xref: /third_party/mesa3d/src/compiler/glsl/ir.h (revision bf215546)
1/* -*- c++ -*- */
2/*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25#ifndef IR_H
26#define IR_H
27
28#include <stdio.h>
29#include <stdlib.h>
30
31#include "util/ralloc.h"
32#include "util/format/u_format.h"
33#include "util/half_float.h"
34#include "compiler/glsl_types.h"
35#include "list.h"
36#include "ir_visitor.h"
37#include "ir_hierarchical_visitor.h"
38
39#ifdef __cplusplus
40
41/**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47/**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant.  The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor.  While using type tags is not very C++, it is extremely
53 * convenient.  For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types.  For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61enum ir_node_type {
62   ir_type_dereference_array,
63   ir_type_dereference_record,
64   ir_type_dereference_variable,
65   ir_type_constant,
66   ir_type_expression,
67   ir_type_swizzle,
68   ir_type_texture,
69   ir_type_variable,
70   ir_type_assignment,
71   ir_type_call,
72   ir_type_function,
73   ir_type_function_signature,
74   ir_type_if,
75   ir_type_loop,
76   ir_type_loop_jump,
77   ir_type_return,
78   ir_type_discard,
79   ir_type_demote,
80   ir_type_emit_vertex,
81   ir_type_end_primitive,
82   ir_type_barrier,
83   ir_type_max, /**< maximum ir_type enum number, for validation */
84   ir_type_unset = ir_type_max
85};
86
87
88/**
89 * Base class of all IR instructions
90 */
91class ir_instruction : public exec_node {
92public:
93   enum ir_node_type ir_type;
94
95   /**
96    * GCC 4.7+ and clang warn when deleting an ir_instruction unless
97    * there's a virtual destructor present.  Because we almost
98    * universally use ralloc for our memory management of
99    * ir_instructions, the destructor doesn't need to do any work.
100    */
101   virtual ~ir_instruction()
102   {
103   }
104
105   /** ir_print_visitor helper for debugging. */
106   void print(void) const;
107   void fprint(FILE *f) const;
108
109   virtual void accept(ir_visitor *) = 0;
110   virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
111   virtual ir_instruction *clone(void *mem_ctx,
112				 struct hash_table *ht) const = 0;
113
114   bool is_rvalue() const
115   {
116      return ir_type == ir_type_dereference_array ||
117             ir_type == ir_type_dereference_record ||
118             ir_type == ir_type_dereference_variable ||
119             ir_type == ir_type_constant ||
120             ir_type == ir_type_expression ||
121             ir_type == ir_type_swizzle ||
122             ir_type == ir_type_texture;
123   }
124
125   bool is_dereference() const
126   {
127      return ir_type == ir_type_dereference_array ||
128             ir_type == ir_type_dereference_record ||
129             ir_type == ir_type_dereference_variable;
130   }
131
132   bool is_jump() const
133   {
134      return ir_type == ir_type_loop_jump ||
135             ir_type == ir_type_return ||
136             ir_type == ir_type_discard;
137   }
138
139   /**
140    * \name IR instruction downcast functions
141    *
142    * These functions either cast the object to a derived class or return
143    * \c NULL if the object's type does not match the specified derived class.
144    * Additional downcast functions will be added as needed.
145    */
146   /*@{*/
147   #define AS_BASE(TYPE)                                \
148   class ir_##TYPE *as_##TYPE()                         \
149   {                                                    \
150      return is_##TYPE() ? (ir_##TYPE *) this : NULL;   \
151   }                                                    \
152   const class ir_##TYPE *as_##TYPE() const             \
153   {                                                    \
154      return is_##TYPE() ? (ir_##TYPE *) this : NULL;   \
155   }
156
157   AS_BASE(rvalue)
158   AS_BASE(dereference)
159   AS_BASE(jump)
160   #undef AS_BASE
161
162   #define AS_CHILD(TYPE) \
163   class ir_##TYPE * as_##TYPE() \
164   { \
165      return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
166   }                                                                      \
167   const class ir_##TYPE * as_##TYPE() const                              \
168   {                                                                      \
169      return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
170   }
171   AS_CHILD(variable)
172   AS_CHILD(function)
173   AS_CHILD(dereference_array)
174   AS_CHILD(dereference_variable)
175   AS_CHILD(dereference_record)
176   AS_CHILD(expression)
177   AS_CHILD(loop)
178   AS_CHILD(assignment)
179   AS_CHILD(call)
180   AS_CHILD(return)
181   AS_CHILD(if)
182   AS_CHILD(swizzle)
183   AS_CHILD(texture)
184   AS_CHILD(constant)
185   AS_CHILD(discard)
186   #undef AS_CHILD
187   /*@}*/
188
189   /**
190    * IR equality method: Return true if the referenced instruction would
191    * return the same value as this one.
192    *
193    * This intended to be used for CSE and algebraic optimizations, on rvalues
194    * in particular.  No support for other instruction types (assignments,
195    * jumps, calls, etc.) is planned.
196    */
197   virtual bool equals(const ir_instruction *ir,
198                       enum ir_node_type ignore = ir_type_unset) const;
199
200protected:
201   ir_instruction(enum ir_node_type t)
202      : ir_type(t)
203   {
204   }
205
206private:
207   ir_instruction()
208   {
209      assert(!"Should not get here.");
210   }
211};
212
213
214/**
215 * The base class for all "values"/expression trees.
216 */
217class ir_rvalue : public ir_instruction {
218public:
219   const struct glsl_type *type;
220
221   virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
222
223   virtual void accept(ir_visitor *v)
224   {
225      v->visit(this);
226   }
227
228   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
229
230   virtual ir_constant *constant_expression_value(void *mem_ctx,
231                                                  struct hash_table *variable_context = NULL);
232
233   ir_rvalue *as_rvalue_to_saturate();
234
235   virtual bool is_lvalue(const struct _mesa_glsl_parse_state * = NULL) const
236   {
237      return false;
238   }
239
240   /**
241    * Get the variable that is ultimately referenced by an r-value
242    */
243   virtual ir_variable *variable_referenced() const
244   {
245      return NULL;
246   }
247
248
249   /**
250    * If an r-value is a reference to a whole variable, get that variable
251    *
252    * \return
253    * Pointer to a variable that is completely dereferenced by the r-value.  If
254    * the r-value is not a dereference or the dereference does not access the
255    * entire variable (i.e., it's just one array element, struct field), \c NULL
256    * is returned.
257    */
258   virtual ir_variable *whole_variable_referenced()
259   {
260      return NULL;
261   }
262
263   /**
264    * Determine if an r-value has the value zero
265    *
266    * The base implementation of this function always returns \c false.  The
267    * \c ir_constant class over-rides this function to return \c true \b only
268    * for vector and scalar types that have all elements set to the value
269    * zero (or \c false for booleans).
270    *
271    * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
272    */
273   virtual bool is_zero() const;
274
275   /**
276    * Determine if an r-value has the value one
277    *
278    * The base implementation of this function always returns \c false.  The
279    * \c ir_constant class over-rides this function to return \c true \b only
280    * for vector and scalar types that have all elements set to the value
281    * one (or \c true for booleans).
282    *
283    * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
284    */
285   virtual bool is_one() const;
286
287   /**
288    * Determine if an r-value has the value negative one
289    *
290    * The base implementation of this function always returns \c false.  The
291    * \c ir_constant class over-rides this function to return \c true \b only
292    * for vector and scalar types that have all elements set to the value
293    * negative one.  For boolean types, the result is always \c false.
294    *
295    * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
296    */
297   virtual bool is_negative_one() const;
298
299   /**
300    * Determine if an r-value is an unsigned integer constant which can be
301    * stored in 16 bits.
302    *
303    * \sa ir_constant::is_uint16_constant.
304    */
305   virtual bool is_uint16_constant() const { return false; }
306
307   /**
308    * Return a generic value of error_type.
309    *
310    * Allocation will be performed with 'mem_ctx' as ralloc owner.
311    */
312   static ir_rvalue *error_value(void *mem_ctx);
313
314protected:
315   ir_rvalue(enum ir_node_type t);
316};
317
318
319/**
320 * Variable storage classes
321 */
322enum ir_variable_mode {
323   ir_var_auto = 0,             /**< Function local variables and globals. */
324   ir_var_uniform,              /**< Variable declared as a uniform. */
325   ir_var_shader_storage,       /**< Variable declared as an ssbo. */
326   ir_var_shader_shared,        /**< Variable declared as shared. */
327   ir_var_shader_in,
328   ir_var_shader_out,
329   ir_var_function_in,
330   ir_var_function_out,
331   ir_var_function_inout,
332   ir_var_const_in,             /**< "in" param that must be a constant expression */
333   ir_var_system_value,         /**< Ex: front-face, instance-id, etc. */
334   ir_var_temporary,            /**< Temporary variable generated during compilation. */
335   ir_var_mode_count            /**< Number of variable modes */
336};
337
338/**
339 * Enum keeping track of how a variable was declared.  For error checking of
340 * the gl_PerVertex redeclaration rules.
341 */
342enum ir_var_declaration_type {
343   /**
344    * Normal declaration (for most variables, this means an explicit
345    * declaration.  Exception: temporaries are always implicitly declared, but
346    * they still use ir_var_declared_normally).
