1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24/**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program.  This includes:
30 *
31 *    * Symbol table management
32 *    * Type checking
33 *    * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly.  However, this results in frequent changes
37 * to the parser code.  Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system.  In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating.  When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52#include "glsl_symbol_table.h"
53#include "glsl_parser_extras.h"
54#include "ast.h"
55#include "compiler/glsl_types.h"
56#include "util/hash_table.h"
57#include "main/consts_exts.h"
58#include "main/macros.h"
59#include "main/shaderobj.h"
60#include "ir.h"
61#include "ir_builder.h"
62#include "builtin_functions.h"
63
64using namespace ir_builder;
65
66static void
67detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
68                               exec_list *instructions);
69static void
70verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state);
71
72static void
73remove_per_vertex_blocks(exec_list *instructions,
74                         _mesa_glsl_parse_state *state, ir_variable_mode mode);
75
76/**
77 * Visitor class that finds the first instance of any write-only variable that
78 * is ever read, if any
79 */
80class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
81{
82public:
83   read_from_write_only_variable_visitor() : found(NULL)
84   {
85   }
86
87   virtual ir_visitor_status visit(ir_dereference_variable *ir)
88   {
89      if (this->in_assignee)
90         return visit_continue;
91
92      ir_variable *var = ir->variable_referenced();
93      /* We can have memory_write_only set on both images and buffer variables,
94       * but in the former there is a distinction between reads from
95       * the variable itself (write_only) and from the memory they point to
96       * (memory_write_only), while in the case of buffer variables there is
97       * no such distinction, that is why this check here is limited to
98       * buffer variables alone.
99       */
100      if (!var || var->data.mode != ir_var_shader_storage)
101         return visit_continue;
102
103      if (var->data.memory_write_only) {
104         found = var;
105         return visit_stop;
106      }
107
108      return visit_continue;
109   }
110
111   ir_variable *get_variable() {
112      return found;
113   }
114
115   virtual ir_visitor_status visit_enter(ir_expression *ir)
116   {
117      /* .length() doesn't actually read anything */
118      if (ir->operation == ir_unop_ssbo_unsized_array_length)
119         return visit_continue_with_parent;
120
121      return visit_continue;
122   }
123
124private:
125   ir_variable *found;
126};
127
128void
129_mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
130{
131   _mesa_glsl_initialize_variables(instructions, state);
132
133   state->symbols->separate_function_namespace = state->language_version == 110;
134
135   state->current_function = NULL;
136
137   state->toplevel_ir = instructions;
138
139   state->gs_input_prim_type_specified = false;
140   state->tcs_output_vertices_specified = false;
141   state->cs_input_local_size_specified = false;
142
143   /* Section 4.2 of the GLSL 1.20 specification states:
144    * "The built-in functions are scoped in a scope outside the global scope
145    *  users declare global variables in.  That is, a shader's global scope,
146    *  available for user-defined functions and global variables, is nested
147    *  inside the scope containing the built-in functions."
148    *
149    * Since built-in functions like ftransform() access built-in variables,
150    * it follows that those must be in the outer scope as well.
151    *
152    * We push scope here to create this nesting effect...but don't pop.
153    * This way, a shader's globals are still in the symbol table for use
154    * by the linker.
155    */
156   state->symbols->push_scope();
157
158   foreach_list_typed (ast_node, ast, link, & state->translation_unit)
159      ast->hir(instructions, state);
160
161   verify_subroutine_associated_funcs(state);
162   detect_recursion_unlinked(state, instructions);
163   detect_conflicting_assignments(state, instructions);
164
165   state->toplevel_ir = NULL;
166
167   /* Move all of the variable declarations to the front of the IR list, and
168    * reverse the order.  This has the (intended!) side effect that vertex
169    * shader inputs and fragment shader outputs will appear in the IR in the
170    * same order that they appeared in the shader code.  This results in the
171    * locations being assigned in the declared order.  Many (arguably buggy)
172    * applications depend on this behavior, and it matches what nearly all
173    * other drivers do.
174    */
175   foreach_in_list_safe(ir_instruction, node, instructions) {
176      ir_variable *const var = node->as_variable();
177
178      if (var == NULL)
179         continue;
180
181      var->remove();
182      instructions->push_head(var);
183   }
184
185   /* Figure out if gl_FragCoord is actually used in fragment shader */
186   ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
187   if (var != NULL)
188      state->fs_uses_gl_fragcoord = var->data.used;
189
190   /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
191    *
192    *     If multiple shaders using members of a built-in block belonging to
193    *     the same interface are linked together in the same program, they
194    *     must all redeclare the built-in block in the same way, as described
195    *     in section 4.3.7 "Interface Blocks" for interface block matching, or
196    *     a link error will result.
197    *
198    * The phrase "using members of a built-in block" implies that if two
199    * shaders are linked together and one of them *does not use* any members
200    * of the built-in block, then that shader does not need to have a matching
201    * redeclaration of the built-in block.
202    *
203    * This appears to be a clarification to the behaviour established for
204    * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
205    * version.
206    *
207    * The definition of "interface" in section 4.3.7 that applies here is as
208    * follows:
209    *
210    *     The boundary between adjacent programmable pipeline stages: This
211    *     spans all the outputs in all compilation units of the first stage
212    *     and all the inputs in all compilation units of the second stage.
213    *
214    * Therefore this rule applies to both inter- and intra-stage linking.
215    *
216    * The easiest way to implement this is to check whether the shader uses
217    * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
218    * remove all the relevant variable declaration from the IR, so that the
219    * linker won't see them and complain about mismatches.
220    */
221   remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
222   remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
223
224   /* Check that we don't have reads from write-only variables */
225   read_from_write_only_variable_visitor v;
226   v.run(instructions);
227   ir_variable *error_var = v.get_variable();
228   if (error_var) {
229      /* It would be nice to have proper location information, but for that
230       * we would need to check this as we process each kind of AST node
231       */
232      YYLTYPE loc;
233      memset(&loc, 0, sizeof(loc));
234      _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
235                       error_var->name);
236   }
237}
238
239
240static ir_expression_operation
241get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
242                                  struct _mesa_glsl_parse_state *state)
243{
244   switch (to->base_type) {
245   case GLSL_TYPE_FLOAT:
246      switch (from->base_type) {
247      case GLSL_TYPE_INT: return ir_unop_i2f;
248      case GLSL_TYPE_UINT: return ir_unop_u2f;
249      default: return (ir_expression_operation)0;
250      }
251
252   case GLSL_TYPE_UINT:
253      if (!state->has_implicit_int_to_uint_conversion())
254         return (ir_expression_operation)0;
255      switch (from->base_type) {
256         case GLSL_TYPE_INT: return ir_unop_i2u;
257         default: return (ir_expression_operation)0;
258      }
259
260   case GLSL_TYPE_DOUBLE:
261      if (!state->has_double())
262         return (ir_expression_operation)0;
263      switch (from->base_type) {
264      case GLSL_TYPE_INT: return ir_unop_i2d;
265      case GLSL_TYPE_UINT: return ir_unop_u2d;
266      case GLSL_TYPE_FLOAT: return ir_unop_f2d;
267      case GLSL_TYPE_INT64: return ir_unop_i642d;
268      case GLSL_TYPE_UINT64: return ir_unop_u642d;
269      default: return (ir_expression_operation)0;
270      }
271
272   case GLSL_TYPE_UINT64:
273      if (!state->has_int64())
274         return (ir_expression_operation)0;
275      switch (from->base_type) {
276      case GLSL_TYPE_INT: return ir_unop_i2u64;
277      case GLSL_TYPE_UINT: return ir_unop_u2u64;
278      case GLSL_TYPE_INT64: return ir_unop_i642u64;
279      default: return (ir_expression_operation)0;
280      }
281
282   case GLSL_TYPE_INT64:
283      if (!state->has_int64())
284         return (ir_expression_operation)0;
285      switch (from->base_type) {
286      case GLSL_TYPE_INT: return ir_unop_i2i64;
287      default: return (ir_expression_operation)0;
288      }
289
290   default: return (ir_expression_operation)0;
291   }
292}
293
294
295/**
296 * If a conversion is available, convert one operand to a different type
297 *
298 * The \c from \c ir_rvalue is converted "in place".
299 *
300 * \param to     Type that the operand it to be converted to
301 * \param from   Operand that is being converted
302 * \param state  GLSL compiler state
303 *
304 * \return
305 * If a conversion is possible (or unnecessary), \c true is returned.
306 * Otherwise \c false is returned.
307 */
308static bool
309apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
310                          struct _mesa_glsl_parse_state *state)
311{
312   void *ctx = state;
313   if (to->base_type == from->type->base_type)
314      return true;
315
316   /* Prior to GLSL 1.20, there are no implicit conversions */
317   if (!state->has_implicit_conversions())
318      return false;
319
320   /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
321    *
322    *    "There are no implicit array or structure conversions. For
323    *    example, an array of int cannot be implicitly converted to an
324    *    array of float.
325    */
326   if (!to->is_numeric() || !from->type->is_numeric())
327      return false;
328
329   /* We don't actually want the specific type `to`, we want a type
330    * with the same base type as `to`, but the same vector width as
331    * `from`.
332    */
333   to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
334                                from->type->matrix_columns);
335
336   ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
337   if (op) {
338      from = new(ctx) ir_expression(op, to, from, NULL);
339      return true;
340   } else {
341      return false;
342   }
343}
344
345
346static const struct glsl_type *
347arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
348                       bool multiply,
349                       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
350{
351   const glsl_type *type_a = value_a->type;
352   const glsl_type *type_b = value_b->type;
353
354   /* From GLSL 1.50 spec, page 56:
355    *
356    *    "The arithmetic binary operators add (+), subtract (-),
357    *    multiply (*), and divide (/) operate on integer and
358    *    floating-point scalars, vectors, and matrices."
359    */
360   if (!type_a->is_numeric() || !type_b->is_numeric()) {
361      _mesa_glsl_error(loc, state,
362                       "operands to arithmetic operators must be numeric");
363      return glsl_type::error_type;
364   }
365
366
367   /*    "If one operand is floating-point based and the other is
368    *    not, then the conversions from Section 4.1.10 "Implicit
369    *    Conversions" are applied to the non-floating-point-based operand."
370    */
371   if (!apply_implicit_conversion(type_a, value_b, state)
372       && !apply_implicit_conversion(type_b, value_a, state)) {
373      _mesa_glsl_error(loc, state,
374                       "could not implicitly convert operands to "
375                       "arithmetic operator");
376      return glsl_type::error_type;
377   }
378   type_a = value_a->type;
379   type_b = value_b->type;
380
381   /*    "If the operands are integer types, they must both be signed or
382    *    both be unsigned."
383    *
384    * From this rule and the preceeding conversion it can be inferred that
385    * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
386    * The is_numeric check above already filtered out the case where either
387    * type is not one of these, so now the base types need only be tested for
388    * equality.
389    */
390   if (type_a->base_type != type_b->base_type) {
391      _mesa_glsl_error(loc, state,
392                       "base type mismatch for arithmetic operator");
393      return glsl_type::error_type;
394   }
395
396   /*    "All arithmetic binary operators result in the same fundamental type
397    *    (signed integer, unsigned integer, or floating-point) as the
398    *    operands they operate on, after operand type conversion. After
399    *    conversion, the following cases are valid
400    *
401    *    * The two operands are scalars. In this case the operation is
402    *      applied, resulting in a scalar."
403    */
404   if (type_a->is_scalar() && type_b->is_scalar())
405      return type_a;
406
407   /*   "* One operand is a scalar, and the other is a vector or matrix.
408    *      In this case, the scalar operation is applied independently to each
409    *      component of the vector or matrix, resulting in the same size
410    *      vector or matrix."
411    */
412   if (type_a->is_scalar()) {
413      if (!type_b->is_scalar())
414         return type_b;
415   } else if (type_b->is_scalar()) {
416      return type_a;
417   }
418
419   /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420    * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
421    * handled.
422    */
423   assert(!type_a->is_scalar());
424   assert(!type_b->is_scalar());
425
426   /*   "* The two operands are vectors of the same size. In this case, the
427    *      operation is done component-wise resulting in the same size
428    *      vector."
429    */
430   if (type_a->is_vector() && type_b->is_vector()) {
431      if (type_a == type_b) {
432         return type_a;
433      } else {
434         _mesa_glsl_error(loc, state,
435                          "vector size mismatch for arithmetic operator");
436         return glsl_type::error_type;
437      }
438   }
439
440   /* All of the combinations of <scalar, scalar>, <vector, scalar>,
441    * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
442    * <vector, vector> have been handled.  At least one of the operands must
443    * be matrix.  Further, since there are no integer matrix types, the base
444    * type of both operands must be float.
445    */
446   assert(type_a->is_matrix() || type_b->is_matrix());
447   assert(type_a->is_float() || type_a->is_double());
448   assert(type_b->is_float() || type_b->is_double());
449
450   /*   "* The operator is add (+), subtract (-), or divide (/), and the
451    *      operands are matrices with the same number of rows and the same
452    *      number of columns. In this case, the operation is done component-
453    *      wise resulting in the same size matrix."
454    *    * The operator is multiply (*), where both operands are matrices or
455    *      one operand is a vector and the other a matrix. A right vector
456    *      operand is treated as a column vector and a left vector operand as a
457    *      row vector. In all these cases, it is required that the number of
458    *      columns of the left operand is equal to the number of rows of the
459    *      right operand. Then, the multiply (*) operation does a linear
460    *      algebraic multiply, yielding an object that has the same number of
461    *      rows as the left operand and the same number of columns as the right
462    *      operand. Section 5.10 "Vector and Matrix Operations" explains in
463    *      more detail how vectors and matrices are operated on."
464    */
465   if (! multiply) {
466      if (type_a == type_b)
467         return type_a;
468   } else {
469      const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
470
471      if (type == glsl_type::error_type) {
472         _mesa_glsl_error(loc, state,
473                          "size mismatch for matrix multiplication");
474      }
475
476      return type;
477   }
478
479
480   /*    "All other cases are illegal."
481    */
482   _mesa_glsl_error(loc, state, "type mismatch");
483   return glsl_type::error_type;
484}
485
486
487static const struct glsl_type *
488unary_arithmetic_result_type(const struct glsl_type *type,
489                             struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
490{
491   /* From GLSL 1.50 spec, page 57:
492    *
493    *    "The arithmetic unary operators negate (-), post- and pre-increment
494    *     and decrement (-- and ++) operate on integer or floating-point
495    *     values (including vectors and matrices). All unary operators work
496    *     component-wise on their operands. These result with the same type
497    *     they operated on."
498    */
499   if (!type->is_numeric()) {
500      _mesa_glsl_error(loc, state,
501                       "operands to arithmetic operators must be numeric");
502      return glsl_type::error_type;
503   }
504
505   return type;
506}
507
508/**
509 * \brief Return the result type of a bit-logic operation.
510 *
511 * If the given types to the bit-logic operator are invalid, return
512 * glsl_type::error_type.
513 *
514 * \param value_a LHS of bit-logic op
515 * \param value_b RHS of bit-logic op
516 */
517static const struct glsl_type *
518bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
519                      ast_operators op,
520                      struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
521{
522   const glsl_type *type_a = value_a->type;
523   const glsl_type *type_b = value_b->type;
524
525   if (!state->check_bitwise_operations_allowed(loc)) {
526      return glsl_type::error_type;
527   }
528
529   /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
530    *
531    *     "The bitwise operators and (&), exclusive-or (^), and inclusive-or
532    *     (|). The operands must be of type signed or unsigned integers or
533    *     integer vectors."
534    */
535   if (!type_a->is_integer_32_64()) {
536      _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
537                        ast_expression::operator_string(op));
538      return glsl_type::error_type;
539   }
540   if (!type_b->is_integer_32_64()) {
541      _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
542                       ast_expression::operator_string(op));
543      return glsl_type::error_type;
544   }
545
546   /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
547    * make sense for bitwise operations, as they don't operate on floats.
548    *
549    * GLSL 4.0 added implicit int -> uint conversions, which are relevant
550    * here.  It wasn't clear whether or not we should apply them to bitwise
551    * operations.  However, Khronos has decided that they should in future
552    * language revisions.  Applications also rely on this behavior.  We opt
553    * to apply them in general, but issue a portability warning.
554    *
555    * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
556    */
557   if (type_a->base_type != type_b->base_type) {
558      if (!apply_implicit_conversion(type_a, value_b, state)
559          && !apply_implicit_conversion(type_b, value_a, state)) {
560         _mesa_glsl_error(loc, state,
561                          "could not implicitly convert operands to "
562                          "`%s` operator",
563                          ast_expression::operator_string(op));
564         return glsl_type::error_type;
565      } else {
566         _mesa_glsl_warning(loc, state,
567                            "some implementations may not support implicit "
568                            "int -> uint conversions for `%s' operators; "
569                            "consider casting explicitly for portability",
570                            ast_expression::operator_string(op));
571      }
572      type_a = value_a->type;
573      type_b = value_b->type;
574   }
575
576   /*     "The fundamental types of the operands (signed or unsigned) must
577    *     match,"
578    */
579   if (type_a->base_type != type_b->base_type) {
580      _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
581                       "base type", ast_expression::operator_string(op));
582      return glsl_type::error_type;
583   }
584
585   /*     "The operands cannot be vectors of differing size." */
586   if (type_a->is_vector() &&
587       type_b->is_vector() &&
588       type_a->vector_elements != type_b->vector_elements) {
589      _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
590                       "different sizes", ast_expression::operator_string(op));
591      return glsl_type::error_type;
592   }
593
594   /*     "If one operand is a scalar and the other a vector, the scalar is
595    *     applied component-wise to the vector, resulting in the same type as
596    *     the vector. The fundamental types of the operands [...] will be the
597    *     resulting fundamental type."
598    */
599   if (type_a->is_scalar())
600       return type_b;
601   else
602       return type_a;
603}
604
605static const struct glsl_type *
606modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
607                    struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
608{
609   const glsl_type *type_a = value_a->type;
610   const glsl_type *type_b = value_b->type;
611
612   if (!state->EXT_gpu_shader4_enable &&
613       !state->check_version(130, 300, loc, "operator '%%' is reserved")) {
614      return glsl_type::error_type;
615   }
616
617   /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
618    *
619    *    "The operator modulus (%) operates on signed or unsigned integers or
620    *    integer vectors."
621    */
622   if (!type_a->is_integer_32_64()) {
623      _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
624      return glsl_type::error_type;
625   }
626   if (!type_b->is_integer_32_64()) {
627      _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
628      return glsl_type::error_type;
629   }
630
631   /*    "If the fundamental types in the operands do not match, then the
632    *    conversions from section 4.1.10 "Implicit Conversions" are applied
633    *    to create matching types."
634    *
635    * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
636    * int -> uint conversion rules.  Prior to that, there were no implicit
637    * conversions.  So it's harmless to apply them universally - no implicit
638    * conversions will exist.  If the types don't match, we'll receive false,
639    * and raise an error, satisfying the GLSL 1.50 spec, page 56:
640    *
641    *    "The operand types must both be signed or unsigned."
642    */
643   if (!apply_implicit_conversion(type_a, value_b, state) &&
644       !apply_implicit_conversion(type_b, value_a, state)) {
645      _mesa_glsl_error(loc, state,
646                       "could not implicitly convert operands to "
647                       "modulus (%%) operator");
648      return glsl_type::error_type;
649   }
650   type_a = value_a->type;
651   type_b = value_b->type;
652
653   /*    "The operands cannot be vectors of differing size. If one operand is
654    *    a scalar and the other vector, then the scalar is applied component-
655    *    wise to the vector, resulting in the same type as the vector. If both
656    *    are vectors of the same size, the result is computed component-wise."
657    */
658   if (type_a->is_vector()) {
659      if (!type_b->is_vector()
660          || (type_a->vector_elements == type_b->vector_elements))
661      return type_a;
662   } else
663      return type_b;
664
665   /*    "The operator modulus (%) is not defined for any other data types
666    *    (non-integer types)."
667    */
668   _mesa_glsl_error(loc, state, "type mismatch");
669   return glsl_type::error_type;
670}
671
672
673static const struct glsl_type *
674relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
675                       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
676{
677   const glsl_type *type_a = value_a->type;
678   const glsl_type *type_b = value_b->type;
679
680   /* From GLSL 1.50 spec, page 56:
681    *    "The relational operators greater than (>), less than (<), greater
682    *    than or equal (>=), and less than or equal (<=) operate only on
683    *    scalar integer and scalar floating-point expressions."
684    */
685   if (!type_a->is_numeric()
686       || !type_b->is_numeric()
687       || !type_a->is_scalar()
688       || !type_b->is_scalar()) {
689      _mesa_glsl_error(loc, state,
690                       "operands to relational operators must be scalar and "
691                       "numeric");
692      return glsl_type::error_type;
693   }
694
695   /*    "Either the operands' types must match, or the conversions from
696    *    Section 4.1.10 "Implicit Conversions" will be applied to the integer
697    *    operand, after which the types must match."
698    */
699   if (!apply_implicit_conversion(type_a, value_b, state)
700       && !apply_implicit_conversion(type_b, value_a, state)) {
701      _mesa_glsl_error(loc, state,
702                       "could not implicitly convert operands to "
703                       "relational operator");
704      return glsl_type::error_type;
705   }
706   type_a = value_a->type;
707   type_b = value_b->type;
708
709   if (type_a->base_type != type_b->base_type) {
710      _mesa_glsl_error(loc, state, "base type mismatch");
711      return glsl_type::error_type;
712   }
713
714   /*    "The result is scalar Boolean."
715    */
716   return glsl_type::bool_type;
717}
718
719/**
720 * \brief Return the result type of a bit-shift operation.
721 *
722 * If the given types to the bit-shift operator are invalid, return
723 * glsl_type::error_type.
724 *
725 * \param type_a Type of LHS of bit-shift op
726 * \param type_b Type of RHS of bit-shift op
727 */
728static const struct glsl_type *
729shift_result_type(const struct glsl_type *type_a,
730                  const struct glsl_type *type_b,
731                  ast_operators op,
732                  struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
733{
734   if (!state->check_bitwise_operations_allowed(loc)) {
735      return glsl_type::error_type;
736   }
737
738   /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
739    *
740    *     "The shift operators (<<) and (>>). For both operators, the operands
741    *     must be signed or unsigned integers or integer vectors. One operand
742    *     can be signed while the other is unsigned."
743    */
744   if (!type_a->is_integer_32_64()) {
745      _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
746                       "integer vector", ast_expression::operator_string(op));
747     return glsl_type::error_type;
748
749   }
750   if (!type_b->is_integer_32()) {
751      _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
752                       "integer vector", ast_expression::operator_string(op));
753     return glsl_type::error_type;
754   }
755
756   /*     "If the first operand is a scalar, the second operand has to be
757    *     a scalar as well."
758    */
759   if (type_a->is_scalar() && !type_b->is_scalar()) {
760      _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
761                       "second must be scalar as well",
762                       ast_expression::operator_string(op));
763     return glsl_type::error_type;
764   }
765
766   /* If both operands are vectors, check that they have same number of
767    * elements.
768    */
769   if (type_a->is_vector() &&
770      type_b->is_vector() &&
771      type_a->vector_elements != type_b->vector_elements) {
772      _mesa_glsl_error(loc, state, "vector operands to operator %s must "
773                       "have same number of elements",
774                       ast_expression::operator_string(op));
775     return glsl_type::error_type;
776   }
777
778   /*     "In all cases, the resulting type will be the same type as the left
779    *     operand."
780    */
781   return type_a;
782}
783
784/**
785 * Returns the innermost array index expression in an rvalue tree.
786 * This is the largest indexing level -- if an array of blocks, then
787 * it is the block index rather than an indexing expression for an
788 * array-typed member of an array of blocks.
789 */
790static ir_rvalue *
791find_innermost_array_index(ir_rvalue *rv)
792{
793   ir_dereference_array *last = NULL;
794   while (rv) {
795      if (rv->as_dereference_array()) {
796         last = rv->as_dereference_array();
797         rv = last->array;
798      } else if (rv->as_dereference_record())
799         rv = rv->as_dereference_record()->record;
800      else if (rv->as_swizzle())
801         rv = rv->as_swizzle()->val;
802      else
803         rv = NULL;
804   }
805
806   if (last)
807      return last->array_index;
808
809   return NULL;
810}
811
812/**
813 * Validates that a value can be assigned to a location with a specified type
814 *
815 * Validates that \c rhs can be assigned to some location.  If the types are
816 * not an exact match but an automatic conversion is possible, \c rhs will be
817 * converted.
818 *
819 * \return
820 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
821 * Otherwise the actual RHS to be assigned will be returned.  This may be
822 * \c rhs, or it may be \c rhs after some type conversion.
823 *
824 * \note
825 * In addition to being used for assignments, this function is used to
826 * type-check return values.
827 */
828static ir_rvalue *
829validate_assignment(struct _mesa_glsl_parse_state *state,
830                    YYLTYPE loc, ir_rvalue *lhs,
831                    ir_rvalue *rhs, bool is_initializer)
832{
833   /* If there is already some error in the RHS, just return it.  Anything
834    * else will lead to an avalanche of error message back to the user.
835    */
836   if (rhs->type->is_error())
837      return rhs;
838
839   /* In the Tessellation Control Shader:
840    * If a per-vertex output variable is used as an l-value, it is an error
841    * if the expression indicating the vertex number is not the identifier
842    * `gl_InvocationID`.
843    */
844   if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
845      ir_variable *var = lhs->variable_referenced();
846      if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
847         ir_rvalue *index = find_innermost_array_index(lhs);
848         ir_variable *index_var = index ? index->variable_referenced() : NULL;
849         if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
850            _mesa_glsl_error(&loc, state,
851                             "Tessellation control shader outputs can only "
852                             "be indexed by gl_InvocationID");
853            return NULL;
854         }
855      }
856   }
857
858   /* If the types are identical, the assignment can trivially proceed.
859    */
860   if (rhs->type == lhs->type)
861      return rhs;
862
863   /* If the array element types are the same and the LHS is unsized,
864    * the assignment is okay for initializers embedded in variable
865    * declarations.
866    *
867    * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
868    * is handled by ir_dereference::is_lvalue.
869    */
870   const glsl_type *lhs_t = lhs->type;
871   const glsl_type *rhs_t = rhs->type;
872   bool unsized_array = false;
873   while(lhs_t->is_array()) {
874      if (rhs_t == lhs_t)
875         break; /* the rest of the inner arrays match so break out early */
876      if (!rhs_t->is_array()) {
877         unsized_array = false;
878         break; /* number of dimensions mismatch */
879      }
880      if (lhs_t->length == rhs_t->length) {
881         lhs_t = lhs_t->fields.array;
882         rhs_t = rhs_t->fields.array;
883         continue;
884      } else if (lhs_t->is_unsized_array()) {
885         unsized_array = true;
886      } else {
887         unsized_array = false;
888         break; /* sized array mismatch */
889      }
890      lhs_t = lhs_t->fields.array;
891      rhs_t = rhs_t->fields.array;
892   }
893   if (unsized_array) {
894      if (is_initializer) {
895         if (rhs->type->get_scalar_type() == lhs->type->get_scalar_type())
896            return rhs;
897      } else {
898         _mesa_glsl_error(&loc, state,
899                          "implicitly sized arrays cannot be assigned");
900         return NULL;
901      }
902   }
903
904   /* Check for implicit conversion in GLSL 1.20 */
905   if (apply_implicit_conversion(lhs->type, rhs, state)) {
906      if (rhs->type == lhs->type)
907         return rhs;
908   }
909
910   _mesa_glsl_error(&loc, state,
911                    "%s of type %s cannot be assigned to "
912                    "variable of type %s",
913                    is_initializer ? "initializer" : "value",
914                    rhs->type->name, lhs->type->name);
915
916   return NULL;
917}
918
919static void
920mark_whole_array_access(ir_rvalue *access)
921{
922   ir_dereference_variable *deref = access->as_dereference_variable();
923
924   if (deref && deref->var) {
925      deref->var->data.max_array_access = deref->type->length - 1;
926   }
927}
928
929static bool
930do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
931              const char *non_lvalue_description,
932              ir_rvalue *lhs, ir_rvalue *rhs,
933              ir_rvalue **out_rvalue, bool needs_rvalue,
934              bool is_initializer,
935              YYLTYPE lhs_loc)
936{
937   void *ctx = state;
938   bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
939
940   ir_variable *lhs_var = lhs->variable_referenced();
941   if (lhs_var)
942      lhs_var->data.assigned = true;
943
944   bool omit_assignment = false;
945   if (!error_emitted) {
946      if (non_lvalue_description != NULL) {
947         _mesa_glsl_error(&lhs_loc, state,
948                          "assignment to %s",
949                          non_lvalue_description);
950         error_emitted = true;
951      } else if (lhs_var != NULL && (lhs_var->data.read_only ||
952                 (lhs_var->data.mode == ir_var_shader_storage &&
953                  lhs_var->data.memory_read_only))) {
954         /* We can have memory_read_only set on both images and buffer variables,
955          * but in the former there is a distinction between assignments to
956          * the variable itself (read_only) and to the memory they point to
957          * (memory_read_only), while in the case of buffer variables there is
958          * no such distinction, that is why this check here is limited to
959          * buffer variables alone.
960          */
961
962         if (state->ignore_write_to_readonly_var)
963            omit_assignment = true;
964         else {
965            _mesa_glsl_error(&lhs_loc, state,
966                             "assignment to read-only variable '%s'",
967                             lhs_var->name);
968            error_emitted = true;
969         }
970      } else if (lhs->type->is_array() &&
971                 !state->check_version(state->allow_glsl_120_subset_in_110 ? 110 : 120,
972                                       300, &lhs_loc,
973                                       "whole array assignment forbidden")) {
974         /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
975          *
976          *    "Other binary or unary expressions, non-dereferenced
977          *     arrays, function names, swizzles with repeated fields,
978          *     and constants cannot be l-values."
979          *
980          * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
981          */
982         error_emitted = true;
983      } else if (!lhs->is_lvalue(state)) {
984         _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
985         error_emitted = true;
986      }
987   }
988
989   ir_rvalue *new_rhs =
990      validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
991   if (new_rhs != NULL) {
992      rhs = new_rhs;
993
994      /* If the LHS array was not declared with a size, it takes it size from
995       * the RHS.  If the LHS is an l-value and a whole array, it must be a
996       * dereference of a variable.  Any other case would require that the LHS
997       * is either not an l-value or not a whole array.
