1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24#include "ir_reader.h"
25#include "glsl_parser_extras.h"
26#include "compiler/glsl_types.h"
27#include "s_expression.h"
28
29static const bool debug = false;
30
31namespace {
32
33class ir_reader {
34public:
35   ir_reader(_mesa_glsl_parse_state *);
36
37   void read(exec_list *instructions, const char *src, bool scan_for_protos);
38
39private:
40   void *mem_ctx;
41   _mesa_glsl_parse_state *state;
42
43   void ir_read_error(s_expression *, const char *fmt, ...);
44
45   const glsl_type *read_type(s_expression *);
46
47   void scan_for_prototypes(exec_list *, s_expression *);
48   ir_function *read_function(s_expression *, bool skip_body);
49   void read_function_sig(ir_function *, s_expression *, bool skip_body);
50
51   void read_instructions(exec_list *, s_expression *, ir_loop *);
52   ir_instruction *read_instruction(s_expression *, ir_loop *);
53   ir_variable *read_declaration(s_expression *);
54   ir_if *read_if(s_expression *, ir_loop *);
55   ir_loop *read_loop(s_expression *);
56   ir_call *read_call(s_expression *);
57   ir_return *read_return(s_expression *);
58   ir_rvalue *read_rvalue(s_expression *);
59   ir_assignment *read_assignment(s_expression *);
60   ir_expression *read_expression(s_expression *);
61   ir_swizzle *read_swizzle(s_expression *);
62   ir_constant *read_constant(s_expression *);
63   ir_texture *read_texture(s_expression *);
64   ir_emit_vertex *read_emit_vertex(s_expression *);
65   ir_end_primitive *read_end_primitive(s_expression *);
66   ir_barrier *read_barrier(s_expression *);
67
68   ir_dereference *read_dereference(s_expression *);
69   ir_dereference_variable *read_var_ref(s_expression *);
70};
71
72} /* anonymous namespace */
73
74ir_reader::ir_reader(_mesa_glsl_parse_state *state) : state(state)
75{
76   this->mem_ctx = state;
77}
78
79void
80_mesa_glsl_read_ir(_mesa_glsl_parse_state *state, exec_list *instructions,
81		   const char *src, bool scan_for_protos)
82{
83   ir_reader r(state);
84   r.read(instructions, src, scan_for_protos);
85}
86
87void
88ir_reader::read(exec_list *instructions, const char *src, bool scan_for_protos)
89{
90   void *sx_mem_ctx = ralloc_context(NULL);
91   s_expression *expr = s_expression::read_expression(sx_mem_ctx, src);
92   if (expr == NULL) {
93      ir_read_error(NULL, "couldn't parse S-Expression.");
94      return;
95   }
96
97   if (scan_for_protos) {
98      scan_for_prototypes(instructions, expr);
99      if (state->error)
100	 return;
101   }
102
103   read_instructions(instructions, expr, NULL);
104   ralloc_free(sx_mem_ctx);
105
106   if (debug)
107      validate_ir_tree(instructions);
108}
109
110void
111ir_reader::ir_read_error(s_expression *expr, const char *fmt, ...)
112{
113   va_list ap;
114
115   state->error = true;
116
117   if (state->current_function != NULL)
118      ralloc_asprintf_append(&state->info_log, "In function %s:\n",
119			     state->current_function->function_name());
120   ralloc_strcat(&state->info_log, "error: ");
121
122   va_start(ap, fmt);
123   ralloc_vasprintf_append(&state->info_log, fmt, ap);
124   va_end(ap);
125   ralloc_strcat(&state->info_log, "\n");
126
127   if (expr != NULL) {
128      ralloc_strcat(&state->info_log, "...in this context:\n   ");
129      expr->print();
130      ralloc_strcat(&state->info_log, "\n\n");
131   }
132}
133
134const glsl_type *
135ir_reader::read_type(s_expression *expr)
136{
137   s_expression *s_base_type;
138   s_int *s_size;
139
140   s_pattern pat[] = { "array", s_base_type, s_size };
141   if (MATCH(expr, pat)) {
142      const glsl_type *base_type = read_type(s_base_type);
143      if (base_type == NULL) {
144	 ir_read_error(NULL, "when reading base type of array type");
145	 return NULL;
146      }
147
148      return glsl_type::get_array_instance(base_type, s_size->value());
149   }
150
151   s_symbol *type_sym = SX_AS_SYMBOL(expr);
152   if (type_sym == NULL) {
153      ir_read_error(expr, "expected <type>");
154      return NULL;
155   }
156
157   const glsl_type *type = state->symbols->get_type(type_sym->value());
158   if (type == NULL)
159      ir_read_error(expr, "invalid type: %s", type_sym->value());
160
161   return type;
162}
163
164
165void
166ir_reader::scan_for_prototypes(exec_list *instructions, s_expression *expr)
167{
168   s_list *list = SX_AS_LIST(expr);
169   if (list == NULL) {
170      ir_read_error(expr, "Expected (<instruction> ...); found an atom.");
171      return;
172   }
173
174   foreach_in_list(s_list, sub, &list->subexpressions) {
175      if (!sub->is_list())
176	 continue; // not a (function ...); ignore it.
177
178      s_symbol *tag = SX_AS_SYMBOL(sub->subexpressions.get_head());
179      if (tag == NULL || strcmp(tag->value(), "function") != 0)
180	 continue; // not a (function ...); ignore it.
