1/* 2 * Copyright © 2010 Luca Barbieri 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24/** 25 * \file lower_jumps.cpp 26 * 27 * This pass lowers jumps (break, continue, and return) to if/else structures. 28 * 29 * It can be asked to: 30 * 1. Pull jumps out of ifs where possible 31 * 2. Remove all "continue"s, replacing them with an "execute flag" 32 * 3. Replace all "break" with a single conditional one at the end of the loop 33 * 4. Replace all "return"s with a single return at the end of the function, 34 * for the main function and/or other functions 35 * 36 * Applying this pass gives several benefits: 37 * 1. All functions can be inlined. 38 * 2. nv40 and other pre-DX10 chips without "continue" can be supported 39 * 3. nv30 and other pre-DX10 chips with no control flow at all are better 40 * supported 41 * 42 * Continues are lowered by adding a per-loop "execute flag", initialized to 43 * true, that when cleared inhibits all execution until the end of the loop. 44 * 45 * Breaks are lowered to continues, plus setting a "break flag" that is checked 46 * at the end of the loop, and trigger the unique "break". 47 * 48 * Returns are lowered to breaks/continues, plus adding a "return flag" that 49 * causes loops to break again out of their enclosing loops until all the 50 * loops are exited: then the "execute flag" logic will ignore everything 51 * until the end of the function. 52 * 53 * Note that "continue" and "return" can also be implemented by adding 54 * a dummy loop and using break. 55 * However, this is bad for hardware with limited nesting depth, and 56 * prevents further optimization, and thus is not currently performed. 57 */ 58 59#include "compiler/glsl_types.h" 60#include <string.h> 61#include "ir.h" 62 63/** 64 * Enum recording the result of analyzing how control flow might exit 65 * an IR node. 66 * 67 * Each possible value of jump_strength indicates a strictly stronger 68 * guarantee on control flow than the previous value. 69 * 70 * The ordering of strengths roughly reflects the way jumps are 71 * lowered: jumps with higher strength tend to be lowered to jumps of 72 * lower strength. Accordingly, strength is used as a heuristic to 73 * determine which lowering to perform first. 74 * 75 * This enum is also used by get_jump_strength() to categorize 76 * instructions as either break, continue, return, or other. When 77 * used in this fashion, strength_always_clears_execute_flag is not 78 * used. 79 * 80 * The control flow analysis made by this optimization pass makes two 81 * simplifying assumptions: 82 * 83 * - It ignores discard instructions, since they are lowered by a 84 * separate pass (lower_discard.cpp). 85 * 86 * - It assumes it is always possible for control to flow from a loop 87 * to the instruction immediately following it. Technically, this 88 * is not true (since all execution paths through the loop might 89 * jump back to the top, or return from the function). 90 * 91 * Both of these simplifying assumtions are safe, since they can never 92 * cause reachable code to be incorrectly classified as unreachable; 93 * they can only do the opposite. 94 */ 95enum jump_strength 96{ 97 /** 98 * Analysis has produced no guarantee on how control flow might 99 * exit this IR node. It might fall out the bottom (with or 100 * without clearing the execute flag, if present), or it might 101 * continue to the top of the innermost enclosing loop, break out 102 * of it, or return from the function. 103 */ 104 strength_none, 105 106 /** 107 * The only way control can fall out the bottom of this node is 108 * through a code path that clears the execute flag. It might also 109 * continue to the top of the innermost enclosing loop, break out 110 * of it, or return from the function. 111 */ 112 strength_always_clears_execute_flag, 113 114 /** 115 * Control cannot fall out the bottom of this node. It might 116 * continue to the top of the innermost enclosing loop, break out 117 * of it, or return from the function. 