998       */
999      if (lhs->type->is_unsized_array()) {
1000         ir_dereference *const d = lhs->as_dereference();
1001
1002         assert(d != NULL);
1003
1004         ir_variable *const var = d->variable_referenced();
1005
1006         assert(var != NULL);
1007
1008         if (var->data.max_array_access >= rhs->type->array_size()) {
1009            /* FINISHME: This should actually log the location of the RHS. */
1010            _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1011                             "previous access",
1012                             var->data.max_array_access);
1013         }
1014
1015         var->type = glsl_type::get_array_instance(lhs->type->fields.array,
1016                                                   rhs->type->array_size());
1017         d->type = var->type;
1018      }
1019      if (lhs->type->is_array()) {
1020         mark_whole_array_access(rhs);
1021         mark_whole_array_access(lhs);
1022      }
1023   } else {
1024     error_emitted = true;
1025   }
1026
1027   if (omit_assignment) {
1028      *out_rvalue = needs_rvalue ? ir_rvalue::error_value(ctx) : NULL;
1029      return error_emitted;
1030   }
1031
1032   /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1033    * but not post_inc) need the converted assigned value as an rvalue
1034    * to handle things like:
1035    *
1036    * i = j += 1;
1037    */
1038   if (needs_rvalue) {
1039      ir_rvalue *rvalue;
1040      if (!error_emitted) {
1041         ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1042                                                 ir_var_temporary);
1043         instructions->push_tail(var);
1044         instructions->push_tail(assign(var, rhs));
1045
1046         ir_dereference_variable *deref_var =
1047            new(ctx) ir_dereference_variable(var);
1048         instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1049         rvalue = new(ctx) ir_dereference_variable(var);
1050      } else {
1051         rvalue = ir_rvalue::error_value(ctx);
1052      }
1053      *out_rvalue = rvalue;
1054   } else {
1055      if (!error_emitted)
1056         instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1057      *out_rvalue = NULL;
1058   }
1059
1060   return error_emitted;
1061}
1062
1063static ir_rvalue *
1064get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1065{
1066   void *ctx = ralloc_parent(lvalue);
1067   ir_variable *var;
1068
1069   var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1070                              ir_var_temporary);
1071   instructions->push_tail(var);
1072
1073   instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1074                                                  lvalue));
1075
1076   return new(ctx) ir_dereference_variable(var);
1077}
1078
1079
1080ir_rvalue *
1081ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1082{
1083   (void) instructions;
1084   (void) state;
1085
1086   return NULL;
1087}
1088
1089bool
1090ast_node::has_sequence_subexpression() const
1091{
1092   return false;
1093}
1094
1095void
1096ast_node::set_is_lhs(bool /* new_value */)
1097{
1098}
1099
1100void
1101ast_function_expression::hir_no_rvalue(exec_list *instructions,
1102                                       struct _mesa_glsl_parse_state *state)
1103{
1104   (void)hir(instructions, state);
1105}
1106
1107void
1108ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1109                                         struct _mesa_glsl_parse_state *state)
1110{
1111   (void)hir(instructions, state);
1112}
1113
1114static ir_rvalue *
1115do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1116{
1117   int join_op;
1118   ir_rvalue *cmp = NULL;
1119
1120   if (operation == ir_binop_all_equal)
1121      join_op = ir_binop_logic_and;
1122   else
1123      join_op = ir_binop_logic_or;
1124
1125   switch (op0->type->base_type) {
1126   case GLSL_TYPE_FLOAT:
1127   case GLSL_TYPE_FLOAT16:
1128   case GLSL_TYPE_UINT:
1129   case GLSL_TYPE_INT:
1130   case GLSL_TYPE_BOOL:
1131   case GLSL_TYPE_DOUBLE:
1132   case GLSL_TYPE_UINT64:
1133   case GLSL_TYPE_INT64:
1134   case GLSL_TYPE_UINT16:
1135   case GLSL_TYPE_INT16:
1136   case GLSL_TYPE_UINT8:
1137   case GLSL_TYPE_INT8:
1138      return new(mem_ctx) ir_expression(operation, op0, op1);
1139
1140   case GLSL_TYPE_ARRAY: {
1141      for (unsigned int i = 0; i < op0->type->length; i++) {
1142         ir_rvalue *e0, *e1, *result;
1143
1144         e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1145                                                new(mem_ctx) ir_constant(i));
1146         e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1147                                                new(mem_ctx) ir_constant(i));
1148         result = do_comparison(mem_ctx, operation, e0, e1);
1149
1150         if (cmp) {
1151            cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1152         } else {
1153            cmp = result;
1154         }
1155      }
1156
1157      mark_whole_array_access(op0);
1158      mark_whole_array_access(op1);
1159      break;
1160   }
1161
1162   case GLSL_TYPE_STRUCT: {
1163      for (unsigned int i = 0; i < op0->type->length; i++) {
1164         ir_rvalue *e0, *e1, *result;
1165         const char *field_name = op0->type->fields.structure[i].name;
1166
1167         e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1168                                                 field_name);
1169         e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1170                                                 field_name);
1171         result = do_comparison(mem_ctx, operation, e0, e1);
1172
1173         if (cmp) {
1174            cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1175         } else {
1176            cmp = result;
1177         }
1178      }
1179      break;
1180   }
1181
1182   case GLSL_TYPE_ERROR:
1183   case GLSL_TYPE_VOID:
1184   case GLSL_TYPE_SAMPLER:
1185   case GLSL_TYPE_TEXTURE:
1186   case GLSL_TYPE_IMAGE:
1187   case GLSL_TYPE_INTERFACE:
1188   case GLSL_TYPE_ATOMIC_UINT:
1189   case GLSL_TYPE_SUBROUTINE:
1190   case GLSL_TYPE_FUNCTION:
1191      /* I assume a comparison of a struct containing a sampler just
1192       * ignores the sampler present in the type.
1193       */
1194      break;
1195   }
1196
1197   if (cmp == NULL)
1198      cmp = new(mem_ctx) ir_constant(true);
1199
1200   return cmp;
1201}
1202
1203/* For logical operations, we want to ensure that the operands are
1204 * scalar booleans.  If it isn't, emit an error and return a constant
1205 * boolean to avoid triggering cascading error messages.
1206 */
1207static ir_rvalue *
1208get_scalar_boolean_operand(exec_list *instructions,
1209                           struct _mesa_glsl_parse_state *state,
1210                           ast_expression *parent_expr,
1211                           int operand,
1212                           const char *operand_name,
1213                           bool *error_emitted)
1214{
1215   ast_expression *expr = parent_expr->subexpressions[operand];
1216   void *ctx = state;
1217   ir_rvalue *val = expr->hir(instructions, state);
1218
1219   if (val->type->is_boolean() && val->type->is_scalar())
1220      return val;
1221
1222   if (!*error_emitted) {
1223      YYLTYPE loc = expr->get_location();
1224      _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1225                       operand_name,
1226                       parent_expr->operator_string(parent_expr->oper));
1227      *error_emitted = true;
1228   }
1229
1230   return new(ctx) ir_constant(true);
1231}
1232
1233/**
1234 * If name refers to a builtin array whose maximum allowed size is less than
1235 * size, report an error and return true.  Otherwise return false.
1236 */
1237void
1238check_builtin_array_max_size(const char *name, unsigned size,
1239                             YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1240{
1241   if ((strcmp("gl_TexCoord", name) == 0)
1242       && (size > state->Const.MaxTextureCoords)) {
1243      /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1244       *
1245       *     "The size [of gl_TexCoord] can be at most
1246       *     gl_MaxTextureCoords."
1247       */
1248      _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1249                       "be larger than gl_MaxTextureCoords (%u)",
1250                       state->Const.MaxTextureCoords);
1251   } else if (strcmp("gl_ClipDistance", name) == 0) {
1252      state->clip_dist_size = size;
1253      if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1254         /* From section 7.1 (Vertex Shader Special Variables) of the
1255          * GLSL 1.30 spec:
1256          *
1257          *   "The gl_ClipDistance array is predeclared as unsized and
1258          *   must be sized by the shader either redeclaring it with a
1259          *   size or indexing it only with integral constant
1260          *   expressions. ... The size can be at most
1261          *   gl_MaxClipDistances."
1262          */
1263         _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1264                          "be larger than gl_MaxClipDistances (%u)",
1265                          state->Const.MaxClipPlanes);
1266      }
1267   } else if (strcmp("gl_CullDistance", name) == 0) {
1268      state->cull_dist_size = size;
1269      if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1270         /* From the ARB_cull_distance spec:
1271          *
1272          *   "The gl_CullDistance array is predeclared as unsized and
1273          *    must be sized by the shader either redeclaring it with
1274          *    a size or indexing it only with integral constant
1275          *    expressions. The size determines the number and set of
1276          *    enabled cull distances and can be at most
1277          *    gl_MaxCullDistances."
1278          */
1279         _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1280                          "be larger than gl_MaxCullDistances (%u)",
1281                          state->Const.MaxClipPlanes);
1282      }
1283   }
1284}
1285
1286/**
1287 * Create the constant 1, of a which is appropriate for incrementing and
1288 * decrementing values of the given GLSL type.  For example, if type is vec4,
1289 * this creates a constant value of 1.0 having type float.
1290 *
1291 * If the given type is invalid for increment and decrement operators, return
1292 * a floating point 1--the error will be detected later.
1293 */
1294static ir_rvalue *
1295constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1296{
1297   switch (type->base_type) {
1298   case GLSL_TYPE_UINT:
1299      return new(ctx) ir_constant((unsigned) 1);
1300   case GLSL_TYPE_INT:
1301      return new(ctx) ir_constant(1);
1302   case GLSL_TYPE_UINT64:
1303      return new(ctx) ir_constant((uint64_t) 1);
1304   case GLSL_TYPE_INT64:
1305      return new(ctx) ir_constant((int64_t) 1);
1306   default:
1307   case GLSL_TYPE_FLOAT:
1308      return new(ctx) ir_constant(1.0f);
1309   }
1310}
1311
1312ir_rvalue *
1313ast_expression::hir(exec_list *instructions,
1314                    struct _mesa_glsl_parse_state *state)
1315{
1316   return do_hir(instructions, state, true);
1317}
1318
1319void
1320ast_expression::hir_no_rvalue(exec_list *instructions,
1321                              struct _mesa_glsl_parse_state *state)
1322{
1323   do_hir(instructions, state, false);
1324}
1325
1326void
1327ast_expression::set_is_lhs(bool new_value)
1328{
1329   /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1330    * if we lack an identifier we can just skip it.
1331    */
1332   if (this->primary_expression.identifier == NULL)
1333      return;
1334
1335   this->is_lhs = new_value;
1336
1337   /* We need to go through the subexpressions tree to cover cases like
1338    * ast_field_selection
1339    */
1340   if (this->subexpressions[0] != NULL)
1341      this->subexpressions[0]->set_is_lhs(new_value);
1342}
1343
1344ir_rvalue *
1345ast_expression::do_hir(exec_list *instructions,
1346                       struct _mesa_glsl_parse_state *state,
1347                       bool needs_rvalue)
1348{
1349   void *ctx = state;
1350   static const int operations[AST_NUM_OPERATORS] = {
1351      -1,               /* ast_assign doesn't convert to ir_expression. */
1352      -1,               /* ast_plus doesn't convert to ir_expression. */
1353      ir_unop_neg,
1354      ir_binop_add,
1355      ir_binop_sub,
1356      ir_binop_mul,
1357      ir_binop_div,
1358      ir_binop_mod,
1359      ir_binop_lshift,
1360      ir_binop_rshift,
1361      ir_binop_less,
1362      ir_binop_less,    /* This is correct.  See the ast_greater case below. */
1363      ir_binop_gequal,  /* This is correct.  See the ast_lequal case below. */
1364      ir_binop_gequal,
1365      ir_binop_all_equal,
1366      ir_binop_any_nequal,
1367      ir_binop_bit_and,
1368      ir_binop_bit_xor,
1369      ir_binop_bit_or,
1370      ir_unop_bit_not,
1371      ir_binop_logic_and,
1372      ir_binop_logic_xor,
1373      ir_binop_logic_or,
1374      ir_unop_logic_not,
1375
1376      /* Note: The following block of expression types actually convert
1377       * to multiple IR instructions.
1378       */
1379      ir_binop_mul,     /* ast_mul_assign */
1380      ir_binop_div,     /* ast_div_assign */
1381      ir_binop_mod,     /* ast_mod_assign */
1382      ir_binop_add,     /* ast_add_assign */
1383      ir_binop_sub,     /* ast_sub_assign */
1384      ir_binop_lshift,  /* ast_ls_assign */
1385      ir_binop_rshift,  /* ast_rs_assign */
1386      ir_binop_bit_and, /* ast_and_assign */
1387      ir_binop_bit_xor, /* ast_xor_assign */
1388      ir_binop_bit_or,  /* ast_or_assign */
1389
1390      -1,               /* ast_conditional doesn't convert to ir_expression. */
1391      ir_binop_add,     /* ast_pre_inc. */
1392      ir_binop_sub,     /* ast_pre_dec. */
1393      ir_binop_add,     /* ast_post_inc. */
1394      ir_binop_sub,     /* ast_post_dec. */
1395      -1,               /* ast_field_selection doesn't conv to ir_expression. */
1396      -1,               /* ast_array_index doesn't convert to ir_expression. */
1397      -1,               /* ast_function_call doesn't conv to ir_expression. */
1398      -1,               /* ast_identifier doesn't convert to ir_expression. */
1399      -1,               /* ast_int_constant doesn't convert to ir_expression. */
1400      -1,               /* ast_uint_constant doesn't conv to ir_expression. */
1401      -1,               /* ast_float_constant doesn't conv to ir_expression. */
1402      -1,               /* ast_bool_constant doesn't conv to ir_expression. */
1403      -1,               /* ast_sequence doesn't convert to ir_expression. */
1404      -1,               /* ast_aggregate shouldn't ever even get here. */
1405   };
1406   ir_rvalue *result = NULL;
1407   ir_rvalue *op[3];
1408   const struct glsl_type *type, *orig_type;
1409   bool error_emitted = false;
1410   YYLTYPE loc;
1411
1412   loc = this->get_location();
1413
1414   switch (this->oper) {
1415   case ast_aggregate:
1416      unreachable("ast_aggregate: Should never get here.");
1417
1418   case ast_assign: {
1419      this->subexpressions[0]->set_is_lhs(true);
1420      op[0] = this->subexpressions[0]->hir(instructions, state);
1421      op[1] = this->subexpressions[1]->hir(instructions, state);
1422
1423      error_emitted =
1424         do_assignment(instructions, state,
1425                       this->subexpressions[0]->non_lvalue_description,
1426                       op[0], op[1], &result, needs_rvalue, false,
1427                       this->subexpressions[0]->get_location());
1428      break;
1429   }
1430
1431   case ast_plus:
1432      op[0] = this->subexpressions[0]->hir(instructions, state);
1433
1434      type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1435
1436      error_emitted = type->is_error();
1437
1438      result = op[0];
1439      break;
1440
1441   case ast_neg:
1442      op[0] = this->subexpressions[0]->hir(instructions, state);
1443
1444      type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1445
1446      error_emitted = type->is_error();
1447
1448      result = new(ctx) ir_expression(operations[this->oper], type,
1449                                      op[0], NULL);
1450      break;
1451
1452   case ast_add:
1453   case ast_sub:
1454   case ast_mul:
1455   case ast_div:
1456      op[0] = this->subexpressions[0]->hir(instructions, state);
1457      op[1] = this->subexpressions[1]->hir(instructions, state);
1458
1459      type = arithmetic_result_type(op[0], op[1],
1460                                    (this->oper == ast_mul),
1461                                    state, & loc);
1462      error_emitted = type->is_error();
1463
1464      result = new(ctx) ir_expression(operations[this->oper], type,
1465                                      op[0], op[1]);
1466      break;
1467
1468   case ast_mod:
1469      op[0] = this->subexpressions[0]->hir(instructions, state);
1470      op[1] = this->subexpressions[1]->hir(instructions, state);
1471
1472      type = modulus_result_type(op[0], op[1], state, &loc);
1473
1474      assert(operations[this->oper] == ir_binop_mod);
1475
1476      result = new(ctx) ir_expression(operations[this->oper], type,
1477                                      op[0], op[1]);
1478      error_emitted = type->is_error();
1479      break;
1480
1481   case ast_lshift:
1482   case ast_rshift:
1483       if (!state->check_bitwise_operations_allowed(&loc)) {
1484          error_emitted = true;
1485       }
1486
1487       op[0] = this->subexpressions[0]->hir(instructions, state);
1488       op[1] = this->subexpressions[1]->hir(instructions, state);
1489       type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1490                                &loc);
1491       result = new(ctx) ir_expression(operations[this->oper], type,
1492                                       op[0], op[1]);
1493       error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1494       break;
1495
1496   case ast_less:
1497   case ast_greater:
1498   case ast_lequal:
1499   case ast_gequal:
1500      op[0] = this->subexpressions[0]->hir(instructions, state);
1501      op[1] = this->subexpressions[1]->hir(instructions, state);
1502
1503      type = relational_result_type(op[0], op[1], state, & loc);
1504
1505      /* The relational operators must either generate an error or result
1506       * in a scalar boolean.  See page 57 of the GLSL 1.50 spec.
1507       */
1508      assert(type->is_error()
1509             || (type->is_boolean() && type->is_scalar()));
1510
1511      /* Like NIR, GLSL IR does not have opcodes for > or <=.  Instead, swap
1512       * the arguments and use < or >=.
1513       */
1514      if (this->oper == ast_greater || this->oper == ast_lequal) {
1515         ir_rvalue *const tmp = op[0];
1516         op[0] = op[1];
1517         op[1] = tmp;
1518      }
1519
1520      result = new(ctx) ir_expression(operations[this->oper], type,
1521                                      op[0], op[1]);
1522      error_emitted = type->is_error();
1523      break;
1524
1525   case ast_nequal:
1526   case ast_equal:
1527      op[0] = this->subexpressions[0]->hir(instructions, state);
1528      op[1] = this->subexpressions[1]->hir(instructions, state);
1529
1530      /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1531       *
1532       *    "The equality operators equal (==), and not equal (!=)
1533       *    operate on all types. They result in a scalar Boolean. If
1534       *    the operand types do not match, then there must be a
1535       *    conversion from Section 4.1.10 "Implicit Conversions"
1536       *    applied to one operand that can make them match, in which
1537       *    case this conversion is done."
1538       */
1539
1540      if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1541         _mesa_glsl_error(& loc, state, "`%s':  wrong operand types: "
1542                         "no operation `%1$s' exists that takes a left-hand "
1543                         "operand of type 'void' or a right operand of type "
1544                         "'void'", (this->oper == ast_equal) ? "==" : "!=");
1545         error_emitted = true;
1546      } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1547           && !apply_implicit_conversion(op[1]->type, op[0], state))
1548          || (op[0]->type != op[1]->type)) {
1549         _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1550                          "type", (this->oper == ast_equal) ? "==" : "!=");
1551         error_emitted = true;
1552      } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1553                 !state->check_version(120, 300, &loc,
1554                                       "array comparisons forbidden")) {
1555         error_emitted = true;
1556      } else if ((op[0]->type->contains_subroutine() ||
1557                  op[1]->type->contains_subroutine())) {
1558         _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1559         error_emitted = true;
1560      } else if ((op[0]->type->contains_opaque() ||
1561                  op[1]->type->contains_opaque())) {
1562         _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1563         error_emitted = true;
1564      }
1565
1566      if (error_emitted) {
1567         result = new(ctx) ir_constant(false);
1568      } else {
1569         result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1570         assert(result->type == glsl_type::bool_type);
1571      }
1572      break;
1573
1574   case ast_bit_and:
1575   case ast_bit_xor:
1576   case ast_bit_or:
1577      op[0] = this->subexpressions[0]->hir(instructions, state);
1578      op[1] = this->subexpressions[1]->hir(instructions, state);
1579      type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1580      result = new(ctx) ir_expression(operations[this->oper], type,
1581                                      op[0], op[1]);
1582      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1583      break;
1584
1585   case ast_bit_not:
1586      op[0] = this->subexpressions[0]->hir(instructions, state);
1587
1588      if (!state->check_bitwise_operations_allowed(&loc)) {
1589         error_emitted = true;
1590      }
1591
1592      if (!op[0]->type->is_integer_32_64()) {
1593         _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1594         error_emitted = true;
1595      }
1596
1597      type = error_emitted ? glsl_type::error_type : op[0]->type;
1598      result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1599      break;
1600
1601   case ast_logic_and: {
1602      exec_list rhs_instructions;
1603      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1604                                         "LHS", &error_emitted);
1605      op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1606                                         "RHS", &error_emitted);
1607
1608      if (rhs_instructions.is_empty()) {
1609         result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1610      } else {
1611         ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1612                                                       "and_tmp",
1613                                                       ir_var_temporary);
1614         instructions->push_tail(tmp);
1615
1616         ir_if *const stmt = new(ctx) ir_if(op[0]);
1617         instructions->push_tail(stmt);
1618
1619         stmt->then_instructions.append_list(&rhs_instructions);
1620         ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1621         ir_assignment *const then_assign =
1622            new(ctx) ir_assignment(then_deref, op[1]);
1623         stmt->then_instructions.push_tail(then_assign);
1624
1625         ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1626         ir_assignment *const else_assign =
1627            new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1628         stmt->else_instructions.push_tail(else_assign);
1629
1630         result = new(ctx) ir_dereference_variable(tmp);
1631      }
1632      break;
1633   }
1634
1635   case ast_logic_or: {
1636      exec_list rhs_instructions;
1637      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1638                                         "LHS", &error_emitted);
1639      op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1640                                         "RHS", &error_emitted);
1641
1642      if (rhs_instructions.is_empty()) {
1643         result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1644      } else {
1645         ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1646                                                       "or_tmp",
1647                                                       ir_var_temporary);
1648         instructions->push_tail(tmp);
1649
1650         ir_if *const stmt = new(ctx) ir_if(op[0]);
1651         instructions->push_tail(stmt);
1652
1653         ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1654         ir_assignment *const then_assign =
1655            new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1656         stmt->then_instructions.push_tail(then_assign);
1657
1658         stmt->else_instructions.append_list(&rhs_instructions);
1659         ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1660         ir_assignment *const else_assign =
1661            new(ctx) ir_assignment(else_deref, op[1]);
1662         stmt->else_instructions.push_tail(else_assign);
1663
1664         result = new(ctx) ir_dereference_variable(tmp);
1665      }
1666      break;
1667   }
1668
1669   case ast_logic_xor:
1670      /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1671       *
1672       *    "The logical binary operators and (&&), or ( | | ), and
1673       *     exclusive or (^^). They operate only on two Boolean
1674       *     expressions and result in a Boolean expression."
1675       */
1676      op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1677                                         &error_emitted);
1678      op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1679                                         &error_emitted);
1680
1681      result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1682                                      op[0], op[1]);
1683      break;
1684
1685   case ast_logic_not:
1686      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1687                                         "operand", &error_emitted);
1688
1689      result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1690                                      op[0], NULL);
1691      break;
1692
1693   case ast_mul_assign:
1694   case ast_div_assign:
1695   case ast_add_assign:
1696   case ast_sub_assign: {
1697      this->subexpressions[0]->set_is_lhs(true);
1698      op[0] = this->subexpressions[0]->hir(instructions, state);
1699      op[1] = this->subexpressions[1]->hir(instructions, state);
1700
1701      orig_type = op[0]->type;
1702
1703      /* Break out if operand types were not parsed successfully. */
1704      if ((op[0]->type == glsl_type::error_type ||
1705           op[1]->type == glsl_type::error_type)) {
1706         error_emitted = true;
1707         result = ir_rvalue::error_value(ctx);
1708         break;
1709      }
1710
1711      type = arithmetic_result_type(op[0], op[1],
1712                                    (this->oper == ast_mul_assign),
1713                                    state, & loc);
1714
1715      if (type != orig_type) {
1716         _mesa_glsl_error(& loc, state,
1717                          "could not implicitly convert "
1718                          "%s to %s", type->name, orig_type->name);
1719         type = glsl_type::error_type;
1720      }
1721
1722      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1723                                                   op[0], op[1]);
1724
1725      error_emitted =
1726         do_assignment(instructions, state,
1727                       this->subexpressions[0]->non_lvalue_description,
1728                       op[0]->clone(ctx, NULL), temp_rhs,
1729                       &result, needs_rvalue, false,
1730                       this->subexpressions[0]->get_location());
1731
1732      /* GLSL 1.10 does not allow array assignment.  However, we don't have to
1733       * explicitly test for this because none of the binary expression
1734       * operators allow array operands either.
1735       */
1736
1737      break;
1738   }
1739
1740   case ast_mod_assign: {
1741      this->subexpressions[0]->set_is_lhs(true);
1742      op[0] = this->subexpressions[0]->hir(instructions, state);
1743      op[1] = this->subexpressions[1]->hir(instructions, state);
1744
1745      /* Break out if operand types were not parsed successfully. */
1746      if ((op[0]->type == glsl_type::error_type ||
1747           op[1]->type == glsl_type::error_type)) {
1748         error_emitted = true;
1749         result = ir_rvalue::error_value(ctx);
1750         break;
1751      }
1752
1753      orig_type = op[0]->type;
1754      type = modulus_result_type(op[0], op[1], state, &loc);
1755
1756      if (type != orig_type) {
1757         _mesa_glsl_error(& loc, state,
1758                          "could not implicitly convert "
1759                          "%s to %s", type->name, orig_type->name);
1760         type = glsl_type::error_type;
1761      }
1762
1763      assert(operations[this->oper] == ir_binop_mod);
1764
1765      ir_rvalue *temp_rhs;
1766      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1767                                        op[0], op[1]);
1768
1769      error_emitted =
1770         do_assignment(instructions, state,
1771                       this->subexpressions[0]->non_lvalue_description,
1772                       op[0]->clone(ctx, NULL), temp_rhs,
1773                       &result, needs_rvalue, false,
1774                       this->subexpressions[0]->get_location());
1775      break;
1776   }
1777
1778   case ast_ls_assign:
1779   case ast_rs_assign: {
1780      this->subexpressions[0]->set_is_lhs(true);
1781      op[0] = this->subexpressions[0]->hir(instructions, state);
1782      op[1] = this->subexpressions[1]->hir(instructions, state);
1783
1784      /* Break out if operand types were not parsed successfully. */
1785      if ((op[0]->type == glsl_type::error_type ||
1786           op[1]->type == glsl_type::error_type)) {
1787         error_emitted = true;
1788         result = ir_rvalue::error_value(ctx);
1789         break;
1790      }
1791
1792      type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1793                               &loc);
1794      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1795                                                   type, op[0], op[1]);
1796      error_emitted =
1797         do_assignment(instructions, state,
1798                       this->subexpressions[0]->non_lvalue_description,
1799                       op[0]->clone(ctx, NULL), temp_rhs,
1800                       &result, needs_rvalue, false,
1801                       this->subexpressions[0]->get_location());
1802      break;
1803   }
1804
1805   case ast_and_assign:
1806   case ast_xor_assign:
1807   case ast_or_assign: {
1808      this->subexpressions[0]->set_is_lhs(true);
1809      op[0] = this->subexpressions[0]->hir(instructions, state);
1810      op[1] = this->subexpressions[1]->hir(instructions, state);
1811
1812      /* Break out if operand types were not parsed successfully. */
1813      if ((op[0]->type == glsl_type::error_type ||
1814           op[1]->type == glsl_type::error_type)) {
1815         error_emitted = true;
1816         result = ir_rvalue::error_value(ctx);
1817         break;
1818      }
1819
1820      orig_type = op[0]->type;
1821      type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1822
1823      if (type != orig_type) {
1824         _mesa_glsl_error(& loc, state,
1825                          "could not implicitly convert "
1826                          "%s to %s", type->name, orig_type->name);
1827         type = glsl_type::error_type;
1828      }
1829
1830      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1831                                                   type, op[0], op[1]);
1832      error_emitted =
1833         do_assignment(instructions, state,
1834                       this->subexpressions[0]->non_lvalue_description,
1835                       op[0]->clone(ctx, NULL), temp_rhs,
1836                       &result, needs_rvalue, false,
1837                       this->subexpressions[0]->get_location());
1838      break;
1839   }
1840
1841   case ast_conditional: {
1842      /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1843       *
1844       *    "The ternary selection operator (?:). It operates on three
1845       *    expressions (exp1 ? exp2 : exp3). This operator evaluates the
1846       *    first expression, which must result in a scalar Boolean."
1847       */
1848      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1849                                         "condition", &error_emitted);
1850
1851      /* The :? operator is implemented by generating an anonymous temporary
1852       * followed by an if-statement.  The last instruction in each branch of
1853       * the if-statement assigns a value to the anonymous temporary.  This
1854       * temporary is the r-value of the expression.
1855       */
1856      exec_list then_instructions;
1857      exec_list else_instructions;
1858
1859      op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1860      op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1861
1862      /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1863       *
1864       *     "The second and third expressions can be any type, as
1865       *     long their types match, or there is a conversion in
1866       *     Section 4.1.10 "Implicit Conversions" that can be applied
1867       *     to one of the expressions to make their types match. This
1868       *     resulting matching type is the type of the entire
1869       *     expression."
1870       */
1871      if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1872          && !apply_implicit_conversion(op[2]->type, op[1], state))
1873          || (op[1]->type != op[2]->type)) {
1874         YYLTYPE loc = this->subexpressions[1]->get_location();
1875
1876         _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1877                          "operator must have matching types");
1878         error_emitted = true;
1879         type = glsl_type::error_type;
1880      } else {
1881         type = op[1]->type;
1882      }
1883
1884      /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1885       *
1886       *    "The second and third expressions must be the same type, but can
1887       *    be of any type other than an array."
1888       */
1889      if (type->is_array() &&
1890          !state->check_version(120, 300, &loc,
1891                                "second and third operands of ?: operator "
1892                                "cannot be arrays")) {
1893         error_emitted = true;
1894      }
1895
1896      /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1897       *
1898       *  "Except for array indexing, structure member selection, and
1899       *   parentheses, opaque variables are not allowed to be operands in
1900       *   expressions; such use results in a compile-time error."
