_block(nir_function_impl *impl) 1924{ 1925 return nir_start_block(impl); 1926} 1927 1928nir_block * 1929nir_block_cf_tree_next(nir_block *block) 1930{ 1931 if (block == NULL) { 1932 /* nir_foreach_block_safe() will call this function on a NULL block 1933 * after the last iteration, but it won't use the result so just return 1934 * NULL here. 1935 */ 1936 return NULL; 1937 } 1938 1939 assert(nir_cf_node_get_function(&block->cf_node)->structured); 1940 1941 nir_cf_node *cf_next = nir_cf_node_next(&block->cf_node); 1942 if (cf_next) 1943 return nir_cf_node_cf_tree_first(cf_next); 1944 1945 nir_cf_node *parent = block->cf_node.parent; 1946 1947 switch (parent->type) { 1948 case nir_cf_node_if: { 1949 /* Are we at the end of the if? Go to the beginning of the else */ 1950 nir_if *if_stmt = nir_cf_node_as_if(parent); 1951 if (block == nir_if_last_then_block(if_stmt)) 1952 return nir_if_first_else_block(if_stmt); 1953 1954 assert(block == nir_if_last_else_block(if_stmt)); 1955 } 1956 FALLTHROUGH; 1957 1958 case nir_cf_node_loop: 1959 return nir_cf_node_as_block(nir_cf_node_next(parent)); 1960 1961 case nir_cf_node_function: 1962 return NULL; 1963 1964 default: 1965 unreachable("unknown cf node type"); 1966 } 1967} 1968 1969nir_block * 1970nir_block_cf_tree_prev(nir_block *block) 1971{ 1972 if (block == NULL) { 1973 /* do this for consistency with nir_block_cf_tree_next() */ 1974 return NULL; 1975 } 1976 1977 assert(nir_cf_node_get_function(&block->cf_node)->structured); 1978 1979 nir_cf_node *cf_prev = nir_cf_node_prev(&block->cf_node); 1980 if (cf_prev) 1981 return nir_cf_node_cf_tree_last(cf_prev); 1982 1983 nir_cf_node *parent = block->cf_node.parent; 1984 1985 switch (parent->type) { 1986 case nir_cf_node_if: { 1987 /* Are we at the beginning of the else? Go to the end of the if */ 1988 nir_if *if_stmt = nir_cf_node_as_if(parent); 1989 if (block == nir_if_first_else_block(if_stmt)) 1990 return nir_if_last_then_block(if_stmt); 1991 1992 assert(block == nir_if_first_then_block(if_stmt)); 1993 } 1994 FALLTHROUGH; 1995 1996 case nir_cf_node_loop: 1997 return nir_cf_node_as_block(nir_cf_node_prev(parent)); 1998 1999 case nir_cf_node_function: 2000 return NULL; 2001 2002 default: 2003 unreachable("unknown cf node type"); 2004 } 2005} 2006 2007nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node) 2008{ 2009 switch (node->type) { 2010 case nir_cf_node_function: { 2011 nir_function_impl *impl = nir_cf_node_as_function(node); 2012 return nir_start_block(impl); 2013 } 2014 2015 case nir_cf_node_if: { 2016 nir_if *if_stmt = nir_cf_node_as_if(node); 2017 return nir_if_first_then_block(if_stmt); 2018 } 2019 2020 case nir_cf_node_loop: { 2021 nir_loop *loop = nir_cf_node_as_loop(node); 2022 return nir_loop_first_block(loop); 2023 } 2024 2025 case nir_cf_node_block: { 2026 return nir_cf_node_as_block(node); 2027 } 2028 2029 default: 2030 unreachable("unknown node type"); 2031 } 2032} 2033 2034nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node) 2035{ 2036 switch (node->type) { 2037 case nir_cf_node_function: { 2038 nir_function_impl *impl = nir_cf_node_as_function(node); 2039 return nir_impl_last_block(impl); 2040 } 2041 2042 case nir_cf_node_if: { 2043 nir_if *if_stmt = nir_cf_node_as_if(node); 2044 return nir_if_last_else_block(if_stmt); 2045 } 2046 2047 case nir_cf_node_loop: { 2048 nir_loop *loop = nir_cf_node_as_loop(node); 2049 return nir_loop_last_block(loop); 2050 } 2051 2052 case nir_cf_node_block: { 2053 return nir_cf_node_as_block(node); 2054 } 2055 2056 default: 2057 unreachable("unknown node type"); 2058 } 2059} 2060 2061nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node) 2062{ 2063 if (node->type == nir_cf_node_block) 2064 return nir_block_cf_tree_next(nir_cf_node_as_block(node)); 2065 else if (node->type == nir_cf_node_function) 2066 return NULL; 2067 else 2068 return nir_cf_node_as_block(nir_cf_node_next(node)); 2069} 2070 2071nir_if * 2072nir_block_get_following_if(nir_block *block) 2073{ 2074 if (exec_node_is_tail_sentinel(&block->cf_node.node)) 2075 return NULL; 2076 2077 if (nir_cf_node_is_last(&block->cf_node)) 2078 return NULL; 2079 2080 nir_cf_node *next_node = nir_cf_node_next(&block->cf_node); 2081 2082 if (next_node->type != nir_cf_node_if) 2083 return NULL; 2084 2085 return nir_cf_node_as_if(next_node); 2086} 2087 2088nir_loop * 2089nir_block_get_following_loop(nir_block *block) 2090{ 2091 if (exec_node_is_tail_sentinel(&block->cf_node.node)) 2092 return NULL; 2093 2094 if (nir_cf_node_is_last(&block->cf_node)) 2095 return NULL; 2096 2097 nir_cf_node *next_node = nir_cf_node_next(&block->cf_node); 2098 2099 if (next_node->type != nir_cf_node_loop) 2100 return NULL; 2101 2102 return nir_cf_node_as_loop(next_node); 2103} 2104 2105static int 2106compare_block_index(const void *p1, const void *p2) 2107{ 2108 const nir_block *block1 = *((const nir_block **) p1); 2109 const nir_block *block2 = *((const nir_block **) p2); 2110 2111 return (int) block1->index - (int) block2->index; 2112} 2113 2114nir_block ** 2115nir_block_get_predecessors_sorted(const nir_block *block, void *mem_ctx) 2116{ 2117 nir_block **preds = 2118 ralloc_array(mem_ctx, nir_block *, block->predecessors->entries); 2119 2120 unsigned i = 0; 2121 set_foreach(block->predecessors, entry) 2122 preds[i++] = (nir_block *) entry->key; 2123 assert(i == block->predecessors->entries); 2124 2125 qsort(preds, block->predecessors->entries, sizeof(nir_block *), 2126 compare_block_index); 2127 2128 return preds; 2129} 2130 2131void 2132nir_index_blocks(nir_function_impl *impl) 2133{ 2134 unsigned index = 0; 2135 2136 if (impl->valid_metadata & nir_metadata_block_index) 2137 return; 2138 2139 nir_foreach_block_unstructured(block, impl) { 2140 block->index = index++; 2141 } 2142 2143 /* The end_block isn't really part of the program, which is why its index 2144 * is >= num_blocks. 2145 */ 2146 impl->num_blocks = impl->end_block->index = index; 2147} 2148 2149static bool 2150index_ssa_def_cb(nir_ssa_def *def, void *state) 2151{ 2152 unsigned *index = (unsigned *) state; 2153 def->index = (*index)++; 2154 2155 return true; 2156} 2157 2158/** 2159 * The indices are applied top-to-bottom which has the very nice property 2160 * that, if A dominates B, then A->index <= B->index. 