118 */ 119 strength_continue, 120 121 /** 122 * Control cannot fall out the bottom of this node, or continue the 123 * top of the innermost enclosing loop. It can only break out of 124 * it or return from the function. 125 */ 126 strength_break, 127 128 /** 129 * Control cannot fall out the bottom of this node, continue to the 130 * top of the innermost enclosing loop, or break out of it. It can 131 * only return from the function. 132 */ 133 strength_return 134}; 135 136namespace { 137 138struct block_record 139{ 140 /* minimum jump strength (of lowered IR, not pre-lowering IR) 141 * 142 * If the block ends with a jump, must be the strength of the jump. 143 * Otherwise, the jump would be dead and have been deleted before) 144 * 145 * If the block doesn't end with a jump, it can be different than strength_none if all paths before it lead to some jump 146 * (e.g. an if with a return in one branch, and a break in the other, while not lowering them) 147 * Note that identical jumps are usually unified though. 148 */ 149 jump_strength min_strength; 150 151 /* can anything clear the execute flag? */ 152 bool may_clear_execute_flag; 153 154 block_record() 155 { 156 this->min_strength = strength_none; 157 this->may_clear_execute_flag = false; 158 } 159}; 160 161struct loop_record 162{ 163 ir_function_signature* signature; 164 ir_loop* loop; 165 166 /* used to avoid lowering the break used to represent lowered breaks */ 167 unsigned nesting_depth; 168 bool in_if_at_the_end_of_the_loop; 169 170 bool may_set_return_flag; 171 172 ir_variable* execute_flag; /* cleared to emulate continue */ 173 174 loop_record(ir_function_signature* p_signature = 0, ir_loop* p_loop = 0) 175 { 176 this->signature = p_signature; 177 this->loop = p_loop; 178 this->nesting_depth = 0; 179 this->in_if_at_the_end_of_the_loop = false; 180 this->may_set_return_flag = false; 181 this->execute_flag = 0; 182 } 183 184 ir_variable* get_execute_flag() 185 { 186 /* also supported for the "function loop" */ 187 if(!this->execute_flag) { 188 exec_list& list = this->loop ? this->loop->body_instructions : signature->body; 189 this->execute_flag = new(this->signature) ir_variable(glsl_type::bool_type, "execute_flag", ir_var_temporary); 190 list.push_head(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(execute_flag), new(this->signature) ir_constant(true))); 191 list.push_head(this->execute_flag); 192 } 193 return this->execute_flag; 194 } 195}; 196 197struct function_record 198{ 199 ir_function_signature* signature; 200 ir_variable* return_flag; /* used to break out of all loops and then jump to the return instruction */ 201 ir_variable* return_value; 202 bool lower_return; 203 unsigned nesting_depth; 204 205 function_record(ir_function_signature* p_signature = 0, 206 bool lower_return = false) 207 { 208 this->signature = p_signature; 209 this->return_flag = 0; 210 this->return_value = 0; 211 this->nesting_depth = 0; 212 this->lower_return = lower_return; 213 } 214 215 ir_variable* get_return_flag() 216 { 217 if(!this->return_flag) { 218 this->return_flag = new(this->signature) ir_variable(glsl_type::bool_type, "return_flag", ir_var_temporary); 219 this->signature->body.push_head(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(return_flag), new(this->signature) ir_constant(false))); 220 this->signature->body.push_head(this->return_flag); 221 } 222 return this->return_flag; 223 } 224 225 ir_variable* get_return_value() 226 { 227 if(!this->return_value) { 228 assert(!this->signature->return_type->is_void()); 229 return_value = new(this->signature) ir_variable(this->signature->return_type, "return_value", ir_var_temporary); 230 this->signature->body.push_head(this->return_value); 231 } 232 return this->return_value; 233 } 234}; 235 236struct ir_lower_jumps_visitor : public ir_control_flow_visitor { 237 /* Postconditions: on exit of any visit() function: 238 * 239 * ANALYSIS: this->block.min_strength, 240 * this->block.may_clear_execute_flag, and 241 * this->loop.may_set_return_flag are updated to reflect the 242 * characteristics of the visited statement. 