181
182      ir_function *f = read_function(sub, true);
183      if (f == NULL)
184	 return;
185      instructions->push_tail(f);
186   }
187}
188
189ir_function *
190ir_reader::read_function(s_expression *expr, bool skip_body)
191{
192   bool added = false;
193   s_symbol *name;
194
195   s_pattern pat[] = { "function", name };
196   if (!PARTIAL_MATCH(expr, pat)) {
197      ir_read_error(expr, "Expected (function <name> (signature ...) ...)");
198      return NULL;
199   }
200
201   ir_function *f = state->symbols->get_function(name->value());
202   if (f == NULL) {
203      f = new(mem_ctx) ir_function(name->value());
204      added = state->symbols->add_function(f);
205      assert(added);
206   }
207
208   /* Skip over "function" tag and function name (which are guaranteed to be
209    * present by the above PARTIAL_MATCH call).
210    */
211   exec_node *node = ((s_list *) expr)->subexpressions.get_head_raw()->next->next;
212   for (/* nothing */; !node->is_tail_sentinel(); node = node->next) {
213      s_expression *s_sig = (s_expression *) node;
214      read_function_sig(f, s_sig, skip_body);
215   }
216   return added ? f : NULL;
217}
218
219static bool
220always_available(const _mesa_glsl_parse_state *)
221{
222   return true;
223}
224
225void
226ir_reader::read_function_sig(ir_function *f, s_expression *expr, bool skip_body)
227{
228   s_expression *type_expr;
229   s_list *paramlist;
230   s_list *body_list;
231
232   s_pattern pat[] = { "signature", type_expr, paramlist, body_list };
233   if (!MATCH(expr, pat)) {
234      ir_read_error(expr, "Expected (signature <type> (parameters ...) "
235			  "(<instruction> ...))");
236      return;
237   }
238
239   const glsl_type *return_type = read_type(type_expr);
240   if (return_type == NULL)
241      return;
242
243   s_symbol *paramtag = SX_AS_SYMBOL(paramlist->subexpressions.get_head());
244   if (paramtag == NULL || strcmp(paramtag->value(), "parameters") != 0) {
245      ir_read_error(paramlist, "Expected (parameters ...)");
246      return;
247   }
248
249   // Read the parameters list into a temporary place.
250   exec_list hir_parameters;
251   state->symbols->push_scope();
252
253   /* Skip over the "parameters" tag. */
254   exec_node *node = paramlist->subexpressions.get_head_raw()->next;
255   for (/* nothing */; !node->is_tail_sentinel(); node = node->next) {
256      ir_variable *var = read_declaration((s_expression *) node);
257      if (var == NULL)
258	 return;
259
260      hir_parameters.push_tail(var);
261   }
262
263   ir_function_signature *sig =
264      f->exact_matching_signature(state, &hir_parameters);
265   if (sig == NULL && skip_body) {
266      /* If scanning for prototypes, generate a new signature. */
267      /* ir_reader doesn't know what languages support a given built-in, so
268       * just say that they're always available.  For now, other mechanisms
269       * guarantee the right built-ins are available.
270       */
271      sig = new(mem_ctx) ir_function_signature(return_type, always_available);
272      f->add_signature(sig);
273   } else if (sig != NULL) {
274      const char *badvar = sig->qualifiers_match(&hir_parameters);
275      if (badvar != NULL) {
276	 ir_read_error(expr, "function `%s' parameter `%s' qualifiers "
277		       "don't match prototype", f->name, badvar);
278	 return;
279      }
280
281      if (sig->return_type != return_type) {
282	 ir_read_error(expr, "function `%s' return type doesn't "
283		       "match prototype", f->name);
284	 return;
285      }
286   } else {
287      /* No prototype for this body exists - skip it. */
288      state->symbols->pop_scope();
289      return;
290   }
291   assert(sig != NULL);
292
293   sig->replace_parameters(&hir_parameters);
294
295   if (!skip_body && !body_list->subexpressions.is_empty()) {
296      if (sig->is_defined) {
297	 ir_read_error(expr, "function %s redefined", f->name);
298	 return;
299      }
300      state->current_function = sig;
301      read_instructions(&sig->body, body_list, NULL);
302      state->current_function = NULL;
303      sig->is_defined = true;
304   }
305
306   state->symbols->pop_scope();
307}
308
309void
310ir_reader::read_instructions(exec_list *instructions, s_expression *expr,
311			     ir_loop *loop_ctx)
312{
313   // Read in a list of instructions
314   s_list *list = SX_AS_LIST(expr);
315   if (list == NULL) {
316      ir_read_error(expr, "Expected (<instruction> ...); found an atom.");
317      return;
318   }
319
320   foreach_in_list(s_expression, sub, &list->subexpressions) {
321      ir_instruction *ir = read_instruction(sub, loop_ctx);
322      if (ir != NULL) {
323	 /* Global variable declarations should be moved to the top, before
324	  * any functions that might use them.  Functions are added to the
325	  * instruction stream when scanning for prototypes, so without this
326	  * hack, they always appear before variable declarations.