2161 */ 2162void 2163nir_index_ssa_defs(nir_function_impl *impl) 2164{ 2165 unsigned index = 0; 2166 2167 impl->valid_metadata &= ~nir_metadata_live_ssa_defs; 2168 2169 nir_foreach_block_unstructured(block, impl) { 2170 nir_foreach_instr(instr, block) 2171 nir_foreach_ssa_def(instr, index_ssa_def_cb, &index); 2172 } 2173 2174 impl->ssa_alloc = index; 2175} 2176 2177/** 2178 * The indices are applied top-to-bottom which has the very nice property 2179 * that, if A dominates B, then A->index <= B->index. 2180 */ 2181unsigned 2182nir_index_instrs(nir_function_impl *impl) 2183{ 2184 unsigned index = 0; 2185 2186 nir_foreach_block(block, impl) { 2187 block->start_ip = index++; 2188 2189 nir_foreach_instr(instr, block) 2190 instr->index = index++; 2191 2192 block->end_ip = index++; 2193 } 2194 2195 return index; 2196} 2197 2198unsigned 2199nir_shader_index_vars(nir_shader *shader, nir_variable_mode modes) 2200{ 2201 unsigned count = 0; 2202 nir_foreach_variable_with_modes(var, shader, modes) 2203 var->index = count++; 2204 return count; 2205} 2206 2207unsigned 2208nir_function_impl_index_vars(nir_function_impl *impl) 2209{ 2210 unsigned count = 0; 2211 nir_foreach_function_temp_variable(var, impl) 2212 var->index = count++; 2213 return count; 2214} 2215 2216static nir_instr * 2217cursor_next_instr(nir_cursor cursor) 2218{ 2219 switch (cursor.option) { 2220 case nir_cursor_before_block: 2221 for (nir_block *block = cursor.block; block; 2222 block = nir_block_cf_tree_next(block)) { 2223 nir_instr *instr = nir_block_first_instr(block); 2224 if (instr) 2225 return instr; 2226 } 2227 return NULL; 2228 2229 case nir_cursor_after_block: 2230 cursor.block = nir_block_cf_tree_next(cursor.block); 2231 if (cursor.block == NULL) 2232 return NULL; 2233 2234 cursor.option = nir_cursor_before_block; 2235 return cursor_next_instr(cursor); 2236 2237 case nir_cursor_before_instr: 2238 return cursor.instr; 2239 2240 case nir_cursor_after_instr: 2241 if (nir_instr_next(cursor.instr)) 2242 return nir_instr_next(cursor.instr); 2243 2244 cursor.option = nir_cursor_after_block; 2245 cursor.block = cursor.instr->block; 2246 return cursor_next_instr(cursor); 2247 } 2248 2249 unreachable("Inavlid cursor option"); 2250} 2251 2252ASSERTED static bool 2253dest_is_ssa(nir_dest *dest, void *_state) 2254{ 2255 (void) _state; 2256 return dest->is_ssa; 2257} 2258 2259bool 2260nir_function_impl_lower_instructions(nir_function_impl *impl, 2261 nir_instr_filter_cb filter, 2262 nir_lower_instr_cb lower, 2263 void *cb_data) 2264{ 2265 nir_builder b; 2266 nir_builder_init(&b, impl); 2267 2268 nir_metadata preserved = nir_metadata_block_index | 2269 nir_metadata_dominance; 2270 2271 bool progress = false; 2272 nir_cursor iter = nir_before_cf_list(&impl->body); 2273 nir_instr *instr; 2274 while ((instr = cursor_next_instr(iter)) != NULL) { 2275 if (filter && !filter(instr, cb_data)) { 2276 iter = nir_after_instr(instr); 2277 continue; 2278 } 2279 2280 assert(nir_foreach_dest(instr, dest_is_ssa, NULL)); 2281 nir_ssa_def *old_def = nir_instr_ssa_def(instr); 2282 struct list_head old_uses, old_if_uses; 2283 if (old_def != NULL) { 2284 /* We're about to ask the callback to generate a replacement for instr. 2285 * Save off the uses from instr's SSA def so we know what uses to 2286 * rewrite later. If we use nir_ssa_def_rewrite_uses, it fails in the 2287 * case where the generated replacement code uses the result of instr 2288 * itself. If we use nir_ssa_def_rewrite_uses_after (which is the 2289 * normal solution to this problem), it doesn't work well if control- 2290 * flow is inserted as part of the replacement, doesn't handle cases 2291 * where the replacement is something consumed by instr, and suffers 2292 * from performance issues. This is the only way to 100% guarantee 2293 * that we rewrite the correct set efficiently. 2294 */ 2295 2296 list_replace(&old_def->uses, &old_uses); 2297 list_inithead(&old_def->uses); 2298 list_replace(&old_def->if_uses, &old_if_uses); 2299 list_inithead(&old_def->if_uses); 2300 } 2301 2302 b.cursor = nir_after_instr(instr); 2303 nir_ssa_def *new_def = lower(&b, instr, cb_data); 2304 if (new_def && new_def != NIR_LOWER_INSTR_PROGRESS && 2305 new_def != NIR_LOWER_INSTR_PROGRESS_REPLACE) { 2306 assert(old_def != NULL); 2307 if (new_def->parent_instr->block != instr->block) 2308 preserved = nir_metadata_none; 2309 2310 nir_src new_src = nir_src_for_ssa(new_def); 2311 list_for_each_entry_safe(nir_src, use_src, &old_uses, use_link) 2312 nir_instr_rewrite_src(use_src->parent_instr, use_src, new_src); 2313 2314 list_for_each_entry_safe(nir_src, use_src, &old_if_uses, use_link) 2315 nir_if_rewrite_condition(use_src->parent_if, new_src); 2316 2317 if (nir_ssa_def_is_unused(old_def)) { 2318 iter = nir_instr_free_and_dce(instr); 2319 } else { 2320 iter = nir_after_instr(instr); 2321 } 2322 progress = true; 2323 } else { 2324 /* We didn't end up lowering after all. Put the uses back */ 2325 if (old_def) { 2326 list_replace(&old_uses, &old_def->uses); 2327 list_replace(&old_if_uses, &old_def->if_uses); 2328 } 2329 if (new_def == NIR_LOWER_INSTR_PROGRESS_REPLACE) { 2330 /* Only instructions without a return value can be removed like this */ 2331 assert(!old_def); 2332 iter = nir_instr_free_and_dce(instr); 2333 progress = true; 2334 } else 2335 iter = nir_after_instr(instr); 2336 2337 if (new_def == NIR_LOWER_INSTR_PROGRESS) 2338 progress = true; 2339 } 2340 } 2341 2342 if (progress) { 2343 nir_metadata_preserve(impl, preserved); 2344 } else { 2345 nir_metadata_preserve(impl, nir_metadata_all); 2346 } 2347 2348 return progress; 2349} 2350 2351bool 2352nir_shader_lower_instructions(nir_shader *shader, 2353 nir_instr_filter_cb filter, 2354 nir_lower_instr_cb lower, 2355 void *cb_data) 2356{ 2357 bool progress = false; 2358 2359 nir_foreach_function(function, shader) { 2360 if (function->impl && 2361 nir_function_impl_lower_instructions(function->impl, 2362 filter, lower, cb_data)) 2363 progress = true; 2364 } 2365 2366 return progress; 2367} 2368 2369/** 2370 * Returns true if the shader supports quad-based implicit derivatives on 2371 * texture sampling. 