243 * 244 * DEAD_CODE_ELIMINATION: If this->block.min_strength is not 245 * strength_none, the visited node is at the end of its exec_list. 246 * In other words, any unreachable statements that follow the 247 * visited statement in its exec_list have been removed. 248 * 249 * CONTAINED_JUMPS_LOWERED: If the visited statement contains other 250 * statements, then should_lower_jump() is false for all of the 251 * return, break, or continue statements it contains. 252 * 253 * Note that visiting a jump does not lower it. That is the 254 * responsibility of the statement (or function signature) that 255 * contains the jump. 256 */ 257 258 using ir_control_flow_visitor::visit; 259 260 bool progress; 261 262 struct function_record function; 263 struct loop_record loop; 264 struct block_record block; 265 266 bool pull_out_jumps; 267 bool lower_continue; 268 bool lower_sub_return; 269 bool lower_main_return; 270 271 ir_lower_jumps_visitor() 272 : progress(false), 273 pull_out_jumps(false), 274 lower_continue(false), 275 lower_sub_return(false), 276 lower_main_return(false) 277 { 278 } 279 280 void truncate_after_instruction(exec_node *ir) 281 { 282 if (!ir) 283 return; 284 285 while (!ir->get_next()->is_tail_sentinel()) { 286 ((ir_instruction *)ir->get_next())->remove(); 287 this->progress = true; 288 } 289 } 290 291 void move_outer_block_inside(ir_instruction *ir, exec_list *inner_block) 292 { 293 while (!ir->get_next()->is_tail_sentinel()) { 294 ir_instruction *move_ir = (ir_instruction *)ir->get_next(); 295 296 move_ir->remove(); 297 inner_block->push_tail(move_ir); 298 } 299 } 300 301 /** 302 * Insert the instructions necessary to lower a return statement, 303 * before the given return instruction. 304 */ 305 void insert_lowered_return(ir_return *ir) 306 { 307 ir_variable* return_flag = this->function.get_return_flag(); 308 if(!this->function.signature->return_type->is_void()) { 309 ir_variable* return_value = this->function.get_return_value(); 310 ir->insert_before( 311 new(ir) ir_assignment( 312 new (ir) ir_dereference_variable(return_value), 313 ir->value)); 314 } 315 ir->insert_before( 316 new(ir) ir_assignment( 317 new (ir) ir_dereference_variable(return_flag), 318 new (ir) ir_constant(true))); 319 this->loop.may_set_return_flag = true; 320 } 321 322 /** 323 * If the given instruction is a return, lower it to instructions 324 * that store the return value (if there is one), set the return 325 * flag, and then break. 326 * 327 * It is safe to pass NULL to this function. 328 */ 329 void lower_return_unconditionally(ir_instruction *ir) 330 { 331 if (get_jump_strength(ir) != strength_return) { 332 return; 333 } 334 insert_lowered_return((ir_return*)ir); 335 ir->replace_with(new(ir) ir_loop_jump(ir_loop_jump::jump_break)); 336 } 337 338 virtual void visit(class ir_loop_jump * ir) 339 { 340 /* Eliminate all instructions after each one, since they are 341 * unreachable. This satisfies the DEAD_CODE_ELIMINATION 342 * postcondition. 343 */ 344 truncate_after_instruction(ir); 345 346 /* Set this->block.min_strength based on this instruction. This 347 * satisfies the ANALYSIS postcondition. It is not necessary to 348 * update this->block.may_clear_execute_flag or 349 * this->loop.may_set_return_flag, because an unlowered jump 350 * instruction can't change any flags. 351 */ 352 this->block.min_strength = ir->is_break() ? strength_break : strength_continue; 353 354 /* The CONTAINED_JUMPS_LOWERED postcondition is already 355 * satisfied, because jump statements can't contain other 356 * statements. 357 */ 358 } 359 360 virtual void visit(class ir_return * ir) 361 { 362 /* Eliminate all instructions after each one, since they are 363 * unreachable. This satisfies the DEAD_CODE_ELIMINATION 364 * postcondition. 