1/* 2 * Copyright © 2010 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24/** 25 * \file ir_constant_expression.cpp 26 * Evaluate and process constant valued expressions 27 * 28 * In GLSL, constant valued expressions are used in several places. These 29 * must be processed and evaluated very early in the compilation process. 30 * 31 * * Sizes of arrays 32 * * Initializers for uniforms 33 * * Initializers for \c const variables 34 */ 35 36#include <math.h> 37#include "util/rounding.h" /* for _mesa_roundeven */ 38#include "util/half_float.h" 39#include "ir.h" 40#include "compiler/glsl_types.h" 41#include "util/hash_table.h" 42#include "util/u_math.h" 43 44static float 45dot_f(ir_constant *op0, ir_constant *op1) 46{ 47 assert(op0->type->is_float() && op1->type->is_float()); 48 49 float result = 0; 50 for (unsigned c = 0; c < op0->type->components(); c++) 51 result += op0->value.f[c] * op1->value.f[c]; 52 53 return result; 54} 55 56static double 57dot_d(ir_constant *op0, ir_constant *op1) 58{ 59 assert(op0->type->is_double() && op1->type->is_double()); 60 61 double result = 0; 62 for (unsigned c = 0; c < op0->type->components(); c++) 63 result += op0->value.d[c] * op1->value.d[c]; 64 65 return result; 66} 67 68/* This method is the only one supported by gcc. Unions in particular 69 * are iffy, and read-through-converted-pointer is killed by strict 70 * aliasing. OTOH, the compiler sees through the memcpy, so the 71 * resulting asm is reasonable. 72 */ 73static float 74bitcast_u2f(unsigned int u) 75{ 76 static_assert(sizeof(float) == sizeof(unsigned int), 77 "float and unsigned int size mismatch"); 78 float f; 79 memcpy(&f, &u, sizeof(f)); 80 return f; 81} 82 83static unsigned int 84bitcast_f2u(float f) 85{ 86 static_assert(sizeof(float) == sizeof(unsigned int), 87 "float and unsigned int size mismatch"); 88 unsigned int u; 89 memcpy(&u, &f, sizeof(f)); 90 return u; 91} 92 93static double 94bitcast_u642d(uint64_t u) 95{ 96 static_assert(sizeof(double) == sizeof(uint64_t), 97 "double and uint64_t size mismatch"); 98 double d; 99 memcpy(&d, &u, sizeof(d)); 100 return d; 101} 102 103static double 104bitcast_i642d(int64_t i) 105{ 106 static_assert(sizeof(double) == sizeof(int64_t), 107 "double and int64_t size mismatch"); 108 double d; 109 memcpy(&d, &i, sizeof(d)); 110 return d; 111} 112 113static uint64_t 114bitcast_d2u64(double d) 115{ 116 static_assert(sizeof(double) == sizeof(uint64_t), 117 "double and uint64_t size mismatch"); 118 uint64_t u; 119 memcpy(&u, &d, sizeof(d)); 120 return u; 121} 122 123static int64_t 124bitcast_d2i64(double d) 125{ 126 static_assert(sizeof(double) == sizeof(int64_t), 127 "double and int64_t size mismatch"); 128 int64_t i; 129 memcpy(&i, &d, sizeof(d)); 130 return i; 131} 132 133/** 134 * Evaluate one component of a floating-point 4x8 unpacking function. 135 */ 136typedef uint8_t 137(*pack_1x8_func_t)(float); 138 139/** 140 * Evaluate one component of a floating-point 2x16 unpacking function. 141 */ 142typedef uint16_t 143(*pack_1x16_func_t)(float); 144 145/** 146 * Evaluate one component of a floating-point 4x8 unpacking function. 147 */ 148typedef float 149(*unpack_1x8_func_t)(uint8_t); 150 151/** 152 * Evaluate one component of a floating-point 2x16 unpacking function. 153 */ 154typedef float 155(*unpack_1x16_func_t)(uint16_t); 156 157/** 158 * Evaluate a 2x16 floating-point packing function. 159 */ 160static uint32_t 161pack_2x16(pack_1x16_func_t pack_1x16, 162 float x, float y) 163{ 164 /* From section 8.4 of the GLSL ES 3.00 spec: 165 * 166 * packSnorm2x16 167 * ------------- 168 * The first component of the vector will be written to the least 169 * significant bits of the output; the last component will be written to 170 * the most significant bits. 171 * 172 * The specifications for the other packing functions contain similar 173 * language. 174 */ 175 uint32_t u = 0; 176 u |= ((uint32_t) pack_1x16(x) << 0); 177 u |= ((uint32_t) pack_1x16(y) << 16); 178 return u; 179} 180 181/** 182 * Evaluate a 4x8 floating-point packing function. 