xref: /third_party/mesa3d/src/compiler/nir/nir.c (revision bf215546)
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28#include "nir.h"
29#include "nir_builder.h"
30#include "nir_control_flow_private.h"
31#include "nir_worklist.h"
32#include "util/half_float.h"
33#include <limits.h>
34#include <assert.h>
35#include <math.h>
36#include "util/u_math.h"
37#include "util/u_qsort.h"
38
39#include "main/menums.h" /* BITFIELD64_MASK */
40
41#ifndef NDEBUG
42uint32_t nir_debug = 0;
43bool nir_debug_print_shader[MESA_SHADER_KERNEL + 1] = { 0 };
44
45static const struct debug_named_value nir_debug_control[] = {
46   { "clone", NIR_DEBUG_CLONE,
47     "Test cloning a shader at each successful lowering/optimization call" },
48   { "serialize", NIR_DEBUG_SERIALIZE,
49     "Test serialize and deserialize shader at each successful lowering/optimization call" },
50   { "novalidate", NIR_DEBUG_NOVALIDATE,
51     "Disable shader validation at each successful lowering/optimization call" },
52   { "validate_ssa_dominance", NIR_DEBUG_VALIDATE_SSA_DOMINANCE,
53     "Validate SSA dominance in shader at each successful lowering/optimization call" },
54   { "validate_gc_list", NIR_DEBUG_VALIDATE_GC_LIST,
55     "Validate the instruction GC list at each successful lowering/optimization call" },
56   { "tgsi", NIR_DEBUG_TGSI,
57     "Dump NIR/TGSI shaders when doing a NIR<->TGSI translation" },
58   { "print", NIR_DEBUG_PRINT,
59     "Dump resulting shader after each successful lowering/optimization call" },
60   { "print_vs", NIR_DEBUG_PRINT_VS,
61     "Dump resulting vertex shader after each successful lowering/optimization call" },
62   { "print_tcs", NIR_DEBUG_PRINT_TCS,
63     "Dump resulting tessellation control shader after each successful lowering/optimization call" },
64   { "print_tes", NIR_DEBUG_PRINT_TES,
65     "Dump resulting tessellation evaluation shader after each successful lowering/optimization call" },
66   { "print_gs", NIR_DEBUG_PRINT_GS,
67     "Dump resulting geometry shader after each successful lowering/optimization call" },
68   { "print_fs", NIR_DEBUG_PRINT_FS,
69     "Dump resulting fragment shader after each successful lowering/optimization call" },
70   { "print_cs", NIR_DEBUG_PRINT_CS,
71     "Dump resulting compute shader after each successful lowering/optimization call" },
72   { "print_ts", NIR_DEBUG_PRINT_TS,
73     "Dump resulting task shader after each successful lowering/optimization call" },
74   { "print_ms", NIR_DEBUG_PRINT_MS,
75     "Dump resulting mesh shader after each successful lowering/optimization call" },
76   { "print_rgs", NIR_DEBUG_PRINT_RGS,
77     "Dump resulting raygen shader after each successful lowering/optimization call" },
78   { "print_ahs", NIR_DEBUG_PRINT_AHS,
79     "Dump resulting any-hit shader after each successful lowering/optimization call" },
80   { "print_chs", NIR_DEBUG_PRINT_CHS,
81     "Dump resulting closest-hit shader after each successful lowering/optimization call" },
82   { "print_mhs", NIR_DEBUG_PRINT_MHS,
83     "Dump resulting miss-hit shader after each successful lowering/optimization call" },
84   { "print_is", NIR_DEBUG_PRINT_IS,
85     "Dump resulting intersection shader after each successful lowering/optimization call" },
86   { "print_cbs", NIR_DEBUG_PRINT_CBS,
87     "Dump resulting callable shader after each successful lowering/optimization call" },
88   { "print_ks", NIR_DEBUG_PRINT_KS,
89     "Dump resulting kernel shader after each successful lowering/optimization call" },
90   { "print_consts", NIR_DEBUG_PRINT_CONSTS,
91     "Print const value near each use of const SSA variable" },
92   { NULL }
93};
94
95DEBUG_GET_ONCE_FLAGS_OPTION(nir_debug, "NIR_DEBUG", nir_debug_control, 0)
96
97static void
98nir_process_debug_variable_once(void)
99{
100   nir_debug = debug_get_option_nir_debug();
101   nir_debug_print_shader[MESA_SHADER_VERTEX]       = NIR_DEBUG(PRINT_VS);
102   nir_debug_print_shader[MESA_SHADER_TESS_CTRL]    = NIR_DEBUG(PRINT_TCS);
103   nir_debug_print_shader[MESA_SHADER_TESS_EVAL]    = NIR_DEBUG(PRINT_TES);
104   nir_debug_print_shader[MESA_SHADER_GEOMETRY]     = NIR_DEBUG(PRINT_GS);
105   nir_debug_print_shader[MESA_SHADER_FRAGMENT]     = NIR_DEBUG(PRINT_FS);
106   nir_debug_print_shader[MESA_SHADER_COMPUTE]      = NIR_DEBUG(PRINT_CS);
107   nir_debug_print_shader[MESA_SHADER_TASK]         = NIR_DEBUG(PRINT_TS);
108   nir_debug_print_shader[MESA_SHADER_MESH]         = NIR_DEBUG(PRINT_MS);
109   nir_debug_print_shader[MESA_SHADER_RAYGEN]       = NIR_DEBUG(PRINT_RGS);
110   nir_debug_print_shader[MESA_SHADER_ANY_HIT]      = NIR_DEBUG(PRINT_AHS);
111   nir_debug_print_shader[MESA_SHADER_CLOSEST_HIT]  = NIR_DEBUG(PRINT_CHS);
112   nir_debug_print_shader[MESA_SHADER_MISS]         = NIR_DEBUG(PRINT_MHS);
113   nir_debug_print_shader[MESA_SHADER_INTERSECTION] = NIR_DEBUG(PRINT_IS);
114   nir_debug_print_shader[MESA_SHADER_CALLABLE]     = NIR_DEBUG(PRINT_CBS);
115   nir_debug_print_shader[MESA_SHADER_KERNEL]       = NIR_DEBUG(PRINT_KS);
116}
117
118void
119nir_process_debug_variable(void)
120{
121   static once_flag flag = ONCE_FLAG_INIT;
122   call_once(&flag, nir_process_debug_variable_once);
123}
124#endif
125
126/** Return true if the component mask "mask" with bit size "old_bit_size" can
127 * be re-interpreted to be used with "new_bit_size".
128 */
129bool
130nir_component_mask_can_reinterpret(nir_component_mask_t mask,
131                                   unsigned old_bit_size,
132                                   unsigned new_bit_size)
133{
134   assert(util_is_power_of_two_nonzero(old_bit_size));
135   assert(util_is_power_of_two_nonzero(new_bit_size));
136
137   if (old_bit_size == new_bit_size)
138      return true;
139
140   if (old_bit_size == 1 || new_bit_size == 1)
141      return false;
142
143   if (old_bit_size > new_bit_size) {
144      unsigned ratio = old_bit_size / new_bit_size;
145      return util_last_bit(mask) * ratio <= NIR_MAX_VEC_COMPONENTS;
146   }
147
148   unsigned iter = mask;
149   while (iter) {
150      int start, count;
151      u_bit_scan_consecutive_range(&iter, &start, &count);
152      start *= old_bit_size;
153      count *= old_bit_size;
154      if (start % new_bit_size != 0)
155         return false;
156      if (count % new_bit_size != 0)
157         return false;
158   }
159   return true;
160}
161
162/** Re-interprets a component mask "mask" with bit size "old_bit_size" so that
163 * it can be used can be used with "new_bit_size".
164 */
165nir_component_mask_t
166nir_component_mask_reinterpret(nir_component_mask_t mask,
167                               unsigned old_bit_size,
168                               unsigned new_bit_size)
169{
170   assert(nir_component_mask_can_reinterpret(mask, old_bit_size, new_bit_size));
171
172   if (old_bit_size == new_bit_size)
173      return mask;
174
175   nir_component_mask_t new_mask = 0;
176   unsigned iter = mask;
177   while (iter) {
178      int start, count;
179      u_bit_scan_consecutive_range(&iter, &start, &count);
180      start = start * old_bit_size / new_bit_size;
181      count = count * old_bit_size / new_bit_size;
182      new_mask |= BITFIELD_RANGE(start, count);
183   }
184   return new_mask;
185}
186
187static void
188nir_shader_destructor(void *ptr)
189{
190   nir_shader *shader = ptr;
191
192   /* Free all instrs from the shader, since they're not ralloced. */
193   list_for_each_entry_safe(nir_instr, instr, &shader->gc_list, gc_node) {
194      nir_instr_free(instr);
195   }
196}
197
198nir_shader *
199nir_shader_create(void *mem_ctx,
200                  gl_shader_stage stage,
201                  const nir_shader_compiler_options *options,
202                  shader_info *si)
203{
204   nir_shader *shader = rzalloc(mem_ctx, nir_shader);
205   ralloc_set_destructor(shader, nir_shader_destructor);
206
207#ifndef NDEBUG
208   nir_process_debug_variable();
209#endif
210
211   exec_list_make_empty(&shader->variables);
212
213   shader->options = options;
214
215   if (si) {
216      assert(si->stage == stage);
217      shader->info = *si;
218   } else {
219      shader->info.stage = stage;
220   }
221
222   exec_list_make_empty(&shader->functions);
223
224   list_inithead(&shader->gc_list);
225
226   shader->num_inputs = 0;
227   shader->num_outputs = 0;
228   shader->num_uniforms = 0;
229
230   return shader;
231}
232
233static nir_register *
234reg_create(void *mem_ctx, struct exec_list *list)
235{
236   nir_register *reg = ralloc(mem_ctx, nir_register);
237
238   list_inithead(&reg->uses);
239   list_inithead(&reg->defs);
240   list_inithead(&reg->if_uses);
241
242   reg->num_components = 0;
243   reg->bit_size = 32;
244   reg->num_array_elems = 0;
245   reg->divergent = false;
246
247   exec_list_push_tail(list, &reg->node);
248
249   return reg;
250}
251
252nir_register *
253nir_local_reg_create(nir_function_impl *impl)
254{
255   nir_register *reg = reg_create(ralloc_parent(impl), &impl->registers);
256   reg->index = impl->reg_alloc++;
257
258   return reg;
259}
260
261void
262nir_reg_remove(nir_register *reg)
263{
264   exec_node_remove(&reg->node);
265}
266
267void
268nir_shader_add_variable(nir_shader *shader, nir_variable *var)
269{
270   switch (var->data.mode) {
271   case nir_var_function_temp:
272      assert(!"nir_shader_add_variable cannot be used for local variables");
273      return;
274
275   case nir_var_shader_temp:
276   case nir_var_shader_in:
277   case nir_var_shader_out:
278   case nir_var_uniform:
279   case nir_var_mem_ubo:
280   case nir_var_mem_ssbo:
281   case nir_var_image:
282   case nir_var_mem_shared:
283   case nir_var_system_value:
284   case nir_var_mem_push_const:
285   case nir_var_mem_constant:
286   case nir_var_shader_call_data:
287   case nir_var_ray_hit_attrib:
288   case nir_var_mem_task_payload:
289   case nir_var_mem_global:
290      break;
291
292   default:
293      assert(!"invalid mode");
294      return;
295   }
296
297   exec_list_push_tail(&shader->variables, &var->node);
298}
299
300nir_variable *
301nir_variable_create(nir_shader *shader, nir_variable_mode mode,
302                    const struct glsl_type *type, const char *name)
303{
304   nir_variable *var = rzalloc(shader, nir_variable);
305   var->name = ralloc_strdup(var, name);
306   var->type = type;
307   var->data.mode = mode;
308   var->data.how_declared = nir_var_declared_normally;
309
310   if ((mode == nir_var_shader_in &&
311        shader->info.stage != MESA_SHADER_VERTEX &&
312        shader->info.stage != MESA_SHADER_KERNEL) ||
313       (mode == nir_var_shader_out &&
314        shader->info.stage != MESA_SHADER_FRAGMENT))
315      var->data.interpolation = INTERP_MODE_SMOOTH;
316
317   if (mode == nir_var_shader_in || mode == nir_var_uniform)
318      var->data.read_only = true;
319
320   nir_shader_add_variable(shader, var);
321
322   return var;
323}
324
325nir_variable *
326nir_local_variable_create(nir_function_impl *impl,
327                          const struct glsl_type *type, const char *name)
328{
329   nir_variable *var = rzalloc(impl->function->shader, nir_variable);
330   var->name = ralloc_strdup(var, name);
331   var->type = type;
332   var->data.mode = nir_var_function_temp;
333
334   nir_function_impl_add_variable(impl, var);
335
336   return var;
337}
338
339nir_variable *
340nir_find_variable_with_location(nir_shader *shader,
341                                nir_variable_mode mode,
342                                unsigned location)
343{
344   assert(util_bitcount(mode) == 1 && mode != nir_var_function_temp);
345   nir_foreach_variable_with_modes(var, shader, mode) {
346      if (var->data.location == location)
347         return var;
348   }
349   return NULL;
350}
351
352nir_variable *
353nir_find_variable_with_driver_location(nir_shader *shader,
354                                       nir_variable_mode mode,
355                                       unsigned location)
356{
357   assert(util_bitcount(mode) == 1 && mode != nir_var_function_temp);
358   nir_foreach_variable_with_modes(var, shader, mode) {
359      if (var->data.driver_location == location)
360         return var;
361   }
362   return NULL;
363}
364
365/* Annoyingly, qsort_r is not in the C standard library and, in particular, we
366 * can't count on it on MSV and Android.  So we stuff the CMP function into
367 * each array element.  It's a bit messy and burns more memory but the list of
368 * variables should hever be all that long.
369 */
370struct var_cmp {
371   nir_variable *var;
372   int (*cmp)(const nir_variable *, const nir_variable *);
373};
374
375static int
376var_sort_cmp(const void *_a, const void *_b, void *_cmp)
377{
378   const struct var_cmp *a = _a;
379   const struct var_cmp *b = _b;
380   assert(a->cmp == b->cmp);
381   return a->cmp(a->var, b->var);
382}
383
384void
385nir_sort_variables_with_modes(nir_shader *shader,
386                              int (*cmp)(const nir_variable *,
387                                         const nir_variable *),
388                              nir_variable_mode modes)
389{
390   unsigned num_vars = 0;
391   nir_foreach_variable_with_modes(var, shader, modes) {
392      ++num_vars;
393   }
394   struct var_cmp *vars = ralloc_array(shader, struct var_cmp, num_vars);
395   unsigned i = 0;
396   nir_foreach_variable_with_modes_safe(var, shader, modes) {
397      exec_node_remove(&var->node);
398      vars[i++] = (struct var_cmp){
399         .var = var,
400         .cmp = cmp,
401      };
402   }
403   assert(i == num_vars);
404
405   util_qsort_r(vars, num_vars, sizeof(*vars), var_sort_cmp, cmp);
406
407   for (i = 0; i < num_vars; i++)
408      exec_list_push_tail(&shader->variables, &vars[i].var->node);
409
410   ralloc_free(vars);
411}
412
413nir_function *
414nir_function_create(nir_shader *shader, const char *name)
415{
416   nir_function *func = ralloc(shader, nir_function);
417
418   exec_list_push_tail(&shader->functions, &func->node);
419
420   func->name = ralloc_strdup(func, name);
421   func->shader = shader;
422   func->num_params = 0;
423   func->params = NULL;
424   func->impl = NULL;
425   func->is_entrypoint = false;
426   func->is_preamble = false;
427
428   return func;
429}
430
431static bool src_has_indirect(nir_src *src)
432{
433   return !src->is_ssa && src->reg.indirect;
434}
435
436static void src_free_indirects(nir_src *src)
437{
438   if (src_has_indirect(src)) {
439      assert(src->reg.indirect->is_ssa || !src->reg.indirect->reg.indirect);
440      free(src->reg.indirect);
441      src->reg.indirect = NULL;
442   }
443}
444
445static void dest_free_indirects(nir_dest *dest)
446{
447   if (!dest->is_ssa && dest->reg.indirect) {
448      assert(dest->reg.indirect->is_ssa || !dest->reg.indirect->reg.indirect);
449      free(dest->reg.indirect);
450      dest->reg.indirect = NULL;
451   }
452}
453
454/* NOTE: if the instruction you are copying a src to is already added
455 * to the IR, use nir_instr_rewrite_src() instead.