347    *
348    * Note: an ir_variable that represents a named interface block uses
349    * ir_var_declared_normally.
350    */
351   ir_var_declared_normally = 0,
352
353   /**
354    * Variable was explicitly declared (or re-declared) in an unnamed
355    * interface block.
356    */
357   ir_var_declared_in_block,
358
359   /**
360    * Variable is an implicitly declared built-in that has not been explicitly
361    * re-declared by the shader.
362    */
363   ir_var_declared_implicitly,
364
365   /**
366    * Variable is implicitly generated by the compiler and should not be
367    * visible via the API.
368    */
369   ir_var_hidden,
370};
371
372/**
373 * \brief Layout qualifiers for gl_FragDepth.
374 *
375 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
376 * with a layout qualifier.
377 */
378enum ir_depth_layout {
379    ir_depth_layout_none, /**< No depth layout is specified. */
380    ir_depth_layout_any,
381    ir_depth_layout_greater,
382    ir_depth_layout_less,
383    ir_depth_layout_unchanged
384};
385
386/**
387 * \brief Convert depth layout qualifier to string.
388 */
389const char*
390depth_layout_string(ir_depth_layout layout);
391
392/**
393 * Description of built-in state associated with a uniform
394 *
395 * \sa ir_variable::state_slots
396 */
397struct ir_state_slot {
398   gl_state_index16 tokens[STATE_LENGTH];
399   int swizzle;
400};
401
402
403/**
404 * Get the string value for an interpolation qualifier
405 *
406 * \return The string that would be used in a shader to specify \c
407 * mode will be returned.
408 *
409 * This function is used to generate error messages of the form "shader
410 * uses %s interpolation qualifier", so in the case where there is no
411 * interpolation qualifier, it returns "no".
412 *
413 * This function should only be used on a shader input or output variable.
414 */
415const char *interpolation_string(unsigned interpolation);
416
417
418class ir_variable : public ir_instruction {
419public:
420   ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
421
422   virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
423
424   virtual void accept(ir_visitor *v)
425   {
426      v->visit(this);
427   }
428
429   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
430
431
432   /**
433    * Determine whether or not a variable is part of a uniform or
434    * shader storage block.
435    */
436   inline bool is_in_buffer_block() const
437   {
438      return (this->data.mode == ir_var_uniform ||
439              this->data.mode == ir_var_shader_storage) &&
440             this->interface_type != NULL;
441   }
442
443   /**
444    * Determine whether or not a variable is part of a shader storage block.
445    */
446   inline bool is_in_shader_storage_block() const
447   {
448      return this->data.mode == ir_var_shader_storage &&
449             this->interface_type != NULL;
450   }
451
452   /**
453    * Determine whether or not a variable is the declaration of an interface
454    * block
455    *
456    * For the first declaration below, there will be an \c ir_variable named
457    * "instance" whose type and whose instance_type will be the same
458    * \c glsl_type.  For the second declaration, there will be an \c ir_variable
459    * named "f" whose type is float and whose instance_type is B2.
460    *
461    * "instance" is an interface instance variable, but "f" is not.
462    *
463    * uniform B1 {
464    *     float f;
465    * } instance;
466    *
467    * uniform B2 {
468    *     float f;
469    * };
470    */
471   inline bool is_interface_instance() const
472   {
473      return this->type->without_array() == this->interface_type;
474   }
475
476   /**
477    * Return whether this variable contains a bindless sampler/image.
478    */
479   inline bool contains_bindless() const
480   {
481      if (!this->type->contains_sampler() && !this->type->contains_image())
482         return false;
483
484      return this->data.bindless || this->data.mode != ir_var_uniform;
485   }
486
487   /**
488    * Set this->interface_type on a newly created variable.
489    */
490   void init_interface_type(const struct glsl_type *type)
491   {
492      assert(this->interface_type == NULL);
493      this->interface_type = type;
494      if (this->is_interface_instance()) {
495         this->u.max_ifc_array_access =
496            ralloc_array(this, int, type->length);
497         for (unsigned i = 0; i < type->length; i++) {
498            this->u.max_ifc_array_access[i] = -1;
499         }
500      }
501   }
502
503   /**
504    * Change this->interface_type on a variable that previously had a
505    * different, but compatible, interface_type.  This is used during linking
506    * to set the size of arrays in interface blocks.
507    */
508   void change_interface_type(const struct glsl_type *type)
509   {
510      if (this->u.max_ifc_array_access != NULL) {
511         /* max_ifc_array_access has already been allocated, so make sure the
512          * new interface has the same number of fields as the old one.
513          */
514         assert(this->interface_type->length == type->length);
515      }
516      this->interface_type = type;
517   }
518
519   /**
520    * Change this->interface_type on a variable that previously had a
521    * different, and incompatible, interface_type. This is used during
522    * compilation to handle redeclaration of the built-in gl_PerVertex
523    * interface block.
524    */
525   void reinit_interface_type(const struct glsl_type *type)
526   {
527      if (this->u.max_ifc_array_access != NULL) {
528#ifndef NDEBUG
529         /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
530          * it defines have been accessed yet; so it's safe to throw away the
531          * old max_ifc_array_access pointer, since all of its values are
532          * zero.
533          */
534         for (unsigned i = 0; i < this->interface_type->length; i++)
535            assert(this->u.max_ifc_array_access[i] == -1);
536#endif
537         ralloc_free(this->u.max_ifc_array_access);
538         this->u.max_ifc_array_access = NULL;
539      }
540      this->interface_type = NULL;
541      init_interface_type(type);
542   }
543
544   const glsl_type *get_interface_type() const
545   {
546      return this->interface_type;
547   }
548
549   enum glsl_interface_packing get_interface_type_packing() const
550   {
551     return this->interface_type->get_interface_packing();
552   }
553   /**
554    * Get the max_ifc_array_access pointer
555    *
556    * A "set" function is not needed because the array is dynamically allocated
557    * as necessary.
558    */
559   inline int *get_max_ifc_array_access()
560   {
561      assert(this->data._num_state_slots == 0);
562      return this->u.max_ifc_array_access;
563   }
564
565   inline unsigned get_num_state_slots() const
566   {
567      assert(!this->is_interface_instance()
568             || this->data._num_state_slots == 0);
569      return this->data._num_state_slots;
570   }
571
572   inline void set_num_state_slots(unsigned n)
573   {
574      assert(!this->is_interface_instance()
575             || n == 0);
576      this->data._num_state_slots = n;
577   }
578
579   inline ir_state_slot *get_state_slots()
580   {
581      return this->is_interface_instance() ? NULL : this->u.state_slots;
582   }
583
584   inline const ir_state_slot *get_state_slots() const
585   {
586      return this->is_interface_instance() ? NULL : this->u.state_slots;
587   }
588
589   inline ir_state_slot *allocate_state_slots(unsigned n)
590   {
591      assert(!this->is_interface_instance());
592
593      this->u.state_slots = ralloc_array(this, ir_state_slot, n);
594      this->data._num_state_slots = 0;
595
596      if (this->u.state_slots != NULL)
597         this->data._num_state_slots = n;
598
599      return this->u.state_slots;
600   }
601
602   inline bool is_interpolation_flat() const
603   {
604      return this->data.interpolation == INTERP_MODE_FLAT ||
605             this->type->contains_integer() ||
606             this->type->contains_double();
607   }
608
609   inline bool is_name_ralloced() const
610   {
611      return this->name != ir_variable::tmp_name &&
612             this->name != this->name_storage;
613   }
614
615   inline bool is_fb_fetch_color_output() const
616   {
617      return this->data.fb_fetch_output &&
618             this->data.location != FRAG_RESULT_DEPTH &&
619             this->data.location != FRAG_RESULT_STENCIL;
620   }
621
622   /**
623    * Enable emitting extension warnings for this variable
624    */
625   void enable_extension_warning(const char *extension);
626
627   /**
628    * Get the extension warning string for this variable
629    *
630    * If warnings are not enabled, \c NULL is returned.
631    */
632   const char *get_extension_warning() const;
633
634   /**
635    * Declared type of the variable
636    */
637   const struct glsl_type *type;
638
639   /**
640    * Declared name of the variable
641    */
642   const char *name;
643
644private:
645   /**
646    * If the name length fits into name_storage, it's used, otherwise
647    * the name is ralloc'd. shader-db mining showed that 70% of variables
648    * fit here. This is a win over ralloc where only ralloc_header has
649    * 20 bytes on 64-bit (28 bytes with DEBUG), and we can also skip malloc.
650    */
651   char name_storage[16];
652
653public:
654   struct ir_variable_data {
655
656      /**
657       * Is the variable read-only?
658       *
659       * This is set for variables declared as \c const, shader inputs,
660       * and uniforms.
661       */
662      unsigned read_only:1;
663      unsigned centroid:1;
664      unsigned sample:1;
665      unsigned patch:1;
666      /**
667       * Was an 'invariant' qualifier explicitly set in the shader?
668       *
669       * This is used to cross validate qualifiers.
670       */
671      unsigned explicit_invariant:1;
672      /**
673       * Is the variable invariant?
674       *
675       * It can happen either by having the 'invariant' qualifier
676       * explicitly set in the shader or by being used in calculations
677       * of other invariant variables.
678       */
679      unsigned invariant:1;
680      unsigned precise:1;
681
682      /**
683       * Has this variable been used for reading or writing?