1901       */
1902      if (type->contains_opaque()) {
1903         if (!(state->has_bindless() && (type->is_image() || type->is_sampler()))) {
1904            _mesa_glsl_error(&loc, state, "variables of type %s cannot be "
1905                             "operands of the ?: operator", type->name);
1906            error_emitted = true;
1907         }
1908      }
1909
1910      ir_constant *cond_val = op[0]->constant_expression_value(ctx);
1911
1912      if (then_instructions.is_empty()
1913          && else_instructions.is_empty()
1914          && cond_val != NULL) {
1915         result = cond_val->value.b[0] ? op[1] : op[2];
1916      } else {
1917         /* The copy to conditional_tmp reads the whole array. */
1918         if (type->is_array()) {
1919            mark_whole_array_access(op[1]);
1920            mark_whole_array_access(op[2]);
1921         }
1922
1923         ir_variable *const tmp =
1924            new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1925         instructions->push_tail(tmp);
1926
1927         ir_if *const stmt = new(ctx) ir_if(op[0]);
1928         instructions->push_tail(stmt);
1929
1930         then_instructions.move_nodes_to(& stmt->then_instructions);
1931         ir_dereference *const then_deref =
1932            new(ctx) ir_dereference_variable(tmp);
1933         ir_assignment *const then_assign =
1934            new(ctx) ir_assignment(then_deref, op[1]);
1935         stmt->then_instructions.push_tail(then_assign);
1936
1937         else_instructions.move_nodes_to(& stmt->else_instructions);
1938         ir_dereference *const else_deref =
1939            new(ctx) ir_dereference_variable(tmp);
1940         ir_assignment *const else_assign =
1941            new(ctx) ir_assignment(else_deref, op[2]);
1942         stmt->else_instructions.push_tail(else_assign);
1943
1944         result = new(ctx) ir_dereference_variable(tmp);
1945      }
1946      break;
1947   }
1948
1949   case ast_pre_inc:
1950   case ast_pre_dec: {
1951      this->non_lvalue_description = (this->oper == ast_pre_inc)
1952         ? "pre-increment operation" : "pre-decrement operation";
1953
1954      op[0] = this->subexpressions[0]->hir(instructions, state);
1955      op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1956
1957      type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1958
1959      ir_rvalue *temp_rhs;
1960      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1961                                        op[0], op[1]);
1962
1963      error_emitted =
1964         do_assignment(instructions, state,
1965                       this->subexpressions[0]->non_lvalue_description,
1966                       op[0]->clone(ctx, NULL), temp_rhs,
1967                       &result, needs_rvalue, false,
1968                       this->subexpressions[0]->get_location());
1969      break;
1970   }
1971
1972   case ast_post_inc:
1973   case ast_post_dec: {
1974      this->non_lvalue_description = (this->oper == ast_post_inc)
1975         ? "post-increment operation" : "post-decrement operation";
1976      op[0] = this->subexpressions[0]->hir(instructions, state);
1977      op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1978
1979      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1980
1981      if (error_emitted) {
1982         result = ir_rvalue::error_value(ctx);
1983         break;
1984      }
1985
1986      type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1987
1988      ir_rvalue *temp_rhs;
1989      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1990                                        op[0], op[1]);
1991
1992      /* Get a temporary of a copy of the lvalue before it's modified.
1993       * This may get thrown away later.
1994       */
1995      result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1996
1997      ir_rvalue *junk_rvalue;
1998      error_emitted =
1999         do_assignment(instructions, state,
2000                       this->subexpressions[0]->non_lvalue_description,
2001                       op[0]->clone(ctx, NULL), temp_rhs,
2002                       &junk_rvalue, false, false,
2003                       this->subexpressions[0]->get_location());
2004
2005      break;
2006   }
2007
2008   case ast_field_selection:
2009      result = _mesa_ast_field_selection_to_hir(this, instructions, state);
2010      break;
2011
2012   case ast_array_index: {
2013      YYLTYPE index_loc = subexpressions[1]->get_location();
2014
2015      /* Getting if an array is being used uninitialized is beyond what we get
2016       * from ir_value.data.assigned. Setting is_lhs as true would force to
2017       * not raise a uninitialized warning when using an array
2018       */
2019      subexpressions[0]->set_is_lhs(true);
2020      op[0] = subexpressions[0]->hir(instructions, state);
2021      op[1] = subexpressions[1]->hir(instructions, state);
2022
2023      result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
2024                                            loc, index_loc);
2025
2026      if (result->type->is_error())
2027         error_emitted = true;
2028
2029      break;
2030   }
2031
2032   case ast_unsized_array_dim:
2033      unreachable("ast_unsized_array_dim: Should never get here.");
2034
2035   case ast_function_call:
2036      /* Should *NEVER* get here.  ast_function_call should always be handled
2037       * by ast_function_expression::hir.
2038       */
2039      unreachable("ast_function_call: handled elsewhere ");
2040
2041   case ast_identifier: {
2042      /* ast_identifier can appear several places in a full abstract syntax
2043       * tree.  This particular use must be at location specified in the grammar
2044       * as 'variable_identifier'.
2045       */
2046      ir_variable *var =
2047         state->symbols->get_variable(this->primary_expression.identifier);
2048
2049      if (var == NULL) {
2050         /* the identifier might be a subroutine name */
2051         char *sub_name;
2052         sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
2053         var = state->symbols->get_variable(sub_name);
2054         ralloc_free(sub_name);
2055      }
2056
2057      if (var != NULL) {
2058         var->data.used = true;
2059         result = new(ctx) ir_dereference_variable(var);
2060
2061         if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
2062             && !this->is_lhs
2063             && result->variable_referenced()->data.assigned != true
2064             && !is_gl_identifier(var->name)) {
2065            _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2066                               this->primary_expression.identifier);
2067         }
2068
2069         if (var->is_fb_fetch_color_output()) {
2070            /* From the EXT_shader_framebuffer_fetch spec:
2071             *
2072             *   "Unless the GL_EXT_shader_framebuffer_fetch extension has been
2073             *    enabled in addition, it's an error to use gl_LastFragData if it
2074             *    hasn't been explicitly redeclared with layout(noncoherent)."
2075             */
2076            if (var->data.memory_coherent && !state->EXT_shader_framebuffer_fetch_enable) {
2077               _mesa_glsl_error(&loc, state,
2078                                "invalid use of framebuffer fetch output not "
2079                                "qualified with layout(noncoherent)");
2080            }
2081         } else if (var->data.fb_fetch_output) {
2082            /* From the ARM_shader_framebuffer_fetch_depth_stencil spec:
2083             *
2084             *   "It is not legal for a fragment shader to read from gl_LastFragDepthARM
2085             *    and gl_LastFragStencilARM if the early_fragment_tests layout qualifier
2086             *    is specified. This will result in a compile-time error."
2087             */
2088            if (state->fs_early_fragment_tests) {
2089               _mesa_glsl_error(&loc, state,
2090                                "invalid use of depth or stencil fetch "
2091                                "with early fragment tests enabled");
2092            }
2093         }
2094
2095      } else {
2096         _mesa_glsl_error(& loc, state, "`%s' undeclared",
2097                          this->primary_expression.identifier);
2098
2099         result = ir_rvalue::error_value(ctx);
2100         error_emitted = true;
2101      }
2102      break;
2103   }
2104
2105   case ast_int_constant:
2106      result = new(ctx) ir_constant(this->primary_expression.int_constant);
2107      break;
2108
2109   case ast_uint_constant:
2110      result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2111      break;
2112
2113   case ast_float_constant:
2114      result = new(ctx) ir_constant(this->primary_expression.float_constant);
2115      break;
2116
2117   case ast_bool_constant:
2118      result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2119      break;
2120
2121   case ast_double_constant:
2122      result = new(ctx) ir_constant(this->primary_expression.double_constant);
2123      break;
2124
2125   case ast_uint64_constant:
2126      result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2127      break;
2128
2129   case ast_int64_constant:
2130      result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2131      break;
2132
2133   case ast_sequence: {
2134      /* It should not be possible to generate a sequence in the AST without
2135       * any expressions in it.
2136       */
2137      assert(!this->expressions.is_empty());
2138
2139      /* The r-value of a sequence is the last expression in the sequence.  If
2140       * the other expressions in the sequence do not have side-effects (and
2141       * therefore add instructions to the instruction list), they get dropped
2142       * on the floor.
2143       */
2144      exec_node *previous_tail = NULL;
2145      YYLTYPE previous_operand_loc = loc;
2146
2147      foreach_list_typed (ast_node, ast, link, &this->expressions) {
2148         /* If one of the operands of comma operator does not generate any
2149          * code, we want to emit a warning.  At each pass through the loop
2150          * previous_tail will point to the last instruction in the stream
2151          * *before* processing the previous operand.  Naturally,
2152          * instructions->get_tail_raw() will point to the last instruction in
2153          * the stream *after* processing the previous operand.  If the two
2154          * pointers match, then the previous operand had no effect.
2155          *
2156          * The warning behavior here differs slightly from GCC.  GCC will
2157          * only emit a warning if none of the left-hand operands have an
2158          * effect.  However, it will emit a warning for each.  I believe that
2159          * there are some cases in C (especially with GCC extensions) where
2160          * it is useful to have an intermediate step in a sequence have no
2161          * effect, but I don't think these cases exist in GLSL.  Either way,
2162          * it would be a giant hassle to replicate that behavior.
2163          */
2164         if (previous_tail == instructions->get_tail_raw()) {
2165            _mesa_glsl_warning(&previous_operand_loc, state,
2166                               "left-hand operand of comma expression has "
2167                               "no effect");
2168         }
2169
2170         /* The tail is directly accessed instead of using the get_tail()
2171          * method for performance reasons.  get_tail() has extra code to
2172          * return NULL when the list is empty.  We don't care about that
2173          * here, so using get_tail_raw() is fine.
2174          */
2175         previous_tail = instructions->get_tail_raw();
2176         previous_operand_loc = ast->get_location();
2177
2178         result = ast->hir(instructions, state);
2179      }
2180
2181      /* Any errors should have already been emitted in the loop above.
2182       */
2183      error_emitted = true;
2184      break;
2185   }
2186   }
2187   type = NULL; /* use result->type, not type. */
2188   assert(error_emitted || (result != NULL || !needs_rvalue));
2189
2190   if (result && result->type->is_error() && !error_emitted)
2191      _mesa_glsl_error(& loc, state, "type mismatch");
2192
2193   return result;
2194}
2195
2196bool
2197ast_expression::has_sequence_subexpression() const
2198{
2199   switch (this->oper) {
2200   case ast_plus:
2201   case ast_neg:
2202   case ast_bit_not:
2203   case ast_logic_not:
2204   case ast_pre_inc:
2205   case ast_pre_dec:
2206   case ast_post_inc:
2207   case ast_post_dec:
2208      return this->subexpressions[0]->has_sequence_subexpression();
2209
2210   case ast_assign:
2211   case ast_add:
2212   case ast_sub:
2213   case ast_mul:
2214   case ast_div:
2215   case ast_mod:
2216   case ast_lshift:
2217   case ast_rshift:
2218   case ast_less:
2219   case ast_greater:
2220   case ast_lequal:
2221   case ast_gequal:
2222   case ast_nequal:
2223   case ast_equal:
2224   case ast_bit_and:
2225   case ast_bit_xor:
2226   case ast_bit_or:
2227   case ast_logic_and:
2228   case ast_logic_or:
2229   case ast_logic_xor:
2230   case ast_array_index:
2231   case ast_mul_assign:
2232   case ast_div_assign:
2233   case ast_add_assign:
2234   case ast_sub_assign:
2235   case ast_mod_assign:
2236   case ast_ls_assign:
2237   case ast_rs_assign:
2238   case ast_and_assign:
2239   case ast_xor_assign:
2240   case ast_or_assign:
2241      return this->subexpressions[0]->has_sequence_subexpression() ||
2242             this->subexpressions[1]->has_sequence_subexpression();
2243
2244   case ast_conditional:
2245      return this->subexpressions[0]->has_sequence_subexpression() ||
2246             this->subexpressions[1]->has_sequence_subexpression() ||
2247             this->subexpressions[2]->has_sequence_subexpression();
2248
2249   case ast_sequence:
2250      return true;
2251
2252   case ast_field_selection:
2253   case ast_identifier:
2254   case ast_int_constant:
2255   case ast_uint_constant:
2256   case ast_float_constant:
2257   case ast_bool_constant:
2258   case ast_double_constant:
2259   case ast_int64_constant:
2260   case ast_uint64_constant:
2261      return false;
2262
2263   case ast_aggregate:
2264      return false;
2265
2266   case ast_function_call:
2267      unreachable("should be handled by ast_function_expression::hir");
2268
2269   case ast_unsized_array_dim:
2270      unreachable("ast_unsized_array_dim: Should never get here.");
2271   }
2272
2273   return false;
2274}
2275
2276ir_rvalue *
2277ast_expression_statement::hir(exec_list *instructions,
2278                              struct _mesa_glsl_parse_state *state)
2279{
2280   /* It is possible to have expression statements that don't have an
2281    * expression.  This is the solitary semicolon:
2282    *
2283    * for (i = 0; i < 5; i++)
2284    *     ;
2285    *
2286    * In this case the expression will be NULL.  Test for NULL and don't do
2287    * anything in that case.
2288    */
2289   if (expression != NULL)
2290      expression->hir_no_rvalue(instructions, state);
2291
2292   /* Statements do not have r-values.
2293    */
2294   return NULL;
2295}
2296
2297
2298ir_rvalue *
2299ast_compound_statement::hir(exec_list *instructions,
2300                            struct _mesa_glsl_parse_state *state)
2301{
2302   if (new_scope)
2303      state->symbols->push_scope();
2304
2305   foreach_list_typed (ast_node, ast, link, &this->statements)
2306      ast->hir(instructions, state);
2307
2308   if (new_scope)
2309      state->symbols->pop_scope();
2310
2311   /* Compound statements do not have r-values.
2312    */
2313   return NULL;
2314}
2315
2316/**
2317 * Evaluate the given exec_node (which should be an ast_node representing
2318 * a single array dimension) and return its integer value.
2319 */
2320static unsigned
2321process_array_size(exec_node *node,
2322                   struct _mesa_glsl_parse_state *state)
2323{
2324   void *mem_ctx = state;
2325
2326   exec_list dummy_instructions;
2327
2328   ast_node *array_size = exec_node_data(ast_node, node, link);
2329
2330   /**
2331    * Dimensions other than the outermost dimension can by unsized if they
2332    * are immediately sized by a constructor or initializer.
2333    */
2334   if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2335      return 0;
2336
2337   ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2338   YYLTYPE loc = array_size->get_location();
2339
2340   if (ir == NULL) {
2341      _mesa_glsl_error(& loc, state,
2342                       "array size could not be resolved");
2343      return 0;
2344   }
2345
2346   if (!ir->type->is_integer_32()) {
2347      _mesa_glsl_error(& loc, state,
2348                       "array size must be integer type");
2349      return 0;
2350   }
2351
2352   if (!ir->type->is_scalar()) {
2353      _mesa_glsl_error(& loc, state,
2354                       "array size must be scalar type");
2355      return 0;
2356   }
2357
2358   ir_constant *const size = ir->constant_expression_value(mem_ctx);
2359   if (size == NULL ||
2360       (state->is_version(120, 300) &&
2361        array_size->has_sequence_subexpression())) {
2362      _mesa_glsl_error(& loc, state, "array size must be a "
2363                       "constant valued expression");
2364      return 0;
2365   }
2366
2367   if (size->value.i[0] <= 0) {
2368      _mesa_glsl_error(& loc, state, "array size must be > 0");
2369      return 0;
2370   }
2371
2372   assert(size->type == ir->type);
2373
2374   /* If the array size is const (and we've verified that
2375    * it is) then no instructions should have been emitted
2376    * when we converted it to HIR. If they were emitted,
2377    * then either the array size isn't const after all, or
2378    * we are emitting unnecessary instructions.
2379    */
2380   assert(dummy_instructions.is_empty());
2381
2382   return size->value.u[0];
2383}
2384
2385static const glsl_type *
2386process_array_type(YYLTYPE *loc, const glsl_type *base,
2387                   ast_array_specifier *array_specifier,
2388                   struct _mesa_glsl_parse_state *state)
2389{
2390   const glsl_type *array_type = base;
2391
2392   if (array_specifier != NULL) {
2393      if (base->is_array()) {
2394
2395         /* From page 19 (page 25) of the GLSL 1.20 spec:
2396          *
2397          * "Only one-dimensional arrays may be declared."
2398          */
2399         if (!state->check_arrays_of_arrays_allowed(loc)) {
2400            return glsl_type::error_type;
2401         }
2402      }
2403
2404      for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2405           !node->is_head_sentinel(); node = node->prev) {
2406         unsigned array_size = process_array_size(node, state);
2407         array_type = glsl_type::get_array_instance(array_type, array_size);
2408      }
2409   }
2410
2411   return array_type;
2412}
2413
2414static bool
2415precision_qualifier_allowed(const glsl_type *type)
2416{
2417   /* Precision qualifiers apply to floating point, integer and opaque
2418    * types.
2419    *
2420    * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2421    *    "Any floating point or any integer declaration can have the type
2422    *    preceded by one of these precision qualifiers [...] Literal
2423    *    constants do not have precision qualifiers. Neither do Boolean
2424    *    variables.
2425    *
2426    * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2427    * spec also says:
2428    *
2429    *     "Precision qualifiers are added for code portability with OpenGL
2430    *     ES, not for functionality. They have the same syntax as in OpenGL
2431    *     ES."
2432    *
2433    * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2434    *
2435    *     "uniform lowp sampler2D sampler;
2436    *     highp vec2 coord;
2437    *     ...
2438    *     lowp vec4 col = texture2D (sampler, coord);
2439    *                                            // texture2D returns lowp"
2440    *
2441    * From this, we infer that GLSL 1.30 (and later) should allow precision
2442    * qualifiers on sampler types just like float and integer types.
2443    */
2444   const glsl_type *const t = type->without_array();
2445
2446   return (t->is_float() || t->is_integer_32() || t->contains_opaque()) &&
2447          !t->is_struct();
2448}
2449
2450const glsl_type *
2451ast_type_specifier::glsl_type(const char **name,
2452                              struct _mesa_glsl_parse_state *state) const
2453{
2454   const struct glsl_type *type;
2455
2456   if (this->type != NULL)
2457      type = this->type;
2458   else if (structure)
2459      type = structure->type;
2460   else
2461      type = state->symbols->get_type(this->type_name);
2462   *name = this->type_name;
2463
2464   YYLTYPE loc = this->get_location();
2465   type = process_array_type(&loc, type, this->array_specifier, state);
2466
2467   return type;
2468}
2469
2470/**
2471 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2472 *
2473 * "The precision statement
2474 *
2475 *    precision precision-qualifier type;
2476 *
2477 *  can be used to establish a default precision qualifier. The type field can
2478 *  be either int or float or any of the sampler types, (...) If type is float,
2479 *  the directive applies to non-precision-qualified floating point type
2480 *  (scalar, vector, and matrix) declarations. If type is int, the directive
2481 *  applies to all non-precision-qualified integer type (scalar, vector, signed,
2482 *  and unsigned) declarations."
2483 *
2484 * We use the symbol table to keep the values of the default precisions for
2485 * each 'type' in each scope and we use the 'type' string from the precision
2486 * statement as key in the symbol table. When we want to retrieve the default
2487 * precision associated with a given glsl_type we need to know the type string
2488 * associated with it. This is what this function returns.
2489 */
2490static const char *
2491get_type_name_for_precision_qualifier(const glsl_type *type)
2492{
2493   switch (type->base_type) {
2494   case GLSL_TYPE_FLOAT:
2495      return "float";
2496   case GLSL_TYPE_UINT:
2497   case GLSL_TYPE_INT:
2498      return "int";
2499   case GLSL_TYPE_ATOMIC_UINT:
2500      return "atomic_uint";
2501   case GLSL_TYPE_IMAGE:
2502   FALLTHROUGH;
2503   case GLSL_TYPE_SAMPLER: {
2504      const unsigned type_idx =
2505         type->sampler_array + 2 * type->sampler_shadow;
2506      const unsigned offset = type->is_sampler() ? 0 : 4;
2507      assert(type_idx < 4);
2508      switch (type->sampled_type) {
2509      case GLSL_TYPE_FLOAT:
2510         switch (type->sampler_dimensionality) {
2511         case GLSL_SAMPLER_DIM_1D: {
2512            assert(type->is_sampler());
2513            static const char *const names[4] = {
2514              "sampler1D", "sampler1DArray",
2515              "sampler1DShadow", "sampler1DArrayShadow"
2516            };
2517            return names[type_idx];
2518         }
2519         case GLSL_SAMPLER_DIM_2D: {
2520            static const char *const names[8] = {
2521              "sampler2D", "sampler2DArray",
2522              "sampler2DShadow", "sampler2DArrayShadow",
2523              "image2D", "image2DArray", NULL, NULL
2524            };
2525            return names[offset + type_idx];
2526         }
2527         case GLSL_SAMPLER_DIM_3D: {
2528            static const char *const names[8] = {
2529              "sampler3D", NULL, NULL, NULL,
2530              "image3D", NULL, NULL, NULL
2531            };
2532            return names[offset + type_idx];
2533         }
2534         case GLSL_SAMPLER_DIM_CUBE: {
2535            static const char *const names[8] = {
2536              "samplerCube", "samplerCubeArray",
2537              "samplerCubeShadow", "samplerCubeArrayShadow",
2538              "imageCube", NULL, NULL, NULL
2539            };
2540            return names[offset + type_idx];
2541         }
2542         case GLSL_SAMPLER_DIM_MS: {
2543            assert(type->is_sampler());
2544            static const char *const names[4] = {
2545              "sampler2DMS", "sampler2DMSArray", NULL, NULL
2546            };
2547            return names[type_idx];
2548         }
2549         case GLSL_SAMPLER_DIM_RECT: {
2550            assert(type->is_sampler());
2551            static const char *const names[4] = {
2552              "samplerRect", NULL, "samplerRectShadow", NULL
2553            };
2554            return names[type_idx];
2555         }
2556         case GLSL_SAMPLER_DIM_BUF: {
2557            static const char *const names[8] = {
2558              "samplerBuffer", NULL, NULL, NULL,
2559              "imageBuffer", NULL, NULL, NULL
2560            };
2561            return names[offset + type_idx];
2562         }
2563         case GLSL_SAMPLER_DIM_EXTERNAL: {
2564            assert(type->is_sampler());
2565            static const char *const names[4] = {
2566              "samplerExternalOES", NULL, NULL, NULL
2567            };
2568            return names[type_idx];
2569         }
2570         default:
2571            unreachable("Unsupported sampler/image dimensionality");
2572         } /* sampler/image float dimensionality */
2573         break;
2574      case GLSL_TYPE_INT:
2575         switch (type->sampler_dimensionality) {
2576         case GLSL_SAMPLER_DIM_1D: {
2577            assert(type->is_sampler());
2578            static const char *const names[4] = {
2579              "isampler1D", "isampler1DArray", NULL, NULL
2580            };
2581            return names[type_idx];
2582         }
2583         case GLSL_SAMPLER_DIM_2D: {
2584            static const char *const names[8] = {
2585              "isampler2D", "isampler2DArray", NULL, NULL,
2586              "iimage2D", "iimage2DArray", NULL, NULL
2587            };
2588            return names[offset + type_idx];
2589         }
2590         case GLSL_SAMPLER_DIM_3D: {
2591            static const char *const names[8] = {
2592              "isampler3D", NULL, NULL, NULL,
2593              "iimage3D", NULL, NULL, NULL
2594            };
2595            return names[offset + type_idx];
2596         }
2597         case GLSL_SAMPLER_DIM_CUBE: {
2598            static const char *const names[8] = {
2599              "isamplerCube", "isamplerCubeArray", NULL, NULL,
2600              "iimageCube", NULL, NULL, NULL
2601            };
2602            return names[offset + type_idx];
2603         }
2604         case GLSL_SAMPLER_DIM_MS: {
2605            assert(type->is_sampler());
2606            static const char *const names[4] = {
2607              "isampler2DMS", "isampler2DMSArray", NULL, NULL
2608            };
2609            return names[type_idx];
2610         }
2611         case GLSL_SAMPLER_DIM_RECT: {
2612            assert(type->is_sampler());
2613            static const char *const names[4] = {
2614              "isamplerRect", NULL, "isamplerRectShadow", NULL
2615            };
2616            return names[type_idx];
2617         }
2618         case GLSL_SAMPLER_DIM_BUF: {
2619            static const char *const names[8] = {
2620              "isamplerBuffer", NULL, NULL, NULL,
2621              "iimageBuffer", NULL, NULL, NULL
2622            };
2623            return names[offset + type_idx];
2624         }
2625         default:
2626            unreachable("Unsupported isampler/iimage dimensionality");
2627         } /* sampler/image int dimensionality */
2628         break;
2629      case GLSL_TYPE_UINT:
2630         switch (type->sampler_dimensionality) {
2631         case GLSL_SAMPLER_DIM_1D: {
2632            assert(type->is_sampler());
2633            static const char *const names[4] = {
2634              "usampler1D", "usampler1DArray", NULL, NULL
2635            };
2636            return names[type_idx];
2637         }
2638         case GLSL_SAMPLER_DIM_2D: {
2639            static const char *const names[8] = {
2640              "usampler2D", "usampler2DArray", NULL, NULL,
2641              "uimage2D", "uimage2DArray", NULL, NULL
2642            };
2643            return names[offset + type_idx];
2644         }
2645         case GLSL_SAMPLER_DIM_3D: {
2646            static const char *const names[8] = {
2647              "usampler3D", NULL, NULL, NULL,
2648              "uimage3D", NULL, NULL, NULL
2649            };
2650            return names[offset + type_idx];
2651         }
2652         case GLSL_SAMPLER_DIM_CUBE: {
2653            static const char *const names[8] = {
2654              "usamplerCube", "usamplerCubeArray", NULL, NULL,
2655              "uimageCube", NULL, NULL, NULL
2656            };
2657            return names[offset + type_idx];
2658         }
2659         case GLSL_SAMPLER_DIM_MS: {
2660            assert(type->is_sampler());
2661            static const char *const names[4] = {
2662              "usampler2DMS", "usampler2DMSArray", NULL, NULL
2663            };
2664            return names[type_idx];
2665         }
2666         case GLSL_SAMPLER_DIM_RECT: {
2667            assert(type->is_sampler());
2668            static const char *const names[4] = {
2669              "usamplerRect", NULL, "usamplerRectShadow", NULL
2670            };
2671            return names[type_idx];
2672         }
2673         case GLSL_SAMPLER_DIM_BUF: {
2674            static const char *const names[8] = {
2675              "usamplerBuffer", NULL, NULL, NULL,
2676              "uimageBuffer", NULL, NULL, NULL
2677            };
2678            return names[offset + type_idx];
2679         }
2680         default:
2681            unreachable("Unsupported usampler/uimage dimensionality");
2682         } /* sampler/image uint dimensionality */
2683         break;
2684      default:
2685         unreachable("Unsupported sampler/image type");
2686      } /* sampler/image type */
2687      break;
2688   } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2689   break;
2690   default:
2691      unreachable("Unsupported type");
2692   } /* base type */
2693}
2694
2695static unsigned
2696select_gles_precision(unsigned qual_precision,
2697                      const glsl_type *type,
2698                      struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2699{
2700   /* Precision qualifiers do not have any meaning in Desktop GLSL.
2701    * In GLES we take the precision from the type qualifier if present,
2702    * otherwise, if the type of the variable allows precision qualifiers at
2703    * all, we look for the default precision qualifier for that type in the
2704    * current scope.
2705    */
2706   assert(state->es_shader);
2707
2708   unsigned precision = GLSL_PRECISION_NONE;
2709   if (qual_precision) {
2710      precision = qual_precision;
2711   } else if (precision_qualifier_allowed(type)) {
2712      const char *type_name =
2713         get_type_name_for_precision_qualifier(type->without_array());
2714      assert(type_name != NULL);
2715
2716      precision =
2717         state->symbols->get_default_precision_qualifier(type_name);
2718      if (precision == ast_precision_none) {
2719         _mesa_glsl_error(loc, state,
2720                          "No precision specified in this scope for type `%s'",
2721                          type->name);
2722      }
2723   }
2724
2725
2726   /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2727    *
2728    *    "The default precision of all atomic types is highp. It is an error to
2729    *    declare an atomic type with a different precision or to specify the
2730    *    default precision for an atomic type to be lowp or mediump."
2731    */
2732   if (type->is_atomic_uint() && precision != ast_precision_high) {
2733      _mesa_glsl_error(loc, state,
2734                       "atomic_uint can only have highp precision qualifier");
2735   }
2736
2737   return precision;
2738}
2739
2740const glsl_type *
2741ast_fully_specified_type::glsl_type(const char **name,
2742                                    struct _mesa_glsl_parse_state *state) const
2743{
2744   return this->specifier->glsl_type(name, state);
2745}
2746
2747/**
2748 * Determine whether a toplevel variable declaration declares a varying.  This
2749 * function operates by examining the variable's mode and the shader target,
2750 * so it correctly identifies linkage variables regardless of whether they are
2751 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2752 *
2753 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2754 * this function will produce undefined results.
2755 */
2756static bool
2757is_varying_var(ir_variable *var, gl_shader_stage target)
2758{
2759   switch (target) {
2760   case MESA_SHADER_VERTEX:
2761      return var->data.mode == ir_var_shader_out;
2762   case MESA_SHADER_FRAGMENT:
2763      return var->data.mode == ir_var_shader_in ||
2764             (var->data.mode == ir_var_system_value &&
2765              var->data.location == SYSTEM_VALUE_FRAG_COORD);
2766   default:
2767      return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2768   }
2769}
2770
2771static bool
2772is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2773{
2774   if (is_varying_var(var, state->stage))
2775      return true;
2776
2777   /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2778    * "Only variables output from a vertex shader can be candidates
2779    * for invariance".
2780    */
2781   if (!state->is_version(130, 100))
2782      return false;
2783
2784   /*
2785    * Later specs remove this language - so allowed invariant
2786    * on fragment shader outputs as well.