183 */ 184static uint32_t 185pack_4x8(pack_1x8_func_t pack_1x8, 186 float x, float y, float z, float w) 187{ 188 /* From section 8.4 of the GLSL 4.30 spec: 189 * 190 * packSnorm4x8 191 * ------------ 192 * The first component of the vector will be written to the least 193 * significant bits of the output; the last component will be written to 194 * the most significant bits. 195 * 196 * The specifications for the other packing functions contain similar 197 * language. 198 */ 199 uint32_t u = 0; 200 u |= ((uint32_t) pack_1x8(x) << 0); 201 u |= ((uint32_t) pack_1x8(y) << 8); 202 u |= ((uint32_t) pack_1x8(z) << 16); 203 u |= ((uint32_t) pack_1x8(w) << 24); 204 return u; 205} 206 207/** 208 * Evaluate a 2x16 floating-point unpacking function. 209 */ 210static void 211unpack_2x16(unpack_1x16_func_t unpack_1x16, 212 uint32_t u, 213 float *x, float *y) 214{ 215 /* From section 8.4 of the GLSL ES 3.00 spec: 216 * 217 * unpackSnorm2x16 218 * --------------- 219 * The first component of the returned vector will be extracted from 220 * the least significant bits of the input; the last component will be 221 * extracted from the most significant bits. 222 * 223 * The specifications for the other unpacking functions contain similar 224 * language. 225 */ 226 *x = unpack_1x16((uint16_t) (u & 0xffff)); 227 *y = unpack_1x16((uint16_t) (u >> 16)); 228} 229 230/** 231 * Evaluate a 4x8 floating-point unpacking function. 232 */ 233static void 234unpack_4x8(unpack_1x8_func_t unpack_1x8, uint32_t u, 235 float *x, float *y, float *z, float *w) 236{ 237 /* From section 8.4 of the GLSL 4.30 spec: 238 * 239 * unpackSnorm4x8 240 * -------------- 241 * The first component of the returned vector will be extracted from 242 * the least significant bits of the input; the last component will be 243 * extracted from the most significant bits. 244 * 245 * The specifications for the other unpacking functions contain similar 246 * language. 247 */ 248 *x = unpack_1x8((uint8_t) (u & 0xff)); 249 *y = unpack_1x8((uint8_t) (u >> 8)); 250 *z = unpack_1x8((uint8_t) (u >> 16)); 251 *w = unpack_1x8((uint8_t) (u >> 24)); 252} 253 254/** 255 * Evaluate one component of packSnorm4x8. 256 */ 257static uint8_t 258pack_snorm_1x8(float x) 259{ 260 /* From section 8.4 of the GLSL 4.30 spec: 261 * 262 * packSnorm4x8 263 * ------------ 264 * The conversion for component c of v to fixed point is done as 265 * follows: 266 * 267 * packSnorm4x8: round(clamp(c, -1, +1) * 127.0) 268 */ 269 return (uint8_t) 270 _mesa_lroundevenf(CLAMP(x, -1.0f, +1.0f) * 127.0f); 271} 272 273/** 274 * Evaluate one component of packSnorm2x16. 275 */ 276static uint16_t 277pack_snorm_1x16(float x) 278{ 279 /* From section 8.4 of the GLSL ES 3.00 spec: 280 * 281 * packSnorm2x16 282 * ------------- 283 * The conversion for component c of v to fixed point is done as 284 * follows: 285 * 286 * packSnorm2x16: round(clamp(c, -1, +1) * 32767.0) 287 */ 288 return (uint16_t) 289 _mesa_lroundevenf(CLAMP(x, -1.0f, +1.0f) * 32767.0f); 290} 291 292/** 293 * Evaluate one component of unpackSnorm4x8. 294 */ 295static float 296unpack_snorm_1x8(uint8_t u) 297{ 298 /* From section 8.4 of the GLSL 4.30 spec: 299 * 300 * unpackSnorm4x8 301 * -------------- 302 * The conversion for unpacked fixed-point value f to floating point is 303 * done as follows: 304 * 305 * unpackSnorm4x8: clamp(f / 127.0, -1, +1) 306 */ 307 return CLAMP((int8_t) u / 127.0f, -1.0f, +1.0f); 308} 309 310/** 311 * Evaluate one component of unpackSnorm2x16. 312 */ 313static float 314unpack_snorm_1x16(uint16_t u) 315{ 316 /* From section 8.4 of the GLSL ES 3.00 spec: 317 * 318 * unpackSnorm2x16 319 * --------------- 320 * The conversion for unpacked fixed-point value f to floating point is 321 * done as follows: 322 * 323 * unpackSnorm2x16: clamp(f / 32767.0, -1, +1) 324 */ 325 return CLAMP((int16_t) u / 32767.0f, -1.0f, +1.0f); 326} 327 328/** 329 * Evaluate one component packUnorm4x8. 