684       *
685       * Several GLSL semantic checks require knowledge of whether or not a
686       * variable has been used.  For example, it is an error to redeclare a
687       * variable as invariant after it has been used.
688       *
689       * This is maintained in the ast_to_hir.cpp path and during linking,
690       * but not in Mesa's fixed function or ARB program paths.
691       */
692      unsigned used:1;
693
694      /**
695       * Has this variable been statically assigned?
696       *
697       * This answers whether the variable was assigned in any path of
698       * the shader during ast_to_hir.  This doesn't answer whether it is
699       * still written after dead code removal, nor is it maintained in
700       * non-ast_to_hir.cpp (GLSL parsing) paths.
701       */
702      unsigned assigned:1;
703
704      /**
705       * When separate shader programs are enabled, only input/outputs between
706       * the stages of a multi-stage separate program can be safely removed
707       * from the shader interface. Other input/outputs must remains active.
708       */
709      unsigned always_active_io:1;
710
711      /**
712       * Enum indicating how the variable was declared.  See
713       * ir_var_declaration_type.
714       *
715       * This is used to detect certain kinds of illegal variable redeclarations.
716       */
717      unsigned how_declared:2;
718
719      /**
720       * Storage class of the variable.
721       *
722       * \sa ir_variable_mode
723       */
724      unsigned mode:4;
725
726      /**
727       * Interpolation mode for shader inputs / outputs
728       *
729       * \sa glsl_interp_mode
730       */
731      unsigned interpolation:2;
732
733      /**
734       * Was the location explicitly set in the shader?
735       *
736       * If the location is explicitly set in the shader, it \b cannot be changed
737       * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
738       * no effect).
739       */
740      unsigned explicit_location:1;
741      unsigned explicit_index:1;
742
743      /**
744       * Was an initial binding explicitly set in the shader?
745       *
746       * If so, constant_value contains an integer ir_constant representing the
747       * initial binding point.
748       */
749      unsigned explicit_binding:1;
750
751      /**
752       * Was an initial component explicitly set in the shader?
753       */
754      unsigned explicit_component:1;
755
756      /**
757       * Does this variable have an initializer?
758       *
759       * This is used by the linker to cross-validiate initializers of global
760       * variables.
761       */
762      unsigned has_initializer:1;
763
764      /**
765       * Is the initializer created by the compiler (glsl_zero_init)
766       */
767      unsigned is_implicit_initializer:1;
768
769      /**
770       * Is this varying used by transform feedback?
771       *
772       * This is used by the linker to decide if it's safe to pack the varying.
773       */
774      unsigned is_xfb:1;
775
776      /**
777       * Is this varying used only by transform feedback?
778       *
779       * This is used by the linker to decide if its safe to pack the varying.
780       */
781      unsigned is_xfb_only:1;
782
783      /**
784       * Was a transform feedback buffer set in the shader?
785       */
786      unsigned explicit_xfb_buffer:1;
787
788      /**
789       * Was a transform feedback offset set in the shader?
790       */
791      unsigned explicit_xfb_offset:1;
792
793      /**
794       * Was a transform feedback stride set in the shader?
795       */
796      unsigned explicit_xfb_stride:1;
797
798      /**
799       * If non-zero, then this variable may be packed along with other variables
800       * into a single varying slot, so this offset should be applied when
801       * accessing components.  For example, an offset of 1 means that the x
802       * component of this variable is actually stored in component y of the
803       * location specified by \c location.
804       */
805      unsigned location_frac:2;
806
807      /**
808       * Layout of the matrix.  Uses glsl_matrix_layout values.
809       */
810      unsigned matrix_layout:2;
811
812      /**
813       * Non-zero if this variable was created by lowering a named interface
814       * block.
815       */
816      unsigned from_named_ifc_block:1;
817
818      /**
819       * Non-zero if the variable must be a shader input. This is useful for
820       * constraints on function parameters.
821       */
822      unsigned must_be_shader_input:1;
823
824      /**
825       * Output index for dual source blending.
826       *
827       * \note
828       * The GLSL spec only allows the values 0 or 1 for the index in \b dual
829       * source blending.
830       */
831      unsigned index:1;
832
833      /**
834       * Precision qualifier.
835       *
836       * In desktop GLSL we do not care about precision qualifiers at all, in
837       * fact, the spec says that precision qualifiers are ignored.
838       *
839       * To make things easy, we make it so that this field is always
840       * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
841       * have the same precision value and the checks we add in the compiler
842       * for this field will never break a desktop shader compile.
843       */
844      unsigned precision:2;
845
846      /**
847       * \brief Layout qualifier for gl_FragDepth.
848       *
849       * This is not equal to \c ir_depth_layout_none if and only if this
850       * variable is \c gl_FragDepth and a layout qualifier is specified.
851       */
852      ir_depth_layout depth_layout:3;
853
854      /**
855       * Memory qualifiers.
856       */
857      unsigned memory_read_only:1; /**< "readonly" qualifier. */
858      unsigned memory_write_only:1; /**< "writeonly" qualifier. */
859      unsigned memory_coherent:1;
860      unsigned memory_volatile:1;
861      unsigned memory_restrict:1;
862
863      /**
864       * ARB_shader_storage_buffer_object
865       */
866      unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
867
868      unsigned implicit_sized_array:1;
869
870      /**
871       * Whether this is a fragment shader output implicitly initialized with
872       * the previous contents of the specified render target at the
873       * framebuffer location corresponding to this shader invocation.
874       */
875      unsigned fb_fetch_output:1;
876
877      /**
878       * Non-zero if this variable is considered bindless as defined by
879       * ARB_bindless_texture.
880       */
881      unsigned bindless:1;
882
883      /**
884       * Non-zero if this variable is considered bound as defined by
885       * ARB_bindless_texture.
886       */
887      unsigned bound:1;
888
889      /**
890       * Non-zero if the variable shall not be implicitly converted during
891       * functions matching.
892       */
893      unsigned implicit_conversion_prohibited:1;
894
895      /**
896       * Emit a warning if this variable is accessed.
897       */
898   private:
899      uint8_t warn_extension_index;
900
901   public:
902      /**
903       * Image internal format if specified explicitly, otherwise
904       * PIPE_FORMAT_NONE.
905       */
906      enum pipe_format image_format;
907
908   private:
909      /**
910       * Number of state slots used
911       *
912       * \note
913       * This could be stored in as few as 7-bits, if necessary.  If it is made
914       * smaller, add an assertion to \c ir_variable::allocate_state_slots to
915       * be safe.
916       */
917      uint16_t _num_state_slots;
918
919   public:
920      /**
921       * Initial binding point for a sampler, atomic, or UBO.
922       *
923       * For array types, this represents the binding point for the first element.
924       */
925      uint16_t binding;
926
927      /**
928       * Storage location of the base of this variable
929       *
930       * The precise meaning of this field depends on the nature of the variable.
931       *
932       *   - Vertex shader input: one of the values from \c gl_vert_attrib.
933       *   - Vertex shader output: one of the values from \c gl_varying_slot.
934       *   - Geometry shader input: one of the values from \c gl_varying_slot.
935       *   - Geometry shader output: one of the values from \c gl_varying_slot.
936       *   - Fragment shader input: one of the values from \c gl_varying_slot.
937       *   - Fragment shader output: one of the values from \c gl_frag_result.
938       *   - Uniforms: Per-stage uniform slot number for default uniform block.
939       *   - Uniforms: Index within the uniform block definition for UBO members.
940       *   - Non-UBO Uniforms: explicit location until linking then reused to
941       *     store uniform slot number.
942       *   - Other: This field is not currently used.
943       *
944       * If the variable is a uniform, shader input, or shader output, and the
945       * slot has not been assigned, the value will be -1.
946       */
947      int location;
948
949      /**
950       * for glsl->tgsi/mesa IR we need to store the index into the
951       * parameters for uniforms, initially the code overloaded location
952       * but this causes problems with indirect samplers and AoA.
953       * This is assigned in _mesa_generate_parameters_list_for_uniforms.
954       */
955      int param_index;
956
957      /**
958       * Vertex stream output identifier.
959       *
960       * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
961       * stream of the i-th component.
962       */
963      unsigned stream;
964
965      /**
966       * Atomic, transform feedback or block member offset.
967       */
968      unsigned offset;
969
970      /**
971       * Highest element accessed with a constant expression array index
972       *
973       * Not used for non-array variables. -1 is never accessed.
974       */
975      int max_array_access;
976
977      /**
978       * Transform feedback buffer.
979       */
980      unsigned xfb_buffer;
981
982      /**
983       * Transform feedback stride.
984       */
985      unsigned xfb_stride;
986
987      /**
988       * Allow (only) ir_variable direct access private members.
989       */
990      friend class ir_variable;
991   } data;
992
993   /**
994    * Value assigned in the initializer of a variable declared "const"
995    */
996   ir_constant *constant_value;
997
998   /**
999    * Constant expression assigned in the initializer of the variable
1000    *
1001    * \warning
1002    * This field and \c ::constant_value are distinct.  Even if the two fields
1003    * refer to constants with the same value, they must point to separate
1004    * objects.