2372 */ 2373bool nir_shader_supports_implicit_lod(nir_shader *shader) 2374{ 2375 return (shader->info.stage == MESA_SHADER_FRAGMENT || 2376 (shader->info.stage == MESA_SHADER_COMPUTE && 2377 shader->info.cs.derivative_group != DERIVATIVE_GROUP_NONE)); 2378} 2379 2380nir_intrinsic_op 2381nir_intrinsic_from_system_value(gl_system_value val) 2382{ 2383 switch (val) { 2384 case SYSTEM_VALUE_VERTEX_ID: 2385 return nir_intrinsic_load_vertex_id; 2386 case SYSTEM_VALUE_INSTANCE_ID: 2387 return nir_intrinsic_load_instance_id; 2388 case SYSTEM_VALUE_DRAW_ID: 2389 return nir_intrinsic_load_draw_id; 2390 case SYSTEM_VALUE_BASE_INSTANCE: 2391 return nir_intrinsic_load_base_instance; 2392 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE: 2393 return nir_intrinsic_load_vertex_id_zero_base; 2394 case SYSTEM_VALUE_IS_INDEXED_DRAW: 2395 return nir_intrinsic_load_is_indexed_draw; 2396 case SYSTEM_VALUE_FIRST_VERTEX: 2397 return nir_intrinsic_load_first_vertex; 2398 case SYSTEM_VALUE_BASE_VERTEX: 2399 return nir_intrinsic_load_base_vertex; 2400 case SYSTEM_VALUE_INVOCATION_ID: 2401 return nir_intrinsic_load_invocation_id; 2402 case SYSTEM_VALUE_FRAG_COORD: 2403 return nir_intrinsic_load_frag_coord; 2404 case SYSTEM_VALUE_POINT_COORD: 2405 return nir_intrinsic_load_point_coord; 2406 case SYSTEM_VALUE_LINE_COORD: 2407 return nir_intrinsic_load_line_coord; 2408 case SYSTEM_VALUE_FRONT_FACE: 2409 return nir_intrinsic_load_front_face; 2410 case SYSTEM_VALUE_SAMPLE_ID: 2411 return nir_intrinsic_load_sample_id; 2412 case SYSTEM_VALUE_SAMPLE_POS: 2413 return nir_intrinsic_load_sample_pos; 2414 case SYSTEM_VALUE_SAMPLE_POS_OR_CENTER: 2415 return nir_intrinsic_load_sample_pos_or_center; 2416 case SYSTEM_VALUE_SAMPLE_MASK_IN: 2417 return nir_intrinsic_load_sample_mask_in; 2418 case SYSTEM_VALUE_LOCAL_INVOCATION_ID: 2419 return nir_intrinsic_load_local_invocation_id; 2420 case SYSTEM_VALUE_LOCAL_INVOCATION_INDEX: 2421 return nir_intrinsic_load_local_invocation_index; 2422 case SYSTEM_VALUE_WORKGROUP_ID: 2423 return nir_intrinsic_load_workgroup_id; 2424 case SYSTEM_VALUE_WORKGROUP_INDEX: 2425 return nir_intrinsic_load_workgroup_index; 2426 case SYSTEM_VALUE_NUM_WORKGROUPS: 2427 return nir_intrinsic_load_num_workgroups; 2428 case SYSTEM_VALUE_PRIMITIVE_ID: 2429 return nir_intrinsic_load_primitive_id; 2430 case SYSTEM_VALUE_TESS_COORD: 2431 return nir_intrinsic_load_tess_coord; 2432 case SYSTEM_VALUE_TESS_LEVEL_OUTER: 2433 return nir_intrinsic_load_tess_level_outer; 2434 case SYSTEM_VALUE_TESS_LEVEL_INNER: 2435 return nir_intrinsic_load_tess_level_inner; 2436 case SYSTEM_VALUE_TESS_LEVEL_OUTER_DEFAULT: 2437 return nir_intrinsic_load_tess_level_outer_default; 2438 case SYSTEM_VALUE_TESS_LEVEL_INNER_DEFAULT: 2439 return nir_intrinsic_load_tess_level_inner_default; 2440 case SYSTEM_VALUE_VERTICES_IN: 2441 return nir_intrinsic_load_patch_vertices_in; 2442 case SYSTEM_VALUE_HELPER_INVOCATION: 2443 return nir_intrinsic_load_helper_invocation; 2444 case SYSTEM_VALUE_COLOR0: 2445 return nir_intrinsic_load_color0; 2446 case SYSTEM_VALUE_COLOR1: 2447 return nir_intrinsic_load_color1; 2448 case SYSTEM_VALUE_VIEW_INDEX: 2449 return nir_intrinsic_load_view_index; 2450 case SYSTEM_VALUE_SUBGROUP_SIZE: 2451 return nir_intrinsic_load_subgroup_size; 2452 case SYSTEM_VALUE_SUBGROUP_INVOCATION: 2453 return nir_intrinsic_load_subgroup_invocation; 2454 case SYSTEM_VALUE_SUBGROUP_EQ_MASK: 2455 return nir_intrinsic_load_subgroup_eq_mask; 2456 case SYSTEM_VALUE_SUBGROUP_GE_MASK: 2457 return nir_intrinsic_load_subgroup_ge_mask; 2458 case SYSTEM_VALUE_SUBGROUP_GT_MASK: 2459 return nir_intrinsic_load_subgroup_gt_mask; 2460 case SYSTEM_VALUE_SUBGROUP_LE_MASK: 2461 return nir_intrinsic_load_subgroup_le_mask; 2462 case SYSTEM_VALUE_SUBGROUP_LT_MASK: 2463 return nir_intrinsic_load_subgroup_lt_mask; 2464 case SYSTEM_VALUE_NUM_SUBGROUPS: 2465 return nir_intrinsic_load_num_subgroups; 2466 case SYSTEM_VALUE_SUBGROUP_ID: 2467 return nir_intrinsic_load_subgroup_id; 2468 case SYSTEM_VALUE_WORKGROUP_SIZE: 2469 return nir_intrinsic_load_workgroup_size; 2470 case SYSTEM_VALUE_GLOBAL_INVOCATION_ID: 2471 return nir_intrinsic_load_global_invocation_id; 2472 case SYSTEM_VALUE_BASE_GLOBAL_INVOCATION_ID: 2473 return nir_intrinsic_load_base_global_invocation_id; 2474 case SYSTEM_VALUE_GLOBAL_INVOCATION_INDEX: 2475 return nir_intrinsic_load_global_invocation_index; 2476 case SYSTEM_VALUE_WORK_DIM: 2477 return nir_intrinsic_load_work_dim; 2478 case SYSTEM_VALUE_USER_DATA_AMD: 2479 return nir_intrinsic_load_user_data_amd; 2480 case SYSTEM_VALUE_RAY_LAUNCH_ID: 2481 return nir_intrinsic_load_ray_launch_id; 2482 case SYSTEM_VALUE_RAY_LAUNCH_SIZE: 2483 return nir_intrinsic_load_ray_launch_size; 2484 case SYSTEM_VALUE_RAY_LAUNCH_SIZE_ADDR_AMD: 2485 return nir_intrinsic_load_ray_launch_size_addr_amd; 2486 case SYSTEM_VALUE_RAY_WORLD_ORIGIN: 2487 return nir_intrinsic_load_ray_world_origin; 2488 case SYSTEM_VALUE_RAY_WORLD_DIRECTION: 2489 return nir_intrinsic_load_ray_world_direction; 2490 case SYSTEM_VALUE_RAY_OBJECT_ORIGIN: 2491 return nir_intrinsic_load_ray_object_origin; 2492 case SYSTEM_VALUE_RAY_OBJECT_DIRECTION: 2493 return nir_intrinsic_load_ray_object_direction; 2494 case SYSTEM_VALUE_RAY_T_MIN: 2495 return nir_intrinsic_load_ray_t_min; 2496 case SYSTEM_VALUE_RAY_T_MAX: 2497 return nir_intrinsic_load_ray_t_max; 2498 case SYSTEM_VALUE_RAY_OBJECT_TO_WORLD: 2499 return nir_intrinsic_load_ray_object_to_world; 2500 case SYSTEM_VALUE_RAY_WORLD_TO_OBJECT: 2501 return nir_intrinsic_load_ray_world_to_object; 2502 case SYSTEM_VALUE_RAY_HIT_KIND: 2503 return nir_intrinsic_load_ray_hit_kind; 2504 case SYSTEM_VALUE_RAY_FLAGS: 2505 return nir_intrinsic_load_ray_flags; 2506 case SYSTEM_VALUE_RAY_GEOMETRY_INDEX: 2507 return nir_intrinsic_load_ray_geometry_index; 2508 case SYSTEM_VALUE_RAY_INSTANCE_CUSTOM_INDEX: 2509 return nir_intrinsic_load_ray_instance_custom_index; 2510 case SYSTEM_VALUE_CULL_MASK: 2511 return nir_intrinsic_load_cull_mask; 2512 case SYSTEM_VALUE_MESH_VIEW_COUNT: 2513 return nir_intrinsic_load_mesh_view_count; 2514 case SYSTEM_VALUE_FRAG_SHADING_RATE: 2515 return nir_intrinsic_load_frag_shading_rate; 2516 default: 2517 unreachable("system value does not directly correspond to intrinsic"); 2518 } 2519} 2520 2521gl_system_value 2522nir_system_value_from_intrinsic(nir_intrinsic_op intrin) 2523{ 2524 switch (intrin) { 2525 case nir_intrinsic_load_vertex_id: 