330 */ 331static uint8_t 332pack_unorm_1x8(float x) 333{ 334 /* From section 8.4 of the GLSL 4.30 spec: 335 * 336 * packUnorm4x8 337 * ------------ 338 * The conversion for component c of v to fixed point is done as 339 * follows: 340 * 341 * packUnorm4x8: round(clamp(c, 0, +1) * 255.0) 342 */ 343 return (uint8_t) (int) _mesa_roundevenf(SATURATE(x) * 255.0f); 344} 345 346/** 347 * Evaluate one component packUnorm2x16. 348 */ 349static uint16_t 350pack_unorm_1x16(float x) 351{ 352 /* From section 8.4 of the GLSL ES 3.00 spec: 353 * 354 * packUnorm2x16 355 * ------------- 356 * The conversion for component c of v to fixed point is done as 357 * follows: 358 * 359 * packUnorm2x16: round(clamp(c, 0, +1) * 65535.0) 360 */ 361 return (uint16_t) (int) 362 _mesa_roundevenf(SATURATE(x) * 65535.0f); 363} 364 365/** 366 * Evaluate one component of unpackUnorm4x8. 367 */ 368static float 369unpack_unorm_1x8(uint8_t u) 370{ 371 /* From section 8.4 of the GLSL 4.30 spec: 372 * 373 * unpackUnorm4x8 374 * -------------- 375 * The conversion for unpacked fixed-point value f to floating point is 376 * done as follows: 377 * 378 * unpackUnorm4x8: f / 255.0 379 */ 380 return (float) u / 255.0f; 381} 382 383/** 384 * Evaluate one component of unpackUnorm2x16. 385 */ 386static float 387unpack_unorm_1x16(uint16_t u) 388{ 389 /* From section 8.4 of the GLSL ES 3.00 spec: 390 * 391 * unpackUnorm2x16 392 * --------------- 393 * The conversion for unpacked fixed-point value f to floating point is 394 * done as follows: 395 * 396 * unpackUnorm2x16: f / 65535.0 397 */ 398 return (float) u / 65535.0f; 399} 400 401/** 402 * Evaluate one component of packHalf2x16. 403 */ 404static uint16_t 405pack_half_1x16(float x) 406{ 407 return _mesa_float_to_half(x); 408} 409 410/** 411 * Evaluate one component of unpackHalf2x16. 412 */ 413static float 414unpack_half_1x16(uint16_t u) 415{ 416 return _mesa_half_to_float(u); 417} 418 419static int32_t 420iadd_saturate(int32_t a, int32_t b) 421{ 422 return CLAMP(int64_t(a) + int64_t(b), INT32_MIN, INT32_MAX); 423} 424 425static int64_t 426iadd64_saturate(int64_t a, int64_t b) 427{ 428 if (a < 0 && b < INT64_MIN - a) 429 return INT64_MIN; 430 431 if (a > 0 && b > INT64_MAX - a) 432 return INT64_MAX; 433 434 return a + b; 435} 436 437static int32_t 438isub_saturate(int32_t a, int32_t b) 439{ 440 return CLAMP(int64_t(a) - int64_t(b), INT32_MIN, INT32_MAX); 441} 442 443static int64_t 444isub64_saturate(int64_t a, int64_t b) 445{ 446 if (b > 0 && a < INT64_MIN + b) 447 return INT64_MIN; 448 449 if (b < 0 && a > INT64_MAX + b) 450 return INT64_MAX; 451 452 return a - b; 453} 454 455static uint64_t 456pack_2x32(uint32_t a, uint32_t b) 457{ 458 uint64_t v = a; 459 v |= (uint64_t)b << 32; 460 return v; 461} 462 463static void 464unpack_2x32(uint64_t p, uint32_t *a, uint32_t *b) 465{ 466 *a = p & 0xffffffff; 467 *b = (p >> 32); 468} 469 470/** 471 * Get the constant that is ultimately referenced by an r-value, in a constant 472 * expression evaluation context. 473 * 474 * The offset is used when the reference is to a specific column of a matrix. 475 */ 476static bool 477constant_referenced(const ir_dereference *deref, 478 struct hash_table *variable_context, 479 ir_constant *&store, int &offset) 480{ 481 store = NULL; 482 offset = 0; 483 484 if (variable_context == NULL) 485 return false; 486 487 switch (deref->ir_type) { 488 case ir_type_dereference_array: { 489 const ir_dereference_array *const da = 490 (const ir_dereference_array *) deref; 491 492 ir_constant *const index_c = 493 da->array_index->constant_expression_value(variable_context); 494 495 if (!index_c || !index_c->type->is_scalar() || 496 !index_c->type->is_integer_32()) 497 break; 498 499 const int index = index_c->type->base_type == GLSL_TYPE_INT ? 