2787    */
2788   if (state->stage == MESA_SHADER_FRAGMENT &&
2789       var->data.mode == ir_var_shader_out)
2790      return true;
2791   return false;
2792}
2793
2794static void
2795validate_component_layout_for_type(struct _mesa_glsl_parse_state *state,
2796                                   YYLTYPE *loc, const glsl_type *type,
2797                                   unsigned qual_component)
2798{
2799   type = type->without_array();
2800   unsigned components = type->component_slots();
2801
2802   if (type->is_matrix() || type->is_struct()) {
2803       _mesa_glsl_error(loc, state, "component layout qualifier "
2804                        "cannot be applied to a matrix, a structure, "
2805                        "a block, or an array containing any of these.");
2806   } else if (components > 4 && type->is_64bit()) {
2807      _mesa_glsl_error(loc, state, "component layout qualifier "
2808                       "cannot be applied to dvec%u.",
2809                        components / 2);
2810   } else if (qual_component != 0 && (qual_component + components - 1) > 3) {
2811      _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
2812                       (qual_component + components - 1));
2813   } else if (qual_component == 1 && type->is_64bit()) {
2814      /* We don't bother checking for 3 as it should be caught by the
2815       * overflow check above.
2816       */
2817      _mesa_glsl_error(loc, state, "doubles cannot begin at component 1 or 3");
2818   }
2819}
2820
2821/**
2822 * Matrix layout qualifiers are only allowed on certain types
2823 */
2824static void
2825validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2826                                YYLTYPE *loc,
2827                                const glsl_type *type,
2828                                ir_variable *var)
2829{
2830   if (var && !var->is_in_buffer_block()) {
2831      /* Layout qualifiers may only apply to interface blocks and fields in
2832       * them.
2833       */
2834      _mesa_glsl_error(loc, state,
2835                       "uniform block layout qualifiers row_major and "
2836                       "column_major may not be applied to variables "
2837                       "outside of uniform blocks");
2838   } else if (!type->without_array()->is_matrix()) {
2839      /* The OpenGL ES 3.0 conformance tests did not originally allow
2840       * matrix layout qualifiers on non-matrices.  However, the OpenGL
2841       * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2842       * amended to specifically allow these layouts on all types.  Emit
2843       * a warning so that people know their code may not be portable.
2844       */
2845      _mesa_glsl_warning(loc, state,
2846                         "uniform block layout qualifiers row_major and "
2847                         "column_major applied to non-matrix types may "
2848                         "be rejected by older compilers");
2849   }
2850}
2851
2852static bool
2853validate_xfb_buffer_qualifier(YYLTYPE *loc,
2854                              struct _mesa_glsl_parse_state *state,
2855                              unsigned xfb_buffer) {
2856   if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2857      _mesa_glsl_error(loc, state,
2858                       "invalid xfb_buffer specified %d is larger than "
2859                       "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2860                       xfb_buffer,
2861                       state->Const.MaxTransformFeedbackBuffers - 1);
2862      return false;
2863   }
2864
2865   return true;
2866}
2867
2868/* From the ARB_enhanced_layouts spec:
2869 *
2870 *    "Variables and block members qualified with *xfb_offset* can be
2871 *    scalars, vectors, matrices, structures, and (sized) arrays of these.
2872 *    The offset must be a multiple of the size of the first component of
2873 *    the first qualified variable or block member, or a compile-time error
2874 *    results.  Further, if applied to an aggregate containing a double,
2875 *    the offset must also be a multiple of 8, and the space taken in the
2876 *    buffer will be a multiple of 8.
2877 */
2878static bool
2879validate_xfb_offset_qualifier(YYLTYPE *loc,
2880                              struct _mesa_glsl_parse_state *state,
2881                              int xfb_offset, const glsl_type *type,
2882                              unsigned component_size) {
2883  const glsl_type *t_without_array = type->without_array();
2884
2885   if (xfb_offset != -1 && type->is_unsized_array()) {
2886      _mesa_glsl_error(loc, state,
2887                       "xfb_offset can't be used with unsized arrays.");
2888      return false;
2889   }
2890
2891   /* Make sure nested structs don't contain unsized arrays, and validate
2892    * any xfb_offsets on interface members.
2893    */
2894   if (t_without_array->is_struct() || t_without_array->is_interface())
2895      for (unsigned int i = 0; i < t_without_array->length; i++) {
2896         const glsl_type *member_t = t_without_array->fields.structure[i].type;
2897
2898         /* When the interface block doesn't have an xfb_offset qualifier then
2899          * we apply the component size rules at the member level.
2900          */
2901         if (xfb_offset == -1)
2902            component_size = member_t->contains_double() ? 8 : 4;
2903
2904         int xfb_offset = t_without_array->fields.structure[i].offset;
2905         validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2906                                       component_size);
2907      }
2908
2909  /* Nested structs or interface block without offset may not have had an
2910   * offset applied yet so return.
2911   */
2912   if (xfb_offset == -1) {
2913     return true;
2914   }
2915
2916   if (xfb_offset % component_size) {
2917      _mesa_glsl_error(loc, state,
2918                       "invalid qualifier xfb_offset=%d must be a multiple "
2919                       "of the first component size of the first qualified "
2920                       "variable or block member. Or double if an aggregate "
2921                       "that contains a double (%d).",
2922                       xfb_offset, component_size);
2923      return false;
2924   }
2925
2926   return true;
2927}
2928
2929static bool
2930validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2931                          unsigned stream)
2932{
2933   if (stream >= state->consts->MaxVertexStreams) {
2934      _mesa_glsl_error(loc, state,
2935                       "invalid stream specified %d is larger than "
2936                       "MAX_VERTEX_STREAMS - 1 (%d).",
2937                       stream, state->consts->MaxVertexStreams - 1);
2938      return false;
2939   }
2940
2941   return true;
2942}
2943
2944static void
2945apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2946                       YYLTYPE *loc,
2947                       ir_variable *var,
2948                       const glsl_type *type,
2949                       const ast_type_qualifier *qual)
2950{
2951   if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2952      _mesa_glsl_error(loc, state,
2953                       "the \"binding\" qualifier only applies to uniforms and "
2954                       "shader storage buffer objects");
2955      return;
2956   }
2957
2958   unsigned qual_binding;
2959   if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2960                                   &qual_binding)) {
2961      return;
2962   }
2963
2964   const struct gl_constants *consts = state->consts;
2965   unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2966   unsigned max_index = qual_binding + elements - 1;
2967   const glsl_type *base_type = type->without_array();
2968
2969   if (base_type->is_interface()) {
2970      /* UBOs.  From page 60 of the GLSL 4.20 specification:
2971       * "If the binding point for any uniform block instance is less than zero,
2972       *  or greater than or equal to the implementation-dependent maximum
2973       *  number of uniform buffer bindings, a compilation error will occur.
2974       *  When the binding identifier is used with a uniform block instanced as
2975       *  an array of size N, all elements of the array from binding through
2976       *  binding + N – 1 must be within this range."
2977       *
2978       * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2979       */
2980      if (qual->flags.q.uniform &&
2981         max_index >= consts->MaxUniformBufferBindings) {
2982         _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2983                          "the maximum number of UBO binding points (%d)",
2984                          qual_binding, elements,
2985                          consts->MaxUniformBufferBindings);
2986         return;
2987      }
2988
2989      /* SSBOs. From page 67 of the GLSL 4.30 specification:
2990       * "If the binding point for any uniform or shader storage block instance
2991       *  is less than zero, or greater than or equal to the
2992       *  implementation-dependent maximum number of uniform buffer bindings, a
2993       *  compile-time error will occur. When the binding identifier is used
2994       *  with a uniform or shader storage block instanced as an array of size
2995       *  N, all elements of the array from binding through binding + N – 1 must
2996       *  be within this range."
2997       */
2998      if (qual->flags.q.buffer &&
2999         max_index >= consts->MaxShaderStorageBufferBindings) {
3000         _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
3001                          "the maximum number of SSBO binding points (%d)",
3002                          qual_binding, elements,
3003                          consts->MaxShaderStorageBufferBindings);
3004         return;
3005      }
3006   } else if (base_type->is_sampler()) {
3007      /* Samplers.  From page 63 of the GLSL 4.20 specification:
3008       * "If the binding is less than zero, or greater than or equal to the
3009       *  implementation-dependent maximum supported number of units, a
3010       *  compilation error will occur. When the binding identifier is used
3011       *  with an array of size N, all elements of the array from binding
3012       *  through binding + N - 1 must be within this range."
3013       */
3014      unsigned limit = consts->MaxCombinedTextureImageUnits;
3015
3016      if (max_index >= limit) {
3017         _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
3018                          "exceeds the maximum number of texture image units "
3019                          "(%u)", qual_binding, elements, limit);
3020
3021         return;
3022      }
3023   } else if (base_type->contains_atomic()) {
3024      assert(consts->MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
3025      if (qual_binding >= consts->MaxAtomicBufferBindings) {
3026         _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
3027                          "maximum number of atomic counter buffer bindings "
3028                          "(%u)", qual_binding,
3029                          consts->MaxAtomicBufferBindings);
3030
3031         return;
3032      }
3033   } else if ((state->is_version(420, 310) ||
3034               state->ARB_shading_language_420pack_enable) &&
3035              base_type->is_image()) {
3036      assert(consts->MaxImageUnits <= MAX_IMAGE_UNITS);
3037      if (max_index >= consts->MaxImageUnits) {
3038         _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
3039                          "maximum number of image units (%d)", max_index,
3040                          consts->MaxImageUnits);
3041         return;
3042      }
3043
3044   } else {
3045      _mesa_glsl_error(loc, state,
3046                       "the \"binding\" qualifier only applies to uniform "
3047                       "blocks, storage blocks, opaque variables, or arrays "
3048                       "thereof");
3049      return;
3050   }
3051
3052   var->data.explicit_binding = true;
3053   var->data.binding = qual_binding;
3054
3055   return;
3056}
3057
3058static void
3059validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
3060                                           YYLTYPE *loc,
3061                                           const glsl_interp_mode interpolation,
3062                                           const struct glsl_type *var_type,
3063                                           ir_variable_mode mode)
3064{
3065   if (state->stage != MESA_SHADER_FRAGMENT ||
3066       interpolation == INTERP_MODE_FLAT ||
3067       mode != ir_var_shader_in)
3068      return;
3069
3070   /* Integer fragment inputs must be qualified with 'flat'.  In GLSL ES,
3071    * so must integer vertex outputs.
3072    *
3073    * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
3074    *    "Fragment shader inputs that are signed or unsigned integers or
3075    *    integer vectors must be qualified with the interpolation qualifier
3076    *    flat."
3077    *
3078    * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
3079    *    "Fragment shader inputs that are, or contain, signed or unsigned
3080    *    integers or integer vectors must be qualified with the
3081    *    interpolation qualifier flat."
3082    *
3083    * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3084    *    "Vertex shader outputs that are, or contain, signed or unsigned
3085    *    integers or integer vectors must be qualified with the
3086    *    interpolation qualifier flat."
3087    *
3088    * Note that prior to GLSL 1.50, this requirement applied to vertex
3089    * outputs rather than fragment inputs.  That creates problems in the
3090    * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3091    * desktop GL shaders.  For GLSL ES shaders, we follow the spec and
3092    * apply the restriction to both vertex outputs and fragment inputs.
3093    *
3094    * Note also that the desktop GLSL specs are missing the text "or
3095    * contain"; this is presumably an oversight, since there is no
3096    * reasonable way to interpolate a fragment shader input that contains
3097    * an integer. See Khronos bug #15671.
3098    */
3099   if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
3100       && var_type->contains_integer()) {
3101      _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3102                       "an integer, then it must be qualified with 'flat'");
3103   }
3104
3105   /* Double fragment inputs must be qualified with 'flat'.
3106    *
3107    * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
3108    *    "This extension does not support interpolation of double-precision
3109    *    values; doubles used as fragment shader inputs must be qualified as
3110    *    "flat"."
3111    *
3112    * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
3113    *    "Fragment shader inputs that are signed or unsigned integers, integer
3114    *    vectors, or any double-precision floating-point type must be
3115    *    qualified with the interpolation qualifier flat."
3116    *
3117    * Note that the GLSL specs are missing the text "or contain"; this is
3118    * presumably an oversight. See Khronos bug #15671.
3119    *
3120    * The 'double' type does not exist in GLSL ES so far.
3121    */
3122   if (state->has_double()
3123       && var_type->contains_double()) {
3124      _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3125                       "a double, then it must be qualified with 'flat'");
3126   }
3127
3128   /* Bindless sampler/image fragment inputs must be qualified with 'flat'.
3129    *
3130    * From section 4.3.4 of the ARB_bindless_texture spec:
3131    *
3132    *    "(modify last paragraph, p. 35, allowing samplers and images as
3133    *     fragment shader inputs) ... Fragment inputs can only be signed and
3134    *     unsigned integers and integer vectors, floating point scalars,
3135    *     floating-point vectors, matrices, sampler and image types, or arrays
3136    *     or structures of these.  Fragment shader inputs that are signed or
3137    *     unsigned integers, integer vectors, or any double-precision floating-
3138    *     point type, or any sampler or image type must be qualified with the
3139    *     interpolation qualifier "flat"."
3140    */
3141   if (state->has_bindless()
3142       && (var_type->contains_sampler() || var_type->contains_image())) {
3143      _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3144                       "a bindless sampler (or image), then it must be "
3145                       "qualified with 'flat'");
3146   }
3147}
3148
3149static void
3150validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3151                                 YYLTYPE *loc,
3152                                 const glsl_interp_mode interpolation,
3153                                 const struct ast_type_qualifier *qual,
3154                                 const struct glsl_type *var_type,
3155                                 ir_variable_mode mode)
3156{
3157   /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3158    * not to vertex shader inputs nor fragment shader outputs.
3159    *
3160    * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3161    *    "Outputs from a vertex shader (out) and inputs to a fragment
3162    *    shader (in) can be further qualified with one or more of these
3163    *    interpolation qualifiers"
3164    *    ...
3165    *    "These interpolation qualifiers may only precede the qualifiers in,
3166    *    centroid in, out, or centroid out in a declaration. They do not apply
3167    *    to the deprecated storage qualifiers varying or centroid
3168    *    varying. They also do not apply to inputs into a vertex shader or
3169    *    outputs from a fragment shader."
3170    *
3171    * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3172    *    "Outputs from a shader (out) and inputs to a shader (in) can be
3173    *    further qualified with one of these interpolation qualifiers."
3174    *    ...
3175    *    "These interpolation qualifiers may only precede the qualifiers
3176    *    in, centroid in, out, or centroid out in a declaration. They do
3177    *    not apply to inputs into a vertex shader or outputs from a
3178    *    fragment shader."
3179    */
3180   if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
3181       && interpolation != INTERP_MODE_NONE) {
3182      const char *i = interpolation_string(interpolation);
3183      if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3184         _mesa_glsl_error(loc, state,
3185                          "interpolation qualifier `%s' can only be applied to "
3186                          "shader inputs or outputs.", i);
3187
3188      switch (state->stage) {
3189      case MESA_SHADER_VERTEX:
3190         if (mode == ir_var_shader_in) {
3191            _mesa_glsl_error(loc, state,
3192                             "interpolation qualifier '%s' cannot be applied to "
3193                             "vertex shader inputs", i);
3194         }
3195         break;
3196      case MESA_SHADER_FRAGMENT:
3197         if (mode == ir_var_shader_out) {
3198            _mesa_glsl_error(loc, state,
3199                             "interpolation qualifier '%s' cannot be applied to "
3200                             "fragment shader outputs", i);
3201         }
3202         break;
3203      default:
3204         break;
3205      }
3206   }
3207
3208   /* Interpolation qualifiers cannot be applied to 'centroid' and
3209    * 'centroid varying'.
3210    *
3211    * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3212    *    "interpolation qualifiers may only precede the qualifiers in,
3213    *    centroid in, out, or centroid out in a declaration. They do not apply
3214    *    to the deprecated storage qualifiers varying or centroid varying."
3215    *
3216    * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3217    *
3218    * GL_EXT_gpu_shader4 allows this.
3219    */
3220   if (state->is_version(130, 0) && !state->EXT_gpu_shader4_enable
3221       && interpolation != INTERP_MODE_NONE
3222       && qual->flags.q.varying) {
3223
3224      const char *i = interpolation_string(interpolation);
3225      const char *s;
3226      if (qual->flags.q.centroid)
3227         s = "centroid varying";
3228      else
3229         s = "varying";
3230
3231      _mesa_glsl_error(loc, state,
3232                       "qualifier '%s' cannot be applied to the "
3233                       "deprecated storage qualifier '%s'", i, s);
3234   }
3235
3236   validate_fragment_flat_interpolation_input(state, loc, interpolation,
3237                                              var_type, mode);
3238}
3239
3240static glsl_interp_mode
3241interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3242                                  const struct glsl_type *var_type,
3243                                  ir_variable_mode mode,
3244                                  struct _mesa_glsl_parse_state *state,
3245                                  YYLTYPE *loc)
3246{
3247   glsl_interp_mode interpolation;
3248   if (qual->flags.q.flat)
3249      interpolation = INTERP_MODE_FLAT;
3250   else if (qual->flags.q.noperspective)
3251      interpolation = INTERP_MODE_NOPERSPECTIVE;
3252   else if (qual->flags.q.smooth)
3253      interpolation = INTERP_MODE_SMOOTH;
3254   else
3255      interpolation = INTERP_MODE_NONE;
3256
3257   validate_interpolation_qualifier(state, loc,
3258                                    interpolation,
3259                                    qual, var_type, mode);
3260
3261   return interpolation;
3262}
3263
3264
3265static void
3266apply_explicit_location(const struct ast_type_qualifier *qual,
3267                        ir_variable *var,
3268                        struct _mesa_glsl_parse_state *state,
3269                        YYLTYPE *loc)
3270{
3271   bool fail = false;
3272
3273   unsigned qual_location;
3274   if (!process_qualifier_constant(state, loc, "location", qual->location,
3275                                   &qual_location)) {
3276      return;
3277   }
3278
3279   /* Checks for GL_ARB_explicit_uniform_location. */
3280   if (qual->flags.q.uniform) {
3281      if (!state->check_explicit_uniform_location_allowed(loc, var))
3282         return;
3283
3284      const struct gl_constants *consts = state->consts;
3285      unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3286
3287      if (max_loc >= consts->MaxUserAssignableUniformLocations) {
3288         _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3289                          ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3290                          consts->MaxUserAssignableUniformLocations);
3291         return;
3292      }
3293
3294      var->data.explicit_location = true;
3295      var->data.location = qual_location;
3296      return;
3297   }
3298
3299   /* Between GL_ARB_explicit_attrib_location an
3300    * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3301    * stage can be assigned explicit locations.  The checking here associates
3302    * the correct extension with the correct stage's input / output:
3303    *
3304    *                     input            output
3305    *                     -----            ------
3306    * vertex              explicit_loc     sso
3307    * tess control        sso              sso
3308    * tess eval           sso              sso
3309    * geometry            sso              sso
3310    * fragment            sso              explicit_loc
3311    */
3312   switch (state->stage) {
3313   case MESA_SHADER_VERTEX:
3314      if (var->data.mode == ir_var_shader_in) {
3315         if (!state->check_explicit_attrib_location_allowed(loc, var))
3316            return;
3317
3318         break;
3319      }
3320
3321      if (var->data.mode == ir_var_shader_out) {
3322         if (!state->check_separate_shader_objects_allowed(loc, var))
3323            return;
3324
3325         break;
3326      }
3327
3328      fail = true;
3329      break;
3330
3331   case MESA_SHADER_TESS_CTRL:
3332   case MESA_SHADER_TESS_EVAL:
3333   case MESA_SHADER_GEOMETRY:
3334      if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3335         if (!state->check_separate_shader_objects_allowed(loc, var))
3336            return;
3337
3338         break;
3339      }
3340
3341      fail = true;
3342      break;
3343
3344   case MESA_SHADER_FRAGMENT:
3345      if (var->data.mode == ir_var_shader_in) {
3346         if (!state->check_separate_shader_objects_allowed(loc, var))
3347            return;
3348
3349         break;
3350      }
3351
3352      if (var->data.mode == ir_var_shader_out) {
3353         if (!state->check_explicit_attrib_location_allowed(loc, var))
3354            return;
3355
3356         break;
3357      }
3358
3359      fail = true;
3360      break;
3361
3362   case MESA_SHADER_COMPUTE:
3363      _mesa_glsl_error(loc, state,
3364                       "compute shader variables cannot be given "
3365                       "explicit locations");
3366      return;
3367   default:
3368      fail = true;
3369      break;
3370   };
3371
3372   if (fail) {
3373      _mesa_glsl_error(loc, state,
3374                       "%s cannot be given an explicit location in %s shader",
3375                       mode_string(var),
3376      _mesa_shader_stage_to_string(state->stage));
3377   } else {
3378      var->data.explicit_location = true;
3379
3380      switch (state->stage) {
3381      case MESA_SHADER_VERTEX:
3382         var->data.location = (var->data.mode == ir_var_shader_in)
3383            ? (qual_location + VERT_ATTRIB_GENERIC0)
3384            : (qual_location + VARYING_SLOT_VAR0);
3385         break;
3386
3387      case MESA_SHADER_TESS_CTRL:
3388      case MESA_SHADER_TESS_EVAL:
3389      case MESA_SHADER_GEOMETRY:
3390         if (var->data.patch)
3391            var->data.location = qual_location + VARYING_SLOT_PATCH0;
3392         else
3393            var->data.location = qual_location + VARYING_SLOT_VAR0;
3394         break;
3395
3396      case MESA_SHADER_FRAGMENT:
3397         var->data.location = (var->data.mode == ir_var_shader_out)
3398            ? (qual_location + FRAG_RESULT_DATA0)
3399            : (qual_location + VARYING_SLOT_VAR0);
3400         break;
3401      default:
3402         assert(!"Unexpected shader type");
3403         break;
3404      }
3405
3406      /* Check if index was set for the uniform instead of the function */
3407      if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3408         _mesa_glsl_error(loc, state, "an index qualifier can only be "
3409                          "used with subroutine functions");
3410         return;
3411      }
3412
3413      unsigned qual_index;
3414      if (qual->flags.q.explicit_index &&
3415          process_qualifier_constant(state, loc, "index", qual->index,
3416                                     &qual_index)) {
3417         /* From the GLSL 4.30 specification, section 4.4.2 (Output
3418          * Layout Qualifiers):
3419          *
3420          * "It is also a compile-time error if a fragment shader
3421          *  sets a layout index to less than 0 or greater than 1."
3422          *
3423          * Older specifications don't mandate a behavior; we take
3424          * this as a clarification and always generate the error.
3425          */
3426         if (qual_index > 1) {
3427            _mesa_glsl_error(loc, state,
3428                             "explicit index may only be 0 or 1");
3429         } else {
3430            var->data.explicit_index = true;
3431            var->data.index = qual_index;
3432         }
3433      }
3434   }
3435}
3436
3437static bool
3438validate_storage_for_sampler_image_types(ir_variable *var,
3439                                         struct _mesa_glsl_parse_state *state,
3440                                         YYLTYPE *loc)
3441{
3442   /* From section 4.1.7 of the GLSL 4.40 spec:
3443    *
3444    *    "[Opaque types] can only be declared as function
3445    *     parameters or uniform-qualified variables."
3446    *
3447    * From section 4.1.7 of the ARB_bindless_texture spec:
3448    *
3449    *    "Samplers may be declared as shader inputs and outputs, as uniform
3450    *     variables, as temporary variables, and as function parameters."
3451    *
3452    * From section 4.1.X of the ARB_bindless_texture spec:
3453    *
3454    *    "Images may be declared as shader inputs and outputs, as uniform
3455    *     variables, as temporary variables, and as function parameters."
3456    */
3457   if (state->has_bindless()) {
3458      if (var->data.mode != ir_var_auto &&
3459          var->data.mode != ir_var_uniform &&
3460          var->data.mode != ir_var_shader_in &&
3461          var->data.mode != ir_var_shader_out &&
3462          var->data.mode != ir_var_function_in &&
3463          var->data.mode != ir_var_function_out &&
3464          var->data.mode != ir_var_function_inout) {
3465         _mesa_glsl_error(loc, state, "bindless image/sampler variables may "
3466                         "only be declared as shader inputs and outputs, as "
3467                         "uniform variables, as temporary variables and as "
3468                         "function parameters");
3469         return false;
3470      }
3471   } else {
3472      if (var->data.mode != ir_var_uniform &&
3473          var->data.mode != ir_var_function_in) {
3474         _mesa_glsl_error(loc, state, "image/sampler variables may only be "
3475                          "declared as function parameters or "
3476                          "uniform-qualified global variables");
3477         return false;
3478      }
3479   }
3480   return true;
3481}
3482
3483static bool
3484validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3485                                   YYLTYPE *loc,
3486                                   const struct ast_type_qualifier *qual,
3487                                   const glsl_type *type)
3488{
3489   /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec:
3490    *
3491    * "Memory qualifiers are only supported in the declarations of image
3492    *  variables, buffer variables, and shader storage blocks; it is an error
3493    *  to use such qualifiers in any other declarations.
3494    */
3495   if (!type->is_image() && !qual->flags.q.buffer) {
3496      if (qual->flags.q.read_only ||
3497          qual->flags.q.write_only ||
3498          qual->flags.q.coherent ||
3499          qual->flags.q._volatile ||
3500          qual->flags.q.restrict_flag) {
3501         _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3502                          "in the declarations of image variables, buffer "
3503                          "variables, and shader storage blocks");
3504         return false;
3505      }
3506   }
3507   return true;
3508}
3509
3510static bool
3511validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3512                                         YYLTYPE *loc,
3513                                         const struct ast_type_qualifier *qual,
3514                                         const glsl_type *type)
3515{
3516   /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
3517    *
3518    * "Format layout qualifiers can be used on image variable declarations
3519    *  (those declared with a basic type  having “image ” in its keyword)."
3520    */
3521   if (!type->is_image() && qual->flags.q.explicit_image_format) {
3522      _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3523                       "applied to images");
3524      return false;
3525   }
3526   return true;
3527}
3528
3529static void
3530apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3531                                  ir_variable *var,
3532                                  struct _mesa_glsl_parse_state *state,
3533                                  YYLTYPE *loc)
3534{
3535   const glsl_type *base_type = var->type->without_array();
3536
3537   if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
3538       !validate_memory_qualifier_for_type(state, loc, qual, base_type))
3539      return;
3540
3541   if (!base_type->is_image())
3542      return;
3543
3544   if (!validate_storage_for_sampler_image_types(var, state, loc))
3545      return;
3546
3547   var->data.memory_read_only |= qual->flags.q.read_only;
3548   var->data.memory_write_only |= qual->flags.q.write_only;
3549   var->data.memory_coherent |= qual->flags.q.coherent;
3550   var->data.memory_volatile |= qual->flags.q._volatile;
3551   var->data.memory_restrict |= qual->flags.q.restrict_flag;
3552
3553   if (qual->flags.q.explicit_image_format) {
3554      if (var->data.mode == ir_var_function_in) {
3555         _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3556                          "image function parameters");
3557      }
3558
3559      if (qual->image_base_type != base_type->sampled_type) {
3560         _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3561                          "data type of the image");
3562      }
3563
3564      var->data.image_format = qual->image_format;
3565   } else if (state->has_image_load_formatted()) {
3566      if (var->data.mode == ir_var_uniform &&
3567          state->EXT_shader_image_load_formatted_warn) {
3568         _mesa_glsl_warning(loc, state, "GL_EXT_image_load_formatted used");
3569      }
3570   } else {
3571      if (var->data.mode == ir_var_uniform) {
3572         if (state->es_shader ||
3573             !(state->is_version(420, 310) || state->ARB_shader_image_load_store_enable)) {
3574            _mesa_glsl_error(loc, state, "all image uniforms must have a "
3575                             "format layout qualifier");
3576         } else if (!qual->flags.q.write_only) {
3577            _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3578                             "`writeonly' must have a format layout qualifier");
3579         }
3580      }
3581      var->data.image_format = PIPE_FORMAT_NONE;
3582   }
3583
3584   /* From page 70 of the GLSL ES 3.1 specification:
3585    *
3586    * "Except for image variables qualified with the format qualifiers r32f,
3587    *  r32i, and r32ui, image variables must specify either memory qualifier
3588    *  readonly or the memory qualifier writeonly."
3589    */
3590   if (state->es_shader &&
3591       var->data.image_format != PIPE_FORMAT_R32_FLOAT &&
3592       var->data.image_format != PIPE_FORMAT_R32_SINT &&
3593       var->data.image_format != PIPE_FORMAT_R32_UINT &&
3594       !var->data.memory_read_only &&
3595       !var->data.memory_write_only) {
3596      _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3597                       "r32i or r32ui must be qualified `readonly' or "
3598                       "`writeonly'");
3599   }
3600}
3601
3602static inline const char*
3603get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3604{
3605   if (origin_upper_left && pixel_center_integer)
3606      return "origin_upper_left, pixel_center_integer";
3607   else if (origin_upper_left)
3608      return "origin_upper_left";
3609   else if (pixel_center_integer)
3610      return "pixel_center_integer";
3611   else
3612      return " ";
3613}
3614
3615static inline bool
3616is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3617                                       const struct ast_type_qualifier *qual)
3618{
3619   /* If gl_FragCoord was previously declared, and the qualifiers were
3620    * different in any way, return true.
3621    */
3622   if (state->fs_redeclares_gl_fragcoord) {
3623      return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3624         || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3625   }
3626
3627   return false;
3628}
3629
3630static inline bool
3631is_conflicting_layer_redeclaration(struct _mesa_glsl_parse_state *state,
3632                                   const struct ast_type_qualifier *qual)
3633{
3634   if (state->redeclares_gl_layer) {
3635      return state->layer_viewport_relative != qual->flags.q.viewport_relative;
3636   }
3637   return false;
3638}
3639
3640static inline void
3641validate_array_dimensions(const glsl_type *t,
3642                          struct _mesa_glsl_parse_state *state,
3643                          YYLTYPE *loc) {
3644   if (t->is_array()) {
3645      t = t->fields.array;
3646      while (t->is_array()) {
3647         if (t->is_unsized_array()) {
3648            _mesa_glsl_error(loc, state,
3649                             "only the outermost array dimension can "
3650                             "be unsized",
3651                             t->name);
3652            break;
3653         }
3654         t = t->fields.array;
3655      }
3656   }
3657}
3658
3659static void
3660apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual,
3661                                     ir_variable *var,
3662                                     struct _mesa_glsl_parse_state *state,
3663                                     YYLTYPE *loc)
3664{
3665   bool has_local_qualifiers = qual->flags.q.bindless_sampler ||
3666                               qual->flags.q.bindless_image ||
3667                               qual->flags.q.bound_sampler ||
3668                               qual->flags.q.bound_image;
3669
3670   /* The ARB_bindless_texture spec says:
3671    *
3672    * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30
3673    *  spec"
3674    *
3675    * "If these layout qualifiers are applied to other types of default block
3676    *  uniforms, or variables with non-uniform storage, a compile-time error
3677    *  will be generated."