2526 return SYSTEM_VALUE_VERTEX_ID; 2527 case nir_intrinsic_load_instance_id: 2528 return SYSTEM_VALUE_INSTANCE_ID; 2529 case nir_intrinsic_load_draw_id: 2530 return SYSTEM_VALUE_DRAW_ID; 2531 case nir_intrinsic_load_base_instance: 2532 return SYSTEM_VALUE_BASE_INSTANCE; 2533 case nir_intrinsic_load_vertex_id_zero_base: 2534 return SYSTEM_VALUE_VERTEX_ID_ZERO_BASE; 2535 case nir_intrinsic_load_first_vertex: 2536 return SYSTEM_VALUE_FIRST_VERTEX; 2537 case nir_intrinsic_load_is_indexed_draw: 2538 return SYSTEM_VALUE_IS_INDEXED_DRAW; 2539 case nir_intrinsic_load_base_vertex: 2540 return SYSTEM_VALUE_BASE_VERTEX; 2541 case nir_intrinsic_load_invocation_id: 2542 return SYSTEM_VALUE_INVOCATION_ID; 2543 case nir_intrinsic_load_frag_coord: 2544 return SYSTEM_VALUE_FRAG_COORD; 2545 case nir_intrinsic_load_point_coord: 2546 return SYSTEM_VALUE_POINT_COORD; 2547 case nir_intrinsic_load_line_coord: 2548 return SYSTEM_VALUE_LINE_COORD; 2549 case nir_intrinsic_load_front_face: 2550 return SYSTEM_VALUE_FRONT_FACE; 2551 case nir_intrinsic_load_sample_id: 2552 return SYSTEM_VALUE_SAMPLE_ID; 2553 case nir_intrinsic_load_sample_pos: 2554 return SYSTEM_VALUE_SAMPLE_POS; 2555 case nir_intrinsic_load_sample_pos_or_center: 2556 return SYSTEM_VALUE_SAMPLE_POS_OR_CENTER; 2557 case nir_intrinsic_load_sample_mask_in: 2558 return SYSTEM_VALUE_SAMPLE_MASK_IN; 2559 case nir_intrinsic_load_local_invocation_id: 2560 return SYSTEM_VALUE_LOCAL_INVOCATION_ID; 2561 case nir_intrinsic_load_local_invocation_index: 2562 return SYSTEM_VALUE_LOCAL_INVOCATION_INDEX; 2563 case nir_intrinsic_load_num_workgroups: 2564 return SYSTEM_VALUE_NUM_WORKGROUPS; 2565 case nir_intrinsic_load_workgroup_id: 2566 return SYSTEM_VALUE_WORKGROUP_ID; 2567 case nir_intrinsic_load_workgroup_index: 2568 return SYSTEM_VALUE_WORKGROUP_INDEX; 2569 case nir_intrinsic_load_primitive_id: 2570 return SYSTEM_VALUE_PRIMITIVE_ID; 2571 case nir_intrinsic_load_tess_coord: 2572 return SYSTEM_VALUE_TESS_COORD; 2573 case nir_intrinsic_load_tess_level_outer: 2574 return SYSTEM_VALUE_TESS_LEVEL_OUTER; 2575 case nir_intrinsic_load_tess_level_inner: 2576 return SYSTEM_VALUE_TESS_LEVEL_INNER; 2577 case nir_intrinsic_load_tess_level_outer_default: 2578 return SYSTEM_VALUE_TESS_LEVEL_OUTER_DEFAULT; 2579 case nir_intrinsic_load_tess_level_inner_default: 2580 return SYSTEM_VALUE_TESS_LEVEL_INNER_DEFAULT; 2581 case nir_intrinsic_load_patch_vertices_in: 2582 return SYSTEM_VALUE_VERTICES_IN; 2583 case nir_intrinsic_load_helper_invocation: 2584 return SYSTEM_VALUE_HELPER_INVOCATION; 2585 case nir_intrinsic_load_color0: 2586 return SYSTEM_VALUE_COLOR0; 2587 case nir_intrinsic_load_color1: 2588 return SYSTEM_VALUE_COLOR1; 2589 case nir_intrinsic_load_view_index: 2590 return SYSTEM_VALUE_VIEW_INDEX; 2591 case nir_intrinsic_load_subgroup_size: 2592 return SYSTEM_VALUE_SUBGROUP_SIZE; 2593 case nir_intrinsic_load_subgroup_invocation: 2594 return SYSTEM_VALUE_SUBGROUP_INVOCATION; 2595 case nir_intrinsic_load_subgroup_eq_mask: 2596 return SYSTEM_VALUE_SUBGROUP_EQ_MASK; 2597 case nir_intrinsic_load_subgroup_ge_mask: 2598 return SYSTEM_VALUE_SUBGROUP_GE_MASK; 2599 case nir_intrinsic_load_subgroup_gt_mask: 2600 return SYSTEM_VALUE_SUBGROUP_GT_MASK; 2601 case nir_intrinsic_load_subgroup_le_mask: 2602 return SYSTEM_VALUE_SUBGROUP_LE_MASK; 2603 case nir_intrinsic_load_subgroup_lt_mask: 2604 return SYSTEM_VALUE_SUBGROUP_LT_MASK; 2605 case nir_intrinsic_load_num_subgroups: 2606 return SYSTEM_VALUE_NUM_SUBGROUPS; 2607 case nir_intrinsic_load_subgroup_id: 2608 return SYSTEM_VALUE_SUBGROUP_ID; 2609 case nir_intrinsic_load_workgroup_size: 2610 return SYSTEM_VALUE_WORKGROUP_SIZE; 2611 case nir_intrinsic_load_global_invocation_id: 2612 return SYSTEM_VALUE_GLOBAL_INVOCATION_ID; 2613 case nir_intrinsic_load_base_global_invocation_id: 2614 return SYSTEM_VALUE_BASE_GLOBAL_INVOCATION_ID; 2615 case nir_intrinsic_load_global_invocation_index: 2616 return SYSTEM_VALUE_GLOBAL_INVOCATION_INDEX; 2617 case nir_intrinsic_load_work_dim: 2618 return SYSTEM_VALUE_WORK_DIM; 2619 case nir_intrinsic_load_user_data_amd: 2620 return SYSTEM_VALUE_USER_DATA_AMD; 2621 case nir_intrinsic_load_barycentric_model: 2622 return SYSTEM_VALUE_BARYCENTRIC_PULL_MODEL; 2623 case nir_intrinsic_load_gs_header_ir3: 2624 return SYSTEM_VALUE_GS_HEADER_IR3; 2625 case nir_intrinsic_load_tcs_header_ir3: 2626 return SYSTEM_VALUE_TCS_HEADER_IR3; 2627 case nir_intrinsic_load_ray_launch_id: 2628 return SYSTEM_VALUE_RAY_LAUNCH_ID; 2629 case nir_intrinsic_load_ray_launch_size: 2630 return SYSTEM_VALUE_RAY_LAUNCH_SIZE; 2631 case nir_intrinsic_load_ray_launch_size_addr_amd: 2632 return SYSTEM_VALUE_RAY_LAUNCH_SIZE_ADDR_AMD; 2633 case nir_intrinsic_load_ray_world_origin: 2634 return SYSTEM_VALUE_RAY_WORLD_ORIGIN; 2635 case nir_intrinsic_load_ray_world_direction: 2636 return SYSTEM_VALUE_RAY_WORLD_DIRECTION; 2637 case nir_intrinsic_load_ray_object_origin: 2638 return SYSTEM_VALUE_RAY_OBJECT_ORIGIN; 2639 case nir_intrinsic_load_ray_object_direction: 2640 return SYSTEM_VALUE_RAY_OBJECT_DIRECTION; 2641 case nir_intrinsic_load_ray_t_min: 2642 return SYSTEM_VALUE_RAY_T_MIN; 2643 case nir_intrinsic_load_ray_t_max: 2644 return SYSTEM_VALUE_RAY_T_MAX; 2645 case nir_intrinsic_load_ray_object_to_world: 2646 return SYSTEM_VALUE_RAY_OBJECT_TO_WORLD; 2647 case nir_intrinsic_load_ray_world_to_object: 2648 return SYSTEM_VALUE_RAY_WORLD_TO_OBJECT; 2649 case nir_intrinsic_load_ray_hit_kind: 2650 return SYSTEM_VALUE_RAY_HIT_KIND; 2651 case nir_intrinsic_load_ray_flags: 2652 return SYSTEM_VALUE_RAY_FLAGS; 2653 case nir_intrinsic_load_ray_geometry_index: 2654 return SYSTEM_VALUE_RAY_GEOMETRY_INDEX; 2655 case nir_intrinsic_load_ray_instance_custom_index: 2656 return SYSTEM_VALUE_RAY_INSTANCE_CUSTOM_INDEX; 2657 case nir_intrinsic_load_cull_mask: 2658 return SYSTEM_VALUE_CULL_MASK; 2659 case nir_intrinsic_load_frag_shading_rate: 2660 return SYSTEM_VALUE_FRAG_SHADING_RATE; 2661 case nir_intrinsic_load_mesh_view_count: 2662 return SYSTEM_VALUE_MESH_VIEW_COUNT; 2663 default: 2664 unreachable("intrinsic doesn't produce a system value"); 2665 } 2666} 2667 2668/* OpenGL utility method that remaps the location attributes if they are 2669 * doubles. Not needed for vulkan due the differences on the input location 2670 * count for