327	  */
328	 if (state->current_function == NULL && ir->as_variable() != NULL)
329	    instructions->push_head(ir);
330	 else
331	    instructions->push_tail(ir);
332      }
333   }
334}
335
336
337ir_instruction *
338ir_reader::read_instruction(s_expression *expr, ir_loop *loop_ctx)
339{
340   s_symbol *symbol = SX_AS_SYMBOL(expr);
341   if (symbol != NULL) {
342      if (strcmp(symbol->value(), "break") == 0 && loop_ctx != NULL)
343	 return new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_break);
344      if (strcmp(symbol->value(), "continue") == 0 && loop_ctx != NULL)
345	 return new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_continue);
346   }
347
348   s_list *list = SX_AS_LIST(expr);
349   if (list == NULL || list->subexpressions.is_empty()) {
350      ir_read_error(expr, "Invalid instruction.\n");
351      return NULL;
352   }
353
354   s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head());
355   if (tag == NULL) {
356      ir_read_error(expr, "expected instruction tag");
357      return NULL;
358   }
359
360   ir_instruction *inst = NULL;
361   if (strcmp(tag->value(), "declare") == 0) {
362      inst = read_declaration(list);
363   } else if (strcmp(tag->value(), "assign") == 0) {
364      inst = read_assignment(list);
365   } else if (strcmp(tag->value(), "if") == 0) {
366      inst = read_if(list, loop_ctx);
367   } else if (strcmp(tag->value(), "loop") == 0) {
368      inst = read_loop(list);
369   } else if (strcmp(tag->value(), "call") == 0) {
370      inst = read_call(list);
371   } else if (strcmp(tag->value(), "return") == 0) {
372      inst = read_return(list);
373   } else if (strcmp(tag->value(), "function") == 0) {
374      inst = read_function(list, false);
375   } else if (strcmp(tag->value(), "emit-vertex") == 0) {
376      inst = read_emit_vertex(list);
377   } else if (strcmp(tag->value(), "end-primitive") == 0) {
378      inst = read_end_primitive(list);
379   } else if (strcmp(tag->value(), "barrier") == 0) {
380      inst = read_barrier(list);
381   } else {
382      inst = read_rvalue(list);
383      if (inst == NULL)
384	 ir_read_error(NULL, "when reading instruction");
385   }
386   return inst;
387}
388
389ir_variable *
390ir_reader::read_declaration(s_expression *expr)
391{
392   s_list *s_quals;
393   s_expression *s_type;
394   s_symbol *s_name;
395
396   s_pattern pat[] = { "declare", s_quals, s_type, s_name };
397   if (!MATCH(expr, pat)) {
398      ir_read_error(expr, "expected (declare (<qualifiers>) <type> <name>)");
399      return NULL;
400   }
401
402   const glsl_type *type = read_type(s_type);
403   if (type == NULL)
404      return NULL;
405
406   ir_variable *var = new(mem_ctx) ir_variable(type, s_name->value(),
407					       ir_var_auto);
408
409   foreach_in_list(s_symbol, qualifier, &s_quals->subexpressions) {
410      if (!qualifier->is_symbol()) {
411	 ir_read_error(expr, "qualifier list must contain only symbols");
412	 return NULL;
413      }
414
415      // FINISHME: Check for duplicate/conflicting qualifiers.
416      if (strcmp(qualifier->value(), "centroid") == 0) {
417	 var->data.centroid = 1;
418      } else if (strcmp(qualifier->value(), "sample") == 0) {
419         var->data.sample = 1;
420      } else if (strcmp(qualifier->value(), "patch") == 0) {
421         var->data.patch = 1;
422      } else if (strcmp(qualifier->value(), "explicit_invariant") == 0) {
423         var->data.explicit_invariant = true;
424      } else if (strcmp(qualifier->value(), "invariant") == 0) {
425         var->data.invariant = true;
426      } else if (strcmp(qualifier->value(), "uniform") == 0) {
427	 var->data.mode = ir_var_uniform;
428      } else if (strcmp(qualifier->value(), "shader_storage") == 0) {
429	 var->data.mode = ir_var_shader_storage;
430      } else if (strcmp(qualifier->value(), "auto") == 0) {
431	 var->data.mode = ir_var_auto;
432      } else if (strcmp(qualifier->value(), "in") == 0) {
433	 var->data.mode = ir_var_function_in;
434      } else if (strcmp(qualifier->value(), "shader_in") == 0) {
435         var->data.mode = ir_var_shader_in;
436      } else if (strcmp(qualifier->value(), "const_in") == 0) {
437	 var->data.mode = ir_var_const_in;
438      } else if (strcmp(qualifier->value(), "out") == 0) {
439	 var->data.mode = ir_var_function_out;
440      } else if (strcmp(qualifier->value(), "shader_out") == 0) {
441	 var->data.mode = ir_var_shader_out;
442      } else if (strcmp(qualifier->value(), "inout") == 0) {
443	 var->data.mode = ir_var_function_inout;
444      } else if (strcmp(qualifier->value(), "temporary") == 0) {
445	 var->data.mode = ir_var_temporary;
446      } else if (strcmp(qualifier->value(), "stream1") == 0) {
447	 var->data.stream = 1;
448      } else if (strcmp(qualifier->value(), "stream2") == 0) {