3678    */
3679   if (has_local_qualifiers && !qual->flags.q.uniform) {
3680      _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers "
3681                       "can only be applied to default block uniforms or "
3682                       "variables with uniform storage");
3683      return;
3684   }
3685
3686   /* The ARB_bindless_texture spec doesn't state anything in this situation,
3687    * but it makes sense to only allow bindless_sampler/bound_sampler for
3688    * sampler types, and respectively bindless_image/bound_image for image
3689    * types.
3690    */
3691   if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) &&
3692       !var->type->contains_sampler()) {
3693      _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only "
3694                       "be applied to sampler types");
3695      return;
3696   }
3697
3698   if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) &&
3699       !var->type->contains_image()) {
3700      _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be "
3701                       "applied to image types");
3702      return;
3703   }
3704
3705   /* The bindless_sampler/bindless_image (and respectively
3706    * bound_sampler/bound_image) layout qualifiers can be set at global and at
3707    * local scope.
3708    */
3709   if (var->type->contains_sampler() || var->type->contains_image()) {
3710      var->data.bindless = qual->flags.q.bindless_sampler ||
3711                           qual->flags.q.bindless_image ||
3712                           state->bindless_sampler_specified ||
3713                           state->bindless_image_specified;
3714
3715      var->data.bound = qual->flags.q.bound_sampler ||
3716                        qual->flags.q.bound_image ||
3717                        state->bound_sampler_specified ||
3718                        state->bound_image_specified;
3719   }
3720}
3721
3722static void
3723apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3724                                   ir_variable *var,
3725                                   struct _mesa_glsl_parse_state *state,
3726                                   YYLTYPE *loc)
3727{
3728   if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3729
3730      /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3731       *
3732       *    "Within any shader, the first redeclarations of gl_FragCoord
3733       *     must appear before any use of gl_FragCoord."
3734       *
3735       * Generate a compiler error if above condition is not met by the
3736       * fragment shader.
3737       */
3738      ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3739      if (earlier != NULL &&
3740          earlier->data.used &&
3741          !state->fs_redeclares_gl_fragcoord) {
3742         _mesa_glsl_error(loc, state,
3743                          "gl_FragCoord used before its first redeclaration "
3744                          "in fragment shader");
3745      }
3746
3747      /* Make sure all gl_FragCoord redeclarations specify the same layout
3748       * qualifiers.
3749       */
3750      if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3751         const char *const qual_string =
3752            get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3753                                        qual->flags.q.pixel_center_integer);
3754
3755         const char *const state_string =
3756            get_layout_qualifier_string(state->fs_origin_upper_left,
3757                                        state->fs_pixel_center_integer);
3758
3759         _mesa_glsl_error(loc, state,
3760                          "gl_FragCoord redeclared with different layout "
3761                          "qualifiers (%s) and (%s) ",
3762                          state_string,
3763                          qual_string);
3764      }
3765      state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3766      state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3767      state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3768         !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3769      state->fs_redeclares_gl_fragcoord =
3770         state->fs_origin_upper_left ||
3771         state->fs_pixel_center_integer ||
3772         state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3773   }
3774
3775   if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3776       && (strcmp(var->name, "gl_FragCoord") != 0)) {
3777      const char *const qual_string = (qual->flags.q.origin_upper_left)
3778         ? "origin_upper_left" : "pixel_center_integer";
3779
3780      _mesa_glsl_error(loc, state,
3781                       "layout qualifier `%s' can only be applied to "
3782                       "fragment shader input `gl_FragCoord'",
3783                       qual_string);
3784   }
3785
3786   if (qual->flags.q.explicit_location) {
3787      apply_explicit_location(qual, var, state, loc);
3788
3789      if (qual->flags.q.explicit_component) {
3790         unsigned qual_component;
3791         if (process_qualifier_constant(state, loc, "component",
3792                                        qual->component, &qual_component)) {
3793            validate_component_layout_for_type(state, loc, var->type,
3794                                               qual_component);
3795            var->data.explicit_component = true;
3796            var->data.location_frac = qual_component;
3797         }
3798      }
3799   } else if (qual->flags.q.explicit_index) {
3800      if (!qual->subroutine_list)
3801         _mesa_glsl_error(loc, state,
3802                          "explicit index requires explicit location");
3803   } else if (qual->flags.q.explicit_component) {
3804      _mesa_glsl_error(loc, state,
3805                       "explicit component requires explicit location");
3806   }
3807
3808   if (qual->flags.q.explicit_binding) {
3809      apply_explicit_binding(state, loc, var, var->type, qual);
3810   }
3811
3812   if (state->stage == MESA_SHADER_GEOMETRY &&
3813       qual->flags.q.out && qual->flags.q.stream) {
3814      unsigned qual_stream;
3815      if (process_qualifier_constant(state, loc, "stream", qual->stream,
3816                                     &qual_stream) &&
3817          validate_stream_qualifier(loc, state, qual_stream)) {
3818         var->data.stream = qual_stream;
3819      }
3820   }
3821
3822   if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3823      unsigned qual_xfb_buffer;
3824      if (process_qualifier_constant(state, loc, "xfb_buffer",
3825                                     qual->xfb_buffer, &qual_xfb_buffer) &&
3826          validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3827         var->data.xfb_buffer = qual_xfb_buffer;
3828         if (qual->flags.q.explicit_xfb_buffer)
3829            var->data.explicit_xfb_buffer = true;
3830      }
3831   }
3832
3833   if (qual->flags.q.explicit_xfb_offset) {
3834      unsigned qual_xfb_offset;
3835      unsigned component_size = var->type->contains_double() ? 8 : 4;
3836
3837      if (process_qualifier_constant(state, loc, "xfb_offset",
3838                                     qual->offset, &qual_xfb_offset) &&
3839          validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3840                                        var->type, component_size)) {
3841         var->data.offset = qual_xfb_offset;
3842         var->data.explicit_xfb_offset = true;
3843      }
3844   }
3845
3846   if (qual->flags.q.explicit_xfb_stride) {
3847      unsigned qual_xfb_stride;
3848      if (process_qualifier_constant(state, loc, "xfb_stride",
3849                                     qual->xfb_stride, &qual_xfb_stride)) {
3850         var->data.xfb_stride = qual_xfb_stride;
3851         var->data.explicit_xfb_stride = true;
3852      }
3853   }
3854
3855   if (var->type->contains_atomic()) {
3856      if (var->data.mode == ir_var_uniform) {
3857         if (var->data.explicit_binding) {
3858            unsigned *offset =
3859               &state->atomic_counter_offsets[var->data.binding];
3860
3861            if (*offset % ATOMIC_COUNTER_SIZE)
3862               _mesa_glsl_error(loc, state,
3863                                "misaligned atomic counter offset");
3864
3865            var->data.offset = *offset;
3866            *offset += var->type->atomic_size();
3867
3868         } else {
3869            _mesa_glsl_error(loc, state,
3870                             "atomic counters require explicit binding point");
3871         }
3872      } else if (var->data.mode != ir_var_function_in) {
3873         _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3874                          "function parameters or uniform-qualified "
3875                          "global variables");
3876      }
3877   }
3878
3879   if (var->type->contains_sampler() &&
3880       !validate_storage_for_sampler_image_types(var, state, loc))
3881      return;
3882
3883   /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3884    * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3885    * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3886    * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3887    * These extensions and all following extensions that add the 'layout'
3888    * keyword have been modified to require the use of 'in' or 'out'.
3889    *
3890    * The following extension do not allow the deprecated keywords:
3891    *
3892    *    GL_AMD_conservative_depth
3893    *    GL_ARB_conservative_depth
3894    *    GL_ARB_gpu_shader5
3895    *    GL_ARB_separate_shader_objects
3896    *    GL_ARB_tessellation_shader
3897    *    GL_ARB_transform_feedback3
3898    *    GL_ARB_uniform_buffer_object
3899    *
3900    * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3901    * allow layout with the deprecated keywords.
3902    */
3903   const bool relaxed_layout_qualifier_checking =
3904      state->ARB_fragment_coord_conventions_enable;
3905
3906   const bool uses_deprecated_qualifier = qual->flags.q.attribute
3907      || qual->flags.q.varying;
3908   if (qual->has_layout() && uses_deprecated_qualifier) {
3909      if (relaxed_layout_qualifier_checking) {
3910         _mesa_glsl_warning(loc, state,
3911                            "`layout' qualifier may not be used with "
3912                            "`attribute' or `varying'");
3913      } else {
3914         _mesa_glsl_error(loc, state,
3915                          "`layout' qualifier may not be used with "
3916                          "`attribute' or `varying'");
3917      }
3918   }
3919
3920   /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3921    * AMD_conservative_depth.
3922    */
3923   if (qual->flags.q.depth_type
3924       && !state->is_version(420, 0)
3925       && !state->AMD_conservative_depth_enable
3926       && !state->ARB_conservative_depth_enable) {
3927       _mesa_glsl_error(loc, state,
3928                        "extension GL_AMD_conservative_depth or "
3929                        "GL_ARB_conservative_depth must be enabled "
3930                        "to use depth layout qualifiers");
3931   } else if (qual->flags.q.depth_type
3932              && strcmp(var->name, "gl_FragDepth") != 0) {
3933       _mesa_glsl_error(loc, state,
3934                        "depth layout qualifiers can be applied only to "
3935                        "gl_FragDepth");
3936   }
3937
3938   switch (qual->depth_type) {
3939   case ast_depth_any:
3940      var->data.depth_layout = ir_depth_layout_any;
3941      break;
3942   case ast_depth_greater:
3943      var->data.depth_layout = ir_depth_layout_greater;
3944      break;
3945   case ast_depth_less:
3946      var->data.depth_layout = ir_depth_layout_less;
3947      break;
3948   case ast_depth_unchanged:
3949      var->data.depth_layout = ir_depth_layout_unchanged;
3950      break;
3951   default:
3952      var->data.depth_layout = ir_depth_layout_none;
3953      break;
3954   }
3955
3956   if (qual->flags.q.std140 ||
3957       qual->flags.q.std430 ||
3958       qual->flags.q.packed ||
3959       qual->flags.q.shared) {
3960      _mesa_glsl_error(loc, state,
3961                       "uniform and shader storage block layout qualifiers "
3962                       "std140, std430, packed, and shared can only be "
3963                       "applied to uniform or shader storage blocks, not "
3964                       "members");
3965   }
3966
3967   if (qual->flags.q.row_major || qual->flags.q.column_major) {
3968      validate_matrix_layout_for_type(state, loc, var->type, var);
3969   }
3970
3971   /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3972    * Inputs):
3973    *
3974    *  "Fragment shaders also allow the following layout qualifier on in only
3975    *   (not with variable declarations)
3976    *     layout-qualifier-id
3977    *        early_fragment_tests
3978    *   [...]"
3979    */
3980   if (qual->flags.q.early_fragment_tests) {
3981      _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3982                       "valid in fragment shader input layout declaration.");
3983   }
3984
3985   if (qual->flags.q.inner_coverage) {
3986      _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3987                       "valid in fragment shader input layout declaration.");
3988   }
3989
3990   if (qual->flags.q.post_depth_coverage) {
3991      _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3992                       "valid in fragment shader input layout declaration.");
3993   }
3994
3995   if (state->has_bindless())
3996      apply_bindless_qualifier_to_variable(qual, var, state, loc);
3997
3998   if (qual->flags.q.pixel_interlock_ordered ||
3999       qual->flags.q.pixel_interlock_unordered ||
4000       qual->flags.q.sample_interlock_ordered ||
4001       qual->flags.q.sample_interlock_unordered) {
4002      _mesa_glsl_error(loc, state, "interlock layout qualifiers: "
4003                       "pixel_interlock_ordered, pixel_interlock_unordered, "
4004                       "sample_interlock_ordered and sample_interlock_unordered, "
4005                       "only valid in fragment shader input layout declaration.");
4006   }
4007
4008   if (var->name != NULL && strcmp(var->name, "gl_Layer") == 0) {
4009      if (is_conflicting_layer_redeclaration(state, qual)) {
4010         _mesa_glsl_error(loc, state, "gl_Layer redeclaration with "
4011                          "different viewport_relative setting than earlier");
4012      }
4013      state->redeclares_gl_layer = true;
4014      if (qual->flags.q.viewport_relative) {
4015         state->layer_viewport_relative = true;
4016      }
4017   } else if (qual->flags.q.viewport_relative) {
4018      _mesa_glsl_error(loc, state,
4019                       "viewport_relative qualifier "
4020                       "can only be applied to gl_Layer.");
4021   }
4022}
4023
4024static void
4025apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
4026                                 ir_variable *var,
4027                                 struct _mesa_glsl_parse_state *state,
4028                                 YYLTYPE *loc,
4029                                 bool is_parameter)
4030{
4031   STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
4032
4033   if (qual->flags.q.invariant) {
4034      if (var->data.used) {
4035         _mesa_glsl_error(loc, state,
4036                          "variable `%s' may not be redeclared "
4037                          "`invariant' after being used",
4038                          var->name);
4039      } else {
4040         var->data.explicit_invariant = true;
4041         var->data.invariant = true;
4042      }
4043   }
4044
4045   if (qual->flags.q.precise) {
4046      if (var->data.used) {
4047         _mesa_glsl_error(loc, state,
4048                          "variable `%s' may not be redeclared "
4049                          "`precise' after being used",
4050                          var->name);
4051      } else {
4052         var->data.precise = 1;
4053      }
4054   }
4055
4056   if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
4057      _mesa_glsl_error(loc, state,
4058                       "`subroutine' may only be applied to uniforms, "
4059                       "subroutine type declarations, or function definitions");
4060   }
4061
4062   if (qual->flags.q.constant || qual->flags.q.attribute
4063       || qual->flags.q.uniform
4064       || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
4065      var->data.read_only = 1;
4066
4067   if (qual->flags.q.centroid)
4068      var->data.centroid = 1;
4069
4070   if (qual->flags.q.sample)
4071      var->data.sample = 1;
4072
4073   /* Precision qualifiers do not hold any meaning in Desktop GLSL */
4074   if (state->es_shader) {
4075      var->data.precision =
4076         select_gles_precision(qual->precision, var->type, state, loc);
4077   }
4078
4079   if (qual->flags.q.patch)
4080      var->data.patch = 1;
4081
4082   if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
4083      var->type = glsl_type::error_type;
4084      _mesa_glsl_error(loc, state,
4085                       "`attribute' variables may not be declared in the "
4086                       "%s shader",
4087                       _mesa_shader_stage_to_string(state->stage));
4088   }
4089
4090   /* Disallow layout qualifiers which may only appear on layout declarations. */
4091   if (qual->flags.q.prim_type) {
4092      _mesa_glsl_error(loc, state,
4093                       "Primitive type may only be specified on GS input or output "
4094                       "layout declaration, not on variables.");
4095   }
4096
4097   /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
4098    *
4099    *     "However, the const qualifier cannot be used with out or inout."
4100    *
4101    * The same section of the GLSL 4.40 spec further clarifies this saying:
4102    *
4103    *     "The const qualifier cannot be used with out or inout, or a
4104    *     compile-time error results."
4105    */
4106   if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
4107      _mesa_glsl_error(loc, state,
4108                       "`const' may not be applied to `out' or `inout' "
4109                       "function parameters");
4110   }
4111
4112   /* If there is no qualifier that changes the mode of the variable, leave
4113    * the setting alone.
4114    */
4115   assert(var->data.mode != ir_var_temporary);
4116   if (qual->flags.q.in && qual->flags.q.out)
4117      var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
4118   else if (qual->flags.q.in)
4119      var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
4120   else if (qual->flags.q.attribute
4121            || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
4122      var->data.mode = ir_var_shader_in;
4123   else if (qual->flags.q.out)
4124      var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
4125   else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
4126      var->data.mode = ir_var_shader_out;
4127   else if (qual->flags.q.uniform)
4128      var->data.mode = ir_var_uniform;
4129   else if (qual->flags.q.buffer)
4130      var->data.mode = ir_var_shader_storage;
4131   else if (qual->flags.q.shared_storage)
4132      var->data.mode = ir_var_shader_shared;
4133
4134   if (!is_parameter && state->stage == MESA_SHADER_FRAGMENT) {
4135      if (state->has_framebuffer_fetch()) {
4136         if (state->is_version(130, 300))
4137            var->data.fb_fetch_output = qual->flags.q.in && qual->flags.q.out;
4138         else
4139            var->data.fb_fetch_output = (strcmp(var->name, "gl_LastFragData") == 0);
4140      }
4141
4142      if (state->has_framebuffer_fetch_zs() &&
4143          (strcmp(var->name, "gl_LastFragDepthARM") == 0 ||
4144           strcmp(var->name, "gl_LastFragStencilARM") == 0)) {
4145         var->data.fb_fetch_output = 1;
4146      }
4147   }
4148
4149   if (var->data.fb_fetch_output)
4150      var->data.assigned = true;
4151
4152   if (var->is_fb_fetch_color_output()) {
4153      var->data.memory_coherent = !qual->flags.q.non_coherent;
4154
4155      /* From the EXT_shader_framebuffer_fetch spec:
4156       *
4157       *   "It is an error to declare an inout fragment output not qualified
4158       *    with layout(noncoherent) if the GL_EXT_shader_framebuffer_fetch
4159       *    extension hasn't been enabled."
4160       */
4161      if (var->data.memory_coherent &&
4162          !state->EXT_shader_framebuffer_fetch_enable)
4163         _mesa_glsl_error(loc, state,
4164                          "invalid declaration of framebuffer fetch output not "
4165                          "qualified with layout(noncoherent)");
4166
4167   } else {
4168      /* From the EXT_shader_framebuffer_fetch spec:
4169       *
4170       *   "Fragment outputs declared inout may specify the following layout
4171       *    qualifier: [...] noncoherent"
4172       */
4173      if (qual->flags.q.non_coherent)
4174         _mesa_glsl_error(loc, state,
4175                          "invalid layout(noncoherent) qualifier not part of "
4176                          "framebuffer fetch output declaration");
4177   }
4178
4179   if (!is_parameter && is_varying_var(var, state->stage)) {
4180      /* User-defined ins/outs are not permitted in compute shaders. */
4181      if (state->stage == MESA_SHADER_COMPUTE) {
4182         _mesa_glsl_error(loc, state,
4183                          "user-defined input and output variables are not "
4184                          "permitted in compute shaders");
4185      }
4186
4187      /* This variable is being used to link data between shader stages (in
4188       * pre-glsl-1.30 parlance, it's a "varying").  Check that it has a type
4189       * that is allowed for such purposes.
4190       *
4191       * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
4192       *
4193       *     "The varying qualifier can be used only with the data types
4194       *     float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
4195       *     these."
4196       *
4197       * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00.  From
4198       * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
4199       *
4200       *     "Fragment inputs can only be signed and unsigned integers and
4201       *     integer vectors, float, floating-point vectors, matrices, or
4202       *     arrays of these. Structures cannot be input.
4203       *
4204       * Similar text exists in the section on vertex shader outputs.
4205       *
4206       * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
4207       * 3.00 spec allows structs as well.  Varying structs are also allowed
4208       * in GLSL 1.50.
4209       *
4210       * From section 4.3.4 of the ARB_bindless_texture spec:
4211       *
4212       *     "(modify third paragraph of the section to allow sampler and image
4213       *     types) ...  Vertex shader inputs can only be float,
4214       *     single-precision floating-point scalars, single-precision
4215       *     floating-point vectors, matrices, signed and unsigned integers
4216       *     and integer vectors, sampler and image types."
4217       *
4218       * From section 4.3.6 of the ARB_bindless_texture spec:
4219       *
4220       *     "Output variables can only be floating-point scalars,
4221       *     floating-point vectors, matrices, signed or unsigned integers or
4222       *     integer vectors, sampler or image types, or arrays or structures
4223       *     of any these."
4224       */
4225      switch (var->type->without_array()->base_type) {
4226      case GLSL_TYPE_FLOAT:
4227         /* Ok in all GLSL versions */
4228         break;
4229      case GLSL_TYPE_UINT:
4230      case GLSL_TYPE_INT:
4231         if (state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
4232            break;
4233         _mesa_glsl_error(loc, state,
4234                          "varying variables must be of base type float in %s",
4235                          state->get_version_string());
4236         break;
4237      case GLSL_TYPE_STRUCT:
4238         if (state->is_version(150, 300))
4239            break;
4240         _mesa_glsl_error(loc, state,
4241                          "varying variables may not be of type struct");
4242         break;
4243      case GLSL_TYPE_DOUBLE:
4244      case GLSL_TYPE_UINT64:
4245      case GLSL_TYPE_INT64:
4246         break;
4247      case GLSL_TYPE_SAMPLER:
4248      case GLSL_TYPE_TEXTURE:
4249      case GLSL_TYPE_IMAGE:
4250         if (state->has_bindless())
4251            break;
4252         FALLTHROUGH;
4253      default:
4254         _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4255         break;
4256      }
4257   }
4258
4259   if (state->all_invariant && var->data.mode == ir_var_shader_out) {
4260      var->data.explicit_invariant = true;
4261      var->data.invariant = true;
4262   }
4263
4264   var->data.interpolation =
4265      interpret_interpolation_qualifier(qual, var->type,
4266                                        (ir_variable_mode) var->data.mode,
4267                                        state, loc);
4268
4269   /* Does the declaration use the deprecated 'attribute' or 'varying'
4270    * keywords?
4271    */
4272   const bool uses_deprecated_qualifier = qual->flags.q.attribute
4273      || qual->flags.q.varying;
4274
4275
4276   /* Validate auxiliary storage qualifiers */
4277
4278   /* From section 4.3.4 of the GLSL 1.30 spec:
4279    *    "It is an error to use centroid in in a vertex shader."
4280    *
4281    * From section 4.3.4 of the GLSL ES 3.00 spec:
4282    *    "It is an error to use centroid in or interpolation qualifiers in
4283    *    a vertex shader input."
4284    */
4285
4286   /* Section 4.3.6 of the GLSL 1.30 specification states:
4287    * "It is an error to use centroid out in a fragment shader."
4288    *
4289    * The GL_ARB_shading_language_420pack extension specification states:
4290    * "It is an error to use auxiliary storage qualifiers or interpolation
4291    *  qualifiers on an output in a fragment shader."
4292    */
4293   if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
4294      _mesa_glsl_error(loc, state,
4295                       "sample qualifier may only be used on `in` or `out` "
4296                       "variables between shader stages");
4297   }
4298   if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
4299      _mesa_glsl_error(loc, state,
4300                       "centroid qualifier may only be used with `in', "
4301                       "`out' or `varying' variables between shader stages");
4302   }
4303
4304   if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
4305      _mesa_glsl_error(loc, state,
4306                       "the shared storage qualifiers can only be used with "
4307                       "compute shaders");
4308   }
4309
4310   apply_image_qualifier_to_variable(qual, var, state, loc);
4311}
4312
4313/**
4314 * Get the variable that is being redeclared by this declaration or if it
4315 * does not exist, the current declared variable.
4316 *
4317 * Semantic checks to verify the validity of the redeclaration are also
4318 * performed.  If semantic checks fail, compilation error will be emitted via
4319 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
4320 *
4321 * \returns
4322 * A pointer to an existing variable in the current scope if the declaration
4323 * is a redeclaration, current variable otherwise. \c is_declared boolean
4324 * will return \c true if the declaration is a redeclaration, \c false
4325 * otherwise.
4326 */
4327static ir_variable *
4328get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc,
4329                              struct _mesa_glsl_parse_state *state,
4330                              bool allow_all_redeclarations,
4331                              bool *is_redeclaration)
4332{
4333   ir_variable *var = *var_ptr;
4334
4335   /* Check if this declaration is actually a re-declaration, either to
4336    * resize an array or add qualifiers to an existing variable.
4337    *
4338    * This is allowed for variables in the current scope, or when at
4339    * global scope (for built-ins in the implicit outer scope).
4340    */
4341   ir_variable *earlier = state->symbols->get_variable(var->name);
4342   if (earlier == NULL ||
4343       (state->current_function != NULL &&
4344       !state->symbols->name_declared_this_scope(var->name))) {
4345      *is_redeclaration = false;
4346      return var;
4347   }
4348
4349   *is_redeclaration = true;
4350
4351   if (earlier->data.how_declared == ir_var_declared_implicitly) {
4352      /* Verify that the redeclaration of a built-in does not change the
4353       * storage qualifier.  There are a couple special cases.
4354       *
4355       * 1. Some built-in variables that are defined as 'in' in the
4356       *    specification are implemented as system values.  Allow
4357       *    ir_var_system_value -> ir_var_shader_in.
4358       *
4359       * 2. gl_LastFragData is implemented as a ir_var_shader_out, but the
4360       *    specification requires that redeclarations omit any qualifier.
4361       *    Allow ir_var_shader_out -> ir_var_auto for this one variable.
4362       */
4363      if (earlier->data.mode != var->data.mode &&
4364          !(earlier->data.mode == ir_var_system_value &&
4365            var->data.mode == ir_var_shader_in) &&
4366          !(strcmp(var->name, "gl_LastFragData") == 0 &&
4367            var->data.mode == ir_var_auto)) {
4368         _mesa_glsl_error(&loc, state,
4369                          "redeclaration cannot change qualification of `%s'",
4370                          var->name);
4371      }
4372   }
4373
4374   /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4375    *
4376    * "It is legal to declare an array without a size and then
4377    *  later re-declare the same name as an array of the same
4378    *  type and specify a size."
4379    */
4380   if (earlier->type->is_unsized_array() && var->type->is_array()
4381       && (var->type->fields.array == earlier->type->fields.array)) {
4382      const int size = var->type->array_size();
4383      check_builtin_array_max_size(var->name, size, loc, state);
4384      if ((size > 0) && (size <= earlier->data.max_array_access)) {
4385         _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4386                          "previous access",
4387                          earlier->data.max_array_access);
4388      }
4389
4390      earlier->type = var->type;
4391      delete var;
4392      var = NULL;
4393      *var_ptr = NULL;
4394   } else if (earlier->type != var->type) {
4395      _mesa_glsl_error(&loc, state,
4396                       "redeclaration of `%s' has incorrect type",
4397                       var->name);
4398   } else if ((state->ARB_fragment_coord_conventions_enable ||
4399              state->is_version(150, 0))
4400              && strcmp(var->name, "gl_FragCoord") == 0) {
4401      /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4402       * qualifiers.
4403       *
4404       * We don't really need to do anything here, just allow the
4405       * redeclaration. Any error on the gl_FragCoord is handled on the ast
4406       * level at apply_layout_qualifier_to_variable using the
4407       * ast_type_qualifier and _mesa_glsl_parse_state, or later at
4408       * linker.cpp.
4409       */
4410      /* According to section 4.3.7 of the GLSL 1.30 spec,
4411       * the following built-in varaibles can be redeclared with an
4412       * interpolation qualifier:
4413       *    * gl_FrontColor
4414       *    * gl_BackColor
4415       *    * gl_FrontSecondaryColor
4416       *    * gl_BackSecondaryColor
4417       *    * gl_Color
4418       *    * gl_SecondaryColor
4419       */
4420   } else if (state->is_version(130, 0)
4421              && (strcmp(var->name, "gl_FrontColor") == 0
4422                  || strcmp(var->name, "gl_BackColor") == 0
4423                  || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4424                  || strcmp(var->name, "gl_BackSecondaryColor") == 0
4425                  || strcmp(var->name, "gl_Color") == 0
4426                  || strcmp(var->name, "gl_SecondaryColor") == 0)) {
4427      earlier->data.interpolation = var->data.interpolation;
4428
4429      /* Layout qualifiers for gl_FragDepth. */
4430   } else if ((state->is_version(420, 0) ||
4431               state->AMD_conservative_depth_enable ||
4432               state->ARB_conservative_depth_enable)
4433              && strcmp(var->name, "gl_FragDepth") == 0) {
4434
4435      /** From the AMD_conservative_depth spec:
4436       *     Within any shader, the first redeclarations of gl_FragDepth
4437       *     must appear before any use of gl_FragDepth.
4438       */
4439      if (earlier->data.used) {
4440         _mesa_glsl_error(&loc, state,
4441                          "the first redeclaration of gl_FragDepth "
4442                          "must appear before any use of gl_FragDepth");
4443      }
4444
4445      /* Prevent inconsistent redeclaration of depth layout qualifier. */
4446      if (earlier->data.depth_layout != ir_depth_layout_none
4447          && earlier->data.depth_layout != var->data.depth_layout) {
4448            _mesa_glsl_error(&loc, state,
4449                             "gl_FragDepth: depth layout is declared here "
4450                             "as '%s, but it was previously declared as "
4451                             "'%s'",
4452                             depth_layout_string(var->data.depth_layout),
4453                             depth_layout_string(earlier->data.depth_layout));
4454      }
4455
4456      earlier->data.depth_layout = var->data.depth_layout;
4457
4458   } else if (state->has_framebuffer_fetch() &&
4459              strcmp(var->name, "gl_LastFragData") == 0 &&
4460              var->data.mode == ir_var_auto) {
4461      /* According to the EXT_shader_framebuffer_fetch spec:
4462       *
4463       *   "By default, gl_LastFragData is declared with the mediump precision
4464       *    qualifier. This can be changed by redeclaring the corresponding
4465       *    variables with the desired precision qualifier."