doubles on vulkan vs OpenGL 2671 * 2672 * The bitfield returned in dual_slot is one bit for each double input slot in 2673 * the original OpenGL single-slot input numbering. The mapping from old 2674 * locations to new locations is as follows: 2675 * 2676 * new_loc = loc + util_bitcount(dual_slot & BITFIELD64_MASK(loc)) 2677 */ 2678void 2679nir_remap_dual_slot_attributes(nir_shader *shader, uint64_t *dual_slot) 2680{ 2681 assert(shader->info.stage == MESA_SHADER_VERTEX); 2682 2683 *dual_slot = 0; 2684 nir_foreach_shader_in_variable(var, shader) { 2685 if (glsl_type_is_dual_slot(glsl_without_array(var->type))) { 2686 unsigned slots = glsl_count_attribute_slots(var->type, true); 2687 *dual_slot |= BITFIELD64_MASK(slots) << var->data.location; 2688 } 2689 } 2690 2691 nir_foreach_shader_in_variable(var, shader) { 2692 var->data.location += 2693 util_bitcount64(*dual_slot & BITFIELD64_MASK(var->data.location)); 2694 } 2695} 2696 2697/* Returns an attribute mask that has been re-compacted using the given 2698 * dual_slot mask. 2699 */ 2700uint64_t 2701nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot) 2702{ 2703 while (dual_slot) { 2704 unsigned loc = u_bit_scan64(&dual_slot); 2705 /* mask of all bits up to and including loc */ 2706 uint64_t mask = BITFIELD64_MASK(loc + 1); 2707 attribs = (attribs & mask) | ((attribs & ~mask) >> 1); 2708 } 2709 return attribs; 2710} 2711 2712void 2713nir_rewrite_image_intrinsic(nir_intrinsic_instr *intrin, nir_ssa_def *src, 2714 bool bindless) 2715{ 2716 enum gl_access_qualifier access = nir_intrinsic_access(intrin); 2717 2718 /* Image intrinsics only have one of these */ 2719 assert(!nir_intrinsic_has_src_type(intrin) || 2720 !nir_intrinsic_has_dest_type(intrin)); 2721 2722 nir_alu_type data_type = nir_type_invalid; 2723 if (nir_intrinsic_has_src_type(intrin)) 2724 data_type = nir_intrinsic_src_type(intrin); 2725 if (nir_intrinsic_has_dest_type(intrin)) 2726 data_type = nir_intrinsic_dest_type(intrin); 2727 2728 switch (intrin->intrinsic) { 2729#define CASE(op) \ 2730 case nir_intrinsic_image_deref_##op: \ 2731 intrin->intrinsic = bindless ? nir_intrinsic_bindless_image_##op \ 2732 : nir_intrinsic_image_##op; \ 2733 break; 2734 CASE(load) 2735 CASE(sparse_load) 2736 CASE(store) 2737 CASE(atomic_add) 2738 CASE(atomic_imin) 2739 CASE(atomic_umin) 2740 CASE(atomic_imax) 2741 CASE(atomic_umax) 2742 CASE(atomic_and) 2743 CASE(atomic_or) 2744 CASE(atomic_xor) 2745 CASE(atomic_exchange) 2746 CASE(atomic_comp_swap) 2747 CASE(atomic_fadd) 2748 CASE(atomic_fmin) 2749 CASE(atomic_fmax) 2750 CASE(atomic_inc_wrap) 2751 CASE(atomic_dec_wrap) 2752 CASE(size) 2753 CASE(samples) 2754 CASE(load_raw_intel) 2755 CASE(store_raw_intel) 2756#undef CASE 2757 default: 2758 unreachable("Unhanded image intrinsic"); 2759 } 2760 2761 nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]); 2762 nir_variable *var = nir_deref_instr_get_variable(deref); 2763 2764 /* Only update the format if the intrinsic doesn't have one set */ 2765 if (nir_intrinsic_format(intrin) == PIPE_FORMAT_NONE) 2766 nir_intrinsic_set_format(intrin, var->data.image.format); 2767 2768 nir_intrinsic_set_access(intrin, access | var->data.access); 2769 if (nir_intrinsic_has_src_type(intrin)) 2770 nir_intrinsic_set_src_type(intrin, data_type); 2771 if (nir_intrinsic_has_dest_type(intrin)) 2772 nir_intrinsic_set_dest_type(intrin, data_type); 2773 2774 nir_instr_rewrite_src(&intrin->instr, &intrin->src[0], 2775 nir_src_for_ssa(src)); 2776} 2777 2778unsigned 2779nir_image_intrinsic_coord_components(const nir_intrinsic_instr *instr) 2780{ 2781 enum glsl_sampler_dim dim = nir_intrinsic_image_dim(instr); 2782 int coords = glsl_get_sampler_dim_coordinate_components(dim); 2783 if (dim == GLSL_SAMPLER_DIM_CUBE) 2784 return coords; 2785 else 2786 return coords + nir_intrinsic_image_array(instr); 2787} 2788 2789nir_src * 2790nir_get_shader_call_payload_src(nir_intrinsic_instr *call) 2791{ 2792 switch (call->intrinsic) { 2793 case nir_intrinsic_trace_ray: 2794 case nir_intrinsic_rt_trace_ray: 2795 return &call->src[10]; 2796 case nir_intrinsic_execute_callable: 2797 case nir_intrinsic_rt_execute_callable: 2798 return &call->src[1]; 2799 default: 2800 unreachable("Not a call intrinsic"); 2801 return NULL; 2802 } 2803} 2804 2805nir_binding nir_chase_binding(nir_src rsrc) 2806{ 2807 nir_binding res = {0}; 2808 if (rsrc.ssa->parent_instr->type == nir_instr_type_deref) { 2809 const struct glsl_type *type = glsl_without_array(nir_src_as_deref(rsrc)->type); 2810 bool is_image = glsl_type_is_image(type) || glsl_type_is_sampler(type); 2811 while (rsrc.ssa->parent_instr->type == nir_instr_type_deref) { 2812 nir_deref_instr *deref = nir_src_as_deref(rsrc); 2813 2814 if (deref->deref_type == nir_deref_type_var) { 2815 res.success = true; 2816 res.var = deref->var; 2817 res.desc_set = deref->var->data.descriptor_set; 2818 res.binding = deref->var->data.binding; 2819 return res; 2820 } else if (deref->deref_type == nir_deref_type_array && is_image) { 2821 if (res.num_indices == ARRAY_SIZE(res.indices)) 2822 return (nir_binding){0}; 2823 res.indices[res.num_indices++] = deref->arr.index; 2824 } 2825 2826 rsrc = deref->parent; 2827 } 2828 } 2829 2830 /* Skip copies and trimming. Trimming can appear as nir_op_mov instructions 2831 * when removing the offset from addresses. We also consider nir_op_is_vec() 2832 * instructions to skip trimming of vec2_index_32bit_offset addresses after 2833 * lowering ALU to scalar. 2834 */ 2835 while (true) { 2836 nir_alu_instr *alu = nir_src_as_alu_instr(rsrc); 2837 nir_intrinsic_instr *intrin = nir_src_as_intrinsic(rsrc); 2838 if (alu && alu->op == nir_op_mov) { 2839 for (unsigned i = 0; i < alu->dest.dest.ssa.num_components; i++) { 2840 if (alu->src[0].swizzle[i] != i) 2841 return (nir_binding){0}; 2842 } 2843 rsrc = alu->src[0].src; 2844 } else if (alu && nir_op_is_vec(alu->op)) { 2845 for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) { 2846 if (alu->src[i].swizzle[0] != i || alu->src[i].src.ssa != alu->src[0].src.ssa) 2847 return (nir_binding){0}; 2848 } 2849 rsrc = alu->src[0].src; 2850 } else if (intrin && intrin->intrinsic == nir_intrinsic_read_first_invocation) { 2851 /* The caller might want to be aware if only the first invocation of 2852 * the indices are used. 2853 */ 2854 res.read_first_invocation = true; 2855 rsrc = intrin->src[0]; 2856 } else { 2857 break; 2858 } 2859 } 2860 2861 if (nir_src_is_const(rsrc)) { 2862 /* GL binding model after deref lowering */ 2863 res.success = true; 2864 /* Can't use just nir_src_as_uint. Vulkan resource index produces a 2865 * vec2. Some drivers lower it to vec1 (to handle get_ssbo_size for 2866 * example) but others just keep it around as a vec2 (v3dv). 