365 */ 366 truncate_after_instruction(ir); 367 368 /* Set this->block.min_strength based on this instruction. This 369 * satisfies the ANALYSIS postcondition. It is not necessary to 370 * update this->block.may_clear_execute_flag or 371 * this->loop.may_set_return_flag, because an unlowered return 372 * instruction can't change any flags. 373 */ 374 this->block.min_strength = strength_return; 375 376 /* The CONTAINED_JUMPS_LOWERED postcondition is already 377 * satisfied, because jump statements can't contain other 378 * statements. 379 */ 380 } 381 382 virtual void visit(class ir_discard * ir) 383 { 384 /* Nothing needs to be done. The ANALYSIS and 385 * DEAD_CODE_ELIMINATION postconditions are already satisfied, 386 * because discard statements are ignored by this optimization 387 * pass. The CONTAINED_JUMPS_LOWERED postcondition is already 388 * satisfied, because discard statements can't contain other 389 * statements. 390 */ 391 (void) ir; 392 } 393 394 enum jump_strength get_jump_strength(ir_instruction* ir) 395 { 396 if(!ir) 397 return strength_none; 398 else if(ir->ir_type == ir_type_loop_jump) { 399 if(((ir_loop_jump*)ir)->is_break()) 400 return strength_break; 401 else 402 return strength_continue; 403 } else if(ir->ir_type == ir_type_return) 404 return strength_return; 405 else 406 return strength_none; 407 } 408 409 bool should_lower_jump(ir_jump* ir) 410 { 411 unsigned strength = get_jump_strength(ir); 412 bool lower; 413 switch(strength) 414 { 415 case strength_none: 416 lower = false; /* don't change this, code relies on it */ 417 break; 418 case strength_continue: 419 lower = lower_continue; 420 break; 421 case strength_break: 422 lower = false; 423 break; 424 case strength_return: 425 /* never lower return at the end of a this->function */ 426 if(this->function.nesting_depth == 0 && ir->get_next()->is_tail_sentinel()) 427 lower = false; 428 else 429 lower = this->function.lower_return; 430 break; 431 } 432 return lower; 433 } 434 435 block_record visit_block(exec_list* list) 436 { 437 /* Note: since visiting a node may change that node's next 438 * pointer, we can't use visit_exec_list(), because 439 * visit_exec_list() caches the node's next pointer before 440 * visiting it. So we use foreach_in_list() instead. 441 * 442 * foreach_in_list() isn't safe if the node being visited gets 443 * removed, but fortunately this visitor doesn't do that. 444 */ 445 446 block_record saved_block = this->block; 447 this->block = block_record(); 448 foreach_in_list(ir_instruction, node, list) { 449 node->accept(this); 450 } 451 block_record ret = this->block; 452 this->block = saved_block; 453 return ret; 454 } 455 456 virtual void visit(ir_if *ir) 457 { 458 if(this->loop.nesting_depth == 0 && ir->get_next()->is_tail_sentinel()) 459 this->loop.in_if_at_the_end_of_the_loop = true; 460 461 ++this->function.nesting_depth; 462 ++this->loop.nesting_depth; 463 464 block_record block_records[2]; 465 ir_jump* jumps[2]; 466 467 /* Recursively lower nested jumps. This satisfies the 468 * CONTAINED_JUMPS_LOWERED postcondition, except in the case of 469 * unconditional jumps at the end of ir->then_instructions and 470 * ir->else_instructions, which are handled below. 471 */ 472 block_records[0] = visit_block(&ir->then_instructions); 473 block_records[1] = visit_block(&ir->else_instructions); 474 475retry: /* we get here if we put code after the if inside a branch */ 476 477 /* Determine which of ir->then_instructions and 478 * ir->else_instructions end with an unconditional jump. 479 */ 480 for(unsigned i = 0; i < 2; ++i) { 481 exec_list& list = i ? ir->else_instructions : ir->then_instructions; 482 jumps[i] = 0; 483 if(!list.is_empty() && get_jump_strength((ir_instruction*)list.get_tail())) 484 jumps[i] = (ir_jump*)list.get_tail(); 485 } 486 487 /* Loop until we have satisfied the CONTAINED_JUMPS_LOWERED 488 * postcondition by lowering jumps in both then_instructions and 489 * else_instructions. 490 */ 491 for(;;) { 492 /* Determine the types of the jumps that terminate 493 * ir->then_instructions and ir->else_instructions. 