500 index_c->get_int_component(0) : 501 index_c->get_uint_component(0); 502 503 ir_constant *substore; 504 int suboffset; 505 506 const ir_dereference *const deref = da->array->as_dereference(); 507 if (!deref) 508 break; 509 510 if (!constant_referenced(deref, variable_context, substore, suboffset)) 511 break; 512 513 const glsl_type *const vt = da->array->type; 514 if (vt->is_array()) { 515 store = substore->get_array_element(index); 516 offset = 0; 517 } else if (vt->is_matrix()) { 518 store = substore; 519 offset = index * vt->vector_elements; 520 } else if (vt->is_vector()) { 521 store = substore; 522 offset = suboffset + index; 523 } 524 525 break; 526 } 527 528 case ir_type_dereference_record: { 529 const ir_dereference_record *const dr = 530 (const ir_dereference_record *) deref; 531 532 const ir_dereference *const deref = dr->record->as_dereference(); 533 if (!deref) 534 break; 535 536 ir_constant *substore; 537 int suboffset; 538 539 if (!constant_referenced(deref, variable_context, substore, suboffset)) 540 break; 541 542 /* Since we're dropping it on the floor... 543 */ 544 assert(suboffset == 0); 545 546 store = substore->get_record_field(dr->field_idx); 547 break; 548 } 549 550 case ir_type_dereference_variable: { 551 const ir_dereference_variable *const dv = 552 (const ir_dereference_variable *) deref; 553 554 hash_entry *entry = _mesa_hash_table_search(variable_context, dv->var); 555 if (entry) 556 store = (ir_constant *) entry->data; 557 break; 558 } 559 560 default: 561 assert(!"Should not get here."); 562 break; 563 } 564 565 return store != NULL; 566} 567 568 569ir_constant * 570ir_rvalue::constant_expression_value(void *, struct hash_table *) 571{ 572 assert(this->type->is_error()); 573 return NULL; 574} 575 576static uint32_t 577bitfield_reverse(uint32_t v) 578{ 579 /* http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious */ 580 uint32_t r = v; // r will be reversed bits of v; first get LSB of v 581 int s = sizeof(v) * CHAR_BIT - 1; // extra shift needed at end 582 583 for (v >>= 1; v; v >>= 1) { 584 r <<= 1; 585 r |= v & 1; 586 s--; 587 } 588 r <<= s; // shift when v's highest bits are zero 589 590 return r; 591} 592 593static int 594find_msb_uint(uint32_t v) 595{ 596 int count = 0; 597 598 /* If v == 0, then the loop will terminate when count == 32. In that case 599 * 31-count will produce the -1 result required by GLSL findMSB(). 600 */ 601 while (((v & (1u << 31)) == 0) && count != 32) { 602 count++; 603 v <<= 1; 604 } 605 606 return 31 - count; 607} 608 609static int 610find_msb_int(int32_t v) 611{ 612 /* If v is signed, findMSB() returns the position of the most significant 613 * zero bit. 614 */ 615 return find_msb_uint(v < 0 ? ~v : v); 616} 617 618static float 619ldexpf_flush_subnormal(float x, int exp) 620{ 621 const float result = ldexpf(x, exp); 622 623 /* Flush subnormal values to zero. */ 624 return !isnormal(result) ? copysignf(0.0f, x) : result; 625} 626 627static double 628ldexp_flush_subnormal(double x, int exp) 629{ 630 const double result = ldexp(x, exp); 631 632 /* Flush subnormal values to zero. */ 633 return !isnormal(result) ? copysign(0.0, x) : result; 634} 635 636static uint32_t 637bitfield_extract_uint(uint32_t value, int offset, int bits) 638{ 639 if (bits == 0) 640 return 0; 641 else if (offset < 0 || bits < 0) 642 return 0; /* Undefined, per spec. */ 643 else if (offset + bits > 32) 644 return 0; /* Undefined, per spec. */ 645 else { 646 value <<= 32 - bits - offset; 647 value >>= 32 - bits; 648 return value; 649 } 650} 651 652static int32_t 653bitfield_extract_int(int32_t value, int offset, int bits) 654{ 655 if (bits == 0) 656 return 0; 657 else if (offset < 0 || bits < 0) 658 return 0; /* Undefined, per spec. */ 659 else if (offset + bits > 32) 660 return 0; /* Undefined, per spec. */ 661 else { 662 value <<= 32 - bits - offset; 663 value >>= 32 - bits; 664 return value; 665 } 666} 667 668static uint32_t 669bitfield_insert(uint32_t base, uint32_t insert, int offset, int bits) 670{ 671 if (bits == 0) 672 return base; 673 else if (offset < 0 || bits < 0) 674 return 0; /* Undefined, per spec. */ 675 else if (offset + bits > 32) 676 return 0; /* Undefined, per spec. */ 677 else { 678 unsigned insert_mask = ((1ull << bits) - 1) << offset; 679 680 insert <<= offset; 681 insert &= insert_mask; 682 base &= ~insert_mask; 683 684 return base | insert; 685 } 686} 687 