2867 */ 2868 res.binding = nir_src_comp_as_uint(rsrc, 0); 2869 return res; 2870 } 2871 2872 /* otherwise, must be Vulkan binding model after deref lowering or GL bindless */ 2873 2874 nir_intrinsic_instr *intrin = nir_src_as_intrinsic(rsrc); 2875 if (!intrin) 2876 return (nir_binding){0}; 2877 2878 /* skip load_vulkan_descriptor */ 2879 if (intrin->intrinsic == nir_intrinsic_load_vulkan_descriptor) { 2880 intrin = nir_src_as_intrinsic(intrin->src[0]); 2881 if (!intrin) 2882 return (nir_binding){0}; 2883 } 2884 2885 if (intrin->intrinsic != nir_intrinsic_vulkan_resource_index) 2886 return (nir_binding){0}; 2887 2888 assert(res.num_indices == 0); 2889 res.success = true; 2890 res.desc_set = nir_intrinsic_desc_set(intrin); 2891 res.binding = nir_intrinsic_binding(intrin); 2892 res.num_indices = 1; 2893 res.indices[0] = intrin->src[0]; 2894 return res; 2895} 2896 2897nir_variable *nir_get_binding_variable(nir_shader *shader, nir_binding binding) 2898{ 2899 nir_variable *binding_var = NULL; 2900 unsigned count = 0; 2901 2902 if (!binding.success) 2903 return NULL; 2904 2905 if (binding.var) 2906 return binding.var; 2907 2908 nir_foreach_variable_with_modes(var, shader, nir_var_mem_ubo | nir_var_mem_ssbo) { 2909 if (var->data.descriptor_set == binding.desc_set && var->data.binding == binding.binding) { 2910 binding_var = var; 2911 count++; 2912 } 2913 } 2914 2915 /* Be conservative if another variable is using the same binding/desc_set 2916 * because the access mask might be different and we can't get it reliably. 2917 */ 2918 if (count > 1) 2919 return NULL; 2920 2921 return binding_var; 2922} 2923 2924bool 2925nir_alu_instr_is_copy(nir_alu_instr *instr) 2926{ 2927 assert(instr->src[0].src.is_ssa); 2928 2929 if (instr->op == nir_op_mov) { 2930 return !instr->dest.saturate && 2931 !instr->src[0].abs && 2932 !instr->src[0].negate; 2933 } else if (nir_op_is_vec(instr->op)) { 2934 for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; i++) { 2935 if (instr->src[i].abs || instr->src[i].negate) 2936 return false; 2937 } 2938 return !instr->dest.saturate; 2939 } else { 2940 return false; 2941 } 2942} 2943 2944nir_ssa_scalar 2945nir_ssa_scalar_chase_movs(nir_ssa_scalar s) 2946{ 2947 while (nir_ssa_scalar_is_alu(s)) { 2948 nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr); 2949 if (!nir_alu_instr_is_copy(alu)) 2950 break; 2951 2952 if (alu->op == nir_op_mov) { 2953 s.def = alu->src[0].src.ssa; 2954 s.comp = alu->src[0].swizzle[s.comp]; 2955 } else { 2956 assert(nir_op_is_vec(alu->op)); 2957 s.def = alu->src[s.comp].src.ssa; 2958 s.comp = alu->src[s.comp].swizzle[0]; 2959 } 2960 } 2961 2962 return s; 2963} 2964 2965nir_alu_type 2966nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type) 2967{ 2968 switch (base_type) { 2969 case GLSL_TYPE_BOOL: 2970 return nir_type_bool1; 2971 break; 2972 case GLSL_TYPE_UINT: 2973 return nir_type_uint32; 2974 break; 2975 case GLSL_TYPE_INT: 2976 return nir_type_int32; 2977 break; 2978 case GLSL_TYPE_UINT16: 2979 return nir_type_uint16; 2980 break; 2981 case GLSL_TYPE_INT16: 2982 return nir_type_int16; 2983 break; 2984 case GLSL_TYPE_UINT8: 2985 return nir_type_uint8; 2986 case GLSL_TYPE_INT8: 2987 return nir_type_int8; 2988 case GLSL_TYPE_UINT64: 2989 return nir_type_uint64; 2990 break; 2991 case GLSL_TYPE_INT64: 2992 return nir_type_int64; 2993 break; 2994 case GLSL_TYPE_FLOAT: 2995 return nir_type_float32; 2996 break; 2997 case GLSL_TYPE_FLOAT16: 2998 return nir_type_float16; 2999 break; 3000 case GLSL_TYPE_DOUBLE: 3001 return nir_type_float64; 3002 break; 3003 3004 case GLSL_TYPE_SAMPLER: 3005 case GLSL_TYPE_TEXTURE: 3006 case GLSL_TYPE_IMAGE: 3007 case GLSL_TYPE_ATOMIC_UINT: 3008 case GLSL_TYPE_STRUCT: 3009 case GLSL_TYPE_INTERFACE: 3010 case GLSL_TYPE_ARRAY: 3011 case GLSL_TYPE_VOID: 3012 case GLSL_TYPE_SUBROUTINE: 3013 case GLSL_TYPE_FUNCTION: 3014 case GLSL_TYPE_ERROR: 3015 return nir_type_invalid; 3016 } 3017 3018 unreachable("unknown type"); 3019} 3020 3021enum glsl_base_type 3022nir_get_glsl_base_type_for_nir_type(nir_alu_type base_type) 3023{ 3024 switch (base_type) { 3025 case nir_type_bool1: 3026 return GLSL_TYPE_BOOL; 3027 case nir_type_uint32: 3028 return GLSL_TYPE_UINT; 3029 case nir_type_int32: 3030 return GLSL_TYPE_INT; 3031 case nir_type_uint16: 3032 return GLSL_TYPE_UINT16; 3033 case nir_type_int16: 3034 return GLSL_TYPE_INT16; 3035 case nir_type_uint8: 3036 return GLSL_TYPE_UINT8; 3037 case nir_type_int8: 3038 return GLSL_TYPE_INT8; 3039 case nir_type_uint64: 3040 return GLSL_TYPE_UINT64; 3041 case nir_type_int64: 3042 return GLSL_TYPE_INT64; 3043 case nir_type_float32: 3044 return GLSL_TYPE_FLOAT; 3045 case nir_type_float16: 3046 return GLSL_TYPE_FLOAT16; 3047 case nir_type_float64: 3048 return GLSL_TYPE_DOUBLE; 3049 3050 default: unreachable("Not a sized nir_alu_type"); 3051 } 3052} 3053 3054nir_op 3055nir_op_vec(unsigned components) 3056{ 3057 switch (components) { 3058 case 1: return nir_op_mov; 3059 case 2: return nir_op_vec2; 3060 case 3: return nir_op_vec3; 3061 case 4: return nir_op_vec4; 3062 case 5: return nir_op_vec5; 3063 case 8: return nir_op_vec8; 3064 case 16: return nir_op_vec16; 3065 default: unreachable("bad component count"); 3066 } 3067} 3068 3069bool 3070nir_op_is_vec(nir_op op) 3071{ 3072 switch (op) { 3073 case nir_op_mov: 3074 case nir_op_vec2: 3075 case nir_op_vec3: 3076 case nir_op_vec4: 3077 case nir_op_vec5: 3078 case nir_op_vec8: 3079 case nir_op_vec16: 3080 return true; 3081 default: 3082 return false; 3083 } 3084} 3085 3086bool 3087nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src, 3088 unsigned channel) 3089{ 3090 if (nir_op_infos[instr->op].input_sizes[src] > 0) 3091 return channel < nir_op_infos[instr->op].input_sizes[src]; 3092 3093 return (instr->dest.write_mask >> channel) & 1; 3094} 3095 3096nir_component_mask_t 