449	 var->data.stream = 2;
450      } else if (strcmp(qualifier->value(), "stream3") == 0) {
451	 var->data.stream = 3;
452      } else if (strcmp(qualifier->value(), "smooth") == 0) {
453	 var->data.interpolation = INTERP_MODE_SMOOTH;
454      } else if (strcmp(qualifier->value(), "flat") == 0) {
455	 var->data.interpolation = INTERP_MODE_FLAT;
456      } else if (strcmp(qualifier->value(), "noperspective") == 0) {
457	 var->data.interpolation = INTERP_MODE_NOPERSPECTIVE;
458      } else {
459	 ir_read_error(expr, "unknown qualifier: %s", qualifier->value());
460	 return NULL;
461      }
462   }
463
464   // Add the variable to the symbol table
465   state->symbols->add_variable(var);
466
467   return var;
468}
469
470
471ir_if *
472ir_reader::read_if(s_expression *expr, ir_loop *loop_ctx)
473{
474   s_expression *s_cond;
475   s_expression *s_then;
476   s_expression *s_else;
477
478   s_pattern pat[] = { "if", s_cond, s_then, s_else };
479   if (!MATCH(expr, pat)) {
480      ir_read_error(expr, "expected (if <condition> (<then>...) (<else>...))");
481      return NULL;
482   }
483
484   ir_rvalue *condition = read_rvalue(s_cond);
485   if (condition == NULL) {
486      ir_read_error(NULL, "when reading condition of (if ...)");
487      return NULL;
488   }
489
490   ir_if *iff = new(mem_ctx) ir_if(condition);
491
492   read_instructions(&iff->then_instructions, s_then, loop_ctx);
493   read_instructions(&iff->else_instructions, s_else, loop_ctx);
494   if (state->error) {
495      delete iff;
496      iff = NULL;
497   }
498   return iff;
499}
500
501
502ir_loop *
503ir_reader::read_loop(s_expression *expr)
504{
505   s_expression *s_body;
506
507   s_pattern loop_pat[] = { "loop", s_body };
508   if (!MATCH(expr, loop_pat)) {
509      ir_read_error(expr, "expected (loop <body>)");
510      return NULL;
511   }
512
513   ir_loop *loop = new(mem_ctx) ir_loop;
514
515   read_instructions(&loop->body_instructions, s_body, loop);
516   if (state->error) {
517      delete loop;
518      loop = NULL;
519   }
520   return loop;
521}
522
523
524ir_return *
525ir_reader::read_return(s_expression *expr)
526{
527   s_expression *s_retval;
528
529   s_pattern return_value_pat[] = { "return", s_retval};
530   s_pattern return_void_pat[] = { "return" };
531   if (MATCH(expr, return_value_pat)) {
532      ir_rvalue *retval = read_rvalue(s_retval);
533      if (retval == NULL) {
534         ir_read_error(NULL, "when reading return value");
535         return NULL;
536      }
537      return new(mem_ctx) ir_return(retval);
538   } else if (MATCH(expr, return_void_pat)) {
539      return new(mem_ctx) ir_return;
540   } else {
541      ir_read_error(expr, "expected (return <rvalue>) or (return)");
542      return NULL;
543   }
544}
545
546
547ir_rvalue *
548ir_reader::read_rvalue(s_expression *expr)
549{
550   s_list *list = SX_AS_LIST(expr);
551   if (list == NULL || list->subexpressions.is_empty())
552      return NULL;
553
554   s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head());
555   if (tag == NULL) {
556      ir_read_error(expr, "expected rvalue tag");
557      return NULL;
558   }
559
560   ir_rvalue *rvalue = read_dereference(list);
561   if (rvalue != NULL || state->error)
562      return rvalue;
563   else if (strcmp(tag->value(), "swiz") == 0) {
564      rvalue = read_swizzle(list);
565   } else if (strcmp(tag->value(), "expression") == 0) {
566      rvalue = read_expression(list);
567   } else if (strcmp(tag->value(), "constant") == 0) {
568      rvalue = read_constant(list);
569   } else {
570      rvalue = read_texture(list);
571      if (rvalue == NULL && !state->error)
572	 ir_read_error(expr, "unrecognized rvalue tag: %s", tag->value());
573   }
574
575   return rvalue;
576}
577
578ir_assignment *
579ir_reader::read_assignment(s_expression *expr)
580{
581   s_expression *cond_expr = NULL;
582   s_expression *lhs_expr, *rhs_expr;
583   s_list       *mask_list;
584
585   s_pattern pat4[] = { "assign",            mask_list, lhs_expr, rhs_expr };
586   s_pattern pat5[] = { "assign", cond_expr, mask_list, lhs_expr, rhs_expr };
587   if (!MATCH(expr, pat4) && !MATCH(expr, pat5)) {
588      ir_read_error(expr, "expected (assign (<write mask>) <lhs> <rhs>)");
589      return NULL;
590   }
591
592   if (cond_expr != NULL) {
593      ir_rvalue *condition = read_rvalue(cond_expr);
594      if (condition == NULL)
595         ir_read_error(NULL, "when reading condition of assignment");
596      else
597         ir_read_error(expr, "conditional assignemnts are deprecated");
598
599      return NULL;
600   }
601
602   unsigned mask = 0;
603
604   s_symbol *mask_symbol;
605   s_pattern mask_pat[] = { mask_symbol };
606   if (MATCH(mask_list, mask_pat)) {
607      const char *mask_str = mask_symbol->value();
608      unsigned mask_length = strlen(mask_str);