1005    */
1006   ir_constant *constant_initializer;
1007
1008private:
1009   static const char *const warn_extension_table[];
1010
1011   union {
1012      /**
1013       * For variables which satisfy the is_interface_instance() predicate,
1014       * this points to an array of integers such that if the ith member of
1015       * the interface block is an array, max_ifc_array_access[i] is the
1016       * maximum array element of that member that has been accessed.  If the
1017       * ith member of the interface block is not an array,
1018       * max_ifc_array_access[i] is unused.
1019       *
1020       * For variables whose type is not an interface block, this pointer is
1021       * NULL.
1022       */
1023      int *max_ifc_array_access;
1024
1025      /**
1026       * Built-in state that backs this uniform
1027       *
1028       * Once set at variable creation, \c state_slots must remain invariant.
1029       *
1030       * If the variable is not a uniform, \c _num_state_slots will be zero
1031       * and \c state_slots will be \c NULL.
1032       */
1033      ir_state_slot *state_slots;
1034   } u;
1035
1036   /**
1037    * For variables that are in an interface block or are an instance of an
1038    * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
1039    *
1040    * \sa ir_variable::location
1041    */
1042   const glsl_type *interface_type;
1043
1044   /**
1045    * Name used for anonymous compiler temporaries
1046    */
1047   static const char tmp_name[];
1048
1049public:
1050   /**
1051    * Should the construct keep names for ir_var_temporary variables?
1052    *
1053    * When this global is false, names passed to the constructor for
1054    * \c ir_var_temporary variables will be dropped.  Instead, the variable will
1055    * be named "compiler_temp".  This name will be in static storage.
1056    *
1057    * \warning
1058    * \b NEVER change the mode of an \c ir_var_temporary.
1059    *
1060    * \warning
1061    * This variable is \b not thread-safe.  It is global, \b not
1062    * per-context. It begins life false.  A context can, at some point, make
1063    * it true.  From that point on, it will be true forever.  This should be
1064    * okay since it will only be set true while debugging.
1065    */
1066   static bool temporaries_allocate_names;
1067};
1068
1069/**
1070 * A function that returns whether a built-in function is available in the
1071 * current shading language (based on version, ES or desktop, and extensions).
1072 */
1073typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
1074
1075#define MAKE_INTRINSIC_FOR_TYPE(op, t) \
1076   ir_intrinsic_generic_ ## op - ir_intrinsic_generic_load + ir_intrinsic_ ## t ## _ ## load
1077
1078#define MAP_INTRINSIC_TO_TYPE(i, t) \
1079   ir_intrinsic_id(int(i) - int(ir_intrinsic_generic_load) + int(ir_intrinsic_ ## t ## _ ## load))
1080
1081enum ir_intrinsic_id {
1082   ir_intrinsic_invalid = 0,
1083
1084   /**
1085    * \name Generic intrinsics
1086    *
1087    * Each of these intrinsics has a specific version for shared variables and
1088    * SSBOs.
1089    */
1090   /*@{*/
1091   ir_intrinsic_generic_load,
1092   ir_intrinsic_generic_store,
1093   ir_intrinsic_generic_atomic_add,
1094   ir_intrinsic_generic_atomic_and,
1095   ir_intrinsic_generic_atomic_or,
1096   ir_intrinsic_generic_atomic_xor,
1097   ir_intrinsic_generic_atomic_min,
1098   ir_intrinsic_generic_atomic_max,
1099   ir_intrinsic_generic_atomic_exchange,
1100   ir_intrinsic_generic_atomic_comp_swap,
1101   /*@}*/
1102
1103   ir_intrinsic_atomic_counter_read,
1104   ir_intrinsic_atomic_counter_increment,
1105   ir_intrinsic_atomic_counter_predecrement,
1106   ir_intrinsic_atomic_counter_add,
1107   ir_intrinsic_atomic_counter_and,
1108   ir_intrinsic_atomic_counter_or,
1109   ir_intrinsic_atomic_counter_xor,
1110   ir_intrinsic_atomic_counter_min,
1111   ir_intrinsic_atomic_counter_max,
1112   ir_intrinsic_atomic_counter_exchange,
1113   ir_intrinsic_atomic_counter_comp_swap,
1114
1115   ir_intrinsic_image_load,
1116   ir_intrinsic_image_store,
1117   ir_intrinsic_image_atomic_add,
1118   ir_intrinsic_image_atomic_and,
1119   ir_intrinsic_image_atomic_or,
1120   ir_intrinsic_image_atomic_xor,
1121   ir_intrinsic_image_atomic_min,
1122   ir_intrinsic_image_atomic_max,
1123   ir_intrinsic_image_atomic_exchange,
1124   ir_intrinsic_image_atomic_comp_swap,
1125   ir_intrinsic_image_size,
1126   ir_intrinsic_image_samples,
1127   ir_intrinsic_image_atomic_inc_wrap,
1128   ir_intrinsic_image_atomic_dec_wrap,
1129   ir_intrinsic_image_sparse_load,
1130
1131   ir_intrinsic_ssbo_load,
1132   ir_intrinsic_ssbo_store = MAKE_INTRINSIC_FOR_TYPE(store, ssbo),
1133   ir_intrinsic_ssbo_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, ssbo),
1134   ir_intrinsic_ssbo_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, ssbo),
1135   ir_intrinsic_ssbo_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, ssbo),
1136   ir_intrinsic_ssbo_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, ssbo),
1137   ir_intrinsic_ssbo_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, ssbo),
1138   ir_intrinsic_ssbo_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, ssbo),
1139   ir_intrinsic_ssbo_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, ssbo),
1140   ir_intrinsic_ssbo_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, ssbo),
1141
1142   ir_intrinsic_memory_barrier,
1143   ir_intrinsic_shader_clock,
1144   ir_intrinsic_group_memory_barrier,
1145   ir_intrinsic_memory_barrier_atomic_counter,
1146   ir_intrinsic_memory_barrier_buffer,
1147   ir_intrinsic_memory_barrier_image,
1148   ir_intrinsic_memory_barrier_shared,
1149   ir_intrinsic_begin_invocation_interlock,
1150   ir_intrinsic_end_invocation_interlock,
1151
1152   ir_intrinsic_vote_all,
1153   ir_intrinsic_vote_any,
1154   ir_intrinsic_vote_eq,
1155   ir_intrinsic_ballot,
1156   ir_intrinsic_read_invocation,
1157   ir_intrinsic_read_first_invocation,
1158
1159   ir_intrinsic_helper_invocation,
1160
1161   ir_intrinsic_shared_load,
1162   ir_intrinsic_shared_store = MAKE_INTRINSIC_FOR_TYPE(store, shared),
1163   ir_intrinsic_shared_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, shared),
1164   ir_intrinsic_shared_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, shared),
1165   ir_intrinsic_shared_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, shared),
1166   ir_intrinsic_shared_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, shared),
1167   ir_intrinsic_shared_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, shared),
1168   ir_intrinsic_shared_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, shared),
1169   ir_intrinsic_shared_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, shared),
1170   ir_intrinsic_shared_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, shared),
1171
1172   ir_intrinsic_is_sparse_texels_resident,
1173};
1174
1175/*@{*/
1176/**
1177 * The representation of a function instance; may be the full definition or
1178 * simply a prototype.
1179 */
1180class ir_function_signature : public ir_instruction {
1181   /* An ir_function_signature will be part of the list of signatures in
1182    * an ir_function.
1183    */
1184public:
1185   ir_function_signature(const glsl_type *return_type,
1186                         builtin_available_predicate builtin_avail = NULL);
1187
1188   virtual ir_function_signature *clone(void *mem_ctx,
1189					struct hash_table *ht) const;
1190   ir_function_signature *clone_prototype(void *mem_ctx,
1191					  struct hash_table *ht) const;
1192
1193   virtual void accept(ir_visitor *v)
1194   {
1195      v->visit(this);
1196   }
1197
1198   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1199
1200   /**
1201    * Attempt to evaluate this function as a constant expression,
1202    * given a list of the actual parameters and the variable context.
1203    * Returns NULL for non-built-ins.
1204    */
1205   ir_constant *constant_expression_value(void *mem_ctx,
1206                                          exec_list *actual_parameters,
1207                                          struct hash_table *variable_context);
1208
1209   /**
1210    * Get the name of the function for which this is a signature
1211    */
1212   const char *function_name() const;
1213
1214   /**
1215    * Get a handle to the function for which this is a signature
1216    *
1217    * There is no setter function, this function returns a \c const pointer,
1218    * and \c ir_function_signature::_function is private for a reason.  The
1219    * only way to make a connection between a function and function signature
1220    * is via \c ir_function::add_signature.  This helps ensure that certain
1221    * invariants (i.e., a function signature is in the list of signatures for
1222    * its \c _function) are met.
1223    *
1224    * \sa ir_function::add_signature
1225    */
1226   inline const class ir_function *function() const
1227   {
1228      return this->_function;
1229   }
1230
1231   /**
1232    * Check whether the qualifiers match between this signature's parameters
1233    * and the supplied parameter list.  If not, returns the name of the first
1234    * parameter with mismatched qualifiers (for use in error messages).
1235    */
1236   const char *qualifiers_match(exec_list *params);
1237
1238   /**
1239    * Replace the current parameter list with the given one.  This is useful
1240    * if the current information came from a prototype, and either has invalid
1241    * or missing parameter names.
1242    */
1243   void replace_parameters(exec_list *new_params);
1244
1245   /**
1246    * Function return type.