3097nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src) 3098{ 3099 nir_component_mask_t read_mask = 0; 3100 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) { 3101 if (!nir_alu_instr_channel_used(instr, src, c)) 3102 continue; 3103 3104 read_mask |= (1 << instr->src[src].swizzle[c]); 3105 } 3106 return read_mask; 3107} 3108 3109unsigned 3110nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src) 3111{ 3112 if (nir_op_infos[instr->op].input_sizes[src] > 0) 3113 return nir_op_infos[instr->op].input_sizes[src]; 3114 3115 return nir_dest_num_components(instr->dest.dest); 3116} 3117 3118#define CASE_ALL_SIZES(op) \ 3119 case op: \ 3120 case op ## 8: \ 3121 case op ## 16: \ 3122 case op ## 32: \ 3123 3124bool 3125nir_alu_instr_is_comparison(const nir_alu_instr *instr) 3126{ 3127 switch (instr->op) { 3128 CASE_ALL_SIZES(nir_op_flt) 3129 CASE_ALL_SIZES(nir_op_fge) 3130 CASE_ALL_SIZES(nir_op_feq) 3131 CASE_ALL_SIZES(nir_op_fneu) 3132 CASE_ALL_SIZES(nir_op_ilt) 3133 CASE_ALL_SIZES(nir_op_ult) 3134 CASE_ALL_SIZES(nir_op_ige) 3135 CASE_ALL_SIZES(nir_op_uge) 3136 CASE_ALL_SIZES(nir_op_ieq) 3137 CASE_ALL_SIZES(nir_op_ine) 3138 case nir_op_i2b1: 3139 case nir_op_i2b8: 3140 case nir_op_i2b16: 3141 case nir_op_i2b32: 3142 case nir_op_f2b1: 3143 case nir_op_f2b8: 3144 case nir_op_f2b16: 3145 case nir_op_f2b32: 3146 case nir_op_inot: 3147 return true; 3148 default: 3149 return false; 3150 } 3151} 3152 3153#undef CASE_ALL_SIZES 3154 3155unsigned 3156nir_intrinsic_src_components(const nir_intrinsic_instr *intr, unsigned srcn) 3157{ 3158 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic]; 3159 assert(srcn < info->num_srcs); 3160 if (info->src_components[srcn] > 0) 3161 return info->src_components[srcn]; 3162 else if (info->src_components[srcn] == 0) 3163 return intr->num_components; 3164 else 3165 return nir_src_num_components(intr->src[srcn]); 3166} 3167 3168unsigned 3169nir_intrinsic_dest_components(nir_intrinsic_instr *intr) 3170{ 3171 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic]; 3172 if (!info->has_dest) 3173 return 0; 3174 else if (info->dest_components) 3175 return info->dest_components; 3176 else 3177 return intr->num_components; 3178} 3179 3180/** 3181 * Helper to copy const_index[] from src to dst, without assuming they 3182 * match in order. 3183 */ 3184void 3185nir_intrinsic_copy_const_indices(nir_intrinsic_instr *dst, nir_intrinsic_instr *src) 3186{ 3187 if (src->intrinsic == dst->intrinsic) { 3188 memcpy(dst->const_index, src->const_index, sizeof(dst->const_index)); 3189 return; 3190 } 3191 3192 const nir_intrinsic_info *src_info = &nir_intrinsic_infos[src->intrinsic]; 3193 const nir_intrinsic_info *dst_info = &nir_intrinsic_infos[dst->intrinsic]; 3194 3195 for (unsigned i = 0; i < NIR_INTRINSIC_NUM_INDEX_FLAGS; i++) { 3196 if (src_info->index_map[i] == 0) 3197 continue; 3198 3199 /* require that dst instruction also uses the same const_index[]: */ 3200 assert(dst_info->index_map[i] > 0); 3201 3202 dst->const_index[dst_info->index_map[i] - 1] = 3203 src->const_index[src_info->index_map[i] - 1]; 3204 } 3205} 3206 3207 3208bool 3209nir_tex_instr_need_sampler(const nir_tex_instr *instr) 3210{ 3211 switch (instr->op) { 3212 case nir_texop_txf: 3213 case nir_texop_txf_ms: 3214 case nir_texop_txs: 3215 case nir_texop_query_levels: 3216 case nir_texop_texture_samples: 3217 case nir_texop_samples_identical: 3218 return false; 3219 default: 3220 return true; 3221 } 3222} 3223 3224unsigned 3225nir_tex_instr_result_size(const nir_tex_instr *instr) 3226{ 3227 switch (instr->op) { 3228 case nir_texop_txs: { 3229 unsigned ret; 3230 switch (instr->sampler_dim) { 3231 case GLSL_SAMPLER_DIM_1D: 3232 case GLSL_SAMPLER_DIM_BUF: 3233 ret = 1; 3234 break; 3235 case GLSL_SAMPLER_DIM_2D: 3236 case GLSL_SAMPLER_DIM_CUBE: 3237 case GLSL_SAMPLER_DIM_MS: 3238 case GLSL_SAMPLER_DIM_RECT: 3239 case GLSL_SAMPLER_DIM_EXTERNAL: 3240 case GLSL_SAMPLER_DIM_SUBPASS: 3241 ret = 2; 3242 break; 3243 case GLSL_SAMPLER_DIM_3D: 3244 ret = 3; 3245 break; 3246 default: 3247 unreachable("not reached"); 3248 } 3249 if (instr->is_array) 3250 ret++; 3251 return ret; 3252 } 3253 3254 case nir_texop_lod: 3255 return 2; 3256 3257 case nir_texop_texture_samples: 3258 case nir_texop_query_levels: 3259 case nir_texop_samples_identical: 3260 case nir_texop_fragment_mask_fetch_amd: 3261 return 1; 3262 3263 default: 3264 if (instr->is_shadow && instr->is_new_style_shadow) 3265 return 1; 3266 3267 return 4; 3268 } 3269} 3270 3271bool 3272nir_tex_instr_is_query(const nir_tex_instr *instr) 3273{ 3274 switch (instr->op) { 3275 case nir_texop_txs: 3276 case nir_texop_lod: 3277 case nir_texop_texture_samples: 3278 case nir_texop_query_levels: 3279 return true; 3280 case nir_texop_tex: 3281 case nir_texop_txb: 3282 case nir_texop_txl: 3283 case nir_texop_txd: 3284 case nir_texop_txf: 3285 case nir_texop_txf_ms: 3286 case nir_texop_txf_ms_fb: 3287 case nir_texop_txf_ms_mcs_intel: 3288 case nir_texop_tg4: 3289 return false; 3290 default: 3291 unreachable("Invalid texture opcode"); 3292 } 3293} 3294 3295bool 3296nir_tex_instr_has_implicit_derivative(const nir_tex_instr *instr) 3297{ 3298 switch (instr->op) { 3299 case nir_texop_tex: 3300 case nir_texop_txb: 3301 case nir_texop_lod: 3302 return true; 3303 default: 3304 return false; 3305 } 3306} 3307 3308nir_alu_type 3309nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src) 3310{ 3311 switch (instr->src[src].src_type) { 3312 case nir_tex_src_coord: 3313 switch (instr->op) { 3314 case nir_texop_txf: 3315 case nir_texop_txf_ms: 3316 case nir_texop_txf_ms_fb: 3317 case nir_texop_txf_ms_mcs_intel: 3318 case nir_texop_samples_identical: 3319 case nir_texop_fragment_fetch_amd: 3320 case nir_texop_fragment_mask_fetch_amd: 3321 return nir_type_int; 3322 3323 default: 3324 return nir_type_float; 3325 } 3326 3327 case nir_tex_src_lod: 3328 switch (instr->op) { 3329 case nir_texop_txs: 3330 case nir_texop_txf: 3331 case nir_texop_txf_ms: 3332 case nir_texop_fragment_fetch_amd: 3333 case nir_texop_fragment_mask_fetch_amd: 3334 return nir_type_int; 3335 3336 default: 3337 return nir_type_float; 3338 } 3339 3340 case nir_tex_src_projector: 3341 case nir_tex_src_comparator: 3342 case nir_tex_src_bias: 3343 case nir_tex_src_min_lod: 