456 */
457void nir_src_copy(nir_src *dest, const nir_src *src)
458{
459   src_free_indirects(dest);
460
461   dest->is_ssa = src->is_ssa;
462   if (src->is_ssa) {
463      dest->ssa = src->ssa;
464   } else {
465      dest->reg.base_offset = src->reg.base_offset;
466      dest->reg.reg = src->reg.reg;
467      if (src->reg.indirect) {
468         dest->reg.indirect = calloc(1, sizeof(nir_src));
469         nir_src_copy(dest->reg.indirect, src->reg.indirect);
470      } else {
471         dest->reg.indirect = NULL;
472      }
473   }
474}
475
476void nir_dest_copy(nir_dest *dest, const nir_dest *src)
477{
478   /* Copying an SSA definition makes no sense whatsoever. */
479   assert(!src->is_ssa);
480
481   dest_free_indirects(dest);
482
483   dest->is_ssa = false;
484
485   dest->reg.base_offset = src->reg.base_offset;
486   dest->reg.reg = src->reg.reg;
487   if (src->reg.indirect) {
488      dest->reg.indirect = calloc(1, sizeof(nir_src));
489      nir_src_copy(dest->reg.indirect, src->reg.indirect);
490   } else {
491      dest->reg.indirect = NULL;
492   }
493}
494
495void
496nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src)
497{
498   nir_src_copy(&dest->src, &src->src);
499   dest->abs = src->abs;
500   dest->negate = src->negate;
501   for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++)
502      dest->swizzle[i] = src->swizzle[i];
503}
504
505void
506nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src)
507{
508   nir_dest_copy(&dest->dest, &src->dest);
509   dest->write_mask = src->write_mask;
510   dest->saturate = src->saturate;
511}
512
513bool
514nir_alu_src_is_trivial_ssa(const nir_alu_instr *alu, unsigned srcn)
515{
516   static uint8_t trivial_swizzle[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
517   STATIC_ASSERT(ARRAY_SIZE(trivial_swizzle) == NIR_MAX_VEC_COMPONENTS);
518
519   const nir_alu_src *src = &alu->src[srcn];
520   unsigned num_components = nir_ssa_alu_instr_src_components(alu, srcn);
521
522   return src->src.is_ssa && (src->src.ssa->num_components == num_components) &&
523          !src->abs && !src->negate &&
524          (memcmp(src->swizzle, trivial_swizzle, num_components) == 0);
525}
526
527
528static void
529cf_init(nir_cf_node *node, nir_cf_node_type type)
530{
531   exec_node_init(&node->node);
532   node->parent = NULL;
533   node->type = type;
534}
535
536nir_function_impl *
537nir_function_impl_create_bare(nir_shader *shader)
538{
539   nir_function_impl *impl = ralloc(shader, nir_function_impl);
540
541   impl->function = NULL;
542   impl->preamble = NULL;
543
544   cf_init(&impl->cf_node, nir_cf_node_function);
545
546   exec_list_make_empty(&impl->body);
547   exec_list_make_empty(&impl->registers);
548   exec_list_make_empty(&impl->locals);
549   impl->reg_alloc = 0;
550   impl->ssa_alloc = 0;
551   impl->num_blocks = 0;
552   impl->valid_metadata = nir_metadata_none;
553   impl->structured = true;
554
555   /* create start & end blocks */
556   nir_block *start_block = nir_block_create(shader);
557   nir_block *end_block = nir_block_create(shader);
558   start_block->cf_node.parent = &impl->cf_node;
559   end_block->cf_node.parent = &impl->cf_node;
560   impl->end_block = end_block;
561
562   exec_list_push_tail(&impl->body, &start_block->cf_node.node);
563
564   start_block->successors[0] = end_block;
565   _mesa_set_add(end_block->predecessors, start_block);
566   return impl;
567}
568
569nir_function_impl *
570nir_function_impl_create(nir_function *function)
571{
572   assert(function->impl == NULL);
573
574   nir_function_impl *impl = nir_function_impl_create_bare(function->shader);
575
576   function->impl = impl;
577   impl->function = function;
578
579   return impl;
580}
581
582nir_block *
583nir_block_create(nir_shader *shader)
584{
585   nir_block *block = rzalloc(shader, nir_block);
586
587   cf_init(&block->cf_node, nir_cf_node_block);
588
589   block->successors[0] = block->successors[1] = NULL;
590   block->predecessors = _mesa_pointer_set_create(block);
591   block->imm_dom = NULL;
592   /* XXX maybe it would be worth it to defer allocation?  This
593    * way it doesn't get allocated for shader refs that never run
594    * nir_calc_dominance?  For example, state-tracker creates an
595    * initial IR, clones that, runs appropriate lowering pass, passes
596    * to driver which does common lowering/opt, and then stores ref
597    * which is later used to do state specific lowering and futher
598    * opt.  Do any of the references not need dominance metadata?
599    */
600   block->dom_frontier = _mesa_pointer_set_create(block);
601
602   exec_list_make_empty(&block->instr_list);
603
604   return block;
605}
606
607static inline void
608src_init(nir_src *src)
609{
610   src->is_ssa = false;
611   src->reg.reg = NULL;
612   src->reg.indirect = NULL;
613   src->reg.base_offset = 0;
614}
615
616nir_if *
617nir_if_create(nir_shader *shader)
618{
619   nir_if *if_stmt = ralloc(shader, nir_if);
620
621   if_stmt->control = nir_selection_control_none;
622
623   cf_init(&if_stmt->cf_node, nir_cf_node_if);
624   src_init(&if_stmt->condition);
625
626   nir_block *then = nir_block_create(shader);
627   exec_list_make_empty(&if_stmt->then_list);
628   exec_list_push_tail(&if_stmt->then_list, &then->cf_node.node);
629   then->cf_node.parent = &if_stmt->cf_node;
630
631   nir_block *else_stmt = nir_block_create(shader);
632   exec_list_make_empty(&if_stmt->else_list);
633   exec_list_push_tail(&if_stmt->else_list, &else_stmt->cf_node.node);
634   else_stmt->cf_node.parent = &if_stmt->cf_node;
635
636   return if_stmt;
637}
638
639nir_loop *
640nir_loop_create(nir_shader *shader)
641{
642   nir_loop *loop = rzalloc(shader, nir_loop);
643
644   cf_init(&loop->cf_node, nir_cf_node_loop);
645   /* Assume that loops are divergent until proven otherwise */
646   loop->divergent = true;
647
648   nir_block *body = nir_block_create(shader);
649   exec_list_make_empty(&loop->body);
650   exec_list_push_tail(&loop->body, &body->cf_node.node);
651   body->cf_node.parent = &loop->cf_node;
652
653   body->successors[0] = body;
654   _mesa_set_add(body->predecessors, body);
655
656   return loop;
657}
658
659static void
660instr_init(nir_instr *instr, nir_instr_type type)
661{
662   instr->type = type;
663   instr->block = NULL;
664   exec_node_init(&instr->node);
665}
666
667static void
668dest_init(nir_dest *dest)
669{
670   dest->is_ssa = false;
671   dest->reg.reg = NULL;
672   dest->reg.indirect = NULL;
673   dest->reg.base_offset = 0;
674}
675
676static void
677alu_dest_init(nir_alu_dest *dest)
678{
679   dest_init(&dest->dest);
680   dest->saturate = false;
681   dest->write_mask = 0xf;
682}
683
684static void
685alu_src_init(nir_alu_src *src)
686{
687   src_init(&src->src);
688   src->abs = src->negate = false;
689   for (int i = 0; i < NIR_MAX_VEC_COMPONENTS; ++i)
690      src->swizzle[i] = i;
691}
692
693nir_alu_instr *
694nir_alu_instr_create(nir_shader *shader, nir_op op)
695{
696   unsigned num_srcs = nir_op_infos[op].num_inputs;
697   /* TODO: don't use calloc */
698   nir_alu_instr *instr = calloc(1, sizeof(nir_alu_instr) + num_srcs * sizeof(nir_alu_src));
699
700   instr_init(&instr->instr, nir_instr_type_alu);
701   instr->op = op;
702   alu_dest_init(&instr->dest);
703   for (unsigned i = 0; i < num_srcs; i++)
704      alu_src_init(&instr->src[i]);
705
706   list_add(&instr->instr.gc_node, &shader->gc_list);
707
708   return instr;
709}
710
711nir_deref_instr *
712nir_deref_instr_create(nir_shader *shader, nir_deref_type deref_type)
713{
714   nir_deref_instr *instr = calloc(1, sizeof(*instr));
715
716   instr_init(&instr->instr, nir_instr_type_deref);
717
718   instr->deref_type = deref_type;
719   if (deref_type != nir_deref_type_var)
720      src_init(&instr->parent);
721
722   if (deref_type == nir_deref_type_array ||
723       deref_type == nir_deref_type_ptr_as_array)
724      src_init(&instr->arr.index);
725
726   dest_init(&instr->dest);
727
728   list_add(&instr->instr.gc_node, &shader->gc_list);
729
730   return instr;
731}
732
733nir_jump_instr *
734nir_jump_instr_create(nir_shader *shader, nir_jump_type type)
735{
736   nir_jump_instr *instr = malloc(sizeof(*instr));
737   instr_init(&instr->instr, nir_instr_type_jump);
738   src_init(&instr->condition);
739   instr->type = type;
740   instr->target = NULL;
741   instr->else_target = NULL;
742
743   list_add(&instr->instr.gc_node, &shader->gc_list);
744
745   return instr;
746}
747
748nir_load_const_instr *
749nir_load_const_instr_create(nir_shader *shader, unsigned num_components,
750                            unsigned bit_size)
751{
752   nir_load_const_instr *instr =
753      calloc(1, sizeof(*instr) + num_components * sizeof(*instr->value));
754   instr_init(&instr->instr, nir_instr_type_load_const);
755
756   nir_ssa_def_init(&instr->instr, &instr->def, num_components, bit_size);
757
758   list_add(&instr->instr.gc_node, &shader->gc_list);
759
760   return instr;
761}
762
763nir_intrinsic_instr *
764nir_intrinsic_instr_create(nir_shader *shader, nir_intrinsic_op op)
765{
766   unsigned num_srcs = nir_intrinsic_infos[op].num_srcs;
767   /* TODO: don't use calloc */
768   nir_intrinsic_instr *instr =
769      calloc(1, sizeof(nir_intrinsic_instr) + num_srcs * sizeof(nir_src));
770
771   instr_init(&instr->instr, nir_instr_type_intrinsic);
772   instr->intrinsic = op;
773
774   if (nir_intrinsic_infos[op].has_dest)
775      dest_init(&instr->dest);
776
777   for (unsigned i = 0; i < num_srcs; i++)
778      src_init(&instr->src[i]);
779
780   list_add(&instr->instr.gc_node, &shader->gc_list);
781
782   return instr;
783}
784
785nir_call_instr *
786nir_call_instr_create(nir_shader *shader, nir_function *callee)
787{
788   const unsigned num_params = callee->num_params;
789   nir_call_instr *instr =
790      calloc(1, sizeof(*instr) + num_params * sizeof(instr->params[0]));
791
792   instr_init(&instr->instr, nir_instr_type_call);
793   instr->callee = callee;
794   instr->num_params = num_params;
795   for (unsigned i = 0; i < num_params; i++)
796      src_init(&instr->params[i]);
797
798   list_add(&instr->instr.gc_node, &shader->gc_list);
799
800   return instr;
801}
802
803static int8_t default_tg4_offsets[4][2] =
804{
805   { 0, 1 },
806   { 1, 1 },
807   { 1, 0 },
808   { 0, 0 },
809};
810
811nir_tex_instr *
812nir_tex_instr_create(nir_shader *shader, unsigned num_srcs)
813{
814   nir_tex_instr *instr = calloc(1, sizeof(*instr));
815   instr_init(&instr->instr, nir_instr_type_tex);
816
817   dest_init(&instr->dest);
818
819   instr->num_srcs = num_srcs;
820   instr->src = malloc(sizeof(nir_tex_src) * num_srcs);
821   for (unsigned i = 0; i < num_srcs; i++)
822      src_init(&instr->src[i].src);
823
824   instr->texture_index = 0;
825   instr->sampler_index = 0;
826   memcpy(instr->tg4_offsets, default_tg4_offsets, sizeof(instr->tg4_offsets));
827
828   list_add(&instr->instr.gc_node, &shader->gc_list);
829
830   return instr;
831}
832
833void
834nir_tex_instr_add_src(nir_tex_instr *tex,
835                      nir_tex_src_type src_type,
836                      nir_src src)
837{
838   nir_tex_src *new_srcs = calloc(sizeof(*new_srcs),
839                                         tex->num_srcs + 1);
840
841   for (unsigned i = 0; i < tex->num_srcs; i++) {
842      new_srcs[i].src_type = tex->src[i].src_type;
843      nir_instr_move_src(&tex->instr, &new_srcs[i].src,
844                         &tex->src[i].src);
845   }
846
847   free(tex->src);
848   tex->src = new_srcs;
849
850   tex->src[tex->num_srcs].src_type = src_type;
851   nir_instr_rewrite_src(&tex->instr, &tex->src[tex->num_srcs].src, src);
852   tex->num_srcs++;
853}
854
855void
856nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx)
857{
858   assert(src_idx < tex->num_srcs);
859
860   /* First rewrite the source to NIR_SRC_INIT */
861   nir_instr_rewrite_src(&tex->instr, &tex->src[src_idx].src, NIR_SRC_INIT);
862
863   /* Now, move all of the other sources down */
864   for (unsigned i = src_idx + 1; i < tex->num_srcs; i++) {
865      tex->src[i-1].src_type = tex->src[i].src_type;
866      nir_instr_move_src(&tex->instr, &tex->src[i-1].src, &tex->src[i].src);
867   }
868   tex->num_srcs--;
869}
870
871bool
872nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex)
873{
874   if (tex->op != nir_texop_tg4)
875      return false;
876   return memcmp(tex->tg4_offsets, default_tg4_offsets,
877                 sizeof(tex->tg4_offsets)) != 0;
878}
879
880nir_phi_instr *
881nir_phi_instr_create(nir_shader *shader)
882{
883   nir_phi_instr *instr = malloc(sizeof(*instr));
884   instr_init(&instr->instr, nir_instr_type_phi);
885
886   dest_init(&instr->dest);
887   exec_list_make_empty(&instr->srcs);
888
889   list_add(&instr->instr.gc_node, &shader->gc_list);
890
891   return instr;
892}
893
894/**
895 * Adds a new source to a NIR instruction.