1247    *
1248    * \note The precision qualifier is stored separately in return_precision.
1249    */
1250   const struct glsl_type *return_type;
1251
1252   /**
1253    * List of ir_variable of function parameters.
1254    *
1255    * This represents the storage.  The paramaters passed in a particular
1256    * call will be in ir_call::actual_paramaters.
1257    */
1258   struct exec_list parameters;
1259
1260   /** Whether or not this function has a body (which may be empty). */
1261   unsigned is_defined:1;
1262
1263   /*
1264    * Precision qualifier for the return type.
1265    *
1266    * See the comment for ir_variable_data::precision for more details.
1267    */
1268   unsigned return_precision:2;
1269
1270   /** Whether or not this function signature is a built-in. */
1271   bool is_builtin() const;
1272
1273   /**
1274    * Whether or not this function is an intrinsic to be implemented
1275    * by the driver.
1276    */
1277   inline bool is_intrinsic() const
1278   {
1279      return intrinsic_id != ir_intrinsic_invalid;
1280   }
1281
1282   /** Identifier for this intrinsic. */
1283   enum ir_intrinsic_id intrinsic_id;
1284
1285   /** Whether or not a built-in is available for this shader. */
1286   bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1287
1288   /** Body of instructions in the function. */
1289   struct exec_list body;
1290
1291private:
1292   /**
1293    * A function pointer to a predicate that answers whether a built-in
1294    * function is available in the current shader.  NULL if not a built-in.
1295    */
1296   builtin_available_predicate builtin_avail;
1297
1298   /** Function of which this signature is one overload. */
1299   class ir_function *_function;
1300
1301   /** Function signature of which this one is a prototype clone */
1302   const ir_function_signature *origin;
1303
1304   friend class ir_function;
1305
1306   /**
1307    * Helper function to run a list of instructions for constant
1308    * expression evaluation.
1309    *
1310    * The hash table represents the values of the visible variables.
1311    * There are no scoping issues because the table is indexed on
1312    * ir_variable pointers, not variable names.
1313    *
1314    * Returns false if the expression is not constant, true otherwise,
1315    * and the value in *result if result is non-NULL.
1316    */
1317   bool constant_expression_evaluate_expression_list(void *mem_ctx,
1318                                                     const struct exec_list &body,
1319						     struct hash_table *variable_context,
1320						     ir_constant **result);
1321};
1322
1323
1324/**
1325 * Header for tracking multiple overloaded functions with the same name.
1326 * Contains a list of ir_function_signatures representing each of the
1327 * actual functions.
1328 */
1329class ir_function : public ir_instruction {
1330public:
1331   ir_function(const char *name);
1332
1333   virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1334
1335   virtual void accept(ir_visitor *v)
1336   {
1337      v->visit(this);
1338   }
1339
1340   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1341
1342   void add_signature(ir_function_signature *sig)
1343   {
1344      sig->_function = this;
1345      this->signatures.push_tail(sig);
1346   }
1347
1348   /**
1349    * Find a signature that matches a set of actual parameters, taking implicit
1350    * conversions into account.  Also flags whether the match was exact.
1351    */
1352   ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1353                                             const exec_list *actual_param,
1354                                             bool allow_builtins,
1355					     bool *match_is_exact);
1356
1357   /**
1358    * Find a signature that matches a set of actual parameters, taking implicit
1359    * conversions into account.
1360    */
1361   ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1362                                             const exec_list *actual_param,
1363                                             bool allow_builtins);
1364
1365   /**
1366    * Find a signature that exactly matches a set of actual parameters without
1367    * any implicit type conversions.
1368    */
1369   ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1370                                                   const exec_list *actual_ps);
1371
1372   /**
1373    * Name of the function.
1374    */
1375   const char *name;
1376
1377   /** Whether or not this function has a signature that isn't a built-in. */
1378   bool has_user_signature();
1379
1380   /**
1381    * List of ir_function_signature for each overloaded function with this name.
1382    */
1383   struct exec_list signatures;
1384
1385   /**
1386    * is this function a subroutine type declaration
1387    * e.g. subroutine void type1(float arg1);
1388    */
1389   bool is_subroutine;
1390
1391   /**
1392    * is this function associated to a subroutine type
1393    * e.g. subroutine (type1, type2) function_name { function_body };
1394    * would have num_subroutine_types 2,
1395    * and pointers to the type1 and type2 types.
1396    */
1397   int num_subroutine_types;
1398   const struct glsl_type **subroutine_types;
1399
1400   int subroutine_index;
1401};
1402
1403inline const char *ir_function_signature::function_name() const
1404{
1405   return this->_function->name;
1406}
1407/*@}*/
1408
1409
1410/**
1411 * IR instruction representing high-level if-statements
1412 */
1413class ir_if : public ir_instruction {
1414public:
1415   ir_if(ir_rvalue *condition)
1416      : ir_instruction(ir_type_if), condition(condition)
1417   {
1418   }
1419
1420   virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1421
1422   virtual void accept(ir_visitor *v)
1423   {
1424      v->visit(this);
1425   }
1426
1427   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1428
1429   ir_rvalue *condition;
1430   /** List of ir_instruction for the body of the then branch */
1431   exec_list  then_instructions;
1432   /** List of ir_instruction for the body of the else branch */
1433   exec_list  else_instructions;
1434};
1435
1436
1437/**
1438 * IR instruction representing a high-level loop structure.
1439 */
1440class ir_loop : public ir_instruction {
1441public:
1442   ir_loop();
1443
1444   virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1445
1446   virtual void accept(ir_visitor *v)
1447   {
1448      v->visit(this);
1449   }
1450
1451   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1452
1453   /** List of ir_instruction that make up the body of the loop. */
1454   exec_list body_instructions;
1455};
1456
1457
1458class ir_assignment : public ir_instruction {
1459public:
1460   ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs);
1461
1462   /**
1463    * Construct an assignment with an explicit write mask
1464    *
1465    * \note
1466    * Since a write mask is supplied, the LHS must already be a bare
1467    * \c ir_dereference.  The cannot be any swizzles in the LHS.
1468    */
1469   ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, unsigned write_mask);
1470
1471   virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1472
1473   virtual ir_constant *constant_expression_value(void *mem_ctx,
1474                                                  struct hash_table *variable_context = NULL);
1475
1476   virtual void accept(ir_visitor *v)
1477   {
1478      v->visit(this);
1479   }
1480
1481   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1482
1483   /**
1484    * Get a whole variable written by an assignment
1485    *
1486    * If the LHS of the assignment writes a whole variable, the variable is
1487    * returned.  Otherwise \c NULL is returned.  Examples of whole-variable
1488    * assignment are:
1489    *
1490    *  - Assigning to a scalar
1491    *  - Assigning to all components of a vector
1492    *  - Whole array (or matrix) assignment
1493    *  - Whole structure assignment
1494    */
1495   ir_variable *whole_variable_written();
1496
1497   /**
1498    * Set the LHS of an assignment
1499    */
1500   void set_lhs(ir_rvalue *lhs);
1501
1502   /**
1503    * Left-hand side of the assignment.
1504    *
1505    * This should be treated as read only.  If you need to set the LHS of an
1506    * assignment, use \c ir_assignment::set_lhs.
1507    */
1508   ir_dereference *lhs;
1509
1510   /**
1511    * Value being assigned
1512    */
1513   ir_rvalue *rhs;
1514
1515   /**
1516    * Component mask written
1517    *
1518    * For non-vector types in the LHS, this field will be zero.  For vector
1519    * types, a bit will be set for each component that is written.  Note that
1520    * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1521    *
1522    * A partially-set write mask means that each enabled channel gets
1523    * the value from a consecutive channel of the rhs.  For example,
1524    * to write just .xyw of gl_FrontColor with color:
1525    *
1526    * (assign (constant bool (1)) (xyw)
1527    *     (var_ref gl_FragColor)
1528    *     (swiz xyw (var_ref color)))
1529    */
1530   unsigned write_mask:4;
1531};
1532
1533#include "ir_expression_operation.h"
1534
1535extern const char *const ir_expression_operation_strings[ir_last_opcode + 1];
1536extern const char *const ir_expression_operation_enum_strings[ir_last_opcode + 1];
1537
1538class ir_expression : public ir_rvalue {
1539public:
1540   ir_expression(int op, const struct glsl_type *type,
1541                 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1542                 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1543
1544   /**
1545    * Constructor for unary operation expressions
1546    */
1547   ir_expression(int op, ir_rvalue *);
1548
1549   /**
1550    * Constructor for binary operation expressions
1551    */
1552   ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1553
1554   /**
1555    * Constructor for ternary operation expressions
1556    */
1557   ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1558
1559   virtual bool equals(const ir_instruction *ir,
1560                       enum ir_node_type ignore = ir_type_unset) const;
1561
1562   virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1563
1564   /**
1565    * Attempt to constant-fold the expression
1566    *
1567    * The "variable_context" hash table links ir_variable * to ir_constant *
1568    * that represent the variables' values.  \c NULL represents an empty
1569    * context.
1570    *
1571    * If the expression cannot be constant folded, this method will return
1572    * \c NULL.
1573    */
1574   virtual ir_constant *constant_expression_value(void *mem_ctx,
1575                                                  struct hash_table *variable_context = NULL);
1576
1577   /**
1578    * This is only here for ir_reader to used for testing purposes please use
1579    * the precomputed num_operands field if you need the number of operands.