4466       *
4467       *   "Fragment shaders may specify the following layout qualifier only for
4468       *    redeclaring the built-in gl_LastFragData array [...]: noncoherent"
4469       */
4470      earlier->data.precision = var->data.precision;
4471      earlier->data.memory_coherent = var->data.memory_coherent;
4472
4473   } else if (state->NV_viewport_array2_enable &&
4474              strcmp(var->name, "gl_Layer") == 0 &&
4475              earlier->data.how_declared == ir_var_declared_implicitly) {
4476      /* No need to do anything, just allow it. Qualifier is stored in state */
4477
4478   } else if (state->is_version(0, 300) &&
4479              state->has_separate_shader_objects() &&
4480              (strcmp(var->name, "gl_Position") == 0 ||
4481              strcmp(var->name, "gl_PointSize") == 0)) {
4482
4483       /*  EXT_separate_shader_objects spec says:
4484       *
4485       *  "The following vertex shader outputs may be redeclared
4486       *   at global scope to specify a built-in output interface,
4487       *   with or without special qualifiers:
4488       *
4489       *    gl_Position
4490       *    gl_PointSize
4491       *
4492       *    When compiling shaders using either of the above variables,
4493       *    both such variables must be redeclared prior to use."
4494       */
4495      if (earlier->data.used) {
4496         _mesa_glsl_error(&loc, state, "the first redeclaration of "
4497                         "%s must appear before any use", var->name);
4498      }
4499   } else if ((earlier->data.how_declared == ir_var_declared_implicitly &&
4500               state->allow_builtin_variable_redeclaration) ||
4501              allow_all_redeclarations) {
4502      /* Allow verbatim redeclarations of built-in variables. Not explicitly
4503       * valid, but some applications do it.
4504       */
4505   } else {
4506      _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4507   }
4508
4509   return earlier;
4510}
4511
4512/**
4513 * Generate the IR for an initializer in a variable declaration
4514 */
4515static ir_rvalue *
4516process_initializer(ir_variable *var, ast_declaration *decl,
4517                    ast_fully_specified_type *type,
4518                    exec_list *initializer_instructions,
4519                    struct _mesa_glsl_parse_state *state)
4520{
4521   void *mem_ctx = state;
4522   ir_rvalue *result = NULL;
4523
4524   YYLTYPE initializer_loc = decl->initializer->get_location();
4525
4526   /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4527    *
4528    *    "All uniform variables are read-only and are initialized either
4529    *    directly by an application via API commands, or indirectly by
4530    *    OpenGL."
4531    */
4532   if (var->data.mode == ir_var_uniform) {
4533      state->check_version(120, 0, &initializer_loc,
4534                           "cannot initialize uniform %s",
4535                           var->name);
4536   }
4537
4538   /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4539    *
4540    *    "Buffer variables cannot have initializers."
4541    */
4542   if (var->data.mode == ir_var_shader_storage) {
4543      _mesa_glsl_error(&initializer_loc, state,
4544                       "cannot initialize buffer variable %s",
4545                       var->name);
4546   }
4547
4548   /* From section 4.1.7 of the GLSL 4.40 spec:
4549    *
4550    *    "Opaque variables [...] are initialized only through the
4551    *     OpenGL API; they cannot be declared with an initializer in a
4552    *     shader."
4553    *
4554    * From section 4.1.7 of the ARB_bindless_texture spec:
4555    *
4556    *    "Samplers may be declared as shader inputs and outputs, as uniform
4557    *     variables, as temporary variables, and as function parameters."
4558    *
4559    * From section 4.1.X of the ARB_bindless_texture spec:
4560    *
4561    *    "Images may be declared as shader inputs and outputs, as uniform
4562    *     variables, as temporary variables, and as function parameters."
4563    */
4564   if (var->type->contains_atomic() ||
4565       (!state->has_bindless() && var->type->contains_opaque())) {
4566      _mesa_glsl_error(&initializer_loc, state,
4567                       "cannot initialize %s variable %s",
4568                       var->name, state->has_bindless() ? "atomic" : "opaque");
4569   }
4570
4571   if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4572      _mesa_glsl_error(&initializer_loc, state,
4573                       "cannot initialize %s shader input / %s %s",
4574                       _mesa_shader_stage_to_string(state->stage),
4575                       (state->stage == MESA_SHADER_VERTEX)
4576                       ? "attribute" : "varying",
4577                       var->name);
4578   }
4579
4580   if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4581      _mesa_glsl_error(&initializer_loc, state,
4582                       "cannot initialize %s shader output %s",
4583                       _mesa_shader_stage_to_string(state->stage),
4584                       var->name);
4585   }
4586
4587   /* If the initializer is an ast_aggregate_initializer, recursively store
4588    * type information from the LHS into it, so that its hir() function can do
4589    * type checking.
4590    */
4591   if (decl->initializer->oper == ast_aggregate)
4592      _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4593
4594   ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4595   ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4596
4597   /* Calculate the constant value if this is a const or uniform
4598    * declaration.
4599    *
4600    * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4601    *
4602    *     "Declarations of globals without a storage qualifier, or with
4603    *     just the const qualifier, may include initializers, in which case
4604    *     they will be initialized before the first line of main() is
4605    *     executed.  Such initializers must be a constant expression."
4606    *
4607    * The same section of the GLSL ES 3.00.4 spec has similar language.
4608    */
4609   if (type->qualifier.flags.q.constant
4610       || type->qualifier.flags.q.uniform
4611       || (state->es_shader && state->current_function == NULL)) {
4612      ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4613                                               lhs, rhs, true);
4614      if (new_rhs != NULL) {
4615         rhs = new_rhs;
4616
4617         /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4618          * says:
4619          *
4620          *     "A constant expression is one of
4621          *
4622          *        ...
4623          *
4624          *        - an expression formed by an operator on operands that are
4625          *          all constant expressions, including getting an element of
4626          *          a constant array, or a field of a constant structure, or
4627          *          components of a constant vector.  However, the sequence
4628          *          operator ( , ) and the assignment operators ( =, +=, ...)
4629          *          are not included in the operators that can create a
4630          *          constant expression."
4631          *
4632          * Section 12.43 (Sequence operator and constant expressions) says:
4633          *
4634          *     "Should the following construct be allowed?
4635          *
4636          *         float a[2,3];
4637          *
4638          *     The expression within the brackets uses the sequence operator
4639          *     (',') and returns the integer 3 so the construct is declaring
4640          *     a single-dimensional array of size 3.  In some languages, the
4641          *     construct declares a two-dimensional array.  It would be
4642          *     preferable to make this construct illegal to avoid confusion.
4643          *
4644          *     One possibility is to change the definition of the sequence
4645          *     operator so that it does not return a constant-expression and
4646          *     hence cannot be used to declare an array size.
4647          *
4648          *     RESOLUTION: The result of a sequence operator is not a
4649          *     constant-expression."
4650          *
4651          * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4652          * contains language almost identical to the section 4.3.3 in the
4653          * GLSL ES 3.00.4 spec.  This is a new limitation for these GLSL
4654          * versions.
4655          */
4656         ir_constant *constant_value =
4657            rhs->constant_expression_value(mem_ctx);
4658
4659         if (!constant_value ||
4660             (state->is_version(430, 300) &&
4661              decl->initializer->has_sequence_subexpression())) {
4662            const char *const variable_mode =
4663               (type->qualifier.flags.q.constant)
4664               ? "const"
4665               : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4666
4667            /* If ARB_shading_language_420pack is enabled, initializers of
4668             * const-qualified local variables do not have to be constant
4669             * expressions. Const-qualified global variables must still be
4670             * initialized with constant expressions.
4671             */
4672            if (!state->has_420pack()
4673                || state->current_function == NULL) {
4674               _mesa_glsl_error(& initializer_loc, state,
4675                                "initializer of %s variable `%s' must be a "
4676                                "constant expression",
4677                                variable_mode,
4678                                decl->identifier);
4679               if (var->type->is_numeric()) {
4680                  /* Reduce cascading errors. */
4681                  var->constant_value = type->qualifier.flags.q.constant
4682                     ? ir_constant::zero(state, var->type) : NULL;
4683               }
4684            }
4685         } else {
4686            rhs = constant_value;
4687            var->constant_value = type->qualifier.flags.q.constant
4688               ? constant_value : NULL;
4689         }
4690      } else {
4691         if (var->type->is_numeric()) {
4692            /* Reduce cascading errors. */
4693            rhs = var->constant_value = type->qualifier.flags.q.constant
4694               ? ir_constant::zero(state, var->type) : NULL;
4695         }
4696      }
4697   }
4698
4699   if (rhs && !rhs->type->is_error()) {
4700      bool temp = var->data.read_only;
4701      if (type->qualifier.flags.q.constant)
4702         var->data.read_only = false;
4703
4704      /* Never emit code to initialize a uniform.
4705       */
4706      const glsl_type *initializer_type;
4707      bool error_emitted = false;
4708      if (!type->qualifier.flags.q.uniform) {
4709         error_emitted =
4710            do_assignment(initializer_instructions, state,
4711                          NULL, lhs, rhs,
4712                          &result, true, true,
4713                          type->get_location());
4714         initializer_type = result->type;
4715      } else
4716         initializer_type = rhs->type;
4717
4718      if (!error_emitted) {
4719         var->constant_initializer = rhs->constant_expression_value(mem_ctx);
4720         var->data.has_initializer = true;
4721         var->data.is_implicit_initializer = false;
4722
4723         /* If the declared variable is an unsized array, it must inherrit
4724         * its full type from the initializer.  A declaration such as
4725         *
4726         *     uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4727         *
4728         * becomes
4729         *
4730         *     uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4731         *
4732         * The assignment generated in the if-statement (below) will also
4733         * automatically handle this case for non-uniforms.
4734         *
4735         * If the declared variable is not an array, the types must
4736         * already match exactly.  As a result, the type assignment
4737         * here can be done unconditionally.  For non-uniforms the call
4738         * to do_assignment can change the type of the initializer (via
4739         * the implicit conversion rules).  For uniforms the initializer
4740         * must be a constant expression, and the type of that expression
4741         * was validated above.
4742         */
4743         var->type = initializer_type;
4744      }
4745
4746      var->data.read_only = temp;
4747   }
4748
4749   return result;
4750}
4751
4752static void
4753validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4754                                       YYLTYPE loc, ir_variable *var,
4755                                       unsigned num_vertices,
4756                                       unsigned *size,
4757                                       const char *var_category)
4758{
4759   if (var->type->is_unsized_array()) {
4760      /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4761       *
4762       *   All geometry shader input unsized array declarations will be
4763       *   sized by an earlier input layout qualifier, when present, as per
4764       *   the following table.
4765       *
4766       * Followed by a table mapping each allowed input layout qualifier to
4767       * the corresponding input length.
4768       *
4769       * Similarly for tessellation control shader outputs.
4770       */
4771      if (num_vertices != 0)
4772         var->type = glsl_type::get_array_instance(var->type->fields.array,
4773                                                   num_vertices);
4774   } else {
4775      /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4776       * includes the following examples of compile-time errors:
4777       *
4778       *   // code sequence within one shader...
4779       *   in vec4 Color1[];    // size unknown
4780       *   ...Color1.length()...// illegal, length() unknown
4781       *   in vec4 Color2[2];   // size is 2
4782       *   ...Color1.length()...// illegal, Color1 still has no size
4783       *   in vec4 Color3[3];   // illegal, input sizes are inconsistent
4784       *   layout(lines) in;    // legal, input size is 2, matching
4785       *   in vec4 Color4[3];   // illegal, contradicts layout
4786       *   ...
4787       *
4788       * To detect the case illustrated by Color3, we verify that the size of
4789       * an explicitly-sized array matches the size of any previously declared
4790       * explicitly-sized array.  To detect the case illustrated by Color4, we
4791       * verify that the size of an explicitly-sized array is consistent with
4792       * any previously declared input layout.
4793       */
4794      if (num_vertices != 0 && var->type->length != num_vertices) {
4795         _mesa_glsl_error(&loc, state,
4796                          "%s size contradicts previously declared layout "
4797                          "(size is %u, but layout requires a size of %u)",
4798                          var_category, var->type->length, num_vertices);
4799      } else if (*size != 0 && var->type->length != *size) {
4800         _mesa_glsl_error(&loc, state,
4801                          "%s sizes are inconsistent (size is %u, but a "
4802                          "previous declaration has size %u)",
4803                          var_category, var->type->length, *size);
4804      } else {
4805         *size = var->type->length;
4806      }
4807   }
4808}
4809
4810static void
4811handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4812                                    YYLTYPE loc, ir_variable *var)
4813{
4814   unsigned num_vertices = 0;
4815
4816   if (state->tcs_output_vertices_specified) {
4817      if (!state->out_qualifier->vertices->
4818             process_qualifier_constant(state, "vertices",
4819                                        &num_vertices, false)) {
4820         return;
4821      }
4822
4823      if (num_vertices > state->Const.MaxPatchVertices) {
4824         _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4825                          "GL_MAX_PATCH_VERTICES", num_vertices);
4826         return;
4827      }
4828   }
4829
4830   if (!var->type->is_array() && !var->data.patch) {
4831      _mesa_glsl_error(&loc, state,
4832                       "tessellation control shader outputs must be arrays");
4833
4834      /* To avoid cascading failures, short circuit the checks below. */
4835      return;
4836   }
4837
4838   if (var->data.patch)
4839      return;
4840
4841   validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4842                                          &state->tcs_output_size,
4843                                          "tessellation control shader output");
4844}
4845
4846/**
4847 * Do additional processing necessary for tessellation control/evaluation shader
4848 * input declarations. This covers both interface block arrays and bare input
4849 * variables.
4850 */
4851static void
4852handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4853                              YYLTYPE loc, ir_variable *var)
4854{
4855   if (!var->type->is_array() && !var->data.patch) {
4856      _mesa_glsl_error(&loc, state,
4857                       "per-vertex tessellation shader inputs must be arrays");
4858      /* Avoid cascading failures. */
4859      return;
4860   }
4861
4862   if (var->data.patch)
4863      return;
4864
4865   /* The ARB_tessellation_shader spec says:
4866    *
4867    *    "Declaring an array size is optional.  If no size is specified, it
4868    *     will be taken from the implementation-dependent maximum patch size
4869    *     (gl_MaxPatchVertices).  If a size is specified, it must match the
4870    *     maximum patch size; otherwise, a compile or link error will occur."
4871    *
4872    * This text appears twice, once for TCS inputs, and again for TES inputs.
4873    */
4874   if (var->type->is_unsized_array()) {
4875      var->type = glsl_type::get_array_instance(var->type->fields.array,
4876            state->Const.MaxPatchVertices);
4877   } else if (var->type->length != state->Const.MaxPatchVertices) {
4878      _mesa_glsl_error(&loc, state,
4879                       "per-vertex tessellation shader input arrays must be "
4880                       "sized to gl_MaxPatchVertices (%d).",
4881                       state->Const.MaxPatchVertices);
4882   }
4883}
4884
4885
4886/**
4887 * Do additional processing necessary for geometry shader input declarations
4888 * (this covers both interface blocks arrays and bare input variables).
4889 */
4890static void
4891handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4892                                  YYLTYPE loc, ir_variable *var)
4893{
4894   unsigned num_vertices = 0;
4895
4896   if (state->gs_input_prim_type_specified) {
4897      num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4898   }
4899
4900   /* Geometry shader input variables must be arrays.  Caller should have
4901    * reported an error for this.
4902    */
4903   if (!var->type->is_array()) {
4904      assert(state->error);
4905
4906      /* To avoid cascading failures, short circuit the checks below. */
4907      return;
4908   }
4909
4910   validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4911                                          &state->gs_input_size,
4912                                          "geometry shader input");
4913}
4914
4915static void
4916validate_identifier(const char *identifier, YYLTYPE loc,
4917                    struct _mesa_glsl_parse_state *state)
4918{
4919   /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4920    *
4921    *   "Identifiers starting with "gl_" are reserved for use by
4922    *   OpenGL, and may not be declared in a shader as either a
4923    *   variable or a function."
4924    */
4925   if (is_gl_identifier(identifier)) {
4926      _mesa_glsl_error(&loc, state,
4927                       "identifier `%s' uses reserved `gl_' prefix",
4928                       identifier);
4929   } else if (strstr(identifier, "__")) {
4930      /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4931       * spec:
4932       *
4933       *     "In addition, all identifiers containing two
4934       *      consecutive underscores (__) are reserved as
4935       *      possible future keywords."
4936       *
4937       * The intention is that names containing __ are reserved for internal
4938       * use by the implementation, and names prefixed with GL_ are reserved
4939       * for use by Khronos.  Names simply containing __ are dangerous to use,
4940       * but should be allowed.
4941       *
4942       * A future version of the GLSL specification will clarify this.
4943       */
4944      _mesa_glsl_warning(&loc, state,
4945                         "identifier `%s' uses reserved `__' string",
4946                         identifier);
4947   }
4948}
4949
4950ir_rvalue *
4951ast_declarator_list::hir(exec_list *instructions,
4952                         struct _mesa_glsl_parse_state *state)
4953{
4954   void *ctx = state;
4955   const struct glsl_type *decl_type;
4956   const char *type_name = NULL;
4957   ir_rvalue *result = NULL;
4958   YYLTYPE loc = this->get_location();
4959
4960   /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4961    *
4962    *     "To ensure that a particular output variable is invariant, it is
4963    *     necessary to use the invariant qualifier. It can either be used to
4964    *     qualify a previously declared variable as being invariant
4965    *
4966    *         invariant gl_Position; // make existing gl_Position be invariant"
4967    *
4968    * In these cases the parser will set the 'invariant' flag in the declarator
4969    * list, and the type will be NULL.
4970    */
4971   if (this->invariant) {
4972      assert(this->type == NULL);
4973
4974      if (state->current_function != NULL) {
4975         _mesa_glsl_error(& loc, state,
4976                          "all uses of `invariant' keyword must be at global "
4977                          "scope");
4978      }
4979
4980      foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4981         assert(decl->array_specifier == NULL);
4982         assert(decl->initializer == NULL);
4983
4984         ir_variable *const earlier =
4985            state->symbols->get_variable(decl->identifier);
4986         if (earlier == NULL) {
4987            _mesa_glsl_error(& loc, state,
4988                             "undeclared variable `%s' cannot be marked "
4989                             "invariant", decl->identifier);
4990         } else if (!is_allowed_invariant(earlier, state)) {
4991            _mesa_glsl_error(&loc, state,
4992                             "`%s' cannot be marked invariant; interfaces between "
4993                             "shader stages only.", decl->identifier);
4994         } else if (earlier->data.used) {
4995            _mesa_glsl_error(& loc, state,
4996                            "variable `%s' may not be redeclared "
4997                            "`invariant' after being used",
4998                            earlier->name);
4999         } else {
5000            earlier->data.explicit_invariant = true;
5001            earlier->data.invariant = true;
5002         }
5003      }
5004
5005      /* Invariant redeclarations do not have r-values.
5006       */
5007      return NULL;
5008   }
5009
5010   if (this->precise) {
5011      assert(this->type == NULL);
5012
5013      foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
5014         assert(decl->array_specifier == NULL);
5015         assert(decl->initializer == NULL);
5016
5017         ir_variable *const earlier =
5018            state->symbols->get_variable(decl->identifier);
5019         if (earlier == NULL) {
5020            _mesa_glsl_error(& loc, state,
5021                             "undeclared variable `%s' cannot be marked "
5022                             "precise", decl->identifier);
5023         } else if (state->current_function != NULL &&
5024                    !state->symbols->name_declared_this_scope(decl->identifier)) {
5025            /* Note: we have to check if we're in a function, since
5026             * builtins are treated as having come from another scope.
5027             */
5028            _mesa_glsl_error(& loc, state,
5029                             "variable `%s' from an outer scope may not be "
5030                             "redeclared `precise' in this scope",
5031                             earlier->name);
5032         } else if (earlier->data.used) {
5033            _mesa_glsl_error(& loc, state,
5034                             "variable `%s' may not be redeclared "
5035                             "`precise' after being used",
5036                             earlier->name);
5037         } else {
5038            earlier->data.precise = true;
5039         }
5040      }
5041
5042      /* Precise redeclarations do not have r-values either. */
5043      return NULL;
5044   }
5045
5046   assert(this->type != NULL);
5047   assert(!this->invariant);
5048   assert(!this->precise);
5049
5050   /* GL_EXT_shader_image_load_store base type uses GLSL_TYPE_VOID as a special value to
5051    * indicate that it needs to be updated later (see glsl_parser.yy).
5052    * This is done here, based on the layout qualifier and the type of the image var
5053    */
5054   if (this->type->qualifier.flags.q.explicit_image_format &&
5055         this->type->specifier->type->is_image() &&
5056         this->type->qualifier.image_base_type == GLSL_TYPE_VOID) {
5057      /*     "The ARB_shader_image_load_store says:
5058       *     If both extensions are enabled in the shading language, the "size*" layout
5059       *     qualifiers are treated as format qualifiers, and are mapped to equivalent
5060       *     format qualifiers in the table below, according to the type of image
5061       *     variable.
5062       *                     image*    iimage*   uimage*
5063       *                     --------  --------  --------
5064       *       size1x8       n/a       r8i       r8ui
5065       *       size1x16      r16f      r16i      r16ui
5066       *       size1x32      r32f      r32i      r32ui
5067       *       size2x32      rg32f     rg32i     rg32ui
5068       *       size4x32      rgba32f   rgba32i   rgba32ui"
5069       */
5070      if (strncmp(this->type->specifier->type_name, "image", strlen("image")) == 0) {
5071         switch (this->type->qualifier.image_format) {
5072         case PIPE_FORMAT_R8_SINT:
5073            /* The GL_EXT_shader_image_load_store spec says:
5074             *    A layout of "size1x8" is illegal for image variables associated
5075             *    with floating-point data types.
5076             */
5077            _mesa_glsl_error(& loc, state,
5078                             "size1x8 is illegal for image variables "
5079                             "with floating-point data types.");
5080            return NULL;
5081         case PIPE_FORMAT_R16_SINT:
5082            this->type->qualifier.image_format = PIPE_FORMAT_R16_FLOAT;
5083            break;
5084         case PIPE_FORMAT_R32_SINT:
5085            this->type->qualifier.image_format = PIPE_FORMAT_R32_FLOAT;
5086            break;
5087         case PIPE_FORMAT_R32G32_SINT:
5088            this->type->qualifier.image_format = PIPE_FORMAT_R32G32_FLOAT;
5089            break;
5090         case PIPE_FORMAT_R32G32B32A32_SINT:
5091            this->type->qualifier.image_format = PIPE_FORMAT_R32G32B32A32_FLOAT;
5092            break;
5093         default:
5094            unreachable("Unknown image format");
5095         }
5096         this->type->qualifier.image_base_type = GLSL_TYPE_FLOAT;
5097      } else if (strncmp(this->type->specifier->type_name, "uimage", strlen("uimage")) == 0) {
5098         switch (this->type->qualifier.image_format) {
5099         case PIPE_FORMAT_R8_SINT:
5100            this->type->qualifier.image_format = PIPE_FORMAT_R8_UINT;
5101            break;
5102         case PIPE_FORMAT_R16_SINT:
5103            this->type->qualifier.image_format = PIPE_FORMAT_R16_UINT;
5104            break;
5105         case PIPE_FORMAT_R32_SINT:
5106            this->type->qualifier.image_format = PIPE_FORMAT_R32_UINT;
5107            break;
5108         case PIPE_FORMAT_R32G32_SINT:
5109            this->type->qualifier.image_format = PIPE_FORMAT_R32G32_UINT;
5110            break;
5111         case PIPE_FORMAT_R32G32B32A32_SINT:
5112            this->type->qualifier.image_format = PIPE_FORMAT_R32G32B32A32_UINT;
5113            break;
5114         default:
5115            unreachable("Unknown image format");
5116         }
5117         this->type->qualifier.image_base_type = GLSL_TYPE_UINT;
5118      } else if (strncmp(this->type->specifier->type_name, "iimage", strlen("iimage")) == 0) {
5119         this->type->qualifier.image_base_type = GLSL_TYPE_INT;
5120      } else {
5121         assert(false);
5122      }
5123   }
5124
5125   /* The type specifier may contain a structure definition.  Process that
5126    * before any of the variable declarations.
5127    */
5128   (void) this->type->specifier->hir(instructions, state);
5129
5130   decl_type = this->type->glsl_type(& type_name, state);
5131
5132   /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
5133    *    "Buffer variables may only be declared inside interface blocks
5134    *    (section 4.3.9 “Interface Blocks”), which are then referred to as
5135    *    shader storage blocks. It is a compile-time error to declare buffer
5136    *    variables at global scope (outside a block)."
5137    */
5138   if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
5139      _mesa_glsl_error(&loc, state,
5140                       "buffer variables cannot be declared outside "
5141                       "interface blocks");
5142   }
5143
5144   /* An offset-qualified atomic counter declaration sets the default
5145    * offset for the next declaration within the same atomic counter
5146    * buffer.
5147    */
5148   if (decl_type && decl_type->contains_atomic()) {
5149      if (type->qualifier.flags.q.explicit_binding &&
5150          type->qualifier.flags.q.explicit_offset) {
5151         unsigned qual_binding;
5152         unsigned qual_offset;
5153         if (process_qualifier_constant(state, &loc, "binding",
5154                                        type->qualifier.binding,
5155                                        &qual_binding)
5156             && process_qualifier_constant(state, &loc, "offset",
5157                                        type->qualifier.offset,
5158                                        &qual_offset)) {
5159            if (qual_binding < ARRAY_SIZE(state->atomic_counter_offsets))
5160               state->atomic_counter_offsets[qual_binding] = qual_offset;
5161         }
5162      }
5163
5164      ast_type_qualifier allowed_atomic_qual_mask;
5165      allowed_atomic_qual_mask.flags.i = 0;
5166      allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
5167      allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
5168      allowed_atomic_qual_mask.flags.q.uniform = 1;
5169
5170      type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
5171                                     "invalid layout qualifier for",
5172                                     "atomic_uint");
5173   }
5174
5175   if (this->declarations.is_empty()) {
5176      /* If there is no structure involved in the program text, there are two
5177       * possible scenarios:
5178       *
5179       * - The program text contained something like 'vec4;'.  This is an
5180       *   empty declaration.  It is valid but weird.  Emit a warning.
5181       *
5182       * - The program text contained something like 'S;' and 'S' is not the
5183       *   name of a known structure type.  This is both invalid and weird.
5184       *   Emit an error.
5185       *
5186       * - The program text contained something like 'mediump float;'
5187       *   when the programmer probably meant 'precision mediump
5188       *   float;' Emit a warning with a description of what they
5189       *   probably meant to do.
5190       *
5191       * Note that if decl_type is NULL and there is a structure involved,
5192       * there must have been some sort of error with the structure.  In this
5193       * case we assume that an error was already generated on this line of
5194       * code for the structure.  There is no need to generate an additional,
5195       * confusing error.
5196       */
5197      assert(this->type->specifier->structure == NULL || decl_type != NULL
5198             || state->error);
5199
5200      if (decl_type == NULL) {
5201         _mesa_glsl_error(&loc, state,
5202                          "invalid type `%s' in empty declaration",
5203                          type_name);
5204      } else {
5205         if (decl_type->is_array()) {
5206            /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
5207             * spec:
5208             *
5209             *    "... any declaration that leaves the size undefined is
5210             *    disallowed as this would add complexity and there are no
5211             *    use-cases."
5212             */
5213            if (state->es_shader && decl_type->is_unsized_array()) {
5214               _mesa_glsl_error(&loc, state, "array size must be explicitly "
5215                                "or implicitly defined");
5216            }
5217
5218            /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
5219             *
5220             *    "The combinations of types and qualifiers that cause
5221             *    compile-time or link-time errors are the same whether or not
5222             *    the declaration is empty."
5223             */
5224            validate_array_dimensions(decl_type, state, &loc);
5225         }
5226
5227         if (decl_type->is_atomic_uint()) {
5228            /* Empty atomic counter declarations are allowed and useful
5229             * to set the default offset qualifier.
5230             */
5231            return NULL;
5232         } else if (this->type->qualifier.precision != ast_precision_none) {
5233            if (this->type->specifier->structure != NULL) {
5234               _mesa_glsl_error(&loc, state,
5235                                "precision qualifiers can't be applied "
5236                                "to structures");
5237            } else {
5238               static const char *const precision_names[] = {
5239                  "highp",
5240                  "highp",
5241                  "mediump",
5242                  "lowp"
5243               };
5244
5245               _mesa_glsl_warning(&loc, state,
5246                                  "empty declaration with precision "
5247                                  "qualifier, to set the default precision, "
5248                                  "use `precision %s %s;'",
5249                                  precision_names[this->type->
5250                                     qualifier.precision],
5251                                  type_name);
5252            }
5253         } else if (this->type->specifier->structure == NULL) {
5254            _mesa_glsl_warning(&loc, state, "empty declaration");
5255         }
5256      }
5257   }
5258
5259   foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
5260      const struct glsl_type *var_type;
5261      ir_variable *var;
5262      const char *identifier = decl->identifier;
5263      /* FINISHME: Emit a warning if a variable declaration shadows a
5264       * FINISHME: declaration at a higher scope.
5265       */
5266
5267      if ((decl_type == NULL) || decl_type->is_void()) {
5268         if (type_name != NULL) {
5269            _mesa_glsl_error(& loc, state,
5270                             "invalid type `%s' in declaration of `%s'",
5271                             type_name, decl->identifier);
5272         } else {
5273            _mesa_glsl_error(& loc, state,
5274                             "invalid type in declaration of `%s'",
5275                             decl->identifier);
5276         }
5277         continue;
5278      }
5279
5280      if (this->type->qualifier.is_subroutine_decl()) {
5281         const glsl_type *t;
5282         const char *name;
5283
5284         t = state->symbols->get_type(this->type->specifier->type_name);
5285         if (!t)
5286            _mesa_glsl_error(& loc, state,
5287                             "invalid type in declaration of `%s'",
5288                             decl->identifier);
5289         name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
5290
5291         identifier = name;
5292
5293      }
5294      var_type = process_array_type(&loc, decl_type, decl->array_specifier,
5295                                    state);
5296
5297      var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
5298
5299      /* The 'varying in' and 'varying out' qualifiers can only be used with
5300       * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
5301       * yet.