3344 case nir_tex_src_ddx: 3345 case nir_tex_src_ddy: 3346 case nir_tex_src_backend1: 3347 case nir_tex_src_backend2: 3348 return nir_type_float; 3349 3350 case nir_tex_src_offset: 3351 case nir_tex_src_ms_index: 3352 case nir_tex_src_plane: 3353 return nir_type_int; 3354 3355 case nir_tex_src_ms_mcs_intel: 3356 case nir_tex_src_texture_deref: 3357 case nir_tex_src_sampler_deref: 3358 case nir_tex_src_texture_offset: 3359 case nir_tex_src_sampler_offset: 3360 case nir_tex_src_texture_handle: 3361 case nir_tex_src_sampler_handle: 3362 return nir_type_uint; 3363 3364 case nir_num_tex_src_types: 3365 unreachable("nir_num_tex_src_types is not a valid source type"); 3366 } 3367 3368 unreachable("Invalid texture source type"); 3369} 3370 3371unsigned 3372nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src) 3373{ 3374 if (instr->src[src].src_type == nir_tex_src_coord) 3375 return instr->coord_components; 3376 3377 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs_intel */ 3378 if (instr->src[src].src_type == nir_tex_src_ms_mcs_intel) 3379 return 4; 3380 3381 if (instr->src[src].src_type == nir_tex_src_ddx || 3382 instr->src[src].src_type == nir_tex_src_ddy) { 3383 3384 if (instr->is_array && !instr->array_is_lowered_cube) 3385 return instr->coord_components - 1; 3386 else 3387 return instr->coord_components; 3388 } 3389 3390 if (instr->src[src].src_type == nir_tex_src_offset) { 3391 if (instr->is_array) 3392 return instr->coord_components - 1; 3393 else 3394 return instr->coord_components; 3395 } 3396 3397 if (instr->src[src].src_type == nir_tex_src_backend1 || 3398 instr->src[src].src_type == nir_tex_src_backend2) 3399 return nir_src_num_components(instr->src[src].src); 3400 3401 /* For AMD, this can be a vec8/vec4 image/sampler descriptor. */ 3402 if (instr->src[src].src_type == nir_tex_src_texture_handle || 3403 instr->src[src].src_type == nir_tex_src_sampler_handle) 3404 return 0; 3405 3406 return 1; 3407} 3408 3409/** 3410 * Return which components are written into transform feedback buffers. 3411 * The result is relative to 0, not "component". 3412 */ 3413unsigned 3414nir_instr_xfb_write_mask(nir_intrinsic_instr *instr) 3415{ 3416 unsigned mask = 0; 3417 3418 if (nir_intrinsic_has_io_xfb(instr)) { 3419 unsigned wr_mask = nir_intrinsic_write_mask(instr) << 3420 nir_intrinsic_component(instr); 3421 assert((wr_mask & ~0xf) == 0); /* only 4 components allowed */ 3422 3423 unsigned iter_mask = wr_mask; 3424 while (iter_mask) { 3425 unsigned i = u_bit_scan(&iter_mask); 3426 nir_io_xfb xfb = i < 2 ? nir_intrinsic_io_xfb(instr) : 3427 nir_intrinsic_io_xfb2(instr); 3428 if (xfb.out[i % 2].num_components) 3429 mask |= BITFIELD_RANGE(i, xfb.out[i % 2].num_components) & wr_mask; 3430 } 3431 } 3432 3433 return mask; 3434} 3435 3436/** 3437 * Whether an output slot is consumed by fixed-function logic. 3438 */ 3439bool 3440nir_slot_is_sysval_output(gl_varying_slot slot) 3441{ 3442 return slot == VARYING_SLOT_POS || 3443 slot == VARYING_SLOT_PSIZ || 3444 slot == VARYING_SLOT_EDGE || 3445 slot == VARYING_SLOT_CLIP_VERTEX || 3446 slot == VARYING_SLOT_CLIP_DIST0 || 3447 slot == VARYING_SLOT_CLIP_DIST1 || 3448 slot == VARYING_SLOT_CULL_DIST0 || 3449 slot == VARYING_SLOT_CULL_DIST1 || 3450 slot == VARYING_SLOT_LAYER || 3451 slot == VARYING_SLOT_VIEWPORT || 3452 slot == VARYING_SLOT_TESS_LEVEL_OUTER || 3453 slot == VARYING_SLOT_TESS_LEVEL_INNER || 3454 slot == VARYING_SLOT_BOUNDING_BOX0 || 3455 slot == VARYING_SLOT_BOUNDING_BOX1 || 3456 slot == VARYING_SLOT_VIEW_INDEX || 3457 slot == VARYING_SLOT_VIEWPORT_MASK || 3458 slot == VARYING_SLOT_PRIMITIVE_SHADING_RATE || 3459 slot == VARYING_SLOT_PRIMITIVE_COUNT || 3460 slot == VARYING_SLOT_PRIMITIVE_INDICES || 3461 slot == VARYING_SLOT_TASK_COUNT; 3462} 3463 3464/** 3465 * Whether an input/output slot is consumed by the next shader stage, 3466 * or written by the previous shader stage. 3467 */ 3468bool 3469nir_slot_is_varying(gl_varying_slot slot) 3470{ 3471 return slot >= VARYING_SLOT_VAR0 || 3472 slot == VARYING_SLOT_COL0 || 3473 slot == VARYING_SLOT_COL1 || 3474 slot == VARYING_SLOT_BFC0 || 3475 slot == VARYING_SLOT_BFC1 || 3476 slot == VARYING_SLOT_FOGC || 3477 (slot >= VARYING_SLOT_TEX0 && slot <= VARYING_SLOT_TEX7) || 3478 slot == VARYING_SLOT_PNTC || 3479 slot == VARYING_SLOT_CLIP_DIST0 || 3480 slot == VARYING_SLOT_CLIP_DIST1 || 3481 slot == VARYING_SLOT_CULL_DIST0 || 3482 slot == VARYING_SLOT_CULL_DIST1 || 3483 slot == VARYING_SLOT_PRIMITIVE_ID || 3484 slot == VARYING_SLOT_LAYER || 3485 slot == VARYING_SLOT_VIEWPORT || 3486 slot == VARYING_SLOT_TESS_LEVEL_OUTER || 3487 slot == VARYING_SLOT_TESS_LEVEL_INNER; 3488} 3489 3490bool 3491nir_slot_is_sysval_output_and_varying(gl_varying_slot slot) 3492{ 3493 return nir_slot_is_sysval_output(slot) && 3494 nir_slot_is_varying(slot); 3495} 3496 3497/** 3498 * This marks the output store instruction as not feeding the next shader 3499 * stage. If the instruction has no other use, it's removed. 3500 */ 3501void nir_remove_varying(nir_intrinsic_instr *intr) 3502{ 3503 nir_io_semantics sem = nir_intrinsic_io_semantics(intr); 3504 3505 if ((!sem.no_sysval_output && nir_slot_is_sysval_output(sem.location)) || 3506 nir_instr_xfb_write_mask(intr)) { 3507 /* Demote the store instruction. */ 3508 sem.no_varying = true; 3509 nir_intrinsic_set_io_semantics(intr, sem); 3510 } else { 3511 nir_instr_remove(&intr->instr); 3512 } 3513} 3514 3515/** 3516 * This marks the output store instruction as not feeding fixed-function 3517 * logic. If the instruction has no other use, it's removed. 3518 */ 3519void nir_remove_sysval_output(nir_intrinsic_instr *intr) 3520{ 3521 nir_io_semantics sem = nir_intrinsic_io_semantics(intr); 3522 3523 if ((!sem.no_varying && nir_slot_is_varying(sem.location)) || 3524 nir_instr_xfb_write_mask(intr)) { 3525 /* Demote the store instruction. */ 3526 sem.no_sysval_output = true; 3527 nir_intrinsic_set_io_semantics(intr, sem); 3528 } else { 3529 nir_instr_remove(&intr->instr); 3530 } 3531} 3532 3533void nir_remove_non_entrypoints(nir_shader *nir) 3534{ 3535 foreach_list_typed_safe(nir_function, func, node, &nir->functions) { 3536 if (!func->is_entrypoint) 3537 exec_node_remove(&func->node); 3538 } 3539 assert(exec_list_length(&nir->functions) == 1); 3540} 3541