1580    */
1581   static unsigned get_num_operands(ir_expression_operation);
1582
1583   /**
1584    * Return whether the expression operates on vectors horizontally.
1585    */
1586   bool is_horizontal() const
1587   {
1588      return operation == ir_binop_all_equal ||
1589             operation == ir_binop_any_nequal ||
1590             operation == ir_binop_dot ||
1591             operation == ir_binop_vector_extract ||
1592             operation == ir_triop_vector_insert ||
1593             operation == ir_binop_ubo_load ||
1594             operation == ir_quadop_vector;
1595   }
1596
1597   /**
1598    * Do a reverse-lookup to translate the given string into an operator.
1599    */
1600   static ir_expression_operation get_operator(const char *);
1601
1602   virtual void accept(ir_visitor *v)
1603   {
1604      v->visit(this);
1605   }
1606
1607   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1608
1609   virtual ir_variable *variable_referenced() const;
1610
1611   /**
1612    * Determine the number of operands used by an expression
1613    */
1614   void init_num_operands()
1615   {
1616      if (operation == ir_quadop_vector) {
1617         num_operands = this->type->vector_elements;
1618      } else {
1619         num_operands = get_num_operands(operation);
1620      }
1621   }
1622
1623   ir_expression_operation operation;
1624   ir_rvalue *operands[4];
1625   uint8_t num_operands;
1626};
1627
1628
1629/**
1630 * HIR instruction representing a high-level function call, containing a list
1631 * of parameters and returning a value in the supplied temporary.
1632 */
1633class ir_call : public ir_instruction {
1634public:
1635   ir_call(ir_function_signature *callee,
1636	   ir_dereference_variable *return_deref,
1637	   exec_list *actual_parameters)
1638      : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1639   {
1640      assert(callee->return_type != NULL);
1641      actual_parameters->move_nodes_to(& this->actual_parameters);
1642   }
1643
1644   ir_call(ir_function_signature *callee,
1645	   ir_dereference_variable *return_deref,
1646	   exec_list *actual_parameters,
1647	   ir_variable *var, ir_rvalue *array_idx)
1648      : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1649   {
1650      assert(callee->return_type != NULL);
1651      actual_parameters->move_nodes_to(& this->actual_parameters);
1652   }
1653
1654   virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1655
1656   virtual ir_constant *constant_expression_value(void *mem_ctx,
1657                                                  struct hash_table *variable_context = NULL);
1658
1659   virtual void accept(ir_visitor *v)
1660   {
1661      v->visit(this);
1662   }
1663
1664   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1665
1666   /**
1667    * Get the name of the function being called.
1668    */
1669   const char *callee_name() const
1670   {
1671      return callee->function_name();
1672   }
1673
1674   /**
1675    * Generates an inline version of the function before @ir,
1676    * storing the return value in return_deref.
1677    */
1678   void generate_inline(ir_instruction *ir);
1679
1680   /**
1681    * Storage for the function's return value.
1682    * This must be NULL if the return type is void.
1683    */
1684   ir_dereference_variable *return_deref;
1685
1686   /**
1687    * The specific function signature being called.
1688    */
1689   ir_function_signature *callee;
1690
1691   /* List of ir_rvalue of paramaters passed in this call. */
1692   exec_list actual_parameters;
1693
1694   /*
1695    * ARB_shader_subroutine support -
1696    * the subroutine uniform variable and array index
1697    * rvalue to be used in the lowering pass later.
1698    */
1699   ir_variable *sub_var;
1700   ir_rvalue *array_idx;
1701};
1702
1703
1704/**
1705 * \name Jump-like IR instructions.
1706 *
1707 * These include \c break, \c continue, \c return, and \c discard.
1708 */
1709/*@{*/
1710class ir_jump : public ir_instruction {
1711protected:
1712   ir_jump(enum ir_node_type t)
1713      : ir_instruction(t)
1714   {
1715   }
1716};
1717
1718class ir_return : public ir_jump {
1719public:
1720   ir_return()
1721      : ir_jump(ir_type_return), value(NULL)
1722   {
1723   }
1724
1725   ir_return(ir_rvalue *value)
1726      : ir_jump(ir_type_return), value(value)
1727   {
1728   }
1729
1730   virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1731
1732   ir_rvalue *get_value() const
1733   {
1734      return value;
1735   }
1736
1737   virtual void accept(ir_visitor *v)
1738   {
1739      v->visit(this);
1740   }
1741
1742   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1743
1744   ir_rvalue *value;
1745};
1746
1747
1748/**
1749 * Jump instructions used inside loops
1750 *
1751 * These include \c break and \c continue.  The \c break within a loop is
1752 * different from the \c break within a switch-statement.
1753 *
1754 * \sa ir_switch_jump
1755 */
1756class ir_loop_jump : public ir_jump {
1757public:
1758   enum jump_mode {
1759      jump_break,
1760      jump_continue
1761   };
1762
1763   ir_loop_jump(jump_mode mode)
1764      : ir_jump(ir_type_loop_jump)
1765   {
1766      this->mode = mode;
1767   }
1768
1769   virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1770
1771   virtual void accept(ir_visitor *v)
1772   {
1773      v->visit(this);
1774   }
1775
1776   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1777
1778   bool is_break() const
1779   {
1780      return mode == jump_break;
1781   }
1782
1783   bool is_continue() const
1784   {
1785      return mode == jump_continue;
1786   }
1787
1788   /** Mode selector for the jump instruction. */
1789   enum jump_mode mode;
1790};
1791
1792/**
1793 * IR instruction representing discard statements.
1794 */
1795class ir_discard : public ir_jump {
1796public:
1797   ir_discard()
1798      : ir_jump(ir_type_discard)
1799   {
1800      this->condition = NULL;
1801   }
1802
1803   ir_discard(ir_rvalue *cond)
1804      : ir_jump(ir_type_discard)
1805   {
1806      this->condition = cond;
1807   }
1808
1809   virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1810
1811   virtual void accept(ir_visitor *v)
1812   {
1813      v->visit(this);
1814   }
1815
1816   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1817
1818   ir_rvalue *condition;
1819};
1820/*@}*/
1821
1822
1823/**
1824 * IR instruction representing demote statements from
1825 * GL_EXT_demote_to_helper_invocation.
1826 */
1827class ir_demote : public ir_instruction {
1828public:
1829   ir_demote()
1830      : ir_instruction(ir_type_demote)
1831   {
1832   }
1833
1834   virtual ir_demote *clone(void *mem_ctx, struct hash_table *ht) const;
1835
1836   virtual void accept(ir_visitor *v)
1837   {
1838      v->visit(this);
1839   }
1840
1841   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1842};
1843
1844
1845/**
1846 * Texture sampling opcodes used in ir_texture
1847 */
1848enum ir_texture_opcode {
1849   ir_tex,		/**< Regular texture look-up */
1850   ir_txb,		/**< Texture look-up with LOD bias */
1851   ir_txl,		/**< Texture look-up with explicit LOD */
1852   ir_txd,		/**< Texture look-up with partial derivatives */
1853   ir_txf,		/**< Texel fetch with explicit LOD */
1854   ir_txf_ms,           /**< Multisample texture fetch */
1855   ir_txs,		/**< Texture size */
1856   ir_lod,		/**< Texture lod query */
1857   ir_tg4,		/**< Texture gather */
1858   ir_query_levels,     /**< Texture levels query */
1859   ir_texture_samples,  /**< Texture samples query */
1860   ir_samples_identical, /**< Query whether all samples are definitely identical. */
1861};
1862
1863
1864/**
1865 * IR instruction to sample a texture
1866 *
1867 * The specific form of the IR instruction depends on the \c mode value
1868 * selected from \c ir_texture_opcodes.  In the printed IR, these will
1869 * appear as:
1870 *
1871 *                                             Texel offset (0 or an expression)
1872 *                                             | Projection divisor
1873 *                                             | |  Shadow comparator
1874 *                                             | |  |   Lod clamp
1875 *                                             | |  |   |
1876 *                                             v v  v   v
1877 * (tex <type> <sampler> <coordinate> <sparse> 0 1 ( ) ( ))
1878 * (txb <type> <sampler> <coordinate> <sparse> 0 1 ( ) ( ) <bias>)
1879 * (txl <type> <sampler> <coordinate> <sparse> 0 1 ( )     <lod>)
1880 * (txd <type> <sampler> <coordinate> <sparse> 0 1 ( ) ( ) (dPdx dPdy))
1881 * (txf <type> <sampler> <coordinate> <sparse> 0	         <lod>)
1882 * (txf_ms
1883 *      <type> <sampler> <coordinate> <sparse>             <sample_index>)
1884 * (txs <type> <sampler> <lod>)
1885 * (lod <type> <sampler> <coordinate>)
1886 * (tg4 <type> <sampler> <coordinate> <sparse>             <offset> <component>)
1887 * (query_levels <type> <sampler>)
1888 * (samples_identical <sampler> <coordinate>)
1889 */
1890class ir_texture : public ir_rvalue {
1891public:
1892   ir_texture(enum ir_texture_opcode op, bool sparse = false)
1893      : ir_rvalue(ir_type_texture),
1894        op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1895        shadow_comparator(NULL), offset(NULL), clamp(NULL),
1896        is_sparse(sparse)
1897   {
1898      memset(&lod_info, 0, sizeof(lod_info));
1899   }
1900
1901   virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1902
1903   virtual ir_constant *constant_expression_value(void *mem_ctx,
1904                                                  struct hash_table *variable_context = NULL);
1905
1906   virtual void accept(ir_visitor *v)
1907   {
1908      v->visit(this);
1909   }
1910
1911   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1912
1913   virtual bool equals(const ir_instruction *ir,
1914                       enum ir_node_type ignore = ir_type_unset) const;
1915
1916   /**
1917    * Return a string representing the ir_texture_opcode.