896 *
897 * Note that this does not update the def/use relationship for src, assuming
898 * that the instr is not in the shader.  If it is, you have to do:
899 *
900 * list_addtail(&phi_src->src.use_link, &src.ssa->uses);
901 */
902nir_phi_src *
903nir_phi_instr_add_src(nir_phi_instr *instr, nir_block *pred, nir_src src)
904{
905   nir_phi_src *phi_src;
906
907   phi_src = calloc(1, sizeof(nir_phi_src));
908   phi_src->pred = pred;
909   phi_src->src = src;
910   phi_src->src.parent_instr = &instr->instr;
911   exec_list_push_tail(&instr->srcs, &phi_src->node);
912
913   return phi_src;
914}
915
916nir_parallel_copy_instr *
917nir_parallel_copy_instr_create(nir_shader *shader)
918{
919   nir_parallel_copy_instr *instr = malloc(sizeof(*instr));
920   instr_init(&instr->instr, nir_instr_type_parallel_copy);
921
922   exec_list_make_empty(&instr->entries);
923
924   list_add(&instr->instr.gc_node, &shader->gc_list);
925
926   return instr;
927}
928
929nir_ssa_undef_instr *
930nir_ssa_undef_instr_create(nir_shader *shader,
931                           unsigned num_components,
932                           unsigned bit_size)
933{
934   nir_ssa_undef_instr *instr = malloc(sizeof(*instr));
935   instr_init(&instr->instr, nir_instr_type_ssa_undef);
936
937   nir_ssa_def_init(&instr->instr, &instr->def, num_components, bit_size);
938
939   list_add(&instr->instr.gc_node, &shader->gc_list);
940
941   return instr;
942}
943
944static nir_const_value
945const_value_float(double d, unsigned bit_size)
946{
947   nir_const_value v;
948   memset(&v, 0, sizeof(v));
949   switch (bit_size) {
950   case 16: v.u16 = _mesa_float_to_half(d);  break;
951   case 32: v.f32 = d;                       break;
952   case 64: v.f64 = d;                       break;
953   default:
954      unreachable("Invalid bit size");
955   }
956   return v;
957}
958
959static nir_const_value
960const_value_int(int64_t i, unsigned bit_size)
961{
962   nir_const_value v;
963   memset(&v, 0, sizeof(v));
964   switch (bit_size) {
965   case 1:  v.b   = i & 1;  break;
966   case 8:  v.i8  = i;  break;
967   case 16: v.i16 = i;  break;
968   case 32: v.i32 = i;  break;
969   case 64: v.i64 = i;  break;
970   default:
971      unreachable("Invalid bit size");
972   }
973   return v;
974}
975
976nir_const_value
977nir_alu_binop_identity(nir_op binop, unsigned bit_size)
978{
979   const int64_t max_int = (1ull << (bit_size - 1)) - 1;
980   const int64_t min_int = -max_int - 1;
981   switch (binop) {
982   case nir_op_iadd:
983      return const_value_int(0, bit_size);
984   case nir_op_fadd:
985      return const_value_float(0, bit_size);
986   case nir_op_imul:
987      return const_value_int(1, bit_size);
988   case nir_op_fmul:
989      return const_value_float(1, bit_size);
990   case nir_op_imin:
991      return const_value_int(max_int, bit_size);
992   case nir_op_umin:
993      return const_value_int(~0ull, bit_size);
994   case nir_op_fmin:
995      return const_value_float(INFINITY, bit_size);
996   case nir_op_imax:
997      return const_value_int(min_int, bit_size);
998   case nir_op_umax:
999      return const_value_int(0, bit_size);
1000   case nir_op_fmax:
1001      return const_value_float(-INFINITY, bit_size);
1002   case nir_op_iand:
1003      return const_value_int(~0ull, bit_size);
1004   case nir_op_ior:
1005      return const_value_int(0, bit_size);
1006   case nir_op_ixor:
1007      return const_value_int(0, bit_size);
1008   default:
1009      unreachable("Invalid reduction operation");
1010   }
1011}
1012
1013nir_function_impl *
1014nir_cf_node_get_function(nir_cf_node *node)
1015{
1016   while (node->type != nir_cf_node_function) {
1017      node = node->parent;
1018   }
1019
1020   return nir_cf_node_as_function(node);
1021}
1022
1023/* Reduces a cursor by trying to convert everything to after and trying to
1024 * go up to block granularity when possible.
1025 */
1026static nir_cursor
1027reduce_cursor(nir_cursor cursor)
1028{
1029   switch (cursor.option) {
1030   case nir_cursor_before_block:
1031      if (exec_list_is_empty(&cursor.block->instr_list)) {
1032         /* Empty block.  After is as good as before. */
1033         cursor.option = nir_cursor_after_block;
1034      }
1035      return cursor;
1036
1037   case nir_cursor_after_block:
1038      return cursor;
1039
1040   case nir_cursor_before_instr: {
1041      nir_instr *prev_instr = nir_instr_prev(cursor.instr);
1042      if (prev_instr) {
1043         /* Before this instruction is after the previous */
1044         cursor.instr = prev_instr;
1045         cursor.option = nir_cursor_after_instr;
1046      } else {
1047         /* No previous instruction.  Switch to before block */
1048         cursor.block = cursor.instr->block;
1049         cursor.option = nir_cursor_before_block;
1050      }
1051      return reduce_cursor(cursor);
1052   }
1053
1054   case nir_cursor_after_instr:
1055      if (nir_instr_next(cursor.instr) == NULL) {
1056         /* This is the last instruction, switch to after block */
1057         cursor.option = nir_cursor_after_block;
1058         cursor.block = cursor.instr->block;
1059      }
1060      return cursor;
1061
1062   default:
1063      unreachable("Inavlid cursor option");
1064   }
1065}
1066
1067bool
1068nir_cursors_equal(nir_cursor a, nir_cursor b)
1069{
1070   /* Reduced cursors should be unique */
1071   a = reduce_cursor(a);
1072   b = reduce_cursor(b);
1073
1074   return a.block == b.block && a.option == b.option;
1075}
1076
1077static bool
1078add_use_cb(nir_src *src, void *state)
1079{
1080   nir_instr *instr = state;
1081
1082   src->parent_instr = instr;
1083   list_addtail(&src->use_link,
1084                src->is_ssa ? &src->ssa->uses : &src->reg.reg->uses);
1085
1086   return true;
1087}
1088
1089static bool
1090add_ssa_def_cb(nir_ssa_def *def, void *state)
1091{
1092   nir_instr *instr = state;
1093
1094   if (instr->block && def->index == UINT_MAX) {
1095      nir_function_impl *impl =
1096         nir_cf_node_get_function(&instr->block->cf_node);
1097
1098      def->index = impl->ssa_alloc++;
1099
1100      impl->valid_metadata &= ~nir_metadata_live_ssa_defs;
1101   }
1102
1103   return true;
1104}
1105
1106static bool
1107add_reg_def_cb(nir_dest *dest, void *state)
1108{
1109   nir_instr *instr = state;
1110
1111   if (!dest->is_ssa) {
1112      dest->reg.parent_instr = instr;
1113      list_addtail(&dest->reg.def_link, &dest->reg.reg->defs);
1114   }
1115
1116   return true;
1117}
1118
1119static void
1120add_defs_uses(nir_instr *instr)
1121{
1122   nir_foreach_src(instr, add_use_cb, instr);
1123   nir_foreach_dest(instr, add_reg_def_cb, instr);
1124   nir_foreach_ssa_def(instr, add_ssa_def_cb, instr);
1125}
1126
1127void
1128nir_instr_insert(nir_cursor cursor, nir_instr *instr)
1129{
1130   switch (cursor.option) {
1131   case nir_cursor_before_block:
1132      /* Only allow inserting jumps into empty blocks. */
1133      if (instr->type == nir_instr_type_jump)
1134         assert(exec_list_is_empty(&cursor.block->instr_list));
1135
1136      instr->block = cursor.block;
1137      add_defs_uses(instr);
1138      exec_list_push_head(&cursor.block->instr_list, &instr->node);
1139      break;
1140   case nir_cursor_after_block: {
1141      /* Inserting instructions after a jump is illegal. */
1142      nir_instr *last = nir_block_last_instr(cursor.block);
1143      assert(last == NULL || last->type != nir_instr_type_jump);
1144      (void) last;
1145
1146      instr->block = cursor.block;
1147      add_defs_uses(instr);
1148      exec_list_push_tail(&cursor.block->instr_list, &instr->node);
1149      break;
1150   }
1151   case nir_cursor_before_instr:
1152      assert(instr->type != nir_instr_type_jump);
1153      instr->block = cursor.instr->block;
1154      add_defs_uses(instr);
1155      exec_node_insert_node_before(&cursor.instr->node, &instr->node);
1156      break;
1157   case nir_cursor_after_instr:
1158      /* Inserting instructions after a jump is illegal. */
1159      assert(cursor.instr->type != nir_instr_type_jump);
1160
1161      /* Only allow inserting jumps at the end of the block. */
1162      if (instr->type == nir_instr_type_jump)
1163         assert(cursor.instr == nir_block_last_instr(cursor.instr->block));
1164
1165      instr->block = cursor.instr->block;
1166      add_defs_uses(instr);
1167      exec_node_insert_after(&cursor.instr->node, &instr->node);
1168      break;
1169   }
1170
1171   if (instr->type == nir_instr_type_jump)
1172      nir_handle_add_jump(instr->block);
1173
1174   nir_function_impl *impl = nir_cf_node_get_function(&instr->block->cf_node);
1175   impl->valid_metadata &= ~nir_metadata_instr_index;
1176}
1177
1178bool
1179nir_instr_move(nir_cursor cursor, nir_instr *instr)
1180{
1181   /* If the cursor happens to refer to this instruction (either before or
1182    * after), don't do anything.
1183    */
1184   if ((cursor.option == nir_cursor_before_instr ||
1185        cursor.option == nir_cursor_after_instr) &&
1186       cursor.instr == instr)
1187      return false;
1188
1189   nir_instr_remove(instr);
1190   nir_instr_insert(cursor, instr);
1191   return true;
1192}
1193
1194static bool
1195src_is_valid(const nir_src *src)
1196{
1197   return src->is_ssa ? (src->ssa != NULL) : (src->reg.reg != NULL);
1198}
1199
1200static bool
1201remove_use_cb(nir_src *src, void *state)
1202{
1203   (void) state;
1204
1205   if (src_is_valid(src))
1206      list_del(&src->use_link);
1207
1208   return true;
1209}
1210
1211static bool
1212remove_def_cb(nir_dest *dest, void *state)
1213{
1214   (void) state;
1215
1216   if (!dest->is_ssa)
1217      list_del(&dest->reg.def_link);
1218
1219   return true;
1220}
1221
1222static void
1223remove_defs_uses(nir_instr *instr)
1224{
1225   nir_foreach_dest(instr, remove_def_cb, instr);
1226   nir_foreach_src(instr, remove_use_cb, instr);
1227}
1228
1229void nir_instr_remove_v(nir_instr *instr)
1230{
1231   remove_defs_uses(instr);
1232   exec_node_remove(&instr->node);
1233
1234   if (instr->type == nir_instr_type_jump) {
1235      nir_jump_instr *jump_instr = nir_instr_as_jump(instr);
1236      nir_handle_remove_jump(instr->block, jump_instr->type);
1237   }
1238}
1239
1240static bool free_src_indirects_cb(nir_src *src, void *state)
1241{
1242   src_free_indirects(src);
1243   return true;
1244}
1245
1246static bool free_dest_indirects_cb(nir_dest *dest, void *state)
1247{
1248   dest_free_indirects(dest);
1249   return true;
1250}
1251
1252void nir_instr_free(nir_instr *instr)
1253{
1254   nir_foreach_src(instr, free_src_indirects_cb, NULL);
1255   nir_foreach_dest(instr, free_dest_indirects_cb, NULL);
1256
1257   switch (instr->type) {
1258   case nir_instr_type_tex:
1259      free(nir_instr_as_tex(instr)->src);
1260      break;
1261
1262   case nir_instr_type_phi: {
1263      nir_phi_instr *phi = nir_instr_as_phi(instr);
1264      nir_foreach_phi_src_safe(phi_src, phi) {
1265         free(phi_src);
1266      }
1267      break;
1268   }
1269
1270   default:
1271      break;
1272   }
1273
1274   list_del(&instr->gc_node);
1275   free(instr);
1276}
1277
1278void
1279nir_instr_free_list(struct exec_list *list)
1280{
1281   struct exec_node *node;
1282   while ((node = exec_list_pop_head(list))) {
1283      nir_instr *removed_instr = exec_node_data(nir_instr, node, node);
1284      nir_instr_free(removed_instr);
1285   }
1286}
1287
1288static bool nir_instr_free_and_dce_live_cb(nir_ssa_def *def, void *state)
1289{
1290   bool *live = state;
1291
1292   if (!nir_ssa_def_is_unused(def)) {
1293      *live = true;
1294      return false;
1295   } else {
1296      return true;
1297   }
1298}
1299
1300static bool nir_instr_free_and_dce_is_live(nir_instr *instr)
1301{
1302   /* Note: don't have to worry about jumps because they don't have dests to
1303    * become unused.
1304    */
1305   if (instr->type == nir_instr_type_intrinsic) {
1306      nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
1307      const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1308      if (!(info->flags & NIR_INTRINSIC_CAN_ELIMINATE))
1309         return true;
1310   }
1311
1312   bool live = false;
1313   nir_foreach_ssa_def(instr, nir_instr_free_and_dce_live_cb, &live);
1314   return live;
1315}
1316
1317static bool
1318nir_instr_dce_add_dead_srcs_cb(nir_src *src, void *state)
1319{
1320   nir_instr_worklist *wl = state;
1321
1322   if (src->is_ssa) {
1323      list_del(&src->use_link);
1324      if (!nir_instr_free_and_dce_is_live(src->ssa->parent_instr))
1325         nir_instr_worklist_push_tail(wl, src->ssa->parent_instr);
1326
1327      /* Stop nir_instr_remove from trying to delete the link again. */
1328      src->ssa = NULL;
1329   }
1330
1331   return true;
1332}
1333
1334static void
1335nir_instr_dce_add_dead_ssa_srcs(nir_instr_worklist *wl, nir_instr *instr)
1336{
1337   nir_foreach_src(instr, nir_instr_dce_add_dead_srcs_cb, wl);
1338}
1339
1340/**
1341 * Frees an instruction and any SSA defs that it used that are now dead,
1342 * returning a nir_cursor where the instruction previously was.
1343 */
1344nir_cursor
1345nir_instr_free_and_dce(nir_instr *instr)
1346{
1347   nir_instr_worklist *worklist = nir_instr_worklist_create();
1348
1349   nir_instr_dce_add_dead_ssa_srcs(worklist, instr);
1350   nir_cursor c = nir_instr_remove(instr);
1351
1352   struct exec_list to_free;
1353   exec_list_make_empty(&to_free);
1354
1355   nir_instr *dce_instr;
1356   while ((dce_instr = nir_instr_worklist_pop_head(worklist))) {
1357      nir_instr_dce_add_dead_ssa_srcs(worklist, dce_instr);
1358
1359      /* If we're removing the instr where our cursor is, then we have to
1360       * point the cursor elsewhere.