688ir_constant * 689ir_expression::constant_expression_value(void *mem_ctx, 690 struct hash_table *variable_context) 691{ 692 assert(mem_ctx); 693 694 if (this->type->is_error()) 695 return NULL; 696 697 const glsl_type *return_type = this->type; 698 ir_constant *op[ARRAY_SIZE(this->operands)] = { NULL, }; 699 ir_constant_data data; 700 701 memset(&data, 0, sizeof(data)); 702 703 for (unsigned operand = 0; operand < this->num_operands; operand++) { 704 op[operand] = 705 this->operands[operand]->constant_expression_value(mem_ctx, 706 variable_context); 707 if (!op[operand]) 708 return NULL; 709 } 710 711 for (unsigned operand = 0; operand < this->num_operands; operand++) { 712 switch (op[operand]->type->base_type) { 713 case GLSL_TYPE_FLOAT16: { 714 const struct glsl_type *float_type = 715 glsl_type::get_instance(GLSL_TYPE_FLOAT, 716 op[operand]->type->vector_elements, 717 op[operand]->type->matrix_columns, 718 op[operand]->type->explicit_stride, 719 op[operand]->type->interface_row_major); 720 721 ir_constant_data f; 722 for (unsigned i = 0; i < ARRAY_SIZE(f.f); i++) 723 f.f[i] = _mesa_half_to_float(op[operand]->value.f16[i]); 724 725 op[operand] = new(mem_ctx) ir_constant(float_type, &f); 726 break; 727 } 728 case GLSL_TYPE_INT16: { 729 const struct glsl_type *int_type = 730 glsl_type::get_instance(GLSL_TYPE_INT, 731 op[operand]->type->vector_elements, 732 op[operand]->type->matrix_columns, 733 op[operand]->type->explicit_stride, 734 op[operand]->type->interface_row_major); 735 736 ir_constant_data d; 737 for (unsigned i = 0; i < ARRAY_SIZE(d.i); i++) 738 d.i[i] = op[operand]->value.i16[i]; 739 740 op[operand] = new(mem_ctx) ir_constant(int_type, &d); 741 break; 742 } 743 case GLSL_TYPE_UINT16: { 744 const struct glsl_type *uint_type = 745 glsl_type::get_instance(GLSL_TYPE_UINT, 746 op[operand]->type->vector_elements, 747 op[operand]->type->matrix_columns, 748 op[operand]->type->explicit_stride, 749 op[operand]->type->interface_row_major); 750 751 ir_constant_data d; 752 for (unsigned i = 0; i < ARRAY_SIZE(d.u); i++) 753 d.u[i] = op[operand]->value.u16[i]; 754 755 op[operand] = new(mem_ctx) ir_constant(uint_type, &d); 756 break; 757 } 758 default: 759 /* nothing to do */ 760 break; 761 } 762 } 763 764 switch (return_type->base_type) { 765 case GLSL_TYPE_FLOAT16: 766 return_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, 767 return_type->vector_elements, 768 return_type->matrix_columns, 769 return_type->explicit_stride, 770 return_type->interface_row_major); 771 break; 772 case GLSL_TYPE_INT16: 773 return_type = glsl_type::get_instance(GLSL_TYPE_INT, 774 return_type->vector_elements, 775 return_type->matrix_columns, 776 return_type->explicit_stride, 777 return_type->interface_row_major); 778 break; 779 case GLSL_TYPE_UINT16: 780 return_type = glsl_type::get_instance(GLSL_TYPE_UINT, 781 return_type->vector_elements, 782 return_type->matrix_columns, 783 return_type->explicit_stride, 784 return_type->interface_row_major); 785 break; 786 default: 787 /* nothing to do */ 788 break; 789 } 790 791 if (op[1] != NULL) 792 switch (this->operation) { 793 case ir_binop_lshift: 794 case ir_binop_rshift: 795 case ir_binop_ldexp: 796 case ir_binop_interpolate_at_offset: 797 case ir_binop_interpolate_at_sample: 798 case ir_binop_vector_extract: 799 case ir_triop_csel: 800 case ir_triop_bitfield_extract: 801 break; 802 803 default: 804 assert(op[0]->type->base_type == op[1]->type->base_type); 805 break; 806 } 807 808 bool op0_scalar = op[0]->type->is_scalar(); 809 bool op1_scalar = op[1] != NULL && op[1]->type->is_scalar(); 810 811 /* When iterating over a vector or matrix's components, we want to increase 812 * the loop counter. However, for scalars, we want to stay at 0. 813 */ 814 unsigned c0_inc = op0_scalar ? 0 : 1; 815 unsigned c1_inc = op1_scalar ? 