609      if (mask_length > 4) {
610	 ir_read_error(expr, "invalid write mask: %s", mask_str);
611	 return NULL;
612      }
613
614      const unsigned idx_map[] = { 3, 0, 1, 2 }; /* w=bit 3, x=0, y=1, z=2 */
615
616      for (unsigned i = 0; i < mask_length; i++) {
617	 if (mask_str[i] < 'w' || mask_str[i] > 'z') {
618	    ir_read_error(expr, "write mask contains invalid character: %c",
619			  mask_str[i]);
620	    return NULL;
621	 }
622	 mask |= 1 << idx_map[mask_str[i] - 'w'];
623      }
624   } else if (!mask_list->subexpressions.is_empty()) {
625      ir_read_error(mask_list, "expected () or (<write mask>)");
626      return NULL;
627   }
628
629   ir_dereference *lhs = read_dereference(lhs_expr);
630   if (lhs == NULL) {
631      ir_read_error(NULL, "when reading left-hand side of assignment");
632      return NULL;
633   }
634
635   ir_rvalue *rhs = read_rvalue(rhs_expr);
636   if (rhs == NULL) {
637      ir_read_error(NULL, "when reading right-hand side of assignment");
638      return NULL;
639   }
640
641   if (mask == 0 && (lhs->type->is_vector() || lhs->type->is_scalar())) {
642      ir_read_error(expr, "non-zero write mask required.");
643      return NULL;
644   }
645
646   return new(mem_ctx) ir_assignment(lhs, rhs, mask);
647}
648
649ir_call *
650ir_reader::read_call(s_expression *expr)
651{
652   s_symbol *name;
653   s_list *params;
654   s_list *s_return = NULL;
655
656   ir_dereference_variable *return_deref = NULL;
657
658   s_pattern void_pat[] = { "call", name, params };
659   s_pattern non_void_pat[] = { "call", name, s_return, params };
660   if (MATCH(expr, non_void_pat)) {
661      return_deref = read_var_ref(s_return);
662      if (return_deref == NULL) {
663	 ir_read_error(s_return, "when reading a call's return storage");
664	 return NULL;
665      }
666   } else if (!MATCH(expr, void_pat)) {
667      ir_read_error(expr, "expected (call <name> [<deref>] (<param> ...))");
668      return NULL;
669   }
670
671   exec_list parameters;
672
673   foreach_in_list(s_expression, e, &params->subexpressions) {
674      ir_rvalue *param = read_rvalue(e);
675      if (param == NULL) {
676	 ir_read_error(e, "when reading parameter to function call");
677	 return NULL;
678      }
679      parameters.push_tail(param);
680   }
681
682   ir_function *f = state->symbols->get_function(name->value());
683   if (f == NULL) {
684      ir_read_error(expr, "found call to undefined function %s",
685		    name->value());
686      return NULL;
687   }
688
689   ir_function_signature *callee =
690      f->matching_signature(state, &parameters, true);
691   if (callee == NULL) {
692      ir_read_error(expr, "couldn't find matching signature for function "
693                    "%s", name->value());
694      return NULL;
695   }
696
697   if (callee->return_type == glsl_type::void_type && return_deref) {
698      ir_read_error(expr, "call has return value storage but void type");
699      return NULL;
700   } else if (callee->return_type != glsl_type::void_type && !return_deref) {
701      ir_read_error(expr, "call has non-void type but no return value storage");
702      return NULL;
703   }
704
705   return new(mem_ctx) ir_call(callee, return_deref, &parameters);
706}
707
708ir_expression *
709ir_reader::read_expression(s_expression *expr)
710{
711   s_expression *s_type;
712   s_symbol *s_op;
713   s_expression *s_arg[4] = {NULL};
714
715   s_pattern pat[] = { "expression", s_type, s_op, s_arg[0] };
716   if (!PARTIAL_MATCH(expr, pat)) {
717      ir_read_error(expr, "expected (expression <type> <operator> "
718			  "<operand> [<operand>] [<operand>] [<operand>])");
719      return NULL;
720   }
721   s_arg[1] = (s_expression *) s_arg[0]->next; // may be tail sentinel
722   s_arg[2] = (s_expression *) s_arg[1]->next; // may be tail sentinel or NULL
723   if (s_arg[2])
724      s_arg[3] = (s_expression *) s_arg[2]->next; // may be tail sentinel or NULL
725
726   const glsl_type *type = read_type(s_type);
727   if (type == NULL)
728      return NULL;
729
730   /* Read the operator */
731   ir_expression_operation op = ir_expression::get_operator(s_op->value());
732   if (op == (ir_expression_operation) -1) {
733      ir_read_error(expr, "invalid operator: %s", s_op->value());
734      return NULL;
735   }
736
737   /* Skip "expression" <type> <operation> by subtracting 3. */
738   int num_operands = (int) ((s_list *) expr)->subexpressions.length() - 3;
739
740   int expected_operands = ir_expression::get_num_operands(op);
741   if (num_operands != expected_operands) {
742      ir_read_error(expr, "found %d expression operands, expected %d",
743                    num_operands, expected_operands);
744      return NULL;
745   }
746
747   ir_rvalue *arg[4] = {NULL};
748   for (int i = 0; i < num_operands; i++) {