1918    */
1919   const char *opcode_string();
1920
1921   /** Set the sampler and type. */
1922   void set_sampler(ir_dereference *sampler, const glsl_type *type);
1923
1924   /**
1925    * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1926    */
1927   static ir_texture_opcode get_opcode(const char *);
1928
1929   enum ir_texture_opcode op;
1930
1931   /** Sampler to use for the texture access. */
1932   ir_dereference *sampler;
1933
1934   /** Texture coordinate to sample */
1935   ir_rvalue *coordinate;
1936
1937   /**
1938    * Value used for projective divide.
1939    *
1940    * If there is no projective divide (the common case), this will be
1941    * \c NULL.  Optimization passes should check for this to point to a constant
1942    * of 1.0 and replace that with \c NULL.
1943    */
1944   ir_rvalue *projector;
1945
1946   /**
1947    * Coordinate used for comparison on shadow look-ups.
1948    *
1949    * If there is no shadow comparison, this will be \c NULL.  For the
1950    * \c ir_txf opcode, this *must* be \c NULL.
1951    */
1952   ir_rvalue *shadow_comparator;
1953
1954   /** Texel offset. */
1955   ir_rvalue *offset;
1956
1957   /** Lod clamp. */
1958   ir_rvalue *clamp;
1959
1960   union {
1961      ir_rvalue *lod;		/**< Floating point LOD */
1962      ir_rvalue *bias;		/**< Floating point LOD bias */
1963      ir_rvalue *sample_index;  /**< MSAA sample index */
1964      ir_rvalue *component;     /**< Gather component selector */
1965      struct {
1966	 ir_rvalue *dPdx;	/**< Partial derivative of coordinate wrt X */
1967	 ir_rvalue *dPdy;	/**< Partial derivative of coordinate wrt Y */
1968      } grad;
1969   } lod_info;
1970
1971   /* Whether a sparse texture */
1972   bool is_sparse;
1973};
1974
1975
1976struct ir_swizzle_mask {
1977   unsigned x:2;
1978   unsigned y:2;
1979   unsigned z:2;
1980   unsigned w:2;
1981
1982   /**
1983    * Number of components in the swizzle.
1984    */
1985   unsigned num_components:3;
1986
1987   /**
1988    * Does the swizzle contain duplicate components?
1989    *
1990    * L-value swizzles cannot contain duplicate components.
1991    */
1992   unsigned has_duplicates:1;
1993};
1994
1995
1996class ir_swizzle : public ir_rvalue {
1997public:
1998   ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1999              unsigned count);
2000
2001   ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
2002
2003   ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
2004
2005   virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
2006
2007   virtual ir_constant *constant_expression_value(void *mem_ctx,
2008                                                  struct hash_table *variable_context = NULL);
2009
2010   /**
2011    * Construct an ir_swizzle from the textual representation.  Can fail.
2012    */
2013   static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
2014
2015   virtual void accept(ir_visitor *v)
2016   {
2017      v->visit(this);
2018   }
2019
2020   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2021
2022   virtual bool equals(const ir_instruction *ir,
2023                       enum ir_node_type ignore = ir_type_unset) const;
2024
2025   bool is_lvalue(const struct _mesa_glsl_parse_state *state) const
2026   {
2027      return val->is_lvalue(state) && !mask.has_duplicates;
2028   }
2029
2030   /**
2031    * Get the variable that is ultimately referenced by an r-value
2032    */
2033   virtual ir_variable *variable_referenced() const;
2034
2035   ir_rvalue *val;
2036   ir_swizzle_mask mask;
2037
2038private:
2039   /**
2040    * Initialize the mask component of a swizzle
2041    *
2042    * This is used by the \c ir_swizzle constructors.
2043    */
2044   void init_mask(const unsigned *components, unsigned count);
2045};
2046
2047
2048class ir_dereference : public ir_rvalue {
2049public:
2050   virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2051
2052   bool is_lvalue(const struct _mesa_glsl_parse_state *state) const;
2053
2054   /**
2055    * Get the variable that is ultimately referenced by an r-value
2056    */
2057   virtual ir_variable *variable_referenced() const = 0;
2058
2059   /**
2060    * Get the precision. This can either come from the eventual variable that
2061    * is dereferenced, or from a record member.
2062    */
2063   virtual int precision() const = 0;
2064
2065protected:
2066   ir_dereference(enum ir_node_type t)
2067      : ir_rvalue(t)
2068   {
2069   }
2070};
2071
2072
2073class ir_dereference_variable : public ir_dereference {
2074public:
2075   ir_dereference_variable(ir_variable *var);
2076
2077   virtual ir_dereference_variable *clone(void *mem_ctx,
2078					  struct hash_table *) const;
2079
2080   virtual ir_constant *constant_expression_value(void *mem_ctx,
2081                                                  struct hash_table *variable_context = NULL);
2082
2083   virtual bool equals(const ir_instruction *ir,
2084                       enum ir_node_type ignore = ir_type_unset) const;
2085
2086   /**
2087    * Get the variable that is ultimately referenced by an r-value
2088    */
2089   virtual ir_variable *variable_referenced() const
2090   {
2091      return this->var;
2092   }
2093
2094   virtual int precision() const
2095   {
2096      return this->var->data.precision;
2097   }
2098
2099   virtual ir_variable *whole_variable_referenced()
2100   {
2101      /* ir_dereference_variable objects always dereference the entire
2102       * variable.  However, if this dereference is dereferenced by anything
2103       * else, the complete dereference chain is not a whole-variable
2104       * dereference.  This method should only be called on the top most
2105       * ir_rvalue in a dereference chain.
2106       */
2107      return this->var;
2108   }
2109
2110   virtual void accept(ir_visitor *v)
2111   {
2112      v->visit(this);
2113   }
2114
2115   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2116
2117   /**
2118    * Object being dereferenced.
2119    */
2120   ir_variable *var;
2121};
2122
2123
2124class ir_dereference_array : public ir_dereference {
2125public:
2126   ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2127
2128   ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2129
2130   virtual ir_dereference_array *clone(void *mem_ctx,
2131				       struct hash_table *) const;
2132
2133   virtual ir_constant *constant_expression_value(void *mem_ctx,
2134                                                  struct hash_table *variable_context = NULL);
2135
2136   virtual bool equals(const ir_instruction *ir,
2137                       enum ir_node_type ignore = ir_type_unset) const;
2138
2139   /**
2140    * Get the variable that is ultimately referenced by an r-value
2141    */
2142   virtual ir_variable *variable_referenced() const
2143   {
2144      return this->array->variable_referenced();
2145   }
2146
2147   virtual int precision() const
2148   {
2149      ir_dereference *deref = this->array->as_dereference();
2150
2151      if (deref == NULL)
2152         return GLSL_PRECISION_NONE;
2153      else
2154         return deref->precision();
2155   }
2156
2157   virtual void accept(ir_visitor *v)
2158   {
2159      v->visit(this);
2160   }
2161
2162   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2163
2164   ir_rvalue *array;
2165   ir_rvalue *array_index;
2166
2167private:
2168   void set_array(ir_rvalue *value);
2169};
2170
2171
2172class ir_dereference_record : public ir_dereference {
2173public:
2174   ir_dereference_record(ir_rvalue *value, const char *field);
2175
2176   ir_dereference_record(ir_variable *var, const char *field);
2177
2178   virtual ir_dereference_record *clone(void *mem_ctx,
2179					struct hash_table *) const;
2180
2181   virtual ir_constant *constant_expression_value(void *mem_ctx,
2182                                                  struct hash_table *variable_context = NULL);
2183
2184   /**
2185    * Get the variable that is ultimately referenced by an r-value
2186    */
2187   virtual ir_variable *variable_referenced() const
2188   {
2189      return this->record->variable_referenced();
2190   }
2191
2192   virtual int precision() const
2193   {
2194      glsl_struct_field *field = record->type->fields.structure + field_idx;
2195
2196      return field->precision;
2197   }
2198
2199   virtual void accept(ir_visitor *v)
2200   {
2201      v->visit(this);
2202   }
2203
2204   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2205
2206   ir_rvalue *record;
2207   int field_idx;
2208};
2209
2210
2211/**
2212 * Data stored in an ir_constant
2213 */
2214union ir_constant_data {
2215      unsigned u[16];
2216      int i[16];
2217      float f[16];
2218      bool b[16];
2219      double d[16];
2220      uint16_t f16[16];
2221      uint16_t u16[16];
2222      int16_t i16[16];
2223      uint64_t u64[16];
2224      int64_t i64[16];
2225};
2226
2227
2228class ir_constant : public ir_rvalue {
2229public:
2230   ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2231   ir_constant(bool b, unsigned vector_elements=1);
2232   ir_constant(int16_t i16, unsigned vector_elements=1);
2233   ir_constant(uint16_t u16, unsigned vector_elements=1);
2234   ir_constant(unsigned int u, unsigned vector_elements=1);
2235   ir_constant(int i, unsigned vector_elements=1);
2236   ir_constant(float16_t f16, unsigned vector_elements=1);
2237   ir_constant(float f, unsigned vector_elements=1);
2238   ir_constant(double d, unsigned vector_elements=1);
2239   ir_constant(uint64_t u64, unsigned vector_elements=1);
2240   ir_constant(int64_t i64, unsigned vector_elements=1);
2241
2242   /**
2243    * Construct an ir_constant from a list of ir_constant values
2244    */
2245   ir_constant(const struct glsl_type *type, exec_list *values);
2246
2247   /**
2248    * Construct an ir_constant from a scalar component of another ir_constant
2249    *
2250    * The new \c ir_constant inherits the type of the component from the
2251    * source constant.