5302       */
5303      if (this->type->qualifier.flags.q.varying) {
5304         if (this->type->qualifier.flags.q.in) {
5305            _mesa_glsl_error(& loc, state,
5306                             "`varying in' qualifier in declaration of "
5307                             "`%s' only valid for geometry shaders using "
5308                             "ARB_geometry_shader4 or EXT_geometry_shader4",
5309                             decl->identifier);
5310         } else if (this->type->qualifier.flags.q.out) {
5311            _mesa_glsl_error(& loc, state,
5312                             "`varying out' qualifier in declaration of "
5313                             "`%s' only valid for geometry shaders using "
5314                             "ARB_geometry_shader4 or EXT_geometry_shader4",
5315                             decl->identifier);
5316         }
5317      }
5318
5319      /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
5320       *
5321       *     "Global variables can only use the qualifiers const,
5322       *     attribute, uniform, or varying. Only one may be
5323       *     specified.
5324       *
5325       *     Local variables can only use the qualifier const."
5326       *
5327       * This is relaxed in GLSL 1.30 and GLSL ES 3.00.  It is also relaxed by
5328       * any extension that adds the 'layout' keyword.
5329       */
5330      if (!state->is_version(130, 300)
5331          && !state->has_explicit_attrib_location()
5332          && !state->has_separate_shader_objects()
5333          && !state->ARB_fragment_coord_conventions_enable) {
5334         /* GL_EXT_gpu_shader4 only allows "varying out" on fragment shader
5335          * outputs. (the varying flag is not set by the parser)
5336          */
5337         if (this->type->qualifier.flags.q.out &&
5338             (!state->EXT_gpu_shader4_enable ||
5339              state->stage != MESA_SHADER_FRAGMENT)) {
5340            _mesa_glsl_error(& loc, state,
5341                             "`out' qualifier in declaration of `%s' "
5342                             "only valid for function parameters in %s",
5343                             decl->identifier, state->get_version_string());
5344         }
5345         if (this->type->qualifier.flags.q.in) {
5346            _mesa_glsl_error(& loc, state,
5347                             "`in' qualifier in declaration of `%s' "
5348                             "only valid for function parameters in %s",
5349                             decl->identifier, state->get_version_string());
5350         }
5351         /* FINISHME: Test for other invalid qualifiers. */
5352      }
5353
5354      apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
5355                                       & loc, false);
5356      apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
5357                                         &loc);
5358
5359      if ((state->zero_init & (1u << var->data.mode)) &&
5360          (var->type->is_numeric() || var->type->is_boolean())) {
5361         const ir_constant_data data = { { 0 } };
5362         var->data.has_initializer = true;
5363         var->data.is_implicit_initializer = true;
5364         var->constant_initializer = new(var) ir_constant(var->type, &data);
5365      }
5366
5367      if (this->type->qualifier.flags.q.invariant) {
5368         if (!is_allowed_invariant(var, state)) {
5369            _mesa_glsl_error(&loc, state,
5370                             "`%s' cannot be marked invariant; interfaces between "
5371                             "shader stages only", var->name);
5372         }
5373      }
5374
5375      if (state->current_function != NULL) {
5376         const char *mode = NULL;
5377         const char *extra = "";
5378
5379         /* There is no need to check for 'inout' here because the parser will
5380          * only allow that in function parameter lists.
5381          */
5382         if (this->type->qualifier.flags.q.attribute) {
5383            mode = "attribute";
5384         } else if (this->type->qualifier.is_subroutine_decl()) {
5385            mode = "subroutine uniform";
5386         } else if (this->type->qualifier.flags.q.uniform) {
5387            mode = "uniform";
5388         } else if (this->type->qualifier.flags.q.varying) {
5389            mode = "varying";
5390         } else if (this->type->qualifier.flags.q.in) {
5391            mode = "in";
5392            extra = " or in function parameter list";
5393         } else if (this->type->qualifier.flags.q.out) {
5394            mode = "out";
5395            extra = " or in function parameter list";
5396         }
5397
5398         if (mode) {
5399            _mesa_glsl_error(& loc, state,
5400                             "%s variable `%s' must be declared at "
5401                             "global scope%s",
5402                             mode, var->name, extra);
5403         }
5404      } else if (var->data.mode == ir_var_shader_in) {
5405         var->data.read_only = true;
5406
5407         if (state->stage == MESA_SHADER_VERTEX) {
5408            /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
5409             *
5410             *    "Vertex shader inputs can only be float, floating-point
5411             *    vectors, matrices, signed and unsigned integers and integer
5412             *    vectors. Vertex shader inputs can also form arrays of these
5413             *    types, but not structures."
5414             *
5415             * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
5416             *
5417             *    "Vertex shader inputs can only be float, floating-point
5418             *    vectors, matrices, signed and unsigned integers and integer
5419             *    vectors. They cannot be arrays or structures."
5420             *
5421             * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
5422             *
5423             *    "The attribute qualifier can be used only with float,
5424             *    floating-point vectors, and matrices. Attribute variables
5425             *    cannot be declared as arrays or structures."
5426             *
5427             * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
5428             *
5429             *    "Vertex shader inputs can only be float, floating-point
5430             *    vectors, matrices, signed and unsigned integers and integer
5431             *    vectors. Vertex shader inputs cannot be arrays or
5432             *    structures."
5433             *
5434             * From section 4.3.4 of the ARB_bindless_texture spec:
5435             *
5436             *    "(modify third paragraph of the section to allow sampler and
5437             *    image types) ...  Vertex shader inputs can only be float,
5438             *    single-precision floating-point scalars, single-precision
5439             *    floating-point vectors, matrices, signed and unsigned
5440             *    integers and integer vectors, sampler and image types."
5441             */
5442            const glsl_type *check_type = var->type->without_array();
5443
5444            bool error = false;
5445            switch (check_type->base_type) {
5446            case GLSL_TYPE_FLOAT:
5447               break;
5448            case GLSL_TYPE_UINT64:
5449            case GLSL_TYPE_INT64:
5450               break;
5451            case GLSL_TYPE_UINT:
5452            case GLSL_TYPE_INT:
5453               error = !state->is_version(120, 300) && !state->EXT_gpu_shader4_enable;
5454               break;
5455            case GLSL_TYPE_DOUBLE:
5456               error = !state->is_version(410, 0) && !state->ARB_vertex_attrib_64bit_enable;
5457               break;
5458            case GLSL_TYPE_SAMPLER:
5459            case GLSL_TYPE_TEXTURE:
5460            case GLSL_TYPE_IMAGE:
5461               error = !state->has_bindless();
5462               break;
5463            default:
5464               error = true;
5465            }
5466
5467            if (error) {
5468               _mesa_glsl_error(& loc, state,
5469                                "vertex shader input / attribute cannot have "
5470                                "type %s`%s'",
5471                                var->type->is_array() ? "array of " : "",
5472                                check_type->name);
5473            } else if (var->type->is_array() &&
5474                !state->check_version(150, 0, &loc,
5475                                      "vertex shader input / attribute "
5476                                      "cannot have array type")) {
5477            }
5478         } else if (state->stage == MESA_SHADER_GEOMETRY) {
5479            /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5480             *
5481             *     Geometry shader input variables get the per-vertex values
5482             *     written out by vertex shader output variables of the same
5483             *     names. Since a geometry shader operates on a set of
5484             *     vertices, each input varying variable (or input block, see
5485             *     interface blocks below) needs to be declared as an array.
5486             */
5487            if (!var->type->is_array()) {
5488               _mesa_glsl_error(&loc, state,
5489                                "geometry shader inputs must be arrays");
5490            }
5491
5492            handle_geometry_shader_input_decl(state, loc, var);
5493         } else if (state->stage == MESA_SHADER_FRAGMENT) {
5494            /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5495             *
5496             *     It is a compile-time error to declare a fragment shader
5497             *     input with, or that contains, any of the following types:
5498             *
5499             *     * A boolean type
5500             *     * An opaque type
5501             *     * An array of arrays
5502             *     * An array of structures
5503             *     * A structure containing an array
5504             *     * A structure containing a structure
5505             */
5506            if (state->es_shader) {
5507               const glsl_type *check_type = var->type->without_array();
5508               if (check_type->is_boolean() ||
5509                   check_type->contains_opaque()) {
5510                  _mesa_glsl_error(&loc, state,
5511                                   "fragment shader input cannot have type %s",
5512                                   check_type->name);
5513               }
5514               if (var->type->is_array() &&
5515                   var->type->fields.array->is_array()) {
5516                  _mesa_glsl_error(&loc, state,
5517                                   "%s shader output "
5518                                   "cannot have an array of arrays",
5519                                   _mesa_shader_stage_to_string(state->stage));
5520               }
5521               if (var->type->is_array() &&
5522                   var->type->fields.array->is_struct()) {
5523                  _mesa_glsl_error(&loc, state,
5524                                   "fragment shader input "
5525                                   "cannot have an array of structs");
5526               }
5527               if (var->type->is_struct()) {
5528                  for (unsigned i = 0; i < var->type->length; i++) {
5529                     if (var->type->fields.structure[i].type->is_array() ||
5530                         var->type->fields.structure[i].type->is_struct())
5531                        _mesa_glsl_error(&loc, state,
5532                                         "fragment shader input cannot have "
5533                                         "a struct that contains an "
5534                                         "array or struct");
5535                  }
5536               }
5537            }
5538         } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5539                    state->stage == MESA_SHADER_TESS_EVAL) {
5540            handle_tess_shader_input_decl(state, loc, var);
5541         }
5542      } else if (var->data.mode == ir_var_shader_out) {
5543         const glsl_type *check_type = var->type->without_array();
5544
5545         /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5546          *
5547          *     It is a compile-time error to declare a fragment shader output
5548          *     that contains any of the following:
5549          *
5550          *     * A Boolean type (bool, bvec2 ...)
5551          *     * A double-precision scalar or vector (double, dvec2 ...)
5552          *     * An opaque type
5553          *     * Any matrix type
5554          *     * A structure
5555          */
5556         if (state->stage == MESA_SHADER_FRAGMENT) {
5557            if (check_type->is_struct() || check_type->is_matrix())
5558               _mesa_glsl_error(&loc, state,
5559                                "fragment shader output "
5560                                "cannot have struct or matrix type");
5561            switch (check_type->base_type) {
5562            case GLSL_TYPE_UINT:
5563            case GLSL_TYPE_INT:
5564            case GLSL_TYPE_FLOAT:
5565               break;
5566            default:
5567               _mesa_glsl_error(&loc, state,
5568                                "fragment shader output cannot have "
5569                                "type %s", check_type->name);
5570            }
5571         }
5572
5573         /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5574          *
5575          *     It is a compile-time error to declare a vertex shader output
5576          *     with, or that contains, any of the following types:
5577          *
5578          *     * A boolean type
5579          *     * An opaque type
5580          *     * An array of arrays
5581          *     * An array of structures
5582          *     * A structure containing an array
5583          *     * A structure containing a structure
5584          *
5585          *     It is a compile-time error to declare a fragment shader output
5586          *     with, or that contains, any of the following types:
5587          *
5588          *     * A boolean type
5589          *     * An opaque type
5590          *     * A matrix
5591          *     * A structure
5592          *     * An array of array
5593          *
5594          * ES 3.20 updates this to apply to tessellation and geometry shaders
5595          * as well.  Because there are per-vertex arrays in the new stages,
5596          * it strikes the "array of..." rules and replaces them with these:
5597          *
5598          *     * For per-vertex-arrayed variables (applies to tessellation
5599          *       control, tessellation evaluation and geometry shaders):
5600          *
5601          *       * Per-vertex-arrayed arrays of arrays
5602          *       * Per-vertex-arrayed arrays of structures
5603          *
5604          *     * For non-per-vertex-arrayed variables:
5605          *
5606          *       * An array of arrays
5607          *       * An array of structures
5608          *
5609          * which basically says to unwrap the per-vertex aspect and apply
5610          * the old rules.
5611          */
5612         if (state->es_shader) {
5613            if (var->type->is_array() &&
5614                var->type->fields.array->is_array()) {
5615               _mesa_glsl_error(&loc, state,
5616                                "%s shader output "
5617                                "cannot have an array of arrays",
5618                                _mesa_shader_stage_to_string(state->stage));
5619            }
5620            if (state->stage <= MESA_SHADER_GEOMETRY) {
5621               const glsl_type *type = var->type;
5622
5623               if (state->stage == MESA_SHADER_TESS_CTRL &&
5624                   !var->data.patch && var->type->is_array()) {
5625                  type = var->type->fields.array;
5626               }
5627
5628               if (type->is_array() && type->fields.array->is_struct()) {
5629                  _mesa_glsl_error(&loc, state,
5630                                   "%s shader output cannot have "
5631                                   "an array of structs",
5632                                   _mesa_shader_stage_to_string(state->stage));
5633               }
5634               if (type->is_struct()) {
5635                  for (unsigned i = 0; i < type->length; i++) {
5636                     if (type->fields.structure[i].type->is_array() ||
5637                         type->fields.structure[i].type->is_struct())
5638                        _mesa_glsl_error(&loc, state,
5639                                         "%s shader output cannot have a "
5640                                         "struct that contains an "
5641                                         "array or struct",
5642                                         _mesa_shader_stage_to_string(state->stage));
5643                  }
5644               }
5645            }
5646         }
5647
5648         if (state->stage == MESA_SHADER_TESS_CTRL) {
5649            handle_tess_ctrl_shader_output_decl(state, loc, var);
5650         }
5651      } else if (var->type->contains_subroutine()) {
5652         /* declare subroutine uniforms as hidden */
5653         var->data.how_declared = ir_var_hidden;
5654      }
5655
5656      /* From section 4.3.4 of the GLSL 4.00 spec:
5657       *    "Input variables may not be declared using the patch in qualifier
5658       *    in tessellation control or geometry shaders."
5659       *
5660       * From section 4.3.6 of the GLSL 4.00 spec:
5661       *    "It is an error to use patch out in a vertex, tessellation
5662       *    evaluation, or geometry shader."
5663       *
5664       * This doesn't explicitly forbid using them in a fragment shader, but
5665       * that's probably just an oversight.
5666       */
5667      if (state->stage != MESA_SHADER_TESS_EVAL
5668          && this->type->qualifier.flags.q.patch
5669          && this->type->qualifier.flags.q.in) {
5670
5671         _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5672                          "tessellation evaluation shader");
5673      }
5674
5675      if (state->stage != MESA_SHADER_TESS_CTRL
5676          && this->type->qualifier.flags.q.patch
5677          && this->type->qualifier.flags.q.out) {
5678
5679         _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5680                          "tessellation control shader");
5681      }
5682
5683      /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5684       */
5685      if (this->type->qualifier.precision != ast_precision_none) {
5686         state->check_precision_qualifiers_allowed(&loc);
5687      }
5688
5689      if (this->type->qualifier.precision != ast_precision_none &&
5690          !precision_qualifier_allowed(var->type)) {
5691         _mesa_glsl_error(&loc, state,
5692                          "precision qualifiers apply only to floating point"
5693                          ", integer and opaque types");
5694      }
5695
5696      /* From section 4.1.7 of the GLSL 4.40 spec:
5697       *
5698       *    "[Opaque types] can only be declared as function
5699       *     parameters or uniform-qualified variables."
5700       *
5701       * From section 4.1.7 of the ARB_bindless_texture spec:
5702       *
5703       *    "Samplers may be declared as shader inputs and outputs, as uniform
5704       *     variables, as temporary variables, and as function parameters."
5705       *
5706       * From section 4.1.X of the ARB_bindless_texture spec:
5707       *
5708       *    "Images may be declared as shader inputs and outputs, as uniform
5709       *     variables, as temporary variables, and as function parameters."
5710       */
5711      if (!this->type->qualifier.flags.q.uniform &&
5712          (var_type->contains_atomic() ||
5713           (!state->has_bindless() && var_type->contains_opaque()))) {
5714         _mesa_glsl_error(&loc, state,
5715                          "%s variables must be declared uniform",
5716                          state->has_bindless() ? "atomic" : "opaque");
5717      }
5718
5719      /* Process the initializer and add its instructions to a temporary
5720       * list.  This list will be added to the instruction stream (below) after
5721       * the declaration is added.  This is done because in some cases (such as
5722       * redeclarations) the declaration may not actually be added to the
5723       * instruction stream.
5724       */
5725      exec_list initializer_instructions;
5726
5727      /* Examine var name here since var may get deleted in the next call */
5728      bool var_is_gl_id = is_gl_identifier(var->name);
5729
5730      bool is_redeclaration;
5731      var = get_variable_being_redeclared(&var, decl->get_location(), state,
5732                                          false /* allow_all_redeclarations */,
5733                                          &is_redeclaration);
5734      if (is_redeclaration) {
5735         if (var_is_gl_id &&
5736             var->data.how_declared == ir_var_declared_in_block) {
5737            _mesa_glsl_error(&loc, state,
5738                             "`%s' has already been redeclared using "
5739                             "gl_PerVertex", var->name);
5740         }
5741         var->data.how_declared = ir_var_declared_normally;
5742      }
5743
5744      if (decl->initializer != NULL) {
5745         result = process_initializer(var,
5746                                      decl, this->type,
5747                                      &initializer_instructions, state);
5748      } else {
5749         validate_array_dimensions(var_type, state, &loc);
5750      }
5751
5752      /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5753       *
5754       *     "It is an error to write to a const variable outside of
5755       *      its declaration, so they must be initialized when
5756       *      declared."
5757       */
5758      if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5759         _mesa_glsl_error(& loc, state,
5760                          "const declaration of `%s' must be initialized",
5761                          decl->identifier);
5762      }
5763
5764      if (state->es_shader) {
5765         const glsl_type *const t = var->type;
5766
5767         /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5768          *
5769          * The GL_OES_tessellation_shader spec says about inputs:
5770          *
5771          *    "Declaring an array size is optional. If no size is specified,
5772          *     it will be taken from the implementation-dependent maximum
5773          *     patch size (gl_MaxPatchVertices)."
5774          *
5775          * and about TCS outputs:
5776          *
5777          *    "If no size is specified, it will be taken from output patch
5778          *     size declared in the shader."
5779          *
5780          * The GL_OES_geometry_shader spec says:
5781          *
5782          *    "All geometry shader input unsized array declarations will be
5783          *     sized by an earlier input primitive layout qualifier, when
5784          *     present, as per the following table."
5785          */
5786         const bool implicitly_sized =
5787            (var->data.mode == ir_var_shader_in &&
5788             state->stage >= MESA_SHADER_TESS_CTRL &&
5789             state->stage <= MESA_SHADER_GEOMETRY) ||
5790            (var->data.mode == ir_var_shader_out &&
5791             state->stage == MESA_SHADER_TESS_CTRL);
5792
5793         if (t->is_unsized_array() && !implicitly_sized)
5794            /* Section 10.17 of the GLSL ES 1.00 specification states that
5795             * unsized array declarations have been removed from the language.
5796             * Arrays that are sized using an initializer are still explicitly
5797             * sized.  However, GLSL ES 1.00 does not allow array
5798             * initializers.  That is only allowed in GLSL ES 3.00.
5799             *
5800             * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5801             *
5802             *     "An array type can also be formed without specifying a size
5803             *     if the definition includes an initializer:
5804             *
5805             *         float x[] = float[2] (1.0, 2.0);     // declares an array of size 2
5806             *         float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5807             *
5808             *         float a[5];
5809             *         float b[] = a;"
5810             */
5811            _mesa_glsl_error(& loc, state,
5812                             "unsized array declarations are not allowed in "
5813                             "GLSL ES");
5814      }
5815
5816      /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec:
5817       *
5818       *    "It is a compile-time error to declare an unsized array of
5819       *     atomic_uint"
5820       */
5821      if (var->type->is_unsized_array() &&
5822          var->type->without_array()->base_type == GLSL_TYPE_ATOMIC_UINT) {
5823         _mesa_glsl_error(& loc, state,
5824                          "Unsized array of atomic_uint is not allowed");
5825      }
5826
5827      /* If the declaration is not a redeclaration, there are a few additional
5828       * semantic checks that must be applied.  In addition, variable that was
5829       * created for the declaration should be added to the IR stream.
5830       */
5831      if (!is_redeclaration) {
5832         validate_identifier(decl->identifier, loc, state);
5833
5834         /* Add the variable to the symbol table.  Note that the initializer's
5835          * IR was already processed earlier (though it hasn't been emitted
5836          * yet), without the variable in scope.
5837          *
5838          * This differs from most C-like languages, but it follows the GLSL
5839          * specification.  From page 28 (page 34 of the PDF) of the GLSL 1.50
5840          * spec:
5841          *
5842          *     "Within a declaration, the scope of a name starts immediately
5843          *     after the initializer if present or immediately after the name
5844          *     being declared if not."
5845          */
5846         if (!state->symbols->add_variable(var)) {
5847            YYLTYPE loc = this->get_location();
5848            _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5849                             "current scope", decl->identifier);
5850            continue;
5851         }
5852
5853         /* Push the variable declaration to the top.  It means that all the
5854          * variable declarations will appear in a funny last-to-first order,
5855          * but otherwise we run into trouble if a function is prototyped, a
5856          * global var is decled, then the function is defined with usage of
5857          * the global var.  See glslparsertest's CorrectModule.frag.
5858          */
5859         instructions->push_head(var);
5860      }
5861
5862      instructions->append_list(&initializer_instructions);
5863   }
5864
5865
5866   /* Generally, variable declarations do not have r-values.  However,
5867    * one is used for the declaration in
5868    *
5869    * while (bool b = some_condition()) {
5870    *   ...
5871    * }
5872    *
5873    * so we return the rvalue from the last seen declaration here.
5874    */
5875   return result;
5876}
5877
5878
5879ir_rvalue *
5880ast_parameter_declarator::hir(exec_list *instructions,
5881                              struct _mesa_glsl_parse_state *state)
5882{
5883   void *ctx = state;
5884   const struct glsl_type *type;
5885   const char *name = NULL;
5886   YYLTYPE loc = this->get_location();
5887
5888   type = this->type->glsl_type(& name, state);
5889
5890   if (type == NULL) {
5891      if (name != NULL) {
5892         _mesa_glsl_error(& loc, state,
5893                          "invalid type `%s' in declaration of `%s'",
5894                          name, this->identifier);
5895      } else {
5896         _mesa_glsl_error(& loc, state,
5897                          "invalid type in declaration of `%s'",
5898                          this->identifier);
5899      }
5900
5901      type = glsl_type::error_type;
5902   }
5903
5904   /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5905    *
5906    *    "Functions that accept no input arguments need not use void in the
5907    *    argument list because prototypes (or definitions) are required and
5908    *    therefore there is no ambiguity when an empty argument list "( )" is
5909    *    declared. The idiom "(void)" as a parameter list is provided for
5910    *    convenience."
5911    *
5912    * Placing this check here prevents a void parameter being set up
5913    * for a function, which avoids tripping up checks for main taking
5914    * parameters and lookups of an unnamed symbol.
5915    */
5916   if (type->is_void()) {
5917      if (this->identifier != NULL)
5918         _mesa_glsl_error(& loc, state,
5919                          "named parameter cannot have type `void'");
5920
5921      is_void = true;
5922      return NULL;
5923   }
5924
5925   if (formal_parameter && (this->identifier == NULL)) {
5926      _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5927      return NULL;
5928   }
5929
5930   /* This only handles "vec4 foo[..]".  The earlier specifier->glsl_type(...)
5931    * call already handled the "vec4[..] foo" case.
5932    */
5933   type = process_array_type(&loc, type, this->array_specifier, state);
5934
5935   if (!type->is_error() && type->is_unsized_array()) {
5936      _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5937                       "a declared size");
5938      type = glsl_type::error_type;
5939   }
5940
5941   is_void = false;
5942   ir_variable *var = new(ctx)
5943      ir_variable(type, this->identifier, ir_var_function_in);
5944
5945   /* Apply any specified qualifiers to the parameter declaration.  Note that
5946    * for function parameters the default mode is 'in'.
5947    */
5948   apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5949                                    true);
5950
5951   if (((1u << var->data.mode) & state->zero_init) &&
5952       (var->type->is_numeric() || var->type->is_boolean())) {
5953         const ir_constant_data data = { { 0 } };
5954         var->data.has_initializer = true;
5955         var->data.is_implicit_initializer = true;
5956         var->constant_initializer = new(var) ir_constant(var->type, &data);
5957   }
5958
5959   /* From section 4.1.7 of the GLSL 4.40 spec:
5960    *
5961    *   "Opaque variables cannot be treated as l-values; hence cannot
5962    *    be used as out or inout function parameters, nor can they be
5963    *    assigned into."
5964    *
5965    * From section 4.1.7 of the ARB_bindless_texture spec:
5966    *
5967    *   "Samplers can be used as l-values, so can be assigned into and used
5968    *    as "out" and "inout" function parameters."
5969    *
5970    * From section 4.1.X of the ARB_bindless_texture spec:
5971    *
5972    *   "Images can be used as l-values, so can be assigned into and used as
5973    *    "out" and "inout" function parameters."
5974    */
5975   if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5976       && (type->contains_atomic() ||
5977           (!state->has_bindless() && type->contains_opaque()))) {
5978      _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5979                       "contain %s variables",
5980                       state->has_bindless() ? "atomic" : "opaque");
5981      type = glsl_type::error_type;
5982   }
5983
5984   /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5985    *
5986    *    "When calling a function, expressions that do not evaluate to
5987    *     l-values cannot be passed to parameters declared as out or inout."
5988    *
5989    * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5990    *
5991    *    "Other binary or unary expressions, non-dereferenced arrays,
5992    *     function names, swizzles with repeated fields, and constants
5993    *     cannot be l-values."
5994    *
5995    * So for GLSL 1.10, passing an array as an out or inout parameter is not
5996    * allowed.  This restriction is removed in GLSL 1.20, and in GLSL ES.
5997    */
5998   if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5999       && type->is_array()
6000       && !state->check_version(120, 100, &loc,
6001                                "arrays cannot be out or inout parameters")) {
6002      type = glsl_type::error_type;
6003   }
6004
6005   instructions->push_tail(var);
6006
6007   /* Parameter declarations do not have r-values.
6008    */
6009   return NULL;
6010}
6011
6012
6013void
6014ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
6015                                            bool formal,
6016                                            exec_list *ir_parameters,
6017                                            _mesa_glsl_parse_state *state)
6018{
6019   ast_parameter_declarator *void_param = NULL;
6020   unsigned count = 0;
6021
6022   foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
6023      param->formal_parameter = formal;
6024      param->hir(ir_parameters, state);
6025
6026      if (param->is_void)
6027         void_param = param;
6028
6029      count++;
6030   }
6031
6032   if ((void_param != NULL) && (count > 1)) {
6033      YYLTYPE loc = void_param->get_location();
6034
6035      _mesa_glsl_error(& loc, state,
6036                       "`void' parameter must be only parameter");
6037   }
6038}
6039
6040
6041void
6042emit_function(_mesa_glsl_parse_state *state, ir_function *f)
6043{
6044   /* IR invariants disallow function declarations or definitions
6045    * nested within other function definitions.  But there is no
6046    * requirement about the relative order of function declarations
6047    * and definitions with respect to one another.  So simply insert
6048    * the new ir_function block at the end of the toplevel instruction
6049    * list.
6050    */
6051   state->toplevel_ir->push_tail(f);
6052}
6053
6054
6055ir_rvalue *
6056ast_function::hir(exec_list *instructions,
6057                  struct _mesa_glsl_parse_state *state)
6058{
6059   void *ctx = state;
6060   ir_function *f = NULL;
6061   ir_function_signature *sig = NULL;
6062   exec_list hir_parameters;
6063   YYLTYPE loc = this->get_location();
6064
6065   const char *const name = identifier;
6066
6067   /* New functions are always added to the top-level IR instruction stream,
6068    * so this instruction list pointer is ignored.  See also emit_function
6069    * (called below).
6070    */
6071   (void) instructions;
6072
6073   /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
6074    *
6075    *   "Function declarations (prototypes) cannot occur inside of functions;
6076    *   they must be at global scope, or for the built-in functions, outside
6077    *   the global scope."
6078    *
6079    * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
6080    *
6081    *   "User defined functions may only be defined within the global scope."
6082    *
6083    * Note that this language does not appear in GLSL 1.10.
6084    */
6085   if ((state->current_function != NULL) &&
6086       state->is_version(120, 100)) {
6087      YYLTYPE loc = this->get_location();
6088      _mesa_glsl_error(&loc, state,
6089                       "declaration of function `%s' not allowed within "
6090                       "function body", name);
6091   }
6092
6093   validate_identifier(name, this->get_location(), state);
6094
6095   /* Convert the list of function parameters to HIR now so that they can be
6096    * used below to compare this function's signature with previously seen
6097    * signatures for functions with the same name.
6098    */
6099   ast_parameter_declarator::parameters_to_hir(& this->parameters,
6100                                               is_definition,
6101                                               & hir_parameters, state);
6102
6103   const char *return_type_name;
6104   const glsl_type *return_type =
6105      this->return_type->glsl_type(& return_type_name, state);
6106
6107   if (!return_type) {
6108      YYLTYPE loc = this->get_location();
6109      _mesa_glsl_error(&loc, state,
6110                       "function `%s' has undeclared return type `%s'",
6111                       name, return_type_name);
6112      return_type = glsl_type::error_type;
6113   }
6114
6115   /* ARB_shader_subroutine states:
6116    *  "Subroutine declarations cannot be prototyped. It is an error to prepend
6117    *   subroutine(...) to a function declaration."
6118    */
6119   if (this->return_type->qualifier.subroutine_list && !is_definition) {
6120      YYLTYPE loc = this->get_location();
6121      _mesa_glsl_error(&loc, state,
6122                       "function declaration `%s' cannot have subroutine prepended",
6123                       name);
6124   }
6125
6126   /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
6127    * "No qualifier is allowed on the return type of a function."
6128    */
6129   if (this->return_type->has_qualifiers(state)) {
6130      YYLTYPE loc = this->get_location();
6131      _mesa_glsl_error(& loc, state,
6132                       "function `%s' return type has qualifiers", name);
6133   }
6134
6135   /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
6136    *
6137    *     "Arrays are allowed as arguments and as the return type. In both
6138    *     cases, the array must be explicitly sized."
6139    */
6140   if (return_type->is_unsized_array()) {
6141      YYLTYPE loc = this->get_location();
6142      _mesa_glsl_error(& loc, state,
6143                       "function `%s' return type array must be explicitly "
6144                       "sized", name);
6145   }
6146
6147   /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec:
6148    *
6149    *     "Arrays are allowed as arguments, but not as the return type. [...]