749      arg[i] = read_rvalue(s_arg[i]);
750      if (arg[i] == NULL) {
751         ir_read_error(NULL, "when reading operand #%d of %s", i, s_op->value());
752         return NULL;
753      }
754   }
755
756   return new(mem_ctx) ir_expression(op, type, arg[0], arg[1], arg[2], arg[3]);
757}
758
759ir_swizzle *
760ir_reader::read_swizzle(s_expression *expr)
761{
762   s_symbol *swiz;
763   s_expression *sub;
764
765   s_pattern pat[] = { "swiz", swiz, sub };
766   if (!MATCH(expr, pat)) {
767      ir_read_error(expr, "expected (swiz <swizzle> <rvalue>)");
768      return NULL;
769   }
770
771   if (strlen(swiz->value()) > 4) {
772      ir_read_error(expr, "expected a valid swizzle; found %s", swiz->value());
773      return NULL;
774   }
775
776   ir_rvalue *rvalue = read_rvalue(sub);
777   if (rvalue == NULL)
778      return NULL;
779
780   ir_swizzle *ir = ir_swizzle::create(rvalue, swiz->value(),
781				       rvalue->type->vector_elements);
782   if (ir == NULL)
783      ir_read_error(expr, "invalid swizzle");
784
785   return ir;
786}
787
788ir_constant *
789ir_reader::read_constant(s_expression *expr)
790{
791   s_expression *type_expr;
792   s_list *values;
793
794   s_pattern pat[] = { "constant", type_expr, values };
795   if (!MATCH(expr, pat)) {
796      ir_read_error(expr, "expected (constant <type> (...))");
797      return NULL;
798   }
799
800   const glsl_type *type = read_type(type_expr);
801   if (type == NULL)
802      return NULL;
803
804   if (values == NULL) {
805      ir_read_error(expr, "expected (constant <type> (...))");
806      return NULL;
807   }
808
809   if (type->is_array()) {
810      unsigned elements_supplied = 0;
811      exec_list elements;
812      foreach_in_list(s_expression, elt, &values->subexpressions) {
813	 ir_constant *ir_elt = read_constant(elt);
814	 if (ir_elt == NULL)
815	    return NULL;
816	 elements.push_tail(ir_elt);
817	 elements_supplied++;
818      }
819
820      if (elements_supplied != type->length) {
821	 ir_read_error(values, "expected exactly %u array elements, "
822		       "given %u", type->length, elements_supplied);
823	 return NULL;
824      }
825      return new(mem_ctx) ir_constant(type, &elements);
826   }
827
828   ir_constant_data data = { { 0 } };
829
830   // Read in list of values (at most 16).
831   unsigned k = 0;
832   foreach_in_list(s_expression, expr, &values->subexpressions) {
833      if (k >= 16) {
834	 ir_read_error(values, "expected at most 16 numbers");
835	 return NULL;
836      }
837
838      if (type->is_float()) {
839	 s_number *value = SX_AS_NUMBER(expr);
840	 if (value == NULL) {
841	    ir_read_error(values, "expected numbers");
842	    return NULL;
843	 }
844	 data.f[k] = value->fvalue();
845      } else {
846	 s_int *value = SX_AS_INT(expr);
847	 if (value == NULL) {
848	    ir_read_error(values, "expected integers");
849	    return NULL;
850	 }
851
852	 switch (type->base_type) {
853	 case GLSL_TYPE_UINT: {
854	    data.u[k] = value->value();
855	    break;
856	 }
857	 case GLSL_TYPE_INT: {
858	    data.i[k] = value->value();
859	    break;
860	 }
861	 case GLSL_TYPE_BOOL: {
862	    data.b[k] = value->value();
863	    break;
864	 }
865	 default:
866	    ir_read_error(values, "unsupported constant type");
867	    return NULL;
868	 }
869      }
870      ++k;
871   }
872   if (k != type->components()) {
873      ir_read_error(values, "expected %u constant values, found %u",
874		    type->components(), k);
875      return NULL;
876   }
877
878   return new(mem_ctx) ir_constant(type, &data);
879}
880
881ir_dereference_variable *
882ir_reader::read_var_ref(s_expression *expr)
883{
884   s_symbol *s_var;
885   s_pattern var_pat[] = { "var_ref", s_var };
886
887   if (MATCH(expr, var_pat)) {
888      ir_variable *var = state->symbols->get_variable(s_var->value());
889      if (var == NULL) {
890	 ir_read_error(expr, "undeclared variable: %s", s_var->value());
891	 return NULL;
892      }
893      return new(mem_ctx) ir_dereference_variable(var);
894   }
895   return NULL;
896}
897
898ir_dereference *
899ir_reader::read_dereference(s_expression *expr)
900{
901   s_expression *s_subject;
902   s_expression *s_index;
903   s_symbol *s_field;
904
905   s_pattern array_pat[] = { "array_ref", s_subject, s_index };
906   s_pattern record_pat[] = { "record_ref", s_subject, s_field };
907
908   ir_dereference_variable *var_ref = read_var_ref(expr);
909   if (var_ref != NULL) {
910      return var_ref;
911   } else if (MATCH(expr, array_pat)) {
912      ir_rvalue *subject = read_rvalue(s_subject);
913      if (subject == NULL) {
914	 ir_read_error(NULL, "when reading the subject of an array_ref");
915	 return NULL;
916      }
917
918      ir_rvalue *idx = read_rvalue(s_index);
919      if (idx == NULL) {