0 : 1; 816 unsigned components; 817 if (op1_scalar || !op[1]) { 818 components = op[0]->type->components(); 819 } else { 820 components = op[1]->type->components(); 821 } 822 823 /* Handle array operations here, rather than below. */ 824 if (op[0]->type->is_array()) { 825 assert(op[1] != NULL && op[1]->type->is_array()); 826 switch (this->operation) { 827 case ir_binop_all_equal: 828 return new(mem_ctx) ir_constant(op[0]->has_value(op[1])); 829 case ir_binop_any_nequal: 830 return new(mem_ctx) ir_constant(!op[0]->has_value(op[1])); 831 default: 832 break; 833 } 834 return NULL; 835 } 836 837#include "ir_expression_operation_constant.h" 838 839 switch (type->base_type) { 840 case GLSL_TYPE_FLOAT16: { 841 ir_constant_data f; 842 for (unsigned i = 0; i < ARRAY_SIZE(f.f16); i++) 843 f.f16[i] = _mesa_float_to_half(data.f[i]); 844 845 return new(mem_ctx) ir_constant(this->type, &f); 846 } 847 case GLSL_TYPE_INT16: { 848 ir_constant_data d; 849 for (unsigned i = 0; i < ARRAY_SIZE(d.i16); i++) 850 d.i16[i] = data.i[i]; 851 852 return new(mem_ctx) ir_constant(this->type, &d); 853 } 854 case GLSL_TYPE_UINT16: { 855 ir_constant_data d; 856 for (unsigned i = 0; i < ARRAY_SIZE(d.u16); i++) 857 d.u16[i] = data.u[i]; 858 859 return new(mem_ctx) ir_constant(this->type, &d); 860 } 861 default: 862 return new(mem_ctx) ir_constant(this->type, &data); 863 } 864} 865 866 867ir_constant * 868ir_texture::constant_expression_value(void *, struct hash_table *) 869{ 870 /* texture lookups aren't constant expressions */ 871 return NULL; 872} 873 874 875ir_constant * 876ir_swizzle::constant_expression_value(void *mem_ctx, 877 struct hash_table *variable_context) 878{ 879 assert(mem_ctx); 880 881 ir_constant *v = this->val->constant_expression_value(mem_ctx, 882 variable_context); 883 884 if (v != NULL) { 885 ir_constant_data data = { { 0 } }; 886 887 const unsigned swiz_idx[4] = { 888 this->mask.x, this->mask.y, this->mask.z, this->mask.w 889 }; 890 891 for (unsigned i = 0; i < this->mask.num_components; i++) { 892 switch (v->type->base_type) { 893 case GLSL_TYPE_UINT16: 894 case GLSL_TYPE_INT16: data.u16[i] = v->value.u16[swiz_idx[i]]; break; 895 case GLSL_TYPE_UINT: 896 case GLSL_TYPE_INT: data.u[i] = v->value.u[swiz_idx[i]]; break; 897 case GLSL_TYPE_FLOAT: data.f[i] = v->value.f[swiz_idx[i]]; break; 898 case GLSL_TYPE_FLOAT16: data.f16[i] = v->value.f16[swiz_idx[i]]; break; 899 case GLSL_TYPE_BOOL: data.b[i] = v->value.b[swiz_idx[i]]; break; 900 case GLSL_TYPE_DOUBLE:data.d[i] = v->value.d[swiz_idx[i]]; break; 901 case GLSL_TYPE_UINT64:data.u64[i] = v->value.u64[swiz_idx[i]]; break; 902 case GLSL_TYPE_INT64: data.i64[i] = v->value.i64[swiz_idx[i]]; break; 903 default: assert(!"Should not get here."); break; 904 } 905 } 906 907 return new(mem_ctx) ir_constant(this->type, &data); 908 } 909 return NULL; 910} 911 912 913ir_constant * 914ir_dereference_variable::constant_expression_value(void *mem_ctx, 915 struct hash_table *variable_context) 916{ 917 assert(var); 918 assert(mem_ctx); 919 920 /* Give priority to the context hashtable, if it exists */ 921 if (variable_context) { 922 hash_entry *entry = _mesa_hash_table_search(variable_context, var); 923 924 if(entry) 925 return (ir_constant *) entry->data; 926 } 927 928 /* The constant_value of a uniform variable is its initializer, 929 * not the lifetime constant value of the uniform. 930 */ 931 if (var->data.mode == ir_var_uniform) 932 return NULL; 933 934 if (!var->constant_value) 935 return NULL; 936 937 return var->constant_value->clone(mem_ctx, NULL); 938} 939 940 941ir_constant * 942ir_dereference_array::constant_expression_value(void *mem_ctx, 943 struct hash_table *variable_context) 944{ 945 assert(mem_ctx); 946 947 ir_constant *array = this->array->constant_expression_value(mem_ctx, variable_context); 948 ir_constant *idx = this->array_index->constant_expression_value(mem_ctx, variable_context); 949 950 if ((array != NULL) && (idx != NULL)) { 951 if (array->type->is_matrix()) { 952 /* Array access of a matrix results in a vector. 