494 */ 495 jump_strength jump_strengths[2]; 496 497 for(unsigned i = 0; i < 2; ++i) { 498 if(jumps[i]) { 499 jump_strengths[i] = block_records[i].min_strength; 500 assert(jump_strengths[i] == get_jump_strength(jumps[i])); 501 } else 502 jump_strengths[i] = strength_none; 503 } 504 505 /* If both code paths end in a jump, and the jumps are the 506 * same, and we are pulling out jumps, replace them with a 507 * single jump that comes after the if instruction. The new 508 * jump will be visited next, and it will be lowered if 509 * necessary by the loop or conditional that encloses it. 510 */ 511 if(pull_out_jumps && jump_strengths[0] == jump_strengths[1]) { 512 bool unify = true; 513 if(jump_strengths[0] == strength_continue) 514 ir->insert_after(new(ir) ir_loop_jump(ir_loop_jump::jump_continue)); 515 else if(jump_strengths[0] == strength_break) 516 ir->insert_after(new(ir) ir_loop_jump(ir_loop_jump::jump_break)); 517 /* FINISHME: unify returns with identical expressions */ 518 else if(jump_strengths[0] == strength_return && this->function.signature->return_type->is_void()) 519 ir->insert_after(new(ir) ir_return(NULL)); 520 else 521 unify = false; 522 523 if(unify) { 524 jumps[0]->remove(); 525 jumps[1]->remove(); 526 this->progress = true; 527 528 /* Update jumps[] to reflect the fact that the jumps 529 * are gone, and update block_records[] to reflect the 530 * fact that control can now flow to the next 531 * instruction. 532 */ 533 jumps[0] = 0; 534 jumps[1] = 0; 535 block_records[0].min_strength = strength_none; 536 block_records[1].min_strength = strength_none; 537 538 /* The CONTAINED_JUMPS_LOWERED postcondition is now 539 * satisfied, so we can break out of the loop. 540 */ 541 break; 542 } 543 } 544 545 /* lower a jump: if both need to lowered, start with the strongest one, so that 546 * we might later unify the lowered version with the other one 547 */ 548 bool should_lower[2]; 549 for(unsigned i = 0; i < 2; ++i) 550 should_lower[i] = should_lower_jump(jumps[i]); 551 552 int lower; 553 if(should_lower[1] && should_lower[0]) 554 lower = jump_strengths[1] > jump_strengths[0]; 555 else if(should_lower[0]) 556 lower = 0; 557 else if(should_lower[1]) 558 lower = 1; 559 else 560 /* Neither code path ends in a jump that needs to be 561 * lowered, so the CONTAINED_JUMPS_LOWERED postcondition 562 * is satisfied and we can break out of the loop. 563 */ 564 break; 565 566 if(jump_strengths[lower] == strength_return) { 567 /* To lower a return, we create a return flag (if the 568 * function doesn't have one already) and add instructions 569 * that: 1. store the return value (if this function has a 570 * non-void return) and 2. set the return flag 571 */ 572 insert_lowered_return((ir_return*)jumps[lower]); 573 if(this->loop.loop) { 574 /* If we are in a loop, replace the return instruction 575 * with a break instruction, and then loop so that the 576 * break instruction can be lowered if necessary. 577 */ 578 ir_loop_jump* lowered = 0; 579 lowered = new(ir) ir_loop_jump(ir_loop_jump::jump_break); 580 /* Note: we must update block_records and jumps to 581 * reflect the fact that the control path has been 582 * altered from a return to a break. 583 */ 584 block_records[lower].min_strength = strength_break; 585 jumps[lower]->replace_with(lowered); 586 jumps[lower] = lowered; 587 } else { 588 /* If we are not in a loop, we then proceed as we would 589 * for a continue statement (set the execute flag to 590 * false to prevent the rest of the function from 591 * executing). 592 */ 593 goto lower_continue; 594 } 595 this->progress = true; 596 } else if(jump_strengths[lower] == strength_break) { 597 unreachable("no lowering of breaks any more"); 598 } else if(jump_strengths[lower] == strength_continue) { 599lower_continue: 600 /* To lower a continue, we create an execute flag (if the 601 * loop doesn't have one already) and replace the continue 602 * with an instruction that clears it. 603 * 604 * Note that this code path gets exercised when lowering 605 * return statements that are not inside a loop, so 606 * this->loop must be initialized even outside of loops. 