920	 ir_read_error(NULL, "when reading the index of an array_ref");
921	 return NULL;
922      }
923      return new(mem_ctx) ir_dereference_array(subject, idx);
924   } else if (MATCH(expr, record_pat)) {
925      ir_rvalue *subject = read_rvalue(s_subject);
926      if (subject == NULL) {
927	 ir_read_error(NULL, "when reading the subject of a record_ref");
928	 return NULL;
929      }
930      return new(mem_ctx) ir_dereference_record(subject, s_field->value());
931   }
932   return NULL;
933}
934
935ir_texture *
936ir_reader::read_texture(s_expression *expr)
937{
938   s_symbol *tag = NULL;
939   s_expression *s_sparse = NULL;
940   s_expression *s_type = NULL;
941   s_expression *s_sampler = NULL;
942   s_expression *s_coord = NULL;
943   s_expression *s_offset = NULL;
944   s_expression *s_proj = NULL;
945   s_list *s_shadow = NULL;
946   s_list *s_clamp = NULL;
947   s_expression *s_lod = NULL;
948   s_expression *s_sample_index = NULL;
949   s_expression *s_component = NULL;
950
951   ir_texture_opcode op = ir_tex; /* silence warning */
952
953   s_pattern tex_pattern[] =
954      { "tex", s_type, s_sampler, s_coord, s_sparse, s_offset, s_proj, s_shadow, s_clamp };
955   s_pattern txb_pattern[] =
956      { "txb", s_type, s_sampler, s_coord, s_sparse, s_offset, s_proj, s_shadow, s_clamp, s_lod };
957   s_pattern txd_pattern[] =
958      { "txd", s_type, s_sampler, s_coord, s_sparse, s_offset, s_proj, s_shadow, s_clamp, s_lod };
959   s_pattern lod_pattern[] =
960      { "lod", s_type, s_sampler, s_coord };
961   s_pattern txf_pattern[] =
962      { "txf", s_type, s_sampler, s_coord, s_sparse, s_offset, s_lod };
963   s_pattern txf_ms_pattern[] =
964      { "txf_ms", s_type, s_sampler, s_coord, s_sparse, s_sample_index };
965   s_pattern txs_pattern[] =
966      { "txs", s_type, s_sampler, s_lod };
967   s_pattern tg4_pattern[] =
968      { "tg4", s_type, s_sampler, s_coord, s_sparse, s_offset, s_component };
969   s_pattern query_levels_pattern[] =
970      { "query_levels", s_type, s_sampler };
971   s_pattern texture_samples_pattern[] =
972      { "samples", s_type, s_sampler };
973   s_pattern other_pattern[] =
974      { tag, s_type, s_sampler, s_coord, s_sparse, s_offset, s_proj, s_shadow, s_lod };
975
976   if (MATCH(expr, lod_pattern)) {
977      op = ir_lod;
978   } else if (MATCH(expr, tex_pattern)) {
979      op = ir_tex;
980   } else if (MATCH(expr, txb_pattern)) {
981      op = ir_txb;
982   } else if (MATCH(expr, txd_pattern)) {
983      op = ir_txd;
984   } else if (MATCH(expr, txf_pattern)) {
985      op = ir_txf;
986   } else if (MATCH(expr, txf_ms_pattern)) {
987      op = ir_txf_ms;
988   } else if (MATCH(expr, txs_pattern)) {
989      op = ir_txs;
990   } else if (MATCH(expr, tg4_pattern)) {
991      op = ir_tg4;
992   } else if (MATCH(expr, query_levels_pattern)) {
993      op = ir_query_levels;
994   } else if (MATCH(expr, texture_samples_pattern)) {
995      op = ir_texture_samples;
996   } else if (MATCH(expr, other_pattern)) {
997      op = ir_texture::get_opcode(tag->value());
998      if (op == (ir_texture_opcode) -1)
999	 return NULL;
1000   } else {
1001      ir_read_error(NULL, "unexpected texture pattern %s", tag->value());
1002      return NULL;
1003   }
1004
1005   bool is_sparse = false;
1006   if (s_sparse) {
1007      s_int *sparse = SX_AS_INT(s_sparse);
1008      if (sparse == NULL) {
1009         ir_read_error(NULL, "when reading sparse");
1010         return NULL;
1011      }
1012      is_sparse = sparse->value();
1013   }
1014
1015   ir_texture *tex = new(mem_ctx) ir_texture(op, is_sparse);
1016
1017   // Read return type
1018   const glsl_type *type = read_type(s_type);
1019   if (type == NULL) {
1020      ir_read_error(NULL, "when reading type in (%s ...)",
1021		    tex->opcode_string());
1022      return NULL;
1023   }
1024
1025   // Read sampler (must be a deref)
1026   ir_dereference *sampler = read_dereference(s_sampler);
1027   if (sampler == NULL) {
1028      ir_read_error(NULL, "when reading sampler in (%s ...)",
1029		    tex->opcode_string());
1030      return NULL;
1031   }
1032
1033   if (is_sparse) {
1034      const glsl_type *texel = type->field_type("texel");
1035      if (texel == glsl_type::error_type) {
1036         ir_read_error(NULL, "invalid type for sparse texture");
1037         return NULL;
1038      }
1039      type = texel;
1040   }
1041   tex->set_sampler(sampler, type);
1042
1043   if (op != ir_txs) {
1044      // Read coordinate (any rvalue)
1045      tex->coordinate = read_rvalue(s_coord);
1046      if (tex->coordinate == NULL) {
1047	 ir_read_error(NULL, "when reading coordinate in (%s ...)",
1048		       tex->opcode_string());
1049	 return NULL;
1050      }
1051
1052      if (op != ir_txf_ms && op != ir_lod) {
1053         // Read texel offset - either 0 or an rvalue.