2252    *
2253    * \note
2254    * In the case of a matrix constant, the new constant is a scalar, \b not
2255    * a vector.
2256    */
2257   ir_constant(const ir_constant *c, unsigned i);
2258
2259   /**
2260    * Return a new ir_constant of the specified type containing all zeros.
2261    */
2262   static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2263
2264   virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2265
2266   virtual ir_constant *constant_expression_value(void *mem_ctx,
2267                                                  struct hash_table *variable_context = NULL);
2268
2269   virtual void accept(ir_visitor *v)
2270   {
2271      v->visit(this);
2272   }
2273
2274   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2275
2276   virtual bool equals(const ir_instruction *ir,
2277                       enum ir_node_type ignore = ir_type_unset) const;
2278
2279   /**
2280    * Get a particular component of a constant as a specific type
2281    *
2282    * This is useful, for example, to get a value from an integer constant
2283    * as a float or bool.  This appears frequently when constructors are
2284    * called with all constant parameters.
2285    */
2286   /*@{*/
2287   bool get_bool_component(unsigned i) const;
2288   float get_float_component(unsigned i) const;
2289   uint16_t get_float16_component(unsigned i) const;
2290   double get_double_component(unsigned i) const;
2291   int16_t get_int16_component(unsigned i) const;
2292   uint16_t get_uint16_component(unsigned i) const;
2293   int get_int_component(unsigned i) const;
2294   unsigned get_uint_component(unsigned i) const;
2295   int64_t get_int64_component(unsigned i) const;
2296   uint64_t get_uint64_component(unsigned i) const;
2297   /*@}*/
2298
2299   ir_constant *get_array_element(unsigned i) const;
2300
2301   ir_constant *get_record_field(int idx);
2302
2303   /**
2304    * Copy the values on another constant at a given offset.
2305    *
2306    * The offset is ignored for array or struct copies, it's only for
2307    * scalars or vectors into vectors or matrices.
2308    *
2309    * With identical types on both sides and zero offset it's clone()
2310    * without creating a new object.
2311    */
2312
2313   void copy_offset(ir_constant *src, int offset);
2314
2315   /**
2316    * Copy the values on another constant at a given offset and
2317    * following an assign-like mask.
2318    *
2319    * The mask is ignored for scalars.
2320    *
2321    * Note that this function only handles what assign can handle,
2322    * i.e. at most a vector as source and a column of a matrix as
2323    * destination.
2324    */
2325
2326   void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2327
2328   /**
2329    * Determine whether a constant has the same value as another constant
2330    *
2331    * \sa ir_constant::is_zero, ir_constant::is_one,
2332    * ir_constant::is_negative_one
2333    */
2334   bool has_value(const ir_constant *) const;
2335
2336   /**
2337    * Return true if this ir_constant represents the given value.
2338    *
2339    * For vectors, this checks that each component is the given value.
2340    */
2341   virtual bool is_value(float f, int i) const;
2342   virtual bool is_zero() const;
2343   virtual bool is_one() const;
2344   virtual bool is_negative_one() const;
2345
2346   /**
2347    * Return true for constants that could be stored as 16-bit unsigned values.
2348    *
2349    * Note that this will return true even for signed integer ir_constants, as
2350    * long as the value is non-negative and fits in 16-bits.
2351    */
2352   virtual bool is_uint16_constant() const;
2353
2354   /**
2355    * Value of the constant.
2356    *
2357    * The field used to back the values supplied by the constant is determined
2358    * by the type associated with the \c ir_instruction.  Constants may be
2359    * scalars, vectors, or matrices.
2360    */
2361   union ir_constant_data value;
2362
2363   /* Array elements and structure fields */
2364   ir_constant **const_elements;
2365
2366private:
2367   /**
2368    * Parameterless constructor only used by the clone method
2369    */
2370   ir_constant(void);
2371};
2372
2373/**
2374 * IR instruction to emit a vertex in a geometry shader.
2375 */
2376class ir_emit_vertex : public ir_instruction {
2377public:
2378   ir_emit_vertex(ir_rvalue *stream)
2379      : ir_instruction(ir_type_emit_vertex),
2380        stream(stream)
2381   {
2382      assert(stream);
2383   }
2384
2385   virtual void accept(ir_visitor *v)
2386   {
2387      v->visit(this);
2388   }
2389
2390   virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2391   {
2392      return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2393   }
2394
2395   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2396
2397   int stream_id() const
2398   {
2399      return stream->as_constant()->value.i[0];
2400   }
2401
2402   ir_rvalue *stream;
2403};
2404
2405/**
2406 * IR instruction to complete the current primitive and start a new one in a
2407 * geometry shader.
2408 */
2409class ir_end_primitive : public ir_instruction {
2410public:
2411   ir_end_primitive(ir_rvalue *stream)
2412      : ir_instruction(ir_type_end_primitive),
2413        stream(stream)
2414   {
2415      assert(stream);
2416   }
2417
2418   virtual void accept(ir_visitor *v)
2419   {
2420      v->visit(this);
2421   }
2422
2423   virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2424   {
2425      return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2426   }
2427
2428   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2429
2430   int stream_id() const
2431   {
2432      return stream->as_constant()->value.i[0];
2433   }
2434
2435   ir_rvalue *stream;
2436};
2437
2438/**
2439 * IR instruction for tessellation control and compute shader barrier.
2440 */
2441class ir_barrier : public ir_instruction {
2442public:
2443   ir_barrier()
2444      : ir_instruction(ir_type_barrier)
2445   {
2446   }
2447
2448   virtual void accept(ir_visitor *v)
2449   {
2450      v->visit(this);
2451   }
2452
2453   virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2454   {
2455      return new(mem_ctx) ir_barrier();
2456   }
2457
2458   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2459};
2460
2461/*@}*/
2462
2463/**
2464 * Apply a visitor to each IR node in a list
2465 */
2466void
2467visit_exec_list(exec_list *list, ir_visitor *visitor);
2468
2469/**
2470 * Validate invariants on each IR node in a list
2471 */
2472void validate_ir_tree(exec_list *instructions);
2473
2474struct _mesa_glsl_parse_state;
2475struct gl_shader_program;
2476
2477/**
2478 * Detect whether an unlinked shader contains static recursion
2479 *
2480 * If the list of instructions is determined to contain static recursion,
2481 * \c _mesa_glsl_error will be called to emit error messages for each function
2482 * that is in the recursion cycle.
2483 */
2484void
2485detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2486			  exec_list *instructions);
2487
2488/**
2489 * Detect whether a linked shader contains static recursion
2490 *
2491 * If the list of instructions is determined to contain static recursion,
2492 * \c link_error_printf will be called to emit error messages for each function
2493 * that is in the recursion cycle.  In addition,
2494 * \c gl_shader_program::LinkStatus will be set to false.
2495 */
2496void
2497detect_recursion_linked(struct gl_shader_program *prog,
2498			exec_list *instructions);
2499
2500/**
2501 * Make a clone of each IR instruction in a list
2502 *
2503 * \param in   List of IR instructions that are to be cloned
2504 * \param out  List to hold the cloned instructions
2505 */
2506void
2507clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2508
2509extern void
2510_mesa_glsl_initialize_variables(exec_list *instructions,
2511				struct _mesa_glsl_parse_state *state);
2512
2513extern void
2514reparent_ir(exec_list *list, void *mem_ctx);
2515
2516extern void
2517do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2518                      gl_shader_stage shader_stage);
2519
2520extern char *
2521prototype_string(const glsl_type *return_type, const char *name,
2522		 exec_list *parameters);
2523
2524const char *
2525mode_string(const ir_variable *var);
2526
2527/**
2528 * Built-in / reserved GL variables names start with "gl_"
2529 */
2530static inline bool
2531is_gl_identifier(const char *s)
2532{
2533   return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2534}
2535
2536extern "C" {
2537#endif /* __cplusplus */
2538
2539extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2540                           struct _mesa_glsl_parse_state *state);
2541
2542extern void
2543fprint_ir(FILE *f, const void *instruction);
2544
2545extern const struct gl_builtin_uniform_desc *
2546_mesa_glsl_get_builtin_uniform_desc(const char *name);
2547
2548#ifdef __cplusplus
2549} /* extern "C" */
2550#endif
2551
2552unsigned
2553vertices_per_prim(GLenum prim);
2554
2555#endif /* IR_H */
2556