607 */ 608 ir_variable* execute_flag = this->loop.get_execute_flag(); 609 jumps[lower]->replace_with(new(ir) ir_assignment(new (ir) ir_dereference_variable(execute_flag), new (ir) ir_constant(false))); 610 /* Note: we must update block_records and jumps to reflect 611 * the fact that the control path has been altered to an 612 * instruction that clears the execute flag. 613 */ 614 jumps[lower] = 0; 615 block_records[lower].min_strength = strength_always_clears_execute_flag; 616 block_records[lower].may_clear_execute_flag = true; 617 this->progress = true; 618 619 /* Let the loop run again, in case the other branch of the 620 * if needs to be lowered too. 621 */ 622 } 623 } 624 625 /* move out a jump out if possible */ 626 if(pull_out_jumps) { 627 /* If one of the branches ends in a jump, and control cannot 628 * fall out the bottom of the other branch, then we can move 629 * the jump after the if. 630 * 631 * Set move_out to the branch we are moving a jump out of. 632 */ 633 int move_out = -1; 634 if(jumps[0] && block_records[1].min_strength >= strength_continue) 635 move_out = 0; 636 else if(jumps[1] && block_records[0].min_strength >= strength_continue) 637 move_out = 1; 638 639 if(move_out >= 0) 640 { 641 jumps[move_out]->remove(); 642 ir->insert_after(jumps[move_out]); 643 /* Note: we must update block_records and jumps to reflect 644 * the fact that the jump has been moved out of the if. 645 */ 646 jumps[move_out] = 0; 647 block_records[move_out].min_strength = strength_none; 648 this->progress = true; 649 } 650 } 651 652 /* Now satisfy the ANALYSIS postcondition by setting 653 * this->block.min_strength and 654 * this->block.may_clear_execute_flag based on the 655 * characteristics of the two branches. 656 */ 657 if(block_records[0].min_strength < block_records[1].min_strength) 658 this->block.min_strength = block_records[0].min_strength; 659 else 660 this->block.min_strength = block_records[1].min_strength; 661 this->block.may_clear_execute_flag = this->block.may_clear_execute_flag || block_records[0].may_clear_execute_flag || block_records[1].may_clear_execute_flag; 662 663 /* Now we need to clean up the instructions that follow the 664 * if. 665 * 666 * If those instructions are unreachable, then satisfy the 667 * DEAD_CODE_ELIMINATION postcondition by eliminating them. 668 * Otherwise that postcondition is already satisfied. 669 */ 670 if(this->block.min_strength) 671 truncate_after_instruction(ir); 672 else if(this->block.may_clear_execute_flag) 673 { 674 /* If the "if" instruction might clear the execute flag, then 675 * we need to guard any instructions that follow so that they 676 * are only executed if the execute flag is set. 677 * 678 * If one of the branches of the "if" always clears the 679 * execute flag, and the other branch never clears it, then 680 * this is easy: just move all the instructions following the 681 * "if" into the branch that never clears it. 682 */ 683 int move_into = -1; 684 if(block_records[0].min_strength && !block_records[1].may_clear_execute_flag) 685 move_into = 1; 686 else if(block_records[1].min_strength && !block_records[0].may_clear_execute_flag) 687 move_into = 0; 688 689 if(move_into >= 0) { 690 assert(!block_records[move_into].min_strength && !block_records[move_into].may_clear_execute_flag); /* otherwise, we just truncated */ 691 692 exec_list* list = move_into ? &ir->else_instructions : &ir->then_instructions; 693 exec_node* next = ir->get_next(); 694 if(!next->is_tail_sentinel()) { 695 move_outer_block_inside(ir, list); 696 697 /* If any instructions moved, then we need to visit 698 * them (since they are now inside the "if"). Since 699 * block_records[move_into] is in its default state 700 * (see assertion above), we can safely replace 701 * block_records[move_into] with the result of this 702 * analysis. 