1361       */
1362      if ((c.option == nir_cursor_before_instr ||
1363           c.option == nir_cursor_after_instr) &&
1364          c.instr == dce_instr)
1365         c = nir_instr_remove(dce_instr);
1366      else
1367         nir_instr_remove(dce_instr);
1368      exec_list_push_tail(&to_free, &dce_instr->node);
1369   }
1370
1371   nir_instr_free_list(&to_free);
1372
1373   nir_instr_worklist_destroy(worklist);
1374
1375   return c;
1376}
1377
1378/*@}*/
1379
1380void
1381nir_index_local_regs(nir_function_impl *impl)
1382{
1383   unsigned index = 0;
1384   foreach_list_typed(nir_register, reg, node, &impl->registers) {
1385      reg->index = index++;
1386   }
1387   impl->reg_alloc = index;
1388}
1389
1390struct foreach_ssa_def_state {
1391   nir_foreach_ssa_def_cb cb;
1392   void *client_state;
1393};
1394
1395static inline bool
1396nir_ssa_def_visitor(nir_dest *dest, void *void_state)
1397{
1398   struct foreach_ssa_def_state *state = void_state;
1399
1400   if (dest->is_ssa)
1401      return state->cb(&dest->ssa, state->client_state);
1402   else
1403      return true;
1404}
1405
1406bool
1407nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb, void *state)
1408{
1409   switch (instr->type) {
1410   case nir_instr_type_alu:
1411   case nir_instr_type_deref:
1412   case nir_instr_type_tex:
1413   case nir_instr_type_intrinsic:
1414   case nir_instr_type_phi:
1415   case nir_instr_type_parallel_copy: {
1416      struct foreach_ssa_def_state foreach_state = {cb, state};
1417      return nir_foreach_dest(instr, nir_ssa_def_visitor, &foreach_state);
1418   }
1419
1420   case nir_instr_type_load_const:
1421      return cb(&nir_instr_as_load_const(instr)->def, state);
1422   case nir_instr_type_ssa_undef:
1423      return cb(&nir_instr_as_ssa_undef(instr)->def, state);
1424   case nir_instr_type_call:
1425   case nir_instr_type_jump:
1426      return true;
1427   default:
1428      unreachable("Invalid instruction type");
1429   }
1430}
1431
1432nir_ssa_def *
1433nir_instr_ssa_def(nir_instr *instr)
1434{
1435   switch (instr->type) {
1436   case nir_instr_type_alu:
1437      assert(nir_instr_as_alu(instr)->dest.dest.is_ssa);
1438      return &nir_instr_as_alu(instr)->dest.dest.ssa;
1439
1440   case nir_instr_type_deref:
1441      assert(nir_instr_as_deref(instr)->dest.is_ssa);
1442      return &nir_instr_as_deref(instr)->dest.ssa;
1443
1444   case nir_instr_type_tex:
1445      assert(nir_instr_as_tex(instr)->dest.is_ssa);
1446      return &nir_instr_as_tex(instr)->dest.ssa;
1447
1448   case nir_instr_type_intrinsic: {
1449      nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
1450      if (nir_intrinsic_infos[intrin->intrinsic].has_dest) {
1451         assert(intrin->dest.is_ssa);
1452         return &intrin->dest.ssa;
1453      } else {
1454         return NULL;
1455      }
1456   }
1457
1458   case nir_instr_type_phi:
1459      assert(nir_instr_as_phi(instr)->dest.is_ssa);
1460      return &nir_instr_as_phi(instr)->dest.ssa;
1461
1462   case nir_instr_type_parallel_copy:
1463      unreachable("Parallel copies are unsupported by this function");
1464
1465   case nir_instr_type_load_const:
1466      return &nir_instr_as_load_const(instr)->def;
1467
1468   case nir_instr_type_ssa_undef:
1469      return &nir_instr_as_ssa_undef(instr)->def;
1470
1471   case nir_instr_type_call:
1472   case nir_instr_type_jump:
1473      return NULL;
1474   }
1475
1476   unreachable("Invalid instruction type");
1477}
1478
1479bool
1480nir_instr_def_is_register(nir_instr *instr)
1481{
1482   switch (instr->type) {
1483   case nir_instr_type_alu:
1484      return !nir_instr_as_alu(instr)->dest.dest.is_ssa;
1485
1486   case nir_instr_type_deref:
1487      return !nir_instr_as_deref(instr)->dest.is_ssa;
1488
1489   case nir_instr_type_tex:
1490      return !nir_instr_as_tex(instr)->dest.is_ssa;
1491
1492   case nir_instr_type_intrinsic: {
1493      nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
1494      return nir_intrinsic_infos[intrin->intrinsic].has_dest &&
1495             !intrin->dest.is_ssa;
1496   }
1497
1498   case nir_instr_type_phi:
1499      return !nir_instr_as_phi(instr)->dest.is_ssa;
1500
1501   case nir_instr_type_parallel_copy:
1502      unreachable("Parallel copies are unsupported by this function");
1503
1504   case nir_instr_type_load_const:
1505   case nir_instr_type_ssa_undef:
1506      return false;
1507
1508   case nir_instr_type_call:
1509   case nir_instr_type_jump:
1510      return false;
1511   }
1512
1513   unreachable("Invalid instruction type");
1514}
1515
1516bool
1517nir_foreach_phi_src_leaving_block(nir_block *block,
1518                                  nir_foreach_src_cb cb,
1519                                  void *state)
1520{
1521   for (unsigned i = 0; i < ARRAY_SIZE(block->successors); i++) {
1522      if (block->successors[i] == NULL)
1523         continue;
1524
1525      nir_foreach_instr(instr, block->successors[i]) {
1526         if (instr->type != nir_instr_type_phi)
1527            break;
1528
1529         nir_phi_instr *phi = nir_instr_as_phi(instr);
1530         nir_foreach_phi_src(phi_src, phi) {
1531            if (phi_src->pred == block) {
1532               if (!cb(&phi_src->src, state))
1533                  return false;
1534            }
1535         }
1536      }
1537   }
1538
1539   return true;
1540}
1541
1542nir_const_value
1543nir_const_value_for_float(double f, unsigned bit_size)
1544{
1545   nir_const_value v;
1546   memset(&v, 0, sizeof(v));
1547
1548   switch (bit_size) {
1549   case 16:
1550      v.u16 = _mesa_float_to_half(f);
1551      break;
1552   case 32:
1553      v.f32 = f;
1554      break;
1555   case 64:
1556      v.f64 = f;
1557      break;
1558   default:
1559      unreachable("Invalid bit size");
1560   }
1561
1562   return v;
1563}
1564
1565double
1566nir_const_value_as_float(nir_const_value value, unsigned bit_size)
1567{
1568   switch (bit_size) {
1569   case 16: return _mesa_half_to_float(value.u16);
1570   case 32: return value.f32;
1571   case 64: return value.f64;
1572   default:
1573      unreachable("Invalid bit size");
1574   }
1575}
1576
1577nir_const_value *
1578nir_src_as_const_value(nir_src src)
1579{
1580   if (!src.is_ssa)
1581      return NULL;
1582
1583   if (src.ssa->parent_instr->type != nir_instr_type_load_const)
1584      return NULL;
1585
1586   nir_load_const_instr *load = nir_instr_as_load_const(src.ssa->parent_instr);
1587
1588   return load->value;
1589}
1590
1591/**
1592 * Returns true if the source is known to be always uniform. Otherwise it
1593 * returns false which means it may or may not be uniform but it can't be
1594 * determined.
1595 *
1596 * For a more precise analysis of uniform values, use nir_divergence_analysis.
1597 */
1598bool
1599nir_src_is_always_uniform(nir_src src)
1600{
1601   if (!src.is_ssa)
1602      return false;
1603
1604   /* Constants are trivially uniform */
1605   if (src.ssa->parent_instr->type == nir_instr_type_load_const)
1606      return true;
1607
1608   if (src.ssa->parent_instr->type == nir_instr_type_intrinsic) {
1609      nir_intrinsic_instr *intr = nir_instr_as_intrinsic(src.ssa->parent_instr);
1610      /* As are uniform variables */
1611      if (intr->intrinsic == nir_intrinsic_load_uniform &&
1612          nir_src_is_always_uniform(intr->src[0]))
1613         return true;
1614      /* From the Vulkan specification 15.6.1. Push Constant Interface:
1615       * "Any member of a push constant block that is declared as an array must
1616       * only be accessed with dynamically uniform indices."
1617       */
1618      if (intr->intrinsic == nir_intrinsic_load_push_constant)
1619         return true;
1620      if (intr->intrinsic == nir_intrinsic_load_deref &&
1621          nir_deref_mode_is(nir_src_as_deref(intr->src[0]), nir_var_mem_push_const))
1622         return true;
1623   }
1624
1625   /* Operating together uniform expressions produces a uniform result */
1626   if (src.ssa->parent_instr->type == nir_instr_type_alu) {
1627      nir_alu_instr *alu = nir_instr_as_alu(src.ssa->parent_instr);
1628      for (int i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
1629         if (!nir_src_is_always_uniform(alu->src[i].src))
1630            return false;
1631      }
1632
1633      return true;
1634   }
1635
1636   /* XXX: this could have many more tests, such as when a sampler function is
1637    * called with uniform arguments.
1638    */
1639   return false;
1640}
1641
1642static void
1643src_remove_all_uses(nir_src *src)
1644{
1645   for (; src; src = src->is_ssa ? NULL : src->reg.indirect) {
1646      if (!src_is_valid(src))
1647         continue;
1648
1649      list_del(&src->use_link);
1650   }
1651}
1652
1653static void
1654src_add_all_uses(nir_src *src, nir_instr *parent_instr, nir_if *parent_if)
1655{
1656   for (; src; src = src->is_ssa ? NULL : src->reg.indirect) {
1657      if (!src_is_valid(src))
1658         continue;
1659
1660      if (parent_instr) {
1661         src->parent_instr = parent_instr;
1662         if (src->is_ssa)
1663            list_addtail(&src->use_link, &src->ssa->uses);
1664         else
1665            list_addtail(&src->use_link, &src->reg.reg->uses);
1666      } else {
1667         assert(parent_if);
1668         src->parent_if = parent_if;
1669         if (src->is_ssa)
1670            list_addtail(&src->use_link, &src->ssa->if_uses);
1671         else
1672            list_addtail(&src->use_link, &src->reg.reg->if_uses);
1673      }
1674   }
1675}
1676
1677void
1678nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src)
1679{
1680   assert(!src_is_valid(src) || src->parent_instr == instr);
1681
1682   src_remove_all_uses(src);
1683   nir_src_copy(src, &new_src);
1684   src_add_all_uses(src, instr, NULL);
1685}
1686
1687void
1688nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src)
1689{
1690   assert(!src_is_valid(dest) || dest->parent_instr == dest_instr);
1691
1692   src_remove_all_uses(dest);
1693   src_free_indirects(dest);
1694   src_remove_all_uses(src);
1695   *dest = *src;
1696   *src = NIR_SRC_INIT;
1697   src_add_all_uses(dest, dest_instr, NULL);
1698}
1699
1700void
1701nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src)
1702{
1703   nir_src *src = &if_stmt->condition;
1704   assert(!src_is_valid(src) || src->parent_if == if_stmt);
1705
1706   src_remove_all_uses(src);
1707   nir_src_copy(src, &new_src);
1708   src_add_all_uses(src, NULL, if_stmt);
1709}
1710
1711void
1712nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest, nir_dest new_dest)
1713{
1714   if (dest->is_ssa) {
1715      /* We can only overwrite an SSA destination if it has no uses. */
1716      assert(nir_ssa_def_is_unused(&dest->ssa));
1717   } else {
1718      list_del(&dest->reg.def_link);
1719      if (dest->reg.indirect)
1720         src_remove_all_uses(dest->reg.indirect);
1721   }
1722
1723   /* We can't re-write with an SSA def */
1724   assert(!new_dest.is_ssa);
1725
1726   nir_dest_copy(dest, &new_dest);
1727
1728   dest->reg.parent_instr = instr;
1729   list_addtail(&dest->reg.def_link, &new_dest.reg.reg->defs);
1730
1731   if (dest->reg.indirect)
1732      src_add_all_uses(dest->reg.indirect, instr, NULL);
1733}
1734
1735/* note: does *not* take ownership of 'name' */
1736void
1737nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
1738                 unsigned num_components,
1739                 unsigned bit_size)
1740{
1741   def->parent_instr = instr;
1742   list_inithead(&def->uses);
1743   list_inithead(&def->if_uses);
1744   def->num_components = num_components;
1745   def->bit_size = bit_size;
1746   def->divergent = true; /* This is the safer default */
1747
1748   if (instr->block) {
1749      nir_function_impl *impl =
1750         nir_cf_node_get_function(&instr->block->cf_node);
1751
1752      def->index = impl->ssa_alloc++;
1753
1754      impl->valid_metadata &= ~nir_metadata_live_ssa_defs;
1755   } else {
1756      def->index = UINT_MAX;
1757   }
1758}
1759
1760/* note: does *not* take ownership of 'name' */
1761void
1762nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
1763                 unsigned num_components, unsigned bit_size,
1764                 const char *name)
1765{
1766   dest->is_ssa = true;
1767   nir_ssa_def_init(instr, &dest->ssa, num_components, bit_size);
1768}
1769
1770void
1771nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_ssa_def *new_ssa)
1772{
1773   assert(def != new_ssa);
1774   nir_foreach_use_safe(use_src, def)
1775      nir_instr_rewrite_src_ssa(use_src->parent_instr, use_src, new_ssa);
1776
1777   nir_foreach_if_use_safe(use_src, def)
1778      nir_if_rewrite_condition_ssa(use_src->parent_if, use_src, new_ssa);
1779}
1780
1781void
1782nir_ssa_def_rewrite_uses_src(nir_ssa_def *def, nir_src new_src)
1783{
1784   if (new_src.is_ssa) {
1785      nir_ssa_def_rewrite_uses(def, new_src.ssa);
1786   } else {
1787      nir_foreach_use_safe(use_src, def)
1788         nir_instr_rewrite_src(use_src->parent_instr, use_src, new_src);
1789
1790      nir_foreach_if_use_safe(use_src, def)
1791         nir_if_rewrite_condition(use_src->parent_if, new_src);
1792   }
1793}
1794
1795static bool
1796is_instr_between(nir_instr *start, nir_instr *end, nir_instr *between)
1797{
1798   assert(start->block == end->block);
1799
1800   if (between->block != start->block)
1801      return false;
1802
1803   /* Search backwards looking for "between" */
1804   while (start != end) {
1805      if (between == end)
1806         return true;
1807
1808      end = nir_instr_prev(end);
1809      assert(end);
1810   }
1811
1812   return false;
1813}
1814
1815/* Replaces all uses of the given SSA def with the given source but only if
1816 * the use comes after the after_me instruction.  This can be useful if you
1817 * are emitting code to fix up the result of some instruction: you can freely
1818 * use the result in that code and then call rewrite_uses_after and pass the
1819 * last fixup instruction as after_me and it will replace all of the uses you
1820 * want without touching the fixup code.
1821 *
1822 * This function assumes that after_me is in the same block as
1823 * def->parent_instr and that after_me comes after def->parent_instr.
1824 */
1825void
1826nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_ssa_def *new_ssa,
1827                               nir_instr *after_me)
1828{
1829   if (def == new_ssa)
1830      return;
1831
1832   nir_foreach_use_safe(use_src, def) {
1833      assert(use_src->parent_instr != def->parent_instr);
1834      /* Since def already dominates all of its uses, the only way a use can
1835       * not be dominated by after_me is if it is between def and after_me in
1836       * the instruction list.
1837       */
1838      if (!is_instr_between(def->parent_instr, after_me, use_src->parent_instr))
1839         nir_instr_rewrite_src_ssa(use_src->parent_instr, use_src, new_ssa);
1840   }
1841
1842   nir_foreach_if_use_safe(use_src, def) {
1843      nir_if_rewrite_condition_ssa(use_src->parent_if,
1844                                   &use_src->parent_if->condition,
1845                                   new_ssa);
1846   }
1847}
1848
1849static nir_ssa_def *
1850get_store_value(nir_intrinsic_instr *intrin)
1851{
1852   assert(nir_intrinsic_has_write_mask(intrin));
1853   /* deref stores have the deref in src[0] and the store value in src[1] */
1854   if (intrin->intrinsic == nir_intrinsic_store_deref ||
1855       intrin->intrinsic == nir_intrinsic_store_deref_block_intel)
1856      return intrin->src[1].ssa;
1857
1858   /* all other stores have the store value in src[0] */
1859   return intrin->src[0].ssa;
1860}
1861
1862nir_component_mask_t
1863nir_src_components_read(const nir_src *src)
1864{
1865   assert(src->is_ssa && src->parent_instr);
1866
1867   if (src->parent_instr->type == nir_instr_type_alu) {
1868      nir_alu_instr *alu = nir_instr_as_alu(src->parent_instr);
1869      nir_alu_src *alu_src = exec_node_data(nir_alu_src, src, src);
1870      int src_idx = alu_src - &alu->src[0];
1871      assert(src_idx >= 0 && src_idx < nir_op_infos[alu->op].num_inputs);
1872      return nir_alu_instr_src_read_mask(alu, src_idx);
1873   } else if (src->parent_instr->type == nir_instr_type_intrinsic) {
1874      nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(src->parent_instr);
1875      if (nir_intrinsic_has_write_mask(intrin) && src->ssa == get_store_value(intrin))
1876         return nir_intrinsic_write_mask(intrin);
1877      else
1878         return (1 << src->ssa->num_components) - 1;
1879   } else {
1880      return (1 << src->ssa->num_components) - 1;
1881   }
1882}
1883
1884nir_component_mask_t
1885nir_ssa_def_components_read(const nir_ssa_def *def)
1886{
1887   nir_component_mask_t read_mask = 0;
1888
1889   if (!list_is_empty(&def->if_uses))
1890      read_mask |= 1;
1891
1892   nir_foreach_use(use, def) {
1893      read_mask |= nir_src_components_read(use);
1894      if (read_mask == (1 << def->num_components) - 1)
1895         return read_mask;
1896   }
1897
1898   return read_mask;
1899}
1900
1901nir_block *
1902nir_block_unstructured_next(nir_block *block)
1903{
1904   if (block == NULL) {
1905      /* nir_foreach_block_unstructured_safe() will call this function on a
1906       * NULL block after the last iteration, but it won't use the result so
1907       * just return NULL here.
1908       */
1909      return NULL;
1910   }
1911
1912   nir_cf_node *cf_next = nir_cf_node_next(&block->cf_node);
1913   if (cf_next == NULL && block->cf_node.parent->type == nir_cf_node_function)
1914      return NULL;
1915
1916   if (cf_next && cf_next->type == nir_cf_node_block)
1917      return nir_cf_node_as_block(cf_next);
1918
1919   return nir_block_cf_tree_next(block);
1920}
1921
1922nir_block *
1923nir_unstructured_start_block(nir_function_impl *impl)
1924{
1925   return nir_start_block(impl);
1926}
1927
1928nir_block *
1929nir_block_cf_tree_next(nir_block *block)
1930{
1931   if (block == NULL) {
1932      /* nir_foreach_block_safe() will call this function on a NULL block
1933       * after the last iteration, but it won't use the result so just return
1934       * NULL here.