953 */ 954 const unsigned column = idx->value.u[0]; 955 956 const glsl_type *const column_type = array->type->column_type(); 957 958 /* Section 5.11 (Out-of-Bounds Accesses) of the GLSL 4.60 spec says: 959 * 960 * In the subsections described above for array, vector, matrix and 961 * structure accesses, any out-of-bounds access produced undefined 962 * behavior....Out-of-bounds reads return undefined values, which 963 * include values from other variables of the active program or zero. 964 */ 965 if (idx->value.i[0] < 0 || column >= array->type->matrix_columns) { 966 ir_constant_data data = { { 0 } }; 967 968 return new(mem_ctx) ir_constant(column_type, &data); 969 } 970 971 /* Offset in the constant matrix to the first element of the column 972 * to be extracted. 973 */ 974 const unsigned mat_idx = column * column_type->vector_elements; 975 976 ir_constant_data data = { { 0 } }; 977 978 switch (column_type->base_type) { 979 case GLSL_TYPE_FLOAT16: 980 for (unsigned i = 0; i < column_type->vector_elements; i++) 981 data.f16[i] = array->value.f16[mat_idx + i]; 982 983 break; 984 985 case GLSL_TYPE_FLOAT: 986 for (unsigned i = 0; i < column_type->vector_elements; i++) 987 data.f[i] = array->value.f[mat_idx + i]; 988 989 break; 990 991 case GLSL_TYPE_DOUBLE: 992 for (unsigned i = 0; i < column_type->vector_elements; i++) 993 data.d[i] = array->value.d[mat_idx + i]; 994 995 break; 996 997 default: 998 unreachable("Matrix types are either float or double."); 999 } 1000 1001 return new(mem_ctx) ir_constant(column_type, &data); 1002 } else if (array->type->is_vector()) { 1003 const unsigned component = idx->value.u[0]; 1004 1005 return new(mem_ctx) ir_constant(array, component); 1006 } else if (array->type->is_array()) { 1007 const unsigned index = idx->value.u[0]; 1008 return array->get_array_element(index)->clone(mem_ctx, NULL); 1009 } 1010 } 1011 return NULL; 1012} 1013 1014 1015ir_constant * 1016ir_dereference_record::constant_expression_value(void *mem_ctx, 1017 struct hash_table *) 1018{ 1019 assert(mem_ctx); 1020 1021 ir_constant *v = this->record->constant_expression_value(mem_ctx); 1022 1023 return (v != NULL) ? v->get_record_field(this->field_idx) : NULL; 1024} 1025 1026 1027ir_constant * 1028ir_assignment::constant_expression_value(void *, struct hash_table *) 1029{ 1030 /* FINISHME: Handle CEs involving assignment (return RHS) */ 1031 return NULL; 1032} 1033 1034 1035ir_constant * 1036ir_constant::constant_expression_value(void *, struct hash_table *) 1037{ 1038 return this; 1039} 1040 1041 1042ir_constant * 1043ir_call::constant_expression_value(void *mem_ctx, struct hash_table *variable_context) 1044{ 1045 assert(mem_ctx); 1046 1047 return this->callee->constant_expression_value(mem_ctx, 1048 &this->actual_parameters, 1049 variable_context); 1050} 1051 1052 1053bool ir_function_signature::constant_expression_evaluate_expression_list(void *mem_ctx, 1054 const struct exec_list &body, 1055 struct hash_table *variable_context, 1056 ir_constant **result) 1057{ 1058 assert(mem_ctx); 1059 1060 foreach_in_list(ir_instruction, inst, &body) { 1061 switch(inst->ir_type) { 1062 1063 /* (declare () type symbol) */ 1064 case ir_type_variable: { 1065 ir_variable *var = inst->as_variable(); 1066 _mesa_hash_table_insert(variable_context, var, ir_constant::zero(this, var->type)); 1067 break; 1068 } 1069 1070 /* (assign [condition] (write-mask) (ref) (value)) */ 1071 case ir_type_assignment: { 1072 ir_assignment *asg = inst->as_assignment(); 1073 ir_constant *store = NULL; 1074 int offset = 0; 1075 1076 if (!constant_referenced(asg->lhs, variable_context, store, offset)) 1077 return false; 1078 1079 ir_constant *value = 1080 asg->rhs->constant_expression_value(mem_ctx, variable_context); 1081 1082 if (!value) 1083 return false; 1084 1085 store->copy_masked_offset(value, offset, asg->write_mask); 1086 break; 1087 } 1088 1089 /* (return (expression)) */ 1090 case ir_type_return: 1091 assert (result); 1092 *result = 1093 inst->as_return()->value->constant_expression_value(mem_ctx, 1094 variable_context); 1095 return *result != NULL; 1096 1097 /* (call name (ref) (params))*/ 1098 case ir_type_call: { 1099 ir_call *call = inst->as_call(); 1100 1101 /* Just say no to void functions in constant expressions. We 1102 * don't need them at that point. 