1054         s_int *si_offset = SX_AS_INT(s_offset);
1055         if (si_offset == NULL || si_offset->value() != 0) {
1056            tex->offset = read_rvalue(s_offset);
1057            if (tex->offset == NULL) {
1058               ir_read_error(s_offset, "expected 0 or an expression");
1059               return NULL;
1060            }
1061         }
1062      }
1063   }
1064
1065   if (op != ir_txf && op != ir_txf_ms &&
1066       op != ir_txs && op != ir_lod && op != ir_tg4 &&
1067       op != ir_query_levels && op != ir_texture_samples) {
1068      s_int *proj_as_int = SX_AS_INT(s_proj);
1069      if (proj_as_int && proj_as_int->value() == 1) {
1070	 tex->projector = NULL;
1071      } else {
1072	 tex->projector = read_rvalue(s_proj);
1073	 if (tex->projector == NULL) {
1074	    ir_read_error(NULL, "when reading projective divide in (%s ..)",
1075	                  tex->opcode_string());
1076	    return NULL;
1077	 }
1078      }
1079
1080      if (s_shadow->subexpressions.is_empty()) {
1081	 tex->shadow_comparator = NULL;
1082      } else {
1083	 tex->shadow_comparator = read_rvalue(s_shadow);
1084	 if (tex->shadow_comparator == NULL) {
1085	    ir_read_error(NULL, "when reading shadow comparator in (%s ..)",
1086			  tex->opcode_string());
1087	    return NULL;
1088	 }
1089      }
1090   }
1091
1092   if (op == ir_tex || op == ir_txb || op == ir_txd) {
1093      if (s_clamp->subexpressions.is_empty()) {
1094         tex->clamp = NULL;
1095      } else {
1096         tex->clamp = read_rvalue(s_clamp);
1097         if (tex->clamp == NULL) {
1098            ir_read_error(NULL, "when reading clamp in (%s ..)",
1099                          tex->opcode_string());
1100            return NULL;
1101         }
1102      }
1103   }
1104
1105   switch (op) {
1106   case ir_txb:
1107      tex->lod_info.bias = read_rvalue(s_lod);
1108      if (tex->lod_info.bias == NULL) {
1109	 ir_read_error(NULL, "when reading LOD bias in (txb ...)");
1110	 return NULL;
1111      }
1112      break;
1113   case ir_txl:
1114   case ir_txf:
1115   case ir_txs:
1116      tex->lod_info.lod = read_rvalue(s_lod);
1117      if (tex->lod_info.lod == NULL) {
1118	 ir_read_error(NULL, "when reading LOD in (%s ...)",
1119		       tex->opcode_string());
1120	 return NULL;
1121      }
1122      break;
1123   case ir_txf_ms:
1124      tex->lod_info.sample_index = read_rvalue(s_sample_index);
1125      if (tex->lod_info.sample_index == NULL) {
1126         ir_read_error(NULL, "when reading sample_index in (txf_ms ...)");
1127         return NULL;
1128      }
1129      break;
1130   case ir_txd: {
1131      s_expression *s_dx, *s_dy;
1132      s_pattern dxdy_pat[] = { s_dx, s_dy };
1133      if (!MATCH(s_lod, dxdy_pat)) {
1134	 ir_read_error(s_lod, "expected (dPdx dPdy) in (txd ...)");
1135	 return NULL;
1136      }
1137      tex->lod_info.grad.dPdx = read_rvalue(s_dx);
1138      if (tex->lod_info.grad.dPdx == NULL) {
1139	 ir_read_error(NULL, "when reading dPdx in (txd ...)");
1140	 return NULL;
1141      }
1142      tex->lod_info.grad.dPdy = read_rvalue(s_dy);
1143      if (tex->lod_info.grad.dPdy == NULL) {
1144	 ir_read_error(NULL, "when reading dPdy in (txd ...)");
1145	 return NULL;
1146      }
1147      break;
1148   }
1149   case ir_tg4:
1150      tex->lod_info.component = read_rvalue(s_component);
1151      if (tex->lod_info.component == NULL) {
1152         ir_read_error(NULL, "when reading component in (tg4 ...)");
1153         return NULL;
1154      }
1155      break;
1156   default:
1157      // tex and lod don't have any extra parameters.
1158      break;
1159   };
1160   return tex;
1161}
1162
1163ir_emit_vertex *
1164ir_reader::read_emit_vertex(s_expression *expr)
1165{
1166   s_expression *s_stream = NULL;
1167
1168   s_pattern pat[] = { "emit-vertex", s_stream };
1169
1170   if (MATCH(expr, pat)) {
1171      ir_rvalue *stream = read_dereference(s_stream);
1172      if (stream == NULL) {
1173         ir_read_error(NULL, "when reading stream info in emit-vertex");
1174         return NULL;
1175      }
1176      return new(mem_ctx) ir_emit_vertex(stream);
1177   }
1178   ir_read_error(NULL, "when reading emit-vertex");
1179   return NULL;
1180}
1181
1182ir_end_primitive *
1183ir_reader::read_end_primitive(s_expression *expr)
1184{
1185   s_expression *s_stream = NULL;
1186
1187   s_pattern pat[] = { "end-primitive", s_stream };
1188
1189   if (MATCH(expr, pat)) {
1190      ir_rvalue *stream = read_dereference(s_stream);
1191      if (stream == NULL) {
1192         ir_read_error(NULL, "when reading stream info in end-primitive");
1193         return NULL;
1194      }
1195      return new(mem_ctx) ir_end_primitive(stream);
1196   }
1197   ir_read_error(NULL, "when reading end-primitive");
1198   return NULL;
1199}
1200
1201ir_barrier *
1202ir_reader::read_barrier(s_expression *expr)
1203{
1204   s_pattern pat[] = { "barrier" };
1205
1206   if (MATCH(expr, pat)) {
1207      return new(mem_ctx) ir_barrier();
1208   }
1209   ir_read_error(NULL, "when reading barrier");
1210   return NULL;
1211}
1212