1935       */
1936      return NULL;
1937   }
1938
1939   assert(nir_cf_node_get_function(&block->cf_node)->structured);
1940
1941   nir_cf_node *cf_next = nir_cf_node_next(&block->cf_node);
1942   if (cf_next)
1943      return nir_cf_node_cf_tree_first(cf_next);
1944
1945   nir_cf_node *parent = block->cf_node.parent;
1946
1947   switch (parent->type) {
1948   case nir_cf_node_if: {
1949      /* Are we at the end of the if? Go to the beginning of the else */
1950      nir_if *if_stmt = nir_cf_node_as_if(parent);
1951      if (block == nir_if_last_then_block(if_stmt))
1952         return nir_if_first_else_block(if_stmt);
1953
1954      assert(block == nir_if_last_else_block(if_stmt));
1955   }
1956   FALLTHROUGH;
1957
1958   case nir_cf_node_loop:
1959      return nir_cf_node_as_block(nir_cf_node_next(parent));
1960
1961   case nir_cf_node_function:
1962      return NULL;
1963
1964   default:
1965      unreachable("unknown cf node type");
1966   }
1967}
1968
1969nir_block *
1970nir_block_cf_tree_prev(nir_block *block)
1971{
1972   if (block == NULL) {
1973      /* do this for consistency with nir_block_cf_tree_next() */
1974      return NULL;
1975   }
1976
1977   assert(nir_cf_node_get_function(&block->cf_node)->structured);
1978
1979   nir_cf_node *cf_prev = nir_cf_node_prev(&block->cf_node);
1980   if (cf_prev)
1981      return nir_cf_node_cf_tree_last(cf_prev);
1982
1983   nir_cf_node *parent = block->cf_node.parent;
1984
1985   switch (parent->type) {
1986   case nir_cf_node_if: {
1987      /* Are we at the beginning of the else? Go to the end of the if */
1988      nir_if *if_stmt = nir_cf_node_as_if(parent);
1989      if (block == nir_if_first_else_block(if_stmt))
1990         return nir_if_last_then_block(if_stmt);
1991
1992      assert(block == nir_if_first_then_block(if_stmt));
1993   }
1994   FALLTHROUGH;
1995
1996   case nir_cf_node_loop:
1997      return nir_cf_node_as_block(nir_cf_node_prev(parent));
1998
1999   case nir_cf_node_function:
2000      return NULL;
2001
2002   default:
2003      unreachable("unknown cf node type");
2004   }
2005}
2006
2007nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node)
2008{
2009   switch (node->type) {
2010   case nir_cf_node_function: {
2011      nir_function_impl *impl = nir_cf_node_as_function(node);
2012      return nir_start_block(impl);
2013   }
2014
2015   case nir_cf_node_if: {
2016      nir_if *if_stmt = nir_cf_node_as_if(node);
2017      return nir_if_first_then_block(if_stmt);
2018   }
2019
2020   case nir_cf_node_loop: {
2021      nir_loop *loop = nir_cf_node_as_loop(node);
2022      return nir_loop_first_block(loop);
2023   }
2024
2025   case nir_cf_node_block: {
2026      return nir_cf_node_as_block(node);
2027   }
2028
2029   default:
2030      unreachable("unknown node type");
2031   }
2032}
2033
2034nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node)
2035{
2036   switch (node->type) {
2037   case nir_cf_node_function: {
2038      nir_function_impl *impl = nir_cf_node_as_function(node);
2039      return nir_impl_last_block(impl);
2040   }
2041
2042   case nir_cf_node_if: {
2043      nir_if *if_stmt = nir_cf_node_as_if(node);
2044      return nir_if_last_else_block(if_stmt);
2045   }
2046
2047   case nir_cf_node_loop: {
2048      nir_loop *loop = nir_cf_node_as_loop(node);
2049      return nir_loop_last_block(loop);
2050   }
2051
2052   case nir_cf_node_block: {
2053      return nir_cf_node_as_block(node);
2054   }
2055
2056   default:
2057      unreachable("unknown node type");
2058   }
2059}
2060
2061nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node)
2062{
2063   if (node->type == nir_cf_node_block)
2064      return nir_block_cf_tree_next(nir_cf_node_as_block(node));
2065   else if (node->type == nir_cf_node_function)
2066      return NULL;
2067   else
2068      return nir_cf_node_as_block(nir_cf_node_next(node));
2069}
2070
2071nir_if *
2072nir_block_get_following_if(nir_block *block)
2073{
2074   if (exec_node_is_tail_sentinel(&block->cf_node.node))
2075      return NULL;
2076
2077   if (nir_cf_node_is_last(&block->cf_node))
2078      return NULL;
2079
2080   nir_cf_node *next_node = nir_cf_node_next(&block->cf_node);
2081
2082   if (next_node->type != nir_cf_node_if)
2083      return NULL;
2084
2085   return nir_cf_node_as_if(next_node);
2086}
2087
2088nir_loop *
2089nir_block_get_following_loop(nir_block *block)
2090{
2091   if (exec_node_is_tail_sentinel(&block->cf_node.node))
2092      return NULL;
2093
2094   if (nir_cf_node_is_last(&block->cf_node))
2095      return NULL;
2096
2097   nir_cf_node *next_node = nir_cf_node_next(&block->cf_node);
2098
2099   if (next_node->type != nir_cf_node_loop)
2100      return NULL;
2101
2102   return nir_cf_node_as_loop(next_node);
2103}
2104
2105static int
2106compare_block_index(const void *p1, const void *p2)
2107{
2108   const nir_block *block1 = *((const nir_block **) p1);
2109   const nir_block *block2 = *((const nir_block **) p2);
2110
2111   return (int) block1->index - (int) block2->index;
2112}
2113
2114nir_block **
2115nir_block_get_predecessors_sorted(const nir_block *block, void *mem_ctx)
2116{
2117   nir_block **preds =
2118      ralloc_array(mem_ctx, nir_block *, block->predecessors->entries);
2119
2120   unsigned i = 0;
2121   set_foreach(block->predecessors, entry)
2122      preds[i++] = (nir_block *) entry->key;
2123   assert(i == block->predecessors->entries);
2124
2125   qsort(preds, block->predecessors->entries, sizeof(nir_block *),
2126         compare_block_index);
2127
2128   return preds;
2129}
2130
2131void
2132nir_index_blocks(nir_function_impl *impl)
2133{
2134   unsigned index = 0;
2135
2136   if (impl->valid_metadata & nir_metadata_block_index)
2137      return;
2138
2139   nir_foreach_block_unstructured(block, impl) {
2140      block->index = index++;
2141   }
2142
2143   /* The end_block isn't really part of the program, which is why its index
2144    * is >= num_blocks.
2145    */
2146   impl->num_blocks = impl->end_block->index = index;
2147}
2148
2149static bool
2150index_ssa_def_cb(nir_ssa_def *def, void *state)
2151{
2152   unsigned *index = (unsigned *) state;
2153   def->index = (*index)++;
2154
2155   return true;
2156}
2157
2158/**
2159 * The indices are applied top-to-bottom which has the very nice property
2160 * that, if A dominates B, then A->index <= B->index.
2161 */
2162void
2163nir_index_ssa_defs(nir_function_impl *impl)
2164{
2165   unsigned index = 0;
2166
2167   impl->valid_metadata &= ~nir_metadata_live_ssa_defs;
2168
2169   nir_foreach_block_unstructured(block, impl) {
2170      nir_foreach_instr(instr, block)
2171         nir_foreach_ssa_def(instr, index_ssa_def_cb, &index);
2172   }
2173
2174   impl->ssa_alloc = index;
2175}
2176
2177/**
2178 * The indices are applied top-to-bottom which has the very nice property
2179 * that, if A dominates B, then A->index <= B->index.
2180 */
2181unsigned
2182nir_index_instrs(nir_function_impl *impl)
2183{
2184   unsigned index = 0;
2185
2186   nir_foreach_block(block, impl) {
2187      block->start_ip = index++;
2188
2189      nir_foreach_instr(instr, block)
2190         instr->index = index++;
2191
2192      block->end_ip = index++;
2193   }
2194
2195   return index;
2196}
2197
2198unsigned
2199nir_shader_index_vars(nir_shader *shader, nir_variable_mode modes)
2200{
2201   unsigned count = 0;
2202   nir_foreach_variable_with_modes(var, shader, modes)
2203      var->index = count++;
2204   return count;
2205}
2206
2207unsigned
2208nir_function_impl_index_vars(nir_function_impl *impl)
2209{
2210   unsigned count = 0;
2211   nir_foreach_function_temp_variable(var, impl)
2212      var->index = count++;
2213   return count;
2214}
2215
2216static nir_instr *
2217cursor_next_instr(nir_cursor cursor)
2218{
2219   switch (cursor.option) {
2220   case nir_cursor_before_block:
2221      for (nir_block *block = cursor.block; block;
2222           block = nir_block_cf_tree_next(block)) {
2223         nir_instr *instr = nir_block_first_instr(block);
2224         if (instr)
2225            return instr;
2226      }
2227      return NULL;
2228
2229   case nir_cursor_after_block:
2230      cursor.block = nir_block_cf_tree_next(cursor.block);
2231      if (cursor.block == NULL)
2232         return NULL;
2233
2234      cursor.option = nir_cursor_before_block;
2235      return cursor_next_instr(cursor);
2236
2237   case nir_cursor_before_instr:
2238      return cursor.instr;
2239
2240   case nir_cursor_after_instr:
2241      if (nir_instr_next(cursor.instr))
2242         return nir_instr_next(cursor.instr);
2243
2244      cursor.option = nir_cursor_after_block;
2245      cursor.block = cursor.instr->block;
2246      return cursor_next_instr(cursor);
2247   }
2248
2249   unreachable("Inavlid cursor option");
2250}
2251
2252ASSERTED static bool
2253dest_is_ssa(nir_dest *dest, void *_state)
2254{
2255   (void) _state;
2256   return dest->is_ssa;
2257}
2258
2259bool
2260nir_function_impl_lower_instructions(nir_function_impl *impl,
2261                                     nir_instr_filter_cb filter,
2262                                     nir_lower_instr_cb lower,
2263                                     void *cb_data)
2264{
2265   nir_builder b;
2266   nir_builder_init(&b, impl);
2267
2268   nir_metadata preserved = nir_metadata_block_index |
2269                            nir_metadata_dominance;
2270
2271   bool progress = false;
2272   nir_cursor iter = nir_before_cf_list(&impl->body);
2273   nir_instr *instr;
2274   while ((instr = cursor_next_instr(iter)) != NULL) {
2275      if (filter && !filter(instr, cb_data)) {
2276         iter = nir_after_instr(instr);
2277         continue;
2278      }
2279
2280      assert(nir_foreach_dest(instr, dest_is_ssa, NULL));
2281      nir_ssa_def *old_def = nir_instr_ssa_def(instr);
2282      struct list_head old_uses, old_if_uses;
2283      if (old_def != NULL) {
2284         /* We're about to ask the callback to generate a replacement for instr.
2285          * Save off the uses from instr's SSA def so we know what uses to
2286          * rewrite later.  If we use nir_ssa_def_rewrite_uses, it fails in the
2287          * case where the generated replacement code uses the result of instr
2288          * itself.  If we use nir_ssa_def_rewrite_uses_after (which is the
2289          * normal solution to this problem), it doesn't work well if control-
2290          * flow is inserted as part of the replacement, doesn't handle cases
2291          * where the replacement is something consumed by instr, and suffers
2292          * from performance issues.  This is the only way to 100% guarantee
2293          * that we rewrite the correct set efficiently.
2294          */
2295
2296         list_replace(&old_def->uses, &old_uses);
2297         list_inithead(&old_def->uses);
2298         list_replace(&old_def->if_uses, &old_if_uses);
2299         list_inithead(&old_def->if_uses);
2300      }
2301
2302      b.cursor = nir_after_instr(instr);
2303      nir_ssa_def *new_def = lower(&b, instr, cb_data);
2304      if (new_def && new_def != NIR_LOWER_INSTR_PROGRESS &&
2305          new_def != NIR_LOWER_INSTR_PROGRESS_REPLACE) {
2306         assert(old_def != NULL);
2307         if (new_def->parent_instr->block != instr->block)
2308            preserved = nir_metadata_none;
2309
2310         nir_src new_src = nir_src_for_ssa(new_def);
2311         list_for_each_entry_safe(nir_src, use_src, &old_uses, use_link)
2312            nir_instr_rewrite_src(use_src->parent_instr, use_src, new_src);
2313
2314         list_for_each_entry_safe(nir_src, use_src, &old_if_uses, use_link)
2315            nir_if_rewrite_condition(use_src->parent_if, new_src);
2316
2317         if (nir_ssa_def_is_unused(old_def)) {
2318            iter = nir_instr_free_and_dce(instr);
2319         } else {
2320            iter = nir_after_instr(instr);
2321         }
2322         progress = true;
2323      } else {
2324         /* We didn't end up lowering after all.  Put the uses back */
2325         if (old_def) {
2326            list_replace(&old_uses, &old_def->uses);
2327            list_replace(&old_if_uses, &old_def->if_uses);
2328         }
2329         if (new_def == NIR_LOWER_INSTR_PROGRESS_REPLACE) {
2330            /* Only instructions without a return value can be removed like this */
2331            assert(!old_def);
2332            iter = nir_instr_free_and_dce(instr);
2333            progress = true;
2334         } else
2335            iter = nir_after_instr(instr);
2336
2337         if (new_def == NIR_LOWER_INSTR_PROGRESS)
2338            progress = true;
2339      }
2340   }
2341
2342   if (progress) {
2343      nir_metadata_preserve(impl, preserved);
2344   } else {
2345      nir_metadata_preserve(impl, nir_metadata_all);
2346   }
2347
2348   return progress;
2349}
2350
2351bool
2352nir_shader_lower_instructions(nir_shader *shader,
2353                              nir_instr_filter_cb filter,
2354                              nir_lower_instr_cb lower,
2355                              void *cb_data)
2356{
2357   bool progress = false;
2358
2359   nir_foreach_function(function, shader) {
2360      if (function->impl &&
2361          nir_function_impl_lower_instructions(function->impl,
2362                                               filter, lower, cb_data))
2363         progress = true;
2364   }
2365
2366   return progress;
2367}
2368
2369/**
2370 * Returns true if the shader supports quad-based implicit derivatives on
2371 * texture sampling.