1103 */ 1104 1105 if (!call->return_deref) 1106 return false; 1107 1108 ir_constant *store = NULL; 1109 int offset = 0; 1110 1111 if (!constant_referenced(call->return_deref, variable_context, 1112 store, offset)) 1113 return false; 1114 1115 ir_constant *value = 1116 call->constant_expression_value(mem_ctx, variable_context); 1117 1118 if(!value) 1119 return false; 1120 1121 store->copy_offset(value, offset); 1122 break; 1123 } 1124 1125 /* (if condition (then-instructions) (else-instructions)) */ 1126 case ir_type_if: { 1127 ir_if *iif = inst->as_if(); 1128 1129 ir_constant *cond = 1130 iif->condition->constant_expression_value(mem_ctx, 1131 variable_context); 1132 if (!cond || !cond->type->is_boolean()) 1133 return false; 1134 1135 exec_list &branch = cond->get_bool_component(0) ? iif->then_instructions : iif->else_instructions; 1136 1137 *result = NULL; 1138 if (!constant_expression_evaluate_expression_list(mem_ctx, branch, 1139 variable_context, 1140 result)) 1141 return false; 1142 1143 /* If there was a return in the branch chosen, drop out now. */ 1144 if (*result) 1145 return true; 1146 1147 break; 1148 } 1149 1150 /* Every other expression type, we drop out. */ 1151 default: 1152 return false; 1153 } 1154 } 1155 1156 /* Reaching the end of the block is not an error condition */ 1157 if (result) 1158 *result = NULL; 1159 1160 return true; 1161} 1162 1163ir_constant * 1164ir_function_signature::constant_expression_value(void *mem_ctx, 1165 exec_list *actual_parameters, 1166 struct hash_table *variable_context) 1167{ 1168 assert(mem_ctx); 1169 1170 const glsl_type *type = this->return_type; 1171 if (type == glsl_type::void_type) 1172 return NULL; 1173 1174 /* From the GLSL 1.20 spec, page 23: 1175 * "Function calls to user-defined functions (non-built-in functions) 1176 * cannot be used to form constant expressions." 1177 */ 1178 if (!this->is_builtin()) 1179 return NULL; 1180 1181 /* 1182 * Of the builtin functions, only the texture lookups and the noise 1183 * ones must not be used in constant expressions. Texture instructions 1184 * include special ir_texture opcodes which can't be constant-folded (see 1185 * ir_texture::constant_expression_value). Noise functions, however, we 1186 * have to special case here. 1187 */ 1188 if (strcmp(this->function_name(), "noise1") == 0 || 1189 strcmp(this->function_name(), "noise2") == 0 || 1190 strcmp(this->function_name(), "noise3") == 0 || 1191 strcmp(this->function_name(), "noise4") == 0) 1192 return NULL; 1193 1194 /* Initialize the table of dereferencable names with the function 1195 * parameters. Verify their const-ness on the way. 1196 * 1197 * We expect the correctness of the number of parameters to have 1198 * been checked earlier. 1199 */ 1200 hash_table *deref_hash = _mesa_pointer_hash_table_create(NULL); 1201 1202 /* If "origin" is non-NULL, then the function body is there. So we 1203 * have to use the variable objects from the object with the body, 1204 * but the parameter instanciation on the current object. 1205 */ 1206 const exec_node *parameter_info = origin ? origin->parameters.get_head_raw() : parameters.get_head_raw(); 1207 1208 foreach_in_list(ir_rvalue, n, actual_parameters) { 1209 ir_constant *constant = 1210 n->constant_expression_value(mem_ctx, variable_context); 1211 if (constant == NULL) { 1212 _mesa_hash_table_destroy(deref_hash, NULL); 1213 return NULL; 1214 } 1215 1216 1217 ir_variable *var = (ir_variable *)parameter_info; 1218 _mesa_hash_table_insert(deref_hash, var, constant); 1219 1220 parameter_info = parameter_info->next; 1221 } 1222 1223 ir_constant *result = NULL; 1224 1225 /* Now run the builtin function until something non-constant 1226 * happens or we get the result. 1227 */ 1228 if (constant_expression_evaluate_expression_list(mem_ctx, origin ? origin->body : body, deref_hash, &result) && 1229 result) 1230 result = result->clone(mem_ctx, NULL); 1231 1232 _mesa_hash_table_destroy(deref_hash, NULL); 1233 1234 return result; 1235} 1236