703 */ 704 exec_list list; 705 list.head_sentinel.next = next; 706 block_records[move_into] = visit_block(&list); 707 708 /* 709 * Then we need to re-start our jump lowering, since one 710 * of the instructions we moved might be a jump that 711 * needs to be lowered. 712 */ 713 this->progress = true; 714 goto retry; 715 } 716 } else { 717 /* If we get here, then the simple case didn't apply; we 718 * need to actually guard the instructions that follow. 719 * 720 * To avoid creating unnecessarily-deep nesting, first 721 * look through the instructions that follow and unwrap 722 * any instructions that that are already wrapped in the 723 * appropriate guard. 724 */ 725 ir_instruction* ir_after; 726 for(ir_after = (ir_instruction*)ir->get_next(); !ir_after->is_tail_sentinel();) 727 { 728 ir_if* ir_if = ir_after->as_if(); 729 if(ir_if && ir_if->else_instructions.is_empty()) { 730 ir_dereference_variable* ir_if_cond_deref = ir_if->condition->as_dereference_variable(); 731 if(ir_if_cond_deref && ir_if_cond_deref->var == this->loop.execute_flag) { 732 ir_instruction* ir_next = (ir_instruction*)ir_after->get_next(); 733 ir_after->insert_before(&ir_if->then_instructions); 734 ir_after->remove(); 735 ir_after = ir_next; 736 continue; 737 } 738 } 739 ir_after = (ir_instruction*)ir_after->get_next(); 740 741 /* only set this if we find any unprotected instruction */ 742 this->progress = true; 743 } 744 745 /* Then, wrap all the instructions that follow in a single 746 * guard. 747 */ 748 if(!ir->get_next()->is_tail_sentinel()) { 749 assert(this->loop.execute_flag); 750 ir_if* if_execute = new(ir) ir_if(new(ir) ir_dereference_variable(this->loop.execute_flag)); 751 move_outer_block_inside(ir, &if_execute->then_instructions); 752 ir->insert_after(if_execute); 753 } 754 } 755 } 756 --this->loop.nesting_depth; 757 --this->function.nesting_depth; 758 } 759 760 virtual void visit(ir_loop *ir) 761 { 762 /* Visit the body of the loop, with a fresh data structure in 763 * this->loop so that the analysis we do here won't bleed into 764 * enclosing loops. 765 * 766 * We assume that all code after a loop is reachable from the 767 * loop (see comments on enum jump_strength), so the 768 * DEAD_CODE_ELIMINATION postcondition is automatically 769 * satisfied, as is the block.min_strength portion of the 770 * ANALYSIS postcondition. 771 * 772 * The block.may_clear_execute_flag portion of the ANALYSIS 773 * postcondition is automatically satisfied because execute 774 * flags do not propagate outside of loops. 775 * 776 * The loop.may_set_return_flag portion of the ANALYSIS 777 * postcondition is handled below. 778 */ 779 ++this->function.nesting_depth; 780 loop_record saved_loop = this->loop; 781 this->loop = loop_record(this->function.signature, ir); 782 783 /* Recursively lower nested jumps. This satisfies the 784 * CONTAINED_JUMPS_LOWERED postcondition, except in the case of 785 * an unconditional continue or return at the bottom of the 786 * loop, which are handled below. 787 */ 788 block_record body = visit_block(&ir->body_instructions); 789 790 /* If the loop ends in an unconditional continue, eliminate it 791 * because it is redundant. 792 */ 793 ir_instruction *ir_last 794 = (ir_instruction *) ir->body_instructions.get_tail(); 795 if (get_jump_strength(ir_last) == strength_continue) { 796 ir_last->remove(); 797 } 798 799 /* If the loop ends in an unconditional return, and we are 800 * lowering returns, lower it. 801 */ 802 if (this->function.lower_return) 803 lower_return_unconditionally(ir_last); 804 805 if(body.min_strength >= strength_break) { 806 /* FINISHME: If the min_strength of the loop body is 807 * strength_break or strength_return, that means that it 808 * isn't a loop at all, since control flow always leaves the 809 * body of the loop via break or return. In principle the 810 * loop could be eliminated in this case. This optimization 811 * is not implemented yet. 812 */ 813 } 814 815 816 /* If the body of the loop may set the return flag, then at 817 * least one return was lowered to a break, so we need to ensure 818 * that the return flag is checked after the body of the loop is 819 * executed. 