2372 */
2373bool nir_shader_supports_implicit_lod(nir_shader *shader)
2374{
2375   return (shader->info.stage == MESA_SHADER_FRAGMENT ||
2376           (shader->info.stage == MESA_SHADER_COMPUTE &&
2377            shader->info.cs.derivative_group != DERIVATIVE_GROUP_NONE));
2378}
2379
2380nir_intrinsic_op
2381nir_intrinsic_from_system_value(gl_system_value val)
2382{
2383   switch (val) {
2384   case SYSTEM_VALUE_VERTEX_ID:
2385      return nir_intrinsic_load_vertex_id;
2386   case SYSTEM_VALUE_INSTANCE_ID:
2387      return nir_intrinsic_load_instance_id;
2388   case SYSTEM_VALUE_DRAW_ID:
2389      return nir_intrinsic_load_draw_id;
2390   case SYSTEM_VALUE_BASE_INSTANCE:
2391      return nir_intrinsic_load_base_instance;
2392   case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
2393      return nir_intrinsic_load_vertex_id_zero_base;
2394   case SYSTEM_VALUE_IS_INDEXED_DRAW:
2395      return nir_intrinsic_load_is_indexed_draw;
2396   case SYSTEM_VALUE_FIRST_VERTEX:
2397      return nir_intrinsic_load_first_vertex;
2398   case SYSTEM_VALUE_BASE_VERTEX:
2399      return nir_intrinsic_load_base_vertex;
2400   case SYSTEM_VALUE_INVOCATION_ID:
2401      return nir_intrinsic_load_invocation_id;
2402   case SYSTEM_VALUE_FRAG_COORD:
2403      return nir_intrinsic_load_frag_coord;
2404   case SYSTEM_VALUE_POINT_COORD:
2405      return nir_intrinsic_load_point_coord;
2406   case SYSTEM_VALUE_LINE_COORD:
2407      return nir_intrinsic_load_line_coord;
2408   case SYSTEM_VALUE_FRONT_FACE:
2409      return nir_intrinsic_load_front_face;
2410   case SYSTEM_VALUE_SAMPLE_ID:
2411      return nir_intrinsic_load_sample_id;
2412   case SYSTEM_VALUE_SAMPLE_POS:
2413      return nir_intrinsic_load_sample_pos;
2414   case SYSTEM_VALUE_SAMPLE_POS_OR_CENTER:
2415      return nir_intrinsic_load_sample_pos_or_center;
2416   case SYSTEM_VALUE_SAMPLE_MASK_IN:
2417      return nir_intrinsic_load_sample_mask_in;
2418   case SYSTEM_VALUE_LOCAL_INVOCATION_ID:
2419      return nir_intrinsic_load_local_invocation_id;
2420   case SYSTEM_VALUE_LOCAL_INVOCATION_INDEX:
2421      return nir_intrinsic_load_local_invocation_index;
2422   case SYSTEM_VALUE_WORKGROUP_ID:
2423      return nir_intrinsic_load_workgroup_id;
2424   case SYSTEM_VALUE_WORKGROUP_INDEX:
2425      return nir_intrinsic_load_workgroup_index;
2426   case SYSTEM_VALUE_NUM_WORKGROUPS:
2427      return nir_intrinsic_load_num_workgroups;
2428   case SYSTEM_VALUE_PRIMITIVE_ID:
2429      return nir_intrinsic_load_primitive_id;
2430   case SYSTEM_VALUE_TESS_COORD:
2431      return nir_intrinsic_load_tess_coord;
2432   case SYSTEM_VALUE_TESS_LEVEL_OUTER:
2433      return nir_intrinsic_load_tess_level_outer;
2434   case SYSTEM_VALUE_TESS_LEVEL_INNER:
2435      return nir_intrinsic_load_tess_level_inner;
2436   case SYSTEM_VALUE_TESS_LEVEL_OUTER_DEFAULT:
2437      return nir_intrinsic_load_tess_level_outer_default;
2438   case SYSTEM_VALUE_TESS_LEVEL_INNER_DEFAULT:
2439      return nir_intrinsic_load_tess_level_inner_default;
2440   case SYSTEM_VALUE_VERTICES_IN:
2441      return nir_intrinsic_load_patch_vertices_in;
2442   case SYSTEM_VALUE_HELPER_INVOCATION:
2443      return nir_intrinsic_load_helper_invocation;
2444   case SYSTEM_VALUE_COLOR0:
2445      return nir_intrinsic_load_color0;
2446   case SYSTEM_VALUE_COLOR1:
2447      return nir_intrinsic_load_color1;
2448   case SYSTEM_VALUE_VIEW_INDEX:
2449      return nir_intrinsic_load_view_index;
2450   case SYSTEM_VALUE_SUBGROUP_SIZE:
2451      return nir_intrinsic_load_subgroup_size;
2452   case SYSTEM_VALUE_SUBGROUP_INVOCATION:
2453      return nir_intrinsic_load_subgroup_invocation;
2454   case SYSTEM_VALUE_SUBGROUP_EQ_MASK:
2455      return nir_intrinsic_load_subgroup_eq_mask;
2456   case SYSTEM_VALUE_SUBGROUP_GE_MASK:
2457      return nir_intrinsic_load_subgroup_ge_mask;
2458   case SYSTEM_VALUE_SUBGROUP_GT_MASK:
2459      return nir_intrinsic_load_subgroup_gt_mask;
2460   case SYSTEM_VALUE_SUBGROUP_LE_MASK:
2461      return nir_intrinsic_load_subgroup_le_mask;
2462   case SYSTEM_VALUE_SUBGROUP_LT_MASK:
2463      return nir_intrinsic_load_subgroup_lt_mask;
2464   case SYSTEM_VALUE_NUM_SUBGROUPS:
2465      return nir_intrinsic_load_num_subgroups;
2466   case SYSTEM_VALUE_SUBGROUP_ID:
2467      return nir_intrinsic_load_subgroup_id;
2468   case SYSTEM_VALUE_WORKGROUP_SIZE:
2469      return nir_intrinsic_load_workgroup_size;
2470   case SYSTEM_VALUE_GLOBAL_INVOCATION_ID:
2471      return nir_intrinsic_load_global_invocation_id;
2472   case SYSTEM_VALUE_BASE_GLOBAL_INVOCATION_ID:
2473      return nir_intrinsic_load_base_global_invocation_id;
2474   case SYSTEM_VALUE_GLOBAL_INVOCATION_INDEX:
2475      return nir_intrinsic_load_global_invocation_index;
2476   case SYSTEM_VALUE_WORK_DIM:
2477      return nir_intrinsic_load_work_dim;
2478   case SYSTEM_VALUE_USER_DATA_AMD:
2479      return nir_intrinsic_load_user_data_amd;
2480   case SYSTEM_VALUE_RAY_LAUNCH_ID:
2481      return nir_intrinsic_load_ray_launch_id;
2482   case SYSTEM_VALUE_RAY_LAUNCH_SIZE:
2483      return nir_intrinsic_load_ray_launch_size;
2484   case SYSTEM_VALUE_RAY_LAUNCH_SIZE_ADDR_AMD:
2485      return nir_intrinsic_load_ray_launch_size_addr_amd;
2486   case SYSTEM_VALUE_RAY_WORLD_ORIGIN:
2487      return nir_intrinsic_load_ray_world_origin;
2488   case SYSTEM_VALUE_RAY_WORLD_DIRECTION:
2489      return nir_intrinsic_load_ray_world_direction;
2490   case SYSTEM_VALUE_RAY_OBJECT_ORIGIN:
2491      return nir_intrinsic_load_ray_object_origin;
2492   case SYSTEM_VALUE_RAY_OBJECT_DIRECTION:
2493      return nir_intrinsic_load_ray_object_direction;
2494   case SYSTEM_VALUE_RAY_T_MIN:
2495      return nir_intrinsic_load_ray_t_min;
2496   case SYSTEM_VALUE_RAY_T_MAX:
2497      return nir_intrinsic_load_ray_t_max;
2498   case SYSTEM_VALUE_RAY_OBJECT_TO_WORLD:
2499      return nir_intrinsic_load_ray_object_to_world;
2500   case SYSTEM_VALUE_RAY_WORLD_TO_OBJECT:
2501      return nir_intrinsic_load_ray_world_to_object;
2502   case SYSTEM_VALUE_RAY_HIT_KIND:
2503      return nir_intrinsic_load_ray_hit_kind;
2504   case SYSTEM_VALUE_RAY_FLAGS:
2505      return nir_intrinsic_load_ray_flags;
2506   case SYSTEM_VALUE_RAY_GEOMETRY_INDEX:
2507      return nir_intrinsic_load_ray_geometry_index;
2508   case SYSTEM_VALUE_RAY_INSTANCE_CUSTOM_INDEX:
2509      return nir_intrinsic_load_ray_instance_custom_index;
2510   case SYSTEM_VALUE_CULL_MASK:
2511      return nir_intrinsic_load_cull_mask;
2512   case SYSTEM_VALUE_MESH_VIEW_COUNT:
2513      return nir_intrinsic_load_mesh_view_count;
2514   case SYSTEM_VALUE_FRAG_SHADING_RATE:
2515      return nir_intrinsic_load_frag_shading_rate;
2516   default:
2517      unreachable("system value does not directly correspond to intrinsic");
2518   }
2519}
2520
2521gl_system_value
2522nir_system_value_from_intrinsic(nir_intrinsic_op intrin)
2523{
2524   switch (intrin) {
2525   case nir_intrinsic_load_vertex_id:
2526      return SYSTEM_VALUE_VERTEX_ID;
2527   case nir_intrinsic_load_instance_id:
2528      return SYSTEM_VALUE_INSTANCE_ID;
2529   case nir_intrinsic_load_draw_id:
2530      return SYSTEM_VALUE_DRAW_ID;
2531   case nir_intrinsic_load_base_instance:
2532      return SYSTEM_VALUE_BASE_INSTANCE;
2533   case nir_intrinsic_load_vertex_id_zero_base:
2534      return SYSTEM_VALUE_VERTEX_ID_ZERO_BASE;
2535   case nir_intrinsic_load_first_vertex:
2536      return SYSTEM_VALUE_FIRST_VERTEX;
2537   case nir_intrinsic_load_is_indexed_draw:
2538      return SYSTEM_VALUE_IS_INDEXED_DRAW;
2539   case nir_intrinsic_load_base_vertex:
2540      return SYSTEM_VALUE_BASE_VERTEX;
2541   case nir_intrinsic_load_invocation_id:
2542      return SYSTEM_VALUE_INVOCATION_ID;
2543   case nir_intrinsic_load_frag_coord:
2544      return SYSTEM_VALUE_FRAG_COORD;
2545   case nir_intrinsic_load_point_coord:
2546      return SYSTEM_VALUE_POINT_COORD;
2547   case nir_intrinsic_load_line_coord:
2548      return SYSTEM_VALUE_LINE_COORD;
2549   case nir_intrinsic_load_front_face:
2550      return SYSTEM_VALUE_FRONT_FACE;
2551   case nir_intrinsic_load_sample_id:
2552      return SYSTEM_VALUE_SAMPLE_ID;
2553   case nir_intrinsic_load_sample_pos:
2554      return SYSTEM_VALUE_SAMPLE_POS;
2555   case nir_intrinsic_load_sample_pos_or_center:
2556      return SYSTEM_VALUE_SAMPLE_POS_OR_CENTER;
2557   case nir_intrinsic_load_sample_mask_in:
2558      return SYSTEM_VALUE_SAMPLE_MASK_IN;
2559   case nir_intrinsic_load_local_invocation_id:
2560      return SYSTEM_VALUE_LOCAL_INVOCATION_ID;
2561   case nir_intrinsic_load_local_invocation_index:
2562      return SYSTEM_VALUE_LOCAL_INVOCATION_INDEX;
2563   case nir_intrinsic_load_num_workgroups:
2564      return SYSTEM_VALUE_NUM_WORKGROUPS;
2565   case nir_intrinsic_load_workgroup_id:
2566      return SYSTEM_VALUE_WORKGROUP_ID;
2567   case nir_intrinsic_load_workgroup_index:
2568      return SYSTEM_VALUE_WORKGROUP_INDEX;
2569   case nir_intrinsic_load_primitive_id:
2570      return SYSTEM_VALUE_PRIMITIVE_ID;
2571   case nir_intrinsic_load_tess_coord:
2572      return SYSTEM_VALUE_TESS_COORD;
2573   case nir_intrinsic_load_tess_level_outer:
2574      return SYSTEM_VALUE_TESS_LEVEL_OUTER;
2575   case nir_intrinsic_load_tess_level_inner:
2576      return SYSTEM_VALUE_TESS_LEVEL_INNER;
2577   case nir_intrinsic_load_tess_level_outer_default:
2578      return SYSTEM_VALUE_TESS_LEVEL_OUTER_DEFAULT;
2579   case nir_intrinsic_load_tess_level_inner_default:
2580      return SYSTEM_VALUE_TESS_LEVEL_INNER_DEFAULT;
2581   case nir_intrinsic_load_patch_vertices_in:
2582      return SYSTEM_VALUE_VERTICES_IN;
2583   case nir_intrinsic_load_helper_invocation:
2584      return SYSTEM_VALUE_HELPER_INVOCATION;
2585   case nir_intrinsic_load_color0:
2586      return SYSTEM_VALUE_COLOR0;
2587   case nir_intrinsic_load_color1:
2588      return SYSTEM_VALUE_COLOR1;
2589   case nir_intrinsic_load_view_index:
2590      return SYSTEM_VALUE_VIEW_INDEX;
2591   case nir_intrinsic_load_subgroup_size:
2592      return SYSTEM_VALUE_SUBGROUP_SIZE;
2593   case nir_intrinsic_load_subgroup_invocation:
2594      return SYSTEM_VALUE_SUBGROUP_INVOCATION;
2595   case nir_intrinsic_load_subgroup_eq_mask:
2596      return SYSTEM_VALUE_SUBGROUP_EQ_MASK;
2597   case nir_intrinsic_load_subgroup_ge_mask:
2598      return SYSTEM_VALUE_SUBGROUP_GE_MASK;
2599   case nir_intrinsic_load_subgroup_gt_mask:
2600      return SYSTEM_VALUE_SUBGROUP_GT_MASK;
2601   case nir_intrinsic_load_subgroup_le_mask:
2602      return SYSTEM_VALUE_SUBGROUP_LE_MASK;
2603   case nir_intrinsic_load_subgroup_lt_mask:
2604      return SYSTEM_VALUE_SUBGROUP_LT_MASK;
2605   case nir_intrinsic_load_num_subgroups:
2606      return SYSTEM_VALUE_NUM_SUBGROUPS;
2607   case nir_intrinsic_load_subgroup_id:
2608      return SYSTEM_VALUE_SUBGROUP_ID;
2609   case nir_intrinsic_load_workgroup_size:
2610      return SYSTEM_VALUE_WORKGROUP_SIZE;
2611   case nir_intrinsic_load_global_invocation_id:
2612      return SYSTEM_VALUE_GLOBAL_INVOCATION_ID;
2613   case nir_intrinsic_load_base_global_invocation_id:
2614      return SYSTEM_VALUE_BASE_GLOBAL_INVOCATION_ID;
2615   case nir_intrinsic_load_global_invocation_index:
2616      return SYSTEM_VALUE_GLOBAL_INVOCATION_INDEX;
2617   case nir_intrinsic_load_work_dim:
2618      return SYSTEM_VALUE_WORK_DIM;
2619   case nir_intrinsic_load_user_data_amd:
2620      return SYSTEM_VALUE_USER_DATA_AMD;
2621   case nir_intrinsic_load_barycentric_model:
2622      return SYSTEM_VALUE_BARYCENTRIC_PULL_MODEL;
2623   case nir_intrinsic_load_gs_header_ir3:
2624      return SYSTEM_VALUE_GS_HEADER_IR3;
2625   case nir_intrinsic_load_tcs_header_ir3:
2626      return SYSTEM_VALUE_TCS_HEADER_IR3;
2627   case nir_intrinsic_load_ray_launch_id:
2628      return SYSTEM_VALUE_RAY_LAUNCH_ID;
2629   case nir_intrinsic_load_ray_launch_size:
2630      return SYSTEM_VALUE_RAY_LAUNCH_SIZE;
2631   case nir_intrinsic_load_ray_launch_size_addr_amd:
2632      return SYSTEM_VALUE_RAY_LAUNCH_SIZE_ADDR_AMD;
2633   case nir_intrinsic_load_ray_world_origin:
2634      return SYSTEM_VALUE_RAY_WORLD_ORIGIN;
2635   case nir_intrinsic_load_ray_world_direction:
2636      return SYSTEM_VALUE_RAY_WORLD_DIRECTION;
2637   case nir_intrinsic_load_ray_object_origin:
2638      return SYSTEM_VALUE_RAY_OBJECT_ORIGIN;
2639   case nir_intrinsic_load_ray_object_direction:
2640      return SYSTEM_VALUE_RAY_OBJECT_DIRECTION;
2641   case nir_intrinsic_load_ray_t_min:
2642      return SYSTEM_VALUE_RAY_T_MIN;
2643   case nir_intrinsic_load_ray_t_max:
2644      return SYSTEM_VALUE_RAY_T_MAX;
2645   case nir_intrinsic_load_ray_object_to_world:
2646      return SYSTEM_VALUE_RAY_OBJECT_TO_WORLD;
2647   case nir_intrinsic_load_ray_world_to_object:
2648      return SYSTEM_VALUE_RAY_WORLD_TO_OBJECT;
2649   case nir_intrinsic_load_ray_hit_kind:
2650      return SYSTEM_VALUE_RAY_HIT_KIND;
2651   case nir_intrinsic_load_ray_flags:
2652      return SYSTEM_VALUE_RAY_FLAGS;
2653   case nir_intrinsic_load_ray_geometry_index:
2654      return SYSTEM_VALUE_RAY_GEOMETRY_INDEX;
2655   case nir_intrinsic_load_ray_instance_custom_index:
2656      return SYSTEM_VALUE_RAY_INSTANCE_CUSTOM_INDEX;
2657   case nir_intrinsic_load_cull_mask:
2658      return SYSTEM_VALUE_CULL_MASK;
2659   case nir_intrinsic_load_frag_shading_rate:
2660      return SYSTEM_VALUE_FRAG_SHADING_RATE;
2661   case nir_intrinsic_load_mesh_view_count:
2662      return SYSTEM_VALUE_MESH_VIEW_COUNT;
2663   default:
2664      unreachable("intrinsic doesn't produce a system value");
2665   }
2666}
2667
2668/* OpenGL utility method that remaps the location attributes if they are
2669 * doubles. Not needed for vulkan due the differences on the input location
2670 * count for doubles on vulkan vs OpenGL
2671 *
2672 * The bitfield returned in dual_slot is one bit for each double input slot in
2673 * the original OpenGL single-slot input numbering.  The mapping from old
2674 * locations to new locations is as follows:
2675 *
2676 *    new_loc = loc + util_bitcount(dual_slot & BITFIELD64_MASK(loc))
2677 */
2678void
2679nir_remap_dual_slot_attributes(nir_shader *shader, uint64_t *dual_slot)
2680{
2681   assert(shader->info.stage == MESA_SHADER_VERTEX);
2682
2683   *dual_slot = 0;
2684   nir_foreach_shader_in_variable(var, shader) {
2685      if (glsl_type_is_dual_slot(glsl_without_array(var->type))) {
2686         unsigned slots = glsl_count_attribute_slots(var->type, true);
2687         *dual_slot |= BITFIELD64_MASK(slots) << var->data.location;
2688      }
2689   }
2690
2691   nir_foreach_shader_in_variable(var, shader) {
2692      var->data.location +=
2693         util_bitcount64(*dual_slot & BITFIELD64_MASK(var->data.location));
2694   }
2695}
2696
2697/* Returns an attribute mask that has been re-compacted using the given
2698 * dual_slot mask.
2699 */
2700uint64_t
2701nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot)
2702{
2703   while (dual_slot) {
2704      unsigned loc = u_bit_scan64(&dual_slot);
2705      /* mask of all bits up to and including loc */
2706      uint64_t mask = BITFIELD64_MASK(loc + 1);
2707      attribs = (attribs & mask) | ((attribs & ~mask) >> 1);
2708   }
2709   return attribs;
2710}
2711
2712void
2713nir_rewrite_image_intrinsic(nir_intrinsic_instr *intrin, nir_ssa_def *src,
2714                            bool bindless)
2715{
2716   enum gl_access_qualifier access = nir_intrinsic_access(intrin);
2717
2718   /* Image intrinsics only have one of these */
2719   assert(!nir_intrinsic_has_src_type(intrin) ||
2720          !nir_intrinsic_has_dest_type(intrin));
2721
2722   nir_alu_type data_type = nir_type_invalid;
2723   if (nir_intrinsic_has_src_type(intrin))
2724      data_type = nir_intrinsic_src_type(intrin);
2725   if (nir_intrinsic_has_dest_type(intrin))
2726      data_type = nir_intrinsic_dest_type(intrin);
2727
2728   switch (intrin->intrinsic) {
2729#define CASE(op) \
2730   case nir_intrinsic_image_deref_##op: \
2731      intrin->intrinsic = bindless ? nir_intrinsic_bindless_image_##op \
2732                                   : nir_intrinsic_image_##op; \
2733      break;
2734   CASE(load)
2735   CASE(sparse_load)
2736   CASE(store)
2737   CASE(atomic_add)
2738   CASE(atomic_imin)
2739   CASE(atomic_umin)
2740   CASE(atomic_imax)
2741   CASE(atomic_umax)
2742   CASE(atomic_and)
2743   CASE(atomic_or)
2744   CASE(atomic_xor)
2745   CASE(atomic_exchange)
2746   CASE(atomic_comp_swap)
2747   CASE(atomic_fadd)
2748   CASE(atomic_fmin)
2749   CASE(atomic_fmax)
2750   CASE(atomic_inc_wrap)
2751   CASE(atomic_dec_wrap)
2752   CASE(size)
2753   CASE(samples)
2754   CASE(load_raw_intel)
2755   CASE(store_raw_intel)
2756#undef CASE
2757   default:
2758      unreachable("Unhanded image intrinsic");
2759   }
2760
2761   nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
2762   nir_variable *var = nir_deref_instr_get_variable(deref);
2763
2764   /* Only update the format if the intrinsic doesn't have one set */
2765   if (nir_intrinsic_format(intrin) == PIPE_FORMAT_NONE)
2766      nir_intrinsic_set_format(intrin, var->data.image.format);
2767
2768   nir_intrinsic_set_access(intrin, access | var->data.access);
2769   if (nir_intrinsic_has_src_type(intrin))
2770      nir_intrinsic_set_src_type(intrin, data_type);
2771   if (nir_intrinsic_has_dest_type(intrin))
2772      nir_intrinsic_set_dest_type(intrin, data_type);
2773
2774   nir_instr_rewrite_src(&intrin->instr, &intrin->src[0],
2775                         nir_src_for_ssa(src));
2776}
2777
2778unsigned
2779nir_image_intrinsic_coord_components(const nir_intrinsic_instr *instr)
2780{
2781   enum glsl_sampler_dim dim = nir_intrinsic_image_dim(instr);
2782   int coords = glsl_get_sampler_dim_coordinate_components(dim);
2783   if (dim == GLSL_SAMPLER_DIM_CUBE)
2784      return coords;
2785   else
2786      return coords + nir_intrinsic_image_array(instr);
2787}
2788
2789nir_src *
2790nir_get_shader_call_payload_src(nir_intrinsic_instr *call)
2791{
2792   switch (call->intrinsic) {
2793   case nir_intrinsic_trace_ray:
2794   case nir_intrinsic_rt_trace_ray:
2795      return &call->src[10];
2796   case nir_intrinsic_execute_callable:
2797   case nir_intrinsic_rt_execute_callable:
2798      return &call->src[1];
2799   default:
2800      unreachable("Not a call intrinsic");
2801      return NULL;
2802   }
2803}
2804
2805nir_binding nir_chase_binding(nir_src rsrc)
2806{
2807   nir_binding res = {0};
2808   if (rsrc.ssa->parent_instr->type == nir_instr_type_deref) {
2809      const struct glsl_type *type = glsl_without_array(nir_src_as_deref(rsrc)->type);
2810      bool is_image = glsl_type_is_image(type) || glsl_type_is_sampler(type);
2811      while (rsrc.ssa->parent_instr->type == nir_instr_type_deref) {
2812         nir_deref_instr *deref = nir_src_as_deref(rsrc);
2813
2814         if (deref->deref_type == nir_deref_type_var) {
2815            res.success = true;
2816            res.var = deref->var;
2817            res.desc_set = deref->var->data.descriptor_set;
2818            res.binding = deref->var->data.binding;
2819            return res;
2820         } else if (deref->deref_type == nir_deref_type_array && is_image) {
2821            if (res.num_indices == ARRAY_SIZE(res.indices))
2822               return (nir_binding){0};
2823            res.indices[res.num_indices++] = deref->arr.index;
2824         }
2825
2826         rsrc = deref->parent;
2827      }
2828   }
2829
2830   /* Skip copies and trimming. Trimming can appear as nir_op_mov instructions
2831    * when removing the offset from addresses. We also consider nir_op_is_vec()
2832    * instructions to skip trimming of vec2_index_32bit_offset addresses after
2833    * lowering ALU to scalar.
2834    */
2835   while (true) {
2836      nir_alu_instr *alu = nir_src_as_alu_instr(rsrc);
2837      nir_intrinsic_instr *intrin = nir_src_as_intrinsic(rsrc);
2838      if (alu && alu->op == nir_op_mov) {
2839         for (unsigned i = 0; i < alu->dest.dest.ssa.num_components; i++) {
2840            if (alu->src[0].swizzle[i] != i)
2841               return (nir_binding){0};
2842         }
2843         rsrc = alu->src[0].src;
2844      } else if (alu && nir_op_is_vec(alu->op)) {
2845         for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
2846            if (alu->src[i].swizzle[0] != i || alu->src[i].src.ssa != alu->src[0].src.ssa)
2847               return (nir_binding){0};
2848         }
2849         rsrc = alu->src[0].src;
2850      } else if (intrin && intrin->intrinsic == nir_intrinsic_read_first_invocation) {
2851         /* The caller might want to be aware if only the first invocation of
2852          * the indices are used.
2853          */
2854         res.read_first_invocation = true;
2855         rsrc = intrin->src[0];
2856      } else {
2857         break;
2858      }
2859   }
2860
2861   if (nir_src_is_const(rsrc)) {
2862      /* GL binding model after deref lowering */
2863      res.success = true;
2864      /* Can't use just nir_src_as_uint. Vulkan resource index produces a
2865       * vec2. Some drivers lower it to vec1 (to handle get_ssbo_size for
2866       * example) but others just keep it around as a vec2 (v3dv).
2867       */
2868      res.binding = nir_src_comp_as_uint(rsrc, 0);
2869      return res;
2870   }
2871
2872   /* otherwise, must be Vulkan binding model after deref lowering or GL bindless */
2873
2874   nir_intrinsic_instr *intrin = nir_src_as_intrinsic(rsrc);
2875   if (!intrin)
2876      return (nir_binding){0};
2877
2878   /* skip load_vulkan_descriptor */
2879   if (intrin->intrinsic == nir_intrinsic_load_vulkan_descriptor) {
2880      intrin = nir_src_as_intrinsic(intrin->src[0]);
2881      if (!intrin)
2882         return (nir_binding){0};
2883   }
2884
2885   if (intrin->intrinsic != nir_intrinsic_vulkan_resource_index)
2886      return (nir_binding){0};
2887
2888   assert(res.num_indices == 0);
2889   res.success = true;
2890   res.desc_set = nir_intrinsic_desc_set(intrin);
2891   res.binding = nir_intrinsic_binding(intrin);
2892   res.num_indices = 1;
2893   res.indices[0] = intrin->src[0];
2894   return res;
2895}
2896
2897nir_variable *nir_get_binding_variable(nir_shader *shader, nir_binding binding)
2898{
2899   nir_variable *binding_var = NULL;
2900   unsigned count = 0;
2901
2902   if (!binding.success)
2903      return NULL;
2904
2905   if (binding.var)
2906      return binding.var;
2907
2908   nir_foreach_variable_with_modes(var, shader, nir_var_mem_ubo | nir_var_mem_ssbo) {
2909      if (var->data.descriptor_set == binding.desc_set && var->data.binding == binding.binding) {
2910         binding_var = var;
2911         count++;
2912      }
2913   }
2914
2915   /* Be conservative if another variable is using the same binding/desc_set
2916    * because the access mask might be different and we can't get it reliably.
2917    */
2918   if (count > 1)
2919      return NULL;
2920
2921   return binding_var;
2922}
2923
2924bool
2925nir_alu_instr_is_copy(nir_alu_instr *instr)
2926{
2927   assert(instr->src[0].src.is_ssa);
2928
2929   if (instr->op == nir_op_mov) {
2930      return !instr->dest.saturate &&
2931             !instr->src[0].abs &&
2932             !instr->src[0].negate;
2933   } else if (nir_op_is_vec(instr->op)) {
2934      for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; i++) {
2935         if (instr->src[i].abs || instr->src[i].negate)
2936            return false;
2937      }
2938      return !instr->dest.saturate;
2939   } else {
2940      return false;
2941   }
2942}
2943
2944nir_ssa_scalar
2945nir_ssa_scalar_chase_movs(nir_ssa_scalar s)
2946{
2947   while (nir_ssa_scalar_is_alu(s)) {
2948      nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
2949      if (!nir_alu_instr_is_copy(alu))
2950         break;
2951
2952      if (alu->op == nir_op_mov) {
2953         s.def = alu->src[0].src.ssa;
2954         s.comp = alu->src[0].swizzle[s.comp];
2955      } else {
2956         assert(nir_op_is_vec(alu->op));
2957         s.def = alu->src[s.comp].src.ssa;
2958         s.comp = alu->src[s.comp].swizzle[0];
2959      }
2960   }
2961
2962   return s;
2963}
2964
2965nir_alu_type
2966nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
2967{
2968   switch (base_type) {
2969   case GLSL_TYPE_BOOL:
2970      return nir_type_bool1;
2971      break;
2972   case GLSL_TYPE_UINT:
2973      return nir_type_uint32;
2974      break;
2975   case GLSL_TYPE_INT:
2976      return nir_type_int32;
2977      break;
2978   case GLSL_TYPE_UINT16:
2979      return nir_type_uint16;
2980      break;
2981   case GLSL_TYPE_INT16:
2982      return nir_type_int16;
2983      break;
2984   case GLSL_TYPE_UINT8:
2985      return nir_type_uint8;
2986   case GLSL_TYPE_INT8:
2987      return nir_type_int8;
2988   case GLSL_TYPE_UINT64:
2989      return nir_type_uint64;
2990      break;
2991   case GLSL_TYPE_INT64:
2992      return nir_type_int64;
2993      break;
2994   case GLSL_TYPE_FLOAT:
2995      return nir_type_float32;
2996      break;
2997   case GLSL_TYPE_FLOAT16:
2998      return nir_type_float16;
2999      break;
3000   case GLSL_TYPE_DOUBLE:
3001      return nir_type_float64;
3002      break;
3003
3004   case GLSL_TYPE_SAMPLER:
3005   case GLSL_TYPE_TEXTURE:
3006   case GLSL_TYPE_IMAGE:
3007   case GLSL_TYPE_ATOMIC_UINT:
3008   case GLSL_TYPE_STRUCT:
3009   case GLSL_TYPE_INTERFACE:
3010   case GLSL_TYPE_ARRAY:
3011   case GLSL_TYPE_VOID:
3012   case GLSL_TYPE_SUBROUTINE:
3013   case GLSL_TYPE_FUNCTION:
3014   case GLSL_TYPE_ERROR:
3015      return nir_type_invalid;
3016   }
3017
3018   unreachable("unknown type");
3019}
3020
3021enum glsl_base_type
3022nir_get_glsl_base_type_for_nir_type(nir_alu_type base_type)
3023{
3024   switch (base_type) {
3025   case nir_type_bool1:
3026      return GLSL_TYPE_BOOL;
3027   case nir_type_uint32:
3028      return GLSL_TYPE_UINT;
3029   case nir_type_int32:
3030      return GLSL_TYPE_INT;
3031   case nir_type_uint16:
3032      return GLSL_TYPE_UINT16;
3033   case nir_type_int16:
3034      return GLSL_TYPE_INT16;
3035   case nir_type_uint8:
3036      return GLSL_TYPE_UINT8;
3037   case nir_type_int8:
3038      return GLSL_TYPE_INT8;
3039   case nir_type_uint64:
3040      return GLSL_TYPE_UINT64;
3041   case nir_type_int64:
3042      return GLSL_TYPE_INT64;
3043   case nir_type_float32:
3044      return GLSL_TYPE_FLOAT;
3045   case nir_type_float16:
3046      return GLSL_TYPE_FLOAT16;
3047   case nir_type_float64:
3048      return GLSL_TYPE_DOUBLE;
3049
3050   default: unreachable("Not a sized nir_alu_type");
3051   }
3052}
3053
3054nir_op
3055nir_op_vec(unsigned components)
3056{
3057   switch (components) {
3058   case  1: return nir_op_mov;
3059   case  2: return nir_op_vec2;
3060   case  3: return nir_op_vec3;
3061   case  4: return nir_op_vec4;
3062   case  5: return nir_op_vec5;
3063   case  8: return nir_op_vec8;
3064   case 16: return nir_op_vec16;
3065   default: unreachable("bad component count");
3066   }
3067}
3068
3069bool
3070nir_op_is_vec(nir_op op)
3071{
3072   switch (op) {
3073   case nir_op_mov:
3074   case nir_op_vec2:
3075   case nir_op_vec3:
3076   case nir_op_vec4:
3077   case nir_op_vec5:
3078   case nir_op_vec8:
3079   case nir_op_vec16:
3080      return true;
3081   default:
3082      return false;
3083   }
3084}
3085
3086bool
3087nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
3088                           unsigned channel)
3089{
3090   if (nir_op_infos[instr->op].input_sizes[src] > 0)
3091      return channel < nir_op_infos[instr->op].input_sizes[src];
3092
3093   return (instr->dest.write_mask >> channel) & 1;
3094}
3095
3096nir_component_mask_t
3097nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
3098{
3099   nir_component_mask_t read_mask = 0;
3100   for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
3101      if (!nir_alu_instr_channel_used(instr, src, c))
3102         continue;
3103
3104      read_mask |= (1 << instr->src[src].swizzle[c]);
3105   }
3106   return read_mask;
3107}
3108
3109unsigned
3110nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
3111{
3112   if (nir_op_infos[instr->op].input_sizes[src] > 0)
3113      return nir_op_infos[instr->op].input_sizes[src];
3114
3115   return nir_dest_num_components(instr->dest.dest);
3116}
3117
3118#define CASE_ALL_SIZES(op) \
3119   case op: \
3120   case op ## 8: \
3121   case op ## 16: \
3122   case op ## 32: \
3123
3124bool
3125nir_alu_instr_is_comparison(const nir_alu_instr *instr)
3126{
3127   switch (instr->op) {
3128   CASE_ALL_SIZES(nir_op_flt)
3129   CASE_ALL_SIZES(nir_op_fge)
3130   CASE_ALL_SIZES(nir_op_feq)
3131   CASE_ALL_SIZES(nir_op_fneu)
3132   CASE_ALL_SIZES(nir_op_ilt)
3133   CASE_ALL_SIZES(nir_op_ult)
3134   CASE_ALL_SIZES(nir_op_ige)
3135   CASE_ALL_SIZES(nir_op_uge)
3136   CASE_ALL_SIZES(nir_op_ieq)
3137   CASE_ALL_SIZES(nir_op_ine)
3138   case nir_op_i2b1:
3139   case nir_op_i2b8:
3140   case nir_op_i2b16:
3141   case nir_op_i2b32:
3142   case nir_op_f2b1:
3143   case nir_op_f2b8:
3144   case nir_op_f2b16:
3145   case nir_op_f2b32:
3146   case nir_op_inot:
3147      return true;
3148   default:
3149      return false;
3150   }
3151}
3152
3153#undef CASE_ALL_SIZES
3154
3155unsigned
3156nir_intrinsic_src_components(const nir_intrinsic_instr *intr, unsigned srcn)
3157{
3158   const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
3159   assert(srcn < info->num_srcs);
3160   if (info->src_components[srcn] > 0)
3161      return info->src_components[srcn];
3162   else if (info->src_components[srcn] == 0)
3163      return intr->num_components;
3164   else
3165      return nir_src_num_components(intr->src[srcn]);
3166}
3167
3168unsigned
3169nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
3170{
3171   const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
3172   if (!info->has_dest)
3173      return 0;
3174   else if (info->dest_components)
3175      return info->dest_components;
3176   else
3177      return intr->num_components;
3178}
3179
3180/**
3181 * Helper to copy const_index[] from src to dst, without assuming they
3182 * match in order.