820 */ 821 if(this->loop.may_set_return_flag) { 822 assert(this->function.return_flag); 823 /* Generate the if statement to check the return flag */ 824 ir_if* return_if = new(ir) ir_if(new(ir) ir_dereference_variable(this->function.return_flag)); 825 /* Note: we also need to propagate the knowledge that the 826 * return flag may get set to the outer context. This 827 * satisfies the loop.may_set_return_flag part of the 828 * ANALYSIS postcondition. 829 */ 830 saved_loop.may_set_return_flag = true; 831 if(saved_loop.loop) 832 /* If this loop is nested inside another one, then the if 833 * statement that we generated should break out of that 834 * loop if the return flag is set. Caller will lower that 835 * break statement if necessary. 836 */ 837 return_if->then_instructions.push_tail(new(ir) ir_loop_jump(ir_loop_jump::jump_break)); 838 else { 839 /* Otherwise, ensure that the instructions that follow are only 840 * executed if the return flag is clear. We can do that by moving 841 * those instructions into the else clause of the generated if 842 * statement. 843 */ 844 move_outer_block_inside(ir, &return_if->else_instructions); 845 846 /* In case the loop is embedded inside an if add a new return to 847 * the return flag then branch and let a future pass tidy it up. 848 */ 849 if (this->function.signature->return_type->is_void()) 850 return_if->then_instructions.push_tail(new(ir) ir_return(NULL)); 851 else { 852 assert(this->function.return_value); 853 ir_variable* return_value = this->function.return_value; 854 return_if->then_instructions.push_tail( 855 new(ir) ir_return(new(ir) ir_dereference_variable(return_value))); 856 } 857 } 858 859 ir->insert_after(return_if); 860 } 861 862 this->loop = saved_loop; 863 --this->function.nesting_depth; 864 } 865 866 virtual void visit(ir_function_signature *ir) 867 { 868 /* these are not strictly necessary */ 869 assert(!this->function.signature); 870 assert(!this->loop.loop); 871 872 bool lower_return; 873 if (strcmp(ir->function_name(), "main") == 0) 874 lower_return = lower_main_return; 875 else 876 lower_return = lower_sub_return; 877 878 function_record saved_function = this->function; 879 loop_record saved_loop = this->loop; 880 this->function = function_record(ir, lower_return); 881 this->loop = loop_record(ir); 882 883 assert(!this->loop.loop); 884 885 /* Visit the body of the function to lower any jumps that occur 886 * in it, except possibly an unconditional return statement at 887 * the end of it. 888 */ 889 visit_block(&ir->body); 890 891 /* If the body ended in an unconditional return of non-void, 892 * then we don't need to lower it because it's the one canonical 893 * return. 894 * 895 * If the body ended in a return of void, eliminate it because 896 * it is redundant. 897 */ 898 if (ir->return_type->is_void() && 899 get_jump_strength((ir_instruction *) ir->body.get_tail())) { 900 ir_jump *jump = (ir_jump *) ir->body.get_tail(); 901 assert (jump->ir_type == ir_type_return); 902 jump->remove(); 903 } 904 905 if(this->function.return_value) 906 ir->body.push_tail(new(ir) ir_return(new (ir) ir_dereference_variable(this->function.return_value))); 907 908 this->loop = saved_loop; 909 this->function = saved_function; 910 } 911 912 virtual void visit(class ir_function * ir) 913 { 914 visit_block(&ir->signatures); 915 } 916}; 917 918} /* anonymous namespace */ 919 920bool 921do_lower_jumps(exec_list *instructions, bool pull_out_jumps, bool lower_sub_return, bool lower_main_return, bool lower_continue) 922{ 923 ir_lower_jumps_visitor v; 924 v.pull_out_jumps = pull_out_jumps; 925 v.lower_continue = lower_continue; 926 v.lower_sub_return = lower_sub_return; 927 v.lower_main_return = lower_main_return; 928 929 bool progress_ever = false; 930 do { 931 v.progress = false; 932 visit_exec_list(instructions, &v); 933 progress_ever = v.progress || progress_ever; 934 } while (v.progress); 935 936 return progress_ever; 937} 938