3183 */
3184void
3185nir_intrinsic_copy_const_indices(nir_intrinsic_instr *dst, nir_intrinsic_instr *src)
3186{
3187   if (src->intrinsic == dst->intrinsic) {
3188      memcpy(dst->const_index, src->const_index, sizeof(dst->const_index));
3189      return;
3190   }
3191
3192   const nir_intrinsic_info *src_info = &nir_intrinsic_infos[src->intrinsic];
3193   const nir_intrinsic_info *dst_info = &nir_intrinsic_infos[dst->intrinsic];
3194
3195   for (unsigned i = 0; i < NIR_INTRINSIC_NUM_INDEX_FLAGS; i++) {
3196      if (src_info->index_map[i] == 0)
3197         continue;
3198
3199      /* require that dst instruction also uses the same const_index[]: */
3200      assert(dst_info->index_map[i] > 0);
3201
3202      dst->const_index[dst_info->index_map[i] - 1] =
3203            src->const_index[src_info->index_map[i] - 1];
3204   }
3205}
3206
3207
3208bool
3209nir_tex_instr_need_sampler(const nir_tex_instr *instr)
3210{
3211   switch (instr->op) {
3212   case nir_texop_txf:
3213   case nir_texop_txf_ms:
3214   case nir_texop_txs:
3215   case nir_texop_query_levels:
3216   case nir_texop_texture_samples:
3217   case nir_texop_samples_identical:
3218      return false;
3219   default:
3220      return true;
3221   }
3222}
3223
3224unsigned
3225nir_tex_instr_result_size(const nir_tex_instr *instr)
3226{
3227   switch (instr->op) {
3228   case nir_texop_txs: {
3229      unsigned ret;
3230      switch (instr->sampler_dim) {
3231         case GLSL_SAMPLER_DIM_1D:
3232         case GLSL_SAMPLER_DIM_BUF:
3233            ret = 1;
3234            break;
3235         case GLSL_SAMPLER_DIM_2D:
3236         case GLSL_SAMPLER_DIM_CUBE:
3237         case GLSL_SAMPLER_DIM_MS:
3238         case GLSL_SAMPLER_DIM_RECT:
3239         case GLSL_SAMPLER_DIM_EXTERNAL:
3240         case GLSL_SAMPLER_DIM_SUBPASS:
3241            ret = 2;
3242            break;
3243         case GLSL_SAMPLER_DIM_3D:
3244            ret = 3;
3245            break;
3246         default:
3247            unreachable("not reached");
3248      }
3249      if (instr->is_array)
3250         ret++;
3251      return ret;
3252   }
3253
3254   case nir_texop_lod:
3255      return 2;
3256
3257   case nir_texop_texture_samples:
3258   case nir_texop_query_levels:
3259   case nir_texop_samples_identical:
3260   case nir_texop_fragment_mask_fetch_amd:
3261      return 1;
3262
3263   default:
3264      if (instr->is_shadow && instr->is_new_style_shadow)
3265         return 1;
3266
3267      return 4;
3268   }
3269}
3270
3271bool
3272nir_tex_instr_is_query(const nir_tex_instr *instr)
3273{
3274   switch (instr->op) {
3275   case nir_texop_txs:
3276   case nir_texop_lod:
3277   case nir_texop_texture_samples:
3278   case nir_texop_query_levels:
3279      return true;
3280   case nir_texop_tex:
3281   case nir_texop_txb:
3282   case nir_texop_txl:
3283   case nir_texop_txd:
3284   case nir_texop_txf:
3285   case nir_texop_txf_ms:
3286   case nir_texop_txf_ms_fb:
3287   case nir_texop_txf_ms_mcs_intel:
3288   case nir_texop_tg4:
3289      return false;
3290   default:
3291      unreachable("Invalid texture opcode");
3292   }
3293}
3294
3295bool
3296nir_tex_instr_has_implicit_derivative(const nir_tex_instr *instr)
3297{
3298   switch (instr->op) {
3299   case nir_texop_tex:
3300   case nir_texop_txb:
3301   case nir_texop_lod:
3302      return true;
3303   default:
3304      return false;
3305   }
3306}
3307
3308nir_alu_type
3309nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
3310{
3311   switch (instr->src[src].src_type) {
3312   case nir_tex_src_coord:
3313      switch (instr->op) {
3314      case nir_texop_txf:
3315      case nir_texop_txf_ms:
3316      case nir_texop_txf_ms_fb:
3317      case nir_texop_txf_ms_mcs_intel:
3318      case nir_texop_samples_identical:
3319      case nir_texop_fragment_fetch_amd:
3320      case nir_texop_fragment_mask_fetch_amd:
3321         return nir_type_int;
3322
3323      default:
3324         return nir_type_float;
3325      }
3326
3327   case nir_tex_src_lod:
3328      switch (instr->op) {
3329      case nir_texop_txs:
3330      case nir_texop_txf:
3331      case nir_texop_txf_ms:
3332      case nir_texop_fragment_fetch_amd:
3333      case nir_texop_fragment_mask_fetch_amd:
3334         return nir_type_int;
3335
3336      default:
3337         return nir_type_float;
3338      }
3339
3340   case nir_tex_src_projector:
3341   case nir_tex_src_comparator:
3342   case nir_tex_src_bias:
3343   case nir_tex_src_min_lod:
3344   case nir_tex_src_ddx:
3345   case nir_tex_src_ddy:
3346   case nir_tex_src_backend1:
3347   case nir_tex_src_backend2:
3348      return nir_type_float;
3349
3350   case nir_tex_src_offset:
3351   case nir_tex_src_ms_index:
3352   case nir_tex_src_plane:
3353      return nir_type_int;
3354
3355   case nir_tex_src_ms_mcs_intel:
3356   case nir_tex_src_texture_deref:
3357   case nir_tex_src_sampler_deref:
3358   case nir_tex_src_texture_offset:
3359   case nir_tex_src_sampler_offset:
3360   case nir_tex_src_texture_handle:
3361   case nir_tex_src_sampler_handle:
3362      return nir_type_uint;
3363
3364   case nir_num_tex_src_types:
3365      unreachable("nir_num_tex_src_types is not a valid source type");
3366   }
3367
3368   unreachable("Invalid texture source type");
3369}
3370
3371unsigned
3372nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
3373{
3374   if (instr->src[src].src_type == nir_tex_src_coord)
3375      return instr->coord_components;
3376
3377   /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs_intel */
3378   if (instr->src[src].src_type == nir_tex_src_ms_mcs_intel)
3379      return 4;
3380
3381   if (instr->src[src].src_type == nir_tex_src_ddx ||
3382       instr->src[src].src_type == nir_tex_src_ddy) {
3383
3384      if (instr->is_array && !instr->array_is_lowered_cube)
3385         return instr->coord_components - 1;
3386      else
3387         return instr->coord_components;
3388   }
3389
3390   if (instr->src[src].src_type == nir_tex_src_offset) {
3391      if (instr->is_array)
3392         return instr->coord_components - 1;
3393      else
3394         return instr->coord_components;
3395   }
3396
3397   if (instr->src[src].src_type == nir_tex_src_backend1 ||
3398       instr->src[src].src_type == nir_tex_src_backend2)
3399      return nir_src_num_components(instr->src[src].src);
3400
3401   /* For AMD, this can be a vec8/vec4 image/sampler descriptor. */
3402   if (instr->src[src].src_type == nir_tex_src_texture_handle ||
3403       instr->src[src].src_type == nir_tex_src_sampler_handle)
3404      return 0;
3405
3406   return 1;
3407}
3408
3409/**
3410 * Return which components are written into transform feedback buffers.
3411 * The result is relative to 0, not "component".
3412 */
3413unsigned
3414nir_instr_xfb_write_mask(nir_intrinsic_instr *instr)
3415{
3416   unsigned mask = 0;
3417
3418   if (nir_intrinsic_has_io_xfb(instr)) {
3419      unsigned wr_mask = nir_intrinsic_write_mask(instr) <<
3420                         nir_intrinsic_component(instr);
3421      assert((wr_mask & ~0xf) == 0); /* only 4 components allowed */
3422
3423      unsigned iter_mask = wr_mask;
3424      while (iter_mask) {
3425         unsigned i = u_bit_scan(&iter_mask);
3426         nir_io_xfb xfb = i < 2 ? nir_intrinsic_io_xfb(instr) :
3427                                  nir_intrinsic_io_xfb2(instr);
3428         if (xfb.out[i % 2].num_components)
3429            mask |= BITFIELD_RANGE(i, xfb.out[i % 2].num_components) & wr_mask;
3430      }
3431   }
3432
3433   return mask;
3434}
3435
3436/**
3437 * Whether an output slot is consumed by fixed-function logic.
3438 */
3439bool
3440nir_slot_is_sysval_output(gl_varying_slot slot)
3441{
3442   return slot == VARYING_SLOT_POS ||
3443          slot == VARYING_SLOT_PSIZ ||
3444          slot == VARYING_SLOT_EDGE ||
3445          slot == VARYING_SLOT_CLIP_VERTEX ||
3446          slot == VARYING_SLOT_CLIP_DIST0 ||
3447          slot == VARYING_SLOT_CLIP_DIST1 ||
3448          slot == VARYING_SLOT_CULL_DIST0 ||
3449          slot == VARYING_SLOT_CULL_DIST1 ||
3450          slot == VARYING_SLOT_LAYER ||
3451          slot == VARYING_SLOT_VIEWPORT ||
3452          slot == VARYING_SLOT_TESS_LEVEL_OUTER ||
3453          slot == VARYING_SLOT_TESS_LEVEL_INNER ||
3454          slot == VARYING_SLOT_BOUNDING_BOX0 ||
3455          slot == VARYING_SLOT_BOUNDING_BOX1 ||
3456          slot == VARYING_SLOT_VIEW_INDEX ||
3457          slot == VARYING_SLOT_VIEWPORT_MASK ||
3458          slot == VARYING_SLOT_PRIMITIVE_SHADING_RATE ||
3459          slot == VARYING_SLOT_PRIMITIVE_COUNT ||
3460          slot == VARYING_SLOT_PRIMITIVE_INDICES ||
3461          slot == VARYING_SLOT_TASK_COUNT;
3462}
3463
3464/**
3465 * Whether an input/output slot is consumed by the next shader stage,
3466 * or written by the previous shader stage.
3467 */
3468bool
3469nir_slot_is_varying(gl_varying_slot slot)
3470{
3471   return slot >= VARYING_SLOT_VAR0 ||
3472          slot == VARYING_SLOT_COL0 ||
3473          slot == VARYING_SLOT_COL1 ||
3474          slot == VARYING_SLOT_BFC0 ||
3475          slot == VARYING_SLOT_BFC1 ||
3476          slot == VARYING_SLOT_FOGC ||
3477          (slot >= VARYING_SLOT_TEX0 && slot <= VARYING_SLOT_TEX7) ||
3478          slot == VARYING_SLOT_PNTC ||
3479          slot == VARYING_SLOT_CLIP_DIST0 ||
3480          slot == VARYING_SLOT_CLIP_DIST1 ||
3481          slot == VARYING_SLOT_CULL_DIST0 ||
3482          slot == VARYING_SLOT_CULL_DIST1 ||
3483          slot == VARYING_SLOT_PRIMITIVE_ID ||
3484          slot == VARYING_SLOT_LAYER ||
3485          slot == VARYING_SLOT_VIEWPORT ||
3486          slot == VARYING_SLOT_TESS_LEVEL_OUTER ||
3487          slot == VARYING_SLOT_TESS_LEVEL_INNER;
3488}
3489
3490bool
3491nir_slot_is_sysval_output_and_varying(gl_varying_slot slot)
3492{
3493   return nir_slot_is_sysval_output(slot) &&
3494          nir_slot_is_varying(slot);
3495}
3496
3497/**
3498 * This marks the output store instruction as not feeding the next shader
3499 * stage. If the instruction has no other use, it's removed.
3500 */
3501void nir_remove_varying(nir_intrinsic_instr *intr)
3502{
3503   nir_io_semantics sem = nir_intrinsic_io_semantics(intr);
3504
3505   if ((!sem.no_sysval_output && nir_slot_is_sysval_output(sem.location)) ||
3506       nir_instr_xfb_write_mask(intr)) {
3507      /* Demote the store instruction. */
3508      sem.no_varying = true;
3509      nir_intrinsic_set_io_semantics(intr, sem);
3510   } else {
3511      nir_instr_remove(&intr->instr);
3512   }
3513}
3514
3515/**
3516 * This marks the output store instruction as not feeding fixed-function
3517 * logic. If the instruction has no other use, it's removed.
3518 */
3519void nir_remove_sysval_output(nir_intrinsic_instr *intr)
3520{
3521   nir_io_semantics sem = nir_intrinsic_io_semantics(intr);
3522
3523   if ((!sem.no_varying && nir_slot_is_varying(sem.location)) ||
3524       nir_instr_xfb_write_mask(intr)) {
3525      /* Demote the store instruction. */
3526      sem.no_sysval_output = true;
3527      nir_intrinsic_set_io_semantics(intr, sem);
3528   } else {
3529      nir_instr_remove(&intr->instr);
3530   }
3531}
3532
3533void nir_remove_non_entrypoints(nir_shader *nir)
3534{
3535   foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
3536      if (!func->is_entrypoint)
3537         exec_node_remove(&func->node);
3538   }
3539   assert(exec_list_length(&nir->functions) == 1);
3540}
3541