6150    *      The return type can also be a structure if the structure does not
6151    *      contain an array."
6152    */
6153   if (state->language_version == 100 && return_type->contains_array()) {
6154      YYLTYPE loc = this->get_location();
6155      _mesa_glsl_error(& loc, state,
6156                       "function `%s' return type contains an array", name);
6157   }
6158
6159   /* From section 4.1.7 of the GLSL 4.40 spec:
6160    *
6161    *    "[Opaque types] can only be declared as function parameters
6162    *     or uniform-qualified variables."
6163    *
6164    * The ARB_bindless_texture spec doesn't clearly state this, but as it says
6165    * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X,
6166    * (Images)", this should be allowed.
6167    */
6168   if (return_type->contains_atomic() ||
6169       (!state->has_bindless() && return_type->contains_opaque())) {
6170      YYLTYPE loc = this->get_location();
6171      _mesa_glsl_error(&loc, state,
6172                       "function `%s' return type can't contain an %s type",
6173                       name, state->has_bindless() ? "atomic" : "opaque");
6174   }
6175
6176   /**/
6177   if (return_type->is_subroutine()) {
6178      YYLTYPE loc = this->get_location();
6179      _mesa_glsl_error(&loc, state,
6180                       "function `%s' return type can't be a subroutine type",
6181                       name);
6182   }
6183
6184   /* Get the precision for the return type */
6185   unsigned return_precision;
6186
6187   if (state->es_shader) {
6188      YYLTYPE loc = this->get_location();
6189      return_precision =
6190         select_gles_precision(this->return_type->qualifier.precision,
6191                               return_type,
6192                               state,
6193                               &loc);
6194   } else {
6195      return_precision = GLSL_PRECISION_NONE;
6196   }
6197
6198   /* Create an ir_function if one doesn't already exist. */
6199   f = state->symbols->get_function(name);
6200   if (f == NULL) {
6201      f = new(ctx) ir_function(name);
6202      if (!this->return_type->qualifier.is_subroutine_decl()) {
6203         if (!state->symbols->add_function(f)) {
6204            /* This function name shadows a non-function use of the same name. */
6205            YYLTYPE loc = this->get_location();
6206            _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
6207                             "non-function", name);
6208            return NULL;
6209         }
6210      }
6211      emit_function(state, f);
6212   }
6213
6214   /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
6215    *
6216    * "A shader cannot redefine or overload built-in functions."
6217    *
6218    * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
6219    *
6220    * "User code can overload the built-in functions but cannot redefine
6221    * them."
6222    */
6223   if (state->es_shader) {
6224      /* Local shader has no exact candidates; check the built-ins. */
6225      if (state->language_version >= 300 &&
6226          _mesa_glsl_has_builtin_function(state, name)) {
6227         YYLTYPE loc = this->get_location();
6228         _mesa_glsl_error(& loc, state,
6229                          "A shader cannot redefine or overload built-in "
6230                          "function `%s' in GLSL ES 3.00", name);
6231         return NULL;
6232      }
6233
6234      if (state->language_version == 100) {
6235         ir_function_signature *sig =
6236            _mesa_glsl_find_builtin_function(state, name, &hir_parameters);
6237         if (sig && sig->is_builtin()) {
6238            _mesa_glsl_error(& loc, state,
6239                             "A shader cannot redefine built-in "
6240                             "function `%s' in GLSL ES 1.00", name);
6241         }
6242      }
6243   }
6244
6245   /* Verify that this function's signature either doesn't match a previously
6246    * seen signature for a function with the same name, or, if a match is found,
6247    * that the previously seen signature does not have an associated definition.
6248    */
6249   if (state->es_shader || f->has_user_signature()) {
6250      sig = f->exact_matching_signature(state, &hir_parameters);
6251      if (sig != NULL) {
6252         const char *badvar = sig->qualifiers_match(&hir_parameters);
6253         if (badvar != NULL) {
6254            YYLTYPE loc = this->get_location();
6255
6256            _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
6257                             "qualifiers don't match prototype", name, badvar);
6258         }
6259
6260         if (sig->return_type != return_type) {
6261            YYLTYPE loc = this->get_location();
6262
6263            _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
6264                             "match prototype", name);
6265         }
6266
6267         if (sig->return_precision != return_precision) {
6268            YYLTYPE loc = this->get_location();
6269
6270            _mesa_glsl_error(&loc, state, "function `%s' return type precision "
6271                             "doesn't match prototype", name);
6272         }
6273
6274         if (sig->is_defined) {
6275            if (is_definition) {
6276               YYLTYPE loc = this->get_location();
6277               _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
6278            } else {
6279               /* We just encountered a prototype that exactly matches a
6280                * function that's already been defined.  This is redundant,
6281                * and we should ignore it.
6282                */
6283               return NULL;
6284            }
6285         } else if (state->language_version == 100 && !is_definition) {
6286            /* From the GLSL 1.00 spec, section 4.2.7:
6287             *
6288             *     "A particular variable, structure or function declaration
6289             *      may occur at most once within a scope with the exception
6290             *      that a single function prototype plus the corresponding
6291             *      function definition are allowed."
6292             */
6293            YYLTYPE loc = this->get_location();
6294            _mesa_glsl_error(&loc, state, "function `%s' redeclared", name);
6295         }
6296      }
6297   }
6298
6299   /* Verify the return type of main() */
6300   if (strcmp(name, "main") == 0) {
6301      if (! return_type->is_void()) {
6302         YYLTYPE loc = this->get_location();
6303
6304         _mesa_glsl_error(& loc, state, "main() must return void");
6305      }
6306
6307      if (!hir_parameters.is_empty()) {
6308         YYLTYPE loc = this->get_location();
6309
6310         _mesa_glsl_error(& loc, state, "main() must not take any parameters");
6311      }
6312   }
6313
6314   /* Finish storing the information about this new function in its signature.
6315    */
6316   if (sig == NULL) {
6317      sig = new(ctx) ir_function_signature(return_type);
6318      sig->return_precision = return_precision;
6319      f->add_signature(sig);
6320   }
6321
6322   sig->replace_parameters(&hir_parameters);
6323   signature = sig;
6324
6325   if (this->return_type->qualifier.subroutine_list) {
6326      int idx;
6327
6328      if (this->return_type->qualifier.flags.q.explicit_index) {
6329         unsigned qual_index;
6330         if (process_qualifier_constant(state, &loc, "index",
6331                                        this->return_type->qualifier.index,
6332                                        &qual_index)) {
6333            if (!state->has_explicit_uniform_location()) {
6334               _mesa_glsl_error(&loc, state, "subroutine index requires "
6335                                "GL_ARB_explicit_uniform_location or "
6336                                "GLSL 4.30");
6337            } else if (qual_index >= MAX_SUBROUTINES) {
6338               _mesa_glsl_error(&loc, state,
6339                                "invalid subroutine index (%d) index must "
6340                                "be a number between 0 and "
6341                                "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
6342                                MAX_SUBROUTINES - 1);
6343            } else {
6344               f->subroutine_index = qual_index;
6345            }
6346         }
6347      }
6348
6349      f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
6350      f->subroutine_types = ralloc_array(state, const struct glsl_type *,
6351                                         f->num_subroutine_types);
6352      idx = 0;
6353      foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
6354         const struct glsl_type *type;
6355         /* the subroutine type must be already declared */
6356         type = state->symbols->get_type(decl->identifier);
6357         if (!type) {
6358            _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
6359         }
6360
6361         for (int i = 0; i < state->num_subroutine_types; i++) {
6362            ir_function *fn = state->subroutine_types[i];
6363            ir_function_signature *tsig = NULL;
6364
6365            if (strcmp(fn->name, decl->identifier))
6366               continue;
6367
6368            tsig = fn->matching_signature(state, &sig->parameters,
6369                                          false);
6370            if (!tsig) {
6371               _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
6372            } else {
6373               if (tsig->return_type != sig->return_type) {
6374                  _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
6375               }
6376            }
6377         }
6378         f->subroutine_types[idx++] = type;
6379      }
6380      state->subroutines = (ir_function **)reralloc(state, state->subroutines,
6381                                                    ir_function *,
6382                                                    state->num_subroutines + 1);
6383      state->subroutines[state->num_subroutines] = f;
6384      state->num_subroutines++;
6385
6386   }
6387
6388   if (this->return_type->qualifier.is_subroutine_decl()) {
6389      if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
6390         _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
6391         return NULL;
6392      }
6393      state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
6394                                                         ir_function *,
6395                                                         state->num_subroutine_types + 1);
6396      state->subroutine_types[state->num_subroutine_types] = f;
6397      state->num_subroutine_types++;
6398
6399      f->is_subroutine = true;
6400   }
6401
6402   /* Function declarations (prototypes) do not have r-values.
6403    */
6404   return NULL;
6405}
6406
6407
6408ir_rvalue *
6409ast_function_definition::hir(exec_list *instructions,
6410                             struct _mesa_glsl_parse_state *state)
6411{
6412   prototype->is_definition = true;
6413   prototype->hir(instructions, state);
6414
6415   ir_function_signature *signature = prototype->signature;
6416   if (signature == NULL)
6417      return NULL;
6418
6419   assert(state->current_function == NULL);
6420   state->current_function = signature;
6421   state->found_return = false;
6422   state->found_begin_interlock = false;
6423   state->found_end_interlock = false;
6424
6425   /* Duplicate parameters declared in the prototype as concrete variables.
6426    * Add these to the symbol table.
6427    */
6428   state->symbols->push_scope();
6429   foreach_in_list(ir_variable, var, &signature->parameters) {
6430      assert(var->as_variable() != NULL);
6431
6432      /* The only way a parameter would "exist" is if two parameters have
6433       * the same name.
6434       */
6435      if (state->symbols->name_declared_this_scope(var->name)) {
6436         YYLTYPE loc = this->get_location();
6437
6438         _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
6439      } else {
6440         state->symbols->add_variable(var);
6441      }
6442   }
6443
6444   /* Convert the body of the function to HIR. */
6445   this->body->hir(&signature->body, state);
6446   signature->is_defined = true;
6447
6448   state->symbols->pop_scope();
6449
6450   assert(state->current_function == signature);
6451   state->current_function = NULL;
6452
6453   if (!signature->return_type->is_void() && !state->found_return) {
6454      YYLTYPE loc = this->get_location();
6455      _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
6456                       "%s, but no return statement",
6457                       signature->function_name(),
6458                       signature->return_type->name);
6459   }
6460
6461   /* Function definitions do not have r-values.
6462    */
6463   return NULL;
6464}
6465
6466
6467ir_rvalue *
6468ast_jump_statement::hir(exec_list *instructions,
6469                        struct _mesa_glsl_parse_state *state)
6470{
6471   void *ctx = state;
6472
6473   switch (mode) {
6474   case ast_return: {
6475      ir_return *inst;
6476      assert(state->current_function);
6477
6478      if (opt_return_value) {
6479         ir_rvalue *ret = opt_return_value->hir(instructions, state);
6480
6481         /* The value of the return type can be NULL if the shader says
6482          * 'return foo();' and foo() is a function that returns void.
6483          *
6484          * NOTE: The GLSL spec doesn't say that this is an error.  The type
6485          * of the return value is void.  If the return type of the function is
6486          * also void, then this should compile without error.  Seriously.
6487          */
6488         const glsl_type *const ret_type =
6489            (ret == NULL) ? glsl_type::void_type : ret->type;
6490
6491         /* Implicit conversions are not allowed for return values prior to
6492          * ARB_shading_language_420pack.
6493          */
6494         if (state->current_function->return_type != ret_type) {
6495            YYLTYPE loc = this->get_location();
6496
6497            if (state->has_420pack()) {
6498               if (!apply_implicit_conversion(state->current_function->return_type,
6499                                              ret, state)
6500                   || (ret->type != state->current_function->return_type)) {
6501                  _mesa_glsl_error(& loc, state,
6502                                   "could not implicitly convert return value "
6503                                   "to %s, in function `%s'",
6504                                   state->current_function->return_type->name,
6505                                   state->current_function->function_name());
6506               }
6507            } else {
6508               _mesa_glsl_error(& loc, state,
6509                                "`return' with wrong type %s, in function `%s' "
6510                                "returning %s",
6511                                ret_type->name,
6512                                state->current_function->function_name(),
6513                                state->current_function->return_type->name);
6514            }
6515         } else if (state->current_function->return_type->base_type ==
6516                    GLSL_TYPE_VOID) {
6517            YYLTYPE loc = this->get_location();
6518
6519            /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
6520             * specs add a clarification:
6521             *
6522             *    "A void function can only use return without a return argument, even if
6523             *     the return argument has void type. Return statements only accept values:
6524             *
6525             *         void func1() { }
6526             *         void func2() { return func1(); } // illegal return statement"
6527             */
6528            _mesa_glsl_error(& loc, state,
6529                             "void functions can only use `return' without a "
6530                             "return argument");
6531         }
6532
6533         inst = new(ctx) ir_return(ret);
6534      } else {
6535         if (state->current_function->return_type->base_type !=
6536             GLSL_TYPE_VOID) {
6537            YYLTYPE loc = this->get_location();
6538
6539            _mesa_glsl_error(& loc, state,
6540                             "`return' with no value, in function %s returning "
6541                             "non-void",
6542            state->current_function->function_name());
6543         }
6544         inst = new(ctx) ir_return;
6545      }
6546
6547      state->found_return = true;
6548      instructions->push_tail(inst);
6549      break;
6550   }
6551
6552   case ast_discard:
6553      if (state->stage != MESA_SHADER_FRAGMENT) {
6554         YYLTYPE loc = this->get_location();
6555
6556         _mesa_glsl_error(& loc, state,
6557                          "`discard' may only appear in a fragment shader");
6558      }
6559      instructions->push_tail(new(ctx) ir_discard);
6560      break;
6561
6562   case ast_break:
6563   case ast_continue:
6564      if (mode == ast_continue &&
6565          state->loop_nesting_ast == NULL) {
6566         YYLTYPE loc = this->get_location();
6567
6568         _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
6569      } else if (mode == ast_break &&
6570         state->loop_nesting_ast == NULL &&
6571         state->switch_state.switch_nesting_ast == NULL) {
6572         YYLTYPE loc = this->get_location();
6573
6574         _mesa_glsl_error(& loc, state,
6575                          "break may only appear in a loop or a switch");
6576      } else {
6577         /* For a loop, inline the for loop expression again, since we don't
6578          * know where near the end of the loop body the normal copy of it is
6579          * going to be placed.  Same goes for the condition for a do-while
6580          * loop.
6581          */
6582         if (state->loop_nesting_ast != NULL &&
6583             mode == ast_continue && !state->switch_state.is_switch_innermost) {
6584            if (state->loop_nesting_ast->rest_expression) {
6585               clone_ir_list(ctx, instructions,
6586                             &state->loop_nesting_ast->rest_instructions);
6587            }
6588            if (state->loop_nesting_ast->mode ==
6589                ast_iteration_statement::ast_do_while) {
6590               state->loop_nesting_ast->condition_to_hir(instructions, state);
6591            }
6592         }
6593
6594         if (state->switch_state.is_switch_innermost &&
6595             mode == ast_continue) {
6596            /* Set 'continue_inside' to true. */
6597            ir_rvalue *const true_val = new (ctx) ir_constant(true);
6598            ir_dereference_variable *deref_continue_inside_var =
6599               new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6600            instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6601                                                           true_val));
6602
6603            /* Break out from the switch, continue for the loop will
6604             * be called right after switch. */
6605            ir_loop_jump *const jump =
6606               new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6607            instructions->push_tail(jump);
6608
6609         } else if (state->switch_state.is_switch_innermost &&
6610             mode == ast_break) {
6611            /* Force break out of switch by inserting a break. */
6612            ir_loop_jump *const jump =
6613               new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6614            instructions->push_tail(jump);
6615         } else {
6616            ir_loop_jump *const jump =
6617               new(ctx) ir_loop_jump((mode == ast_break)
6618                  ? ir_loop_jump::jump_break
6619                  : ir_loop_jump::jump_continue);
6620            instructions->push_tail(jump);
6621         }
6622      }
6623
6624      break;
6625   }
6626
6627   /* Jump instructions do not have r-values.
6628    */
6629   return NULL;
6630}
6631
6632
6633ir_rvalue *
6634ast_demote_statement::hir(exec_list *instructions,
6635                          struct _mesa_glsl_parse_state *state)
6636{
6637   void *ctx = state;
6638
6639   if (state->stage != MESA_SHADER_FRAGMENT) {
6640      YYLTYPE loc = this->get_location();
6641
6642      _mesa_glsl_error(& loc, state,
6643                       "`demote' may only appear in a fragment shader");
6644   }
6645
6646   instructions->push_tail(new(ctx) ir_demote);
6647
6648   return NULL;
6649}
6650
6651
6652ir_rvalue *
6653ast_selection_statement::hir(exec_list *instructions,
6654                             struct _mesa_glsl_parse_state *state)
6655{
6656   void *ctx = state;
6657
6658   ir_rvalue *const condition = this->condition->hir(instructions, state);
6659
6660   /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6661    *
6662    *    "Any expression whose type evaluates to a Boolean can be used as the
6663    *    conditional expression bool-expression. Vector types are not accepted
6664    *    as the expression to if."
6665    *
6666    * The checks are separated so that higher quality diagnostics can be
6667    * generated for cases where both rules are violated.
6668    */
6669   if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
6670      YYLTYPE loc = this->condition->get_location();
6671
6672      _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6673                       "boolean");
6674   }
6675
6676   ir_if *const stmt = new(ctx) ir_if(condition);
6677
6678   if (then_statement != NULL) {
6679      state->symbols->push_scope();
6680      then_statement->hir(& stmt->then_instructions, state);
6681      state->symbols->pop_scope();
6682   }
6683
6684   if (else_statement != NULL) {
6685      state->symbols->push_scope();
6686      else_statement->hir(& stmt->else_instructions, state);
6687      state->symbols->pop_scope();
6688   }
6689
6690   instructions->push_tail(stmt);
6691
6692   /* if-statements do not have r-values.
6693    */
6694   return NULL;
6695}
6696
6697
6698struct case_label {
6699   /** Value of the case label. */
6700   unsigned value;
6701
6702   /** Does this label occur after the default? */
6703   bool after_default;
6704
6705   /**
6706    * AST for the case label.
6707    *
6708    * This is only used to generate error messages for duplicate labels.
6709    */
6710   ast_expression *ast;
6711};
6712
6713/* Used for detection of duplicate case values, compare
6714 * given contents directly.
6715 */
6716static bool
6717compare_case_value(const void *a, const void *b)
6718{
6719   return ((struct case_label *) a)->value == ((struct case_label *) b)->value;
6720}
6721
6722
6723/* Used for detection of duplicate case values, just
6724 * returns key contents as is.
6725 */
6726static unsigned
6727key_contents(const void *key)
6728{
6729   return ((struct case_label *) key)->value;
6730}
6731
6732void
6733ast_switch_statement::eval_test_expression(exec_list *instructions,
6734                                           struct _mesa_glsl_parse_state *state)
6735{
6736   if (test_val == NULL)
6737      test_val = this->test_expression->hir(instructions, state);
6738}
6739
6740ir_rvalue *
6741ast_switch_statement::hir(exec_list *instructions,
6742                          struct _mesa_glsl_parse_state *state)
6743{
6744   void *ctx = state;
6745
6746   this->eval_test_expression(instructions, state);
6747
6748   /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6749    *
6750    *    "The type of init-expression in a switch statement must be a
6751    *     scalar integer."
6752    */
6753   if (!test_val->type->is_scalar() ||
6754       !test_val->type->is_integer_32()) {
6755      YYLTYPE loc = this->test_expression->get_location();
6756
6757      _mesa_glsl_error(& loc,
6758                       state,
6759                       "switch-statement expression must be scalar "
6760                       "integer");
6761      return NULL;
6762   }
6763
6764   /* Track the switch-statement nesting in a stack-like manner.
6765    */
6766   struct glsl_switch_state saved = state->switch_state;
6767
6768   state->switch_state.is_switch_innermost = true;
6769   state->switch_state.switch_nesting_ast = this;
6770   state->switch_state.labels_ht =
6771         _mesa_hash_table_create(NULL, key_contents,
6772                                 compare_case_value);
6773   state->switch_state.previous_default = NULL;
6774
6775   /* Initalize is_fallthru state to false.
6776    */
6777   ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6778   state->switch_state.is_fallthru_var =
6779      new(ctx) ir_variable(glsl_type::bool_type,
6780                           "switch_is_fallthru_tmp",
6781                           ir_var_temporary);
6782   instructions->push_tail(state->switch_state.is_fallthru_var);
6783
6784   ir_dereference_variable *deref_is_fallthru_var =
6785      new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6786   instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6787                                                  is_fallthru_val));
6788
6789   /* Initialize continue_inside state to false.
6790    */
6791   state->switch_state.continue_inside =
6792      new(ctx) ir_variable(glsl_type::bool_type,
6793                           "continue_inside_tmp",
6794                           ir_var_temporary);
6795   instructions->push_tail(state->switch_state.continue_inside);
6796
6797   ir_rvalue *const false_val = new (ctx) ir_constant(false);
6798   ir_dereference_variable *deref_continue_inside_var =
6799      new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6800   instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6801                                                  false_val));
6802
6803   state->switch_state.run_default =
6804      new(ctx) ir_variable(glsl_type::bool_type,
6805                             "run_default_tmp",
6806                             ir_var_temporary);
6807   instructions->push_tail(state->switch_state.run_default);
6808
6809   /* Loop around the switch is used for flow control. */
6810   ir_loop * loop = new(ctx) ir_loop();
6811   instructions->push_tail(loop);
6812
6813   /* Cache test expression.
6814    */
6815   test_to_hir(&loop->body_instructions, state);
6816
6817   /* Emit code for body of switch stmt.
6818    */
6819   body->hir(&loop->body_instructions, state);
6820
6821   /* Insert a break at the end to exit loop. */
6822   ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6823   loop->body_instructions.push_tail(jump);
6824
6825   /* If we are inside loop, check if continue got called inside switch. */
6826   if (state->loop_nesting_ast != NULL) {
6827      ir_dereference_variable *deref_continue_inside =
6828         new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6829      ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6830      ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6831
6832      if (state->loop_nesting_ast != NULL) {
6833         if (state->loop_nesting_ast->rest_expression) {
6834            clone_ir_list(ctx, &irif->then_instructions,
6835                          &state->loop_nesting_ast->rest_instructions);
6836         }
6837         if (state->loop_nesting_ast->mode ==
6838             ast_iteration_statement::ast_do_while) {
6839            state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6840         }
6841      }
6842      irif->then_instructions.push_tail(jump);
6843      instructions->push_tail(irif);
6844   }
6845
6846   _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6847
6848   state->switch_state = saved;
6849
6850   /* Switch statements do not have r-values. */
6851   return NULL;
6852}
6853
6854
6855void
6856ast_switch_statement::test_to_hir(exec_list *instructions,
6857                                  struct _mesa_glsl_parse_state *state)
6858{
6859   void *ctx = state;
6860
6861   /* set to true to avoid a duplicate "use of uninitialized variable" warning
6862    * on the switch test case. The first one would be already raised when
6863    * getting the test_expression at ast_switch_statement::hir
6864    */
6865   test_expression->set_is_lhs(true);
6866   /* Cache value of test expression. */
6867   this->eval_test_expression(instructions, state);
6868
6869   state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6870                                                       "switch_test_tmp",
6871                                                       ir_var_temporary);
6872   ir_dereference_variable *deref_test_var =
6873      new(ctx) ir_dereference_variable(state->switch_state.test_var);
6874
6875   instructions->push_tail(state->switch_state.test_var);
6876   instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6877}
6878
6879
6880ir_rvalue *
6881ast_switch_body::hir(exec_list *instructions,
6882                     struct _mesa_glsl_parse_state *state)
6883{
6884   if (stmts != NULL) {
6885      state->symbols->push_scope();
6886      stmts->hir(instructions, state);
6887      state->symbols->pop_scope();
6888   }
6889
6890   /* Switch bodies do not have r-values. */
6891   return NULL;
6892}
6893
6894ir_rvalue *
6895ast_case_statement_list::hir(exec_list *instructions,
6896                             struct _mesa_glsl_parse_state *state)
6897{
6898   exec_list default_case, after_default, tmp;
6899
6900   foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6901      case_stmt->hir(&tmp, state);
6902
6903      /* Default case. */
6904      if (state->switch_state.previous_default && default_case.is_empty()) {
6905         default_case.append_list(&tmp);
6906         continue;
6907      }
6908
6909      /* If default case found, append 'after_default' list. */
6910      if (!default_case.is_empty())
6911         after_default.append_list(&tmp);
6912      else
6913         instructions->append_list(&tmp);
6914   }
6915
6916   /* Handle the default case. This is done here because default might not be
6917    * the last case. We need to add checks against following cases first to see
6918    * if default should be chosen or not.
6919    */
6920   if (!default_case.is_empty()) {
6921      ir_factory body(instructions, state);
6922
6923      ir_expression *cmp = NULL;
6924
6925      hash_table_foreach(state->switch_state.labels_ht, entry) {
6926         const struct case_label *const l = (struct case_label *) entry->data;
6927
6928         /* If the switch init-value is the value of one of the labels that
6929          * occurs after the default case, disable execution of the default
6930          * case.
6931          */
6932         if (l->after_default) {
6933            ir_constant *const cnst =
6934               state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT
6935               ? body.constant(unsigned(l->value))
6936               : body.constant(int(l->value));
6937
6938            cmp = cmp == NULL
6939               ? equal(cnst, state->switch_state.test_var)
6940               : logic_or(cmp, equal(cnst, state->switch_state.test_var));
6941         }
6942      }
6943
6944      if (cmp != NULL)
6945         body.emit(assign(state->switch_state.run_default, logic_not(cmp)));
6946      else
6947         body.emit(assign(state->switch_state.run_default, body.constant(true)));
6948
6949      /* Append default case and all cases after it. */
6950      instructions->append_list(&default_case);
6951      instructions->append_list(&after_default);
6952   }
6953
6954   /* Case statements do not have r-values. */
6955   return NULL;
6956}
6957
6958ir_rvalue *
6959ast_case_statement::hir(exec_list *instructions,
6960                        struct _mesa_glsl_parse_state *state)
6961{
6962   labels->hir(instructions, state);
6963
6964   /* Guard case statements depending on fallthru state. */
6965   ir_dereference_variable *const deref_fallthru_guard =
6966      new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6967   ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6968
6969   foreach_list_typed (ast_node, stmt, link, & this->stmts)
6970      stmt->hir(& test_fallthru->then_instructions, state);
6971
6972   instructions->push_tail(test_fallthru);
6973
6974   /* Case statements do not have r-values. */
6975   return NULL;
6976}
6977
6978
6979ir_rvalue *
6980ast_case_label_list::hir(exec_list *instructions,
6981                         struct _mesa_glsl_parse_state *state)
6982{
6983   foreach_list_typed (ast_case_label, label, link, & this->labels)
6984      label->hir(instructions, state);
6985
6986   /* Case labels do not have r-values. */
6987   return NULL;
6988}
6989
6990ir_rvalue *
6991ast_case_label::hir(exec_list *instructions,
6992                    struct _mesa_glsl_parse_state *state)
6993{
6994   ir_factory body(instructions, state);
6995
6996   ir_variable *const fallthru_var = state->switch_state.is_fallthru_var;
6997
6998   /* If not default case, ... */
6999   if (this->test_value != NULL) {
7000      /* Conditionally set fallthru state based on
7001       * comparison of cached test expression value to case label.
7002       */
7003      ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
7004      ir_constant *label_const =
7005         label_rval->constant_expression_value(body.mem_ctx);
7006
7007      if (!label_const) {
7008         YYLTYPE loc = this->test_value->get_location();
7009
7010         _mesa_glsl_error(& loc, state,
7011                          "switch statement case label must be a "
7012                          "constant expression");
7013
7014         /* Stuff a dummy value in to allow processing to continue. */
7015         label_const = body.constant(0);
7016      } else {
7017         hash_entry *entry =
7018               _mesa_hash_table_search(state->switch_state.labels_ht,
7019                                       &label_const->value.u[0]);
7020
7021         if (entry) {
7022            const struct case_label *const l =
7023               (struct case_label *) entry->data;
7024            const ast_expression *const previous_label = l->ast;
7025            YYLTYPE loc = this->test_value->get_location();
7026
7027            _mesa_glsl_error(& loc, state, "duplicate case value");
7028
7029            loc = previous_label->get_location();
7030            _mesa_glsl_error(& loc, state, "this is the previous case label");
7031         } else {
7032            struct case_label *l = ralloc(state->switch_state.labels_ht,
7033                                          struct case_label);
7034
7035            l->value = label_const->value.u[0];
7036            l->after_default = state->switch_state.previous_default != NULL;
7037            l->ast = this->test_value;
7038
7039            _mesa_hash_table_insert(state->switch_state.labels_ht,
7040                                    &label_const->value.u[0],
7041                                    l);
7042         }
7043      }
7044
7045      /* Create an r-value version of the ir_constant label here (after we may
7046       * have created a fake one in error cases) that can be passed to
7047       * apply_implicit_conversion below.
7048       */
7049      ir_rvalue *label = label_const;
7050
7051      ir_rvalue *deref_test_var =
7052         new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var);
7053
7054      /*
7055       * From GLSL 4.40 specification section 6.2 ("Selection"):
7056       *
7057       *     "The type of the init-expression value in a switch statement must
7058       *     be a scalar int or uint. The type of the constant-expression value
7059       *     in a case label also must be a scalar int or uint. When any pair
7060       *     of these values is tested for "equal value" and the types do not
7061       *     match, an implicit conversion will be done to convert the int to a
7062       *     uint (see section 4.1.10 “Implicit Conversions”) before the compare
7063       *     is done."
7064       */
7065      if (label->type != state->switch_state.test_var->type) {
7066         YYLTYPE loc = this->test_value->get_location();
7067
7068         const glsl_type *type_a = label->type;
7069         const glsl_type *type_b = state->switch_state.test_var->type;
7070
7071         /* Check if int->uint implicit conversion is supported. */
7072         bool integer_conversion_supported =
7073            glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
7074                                                           state);
7075
7076         if ((!type_a->is_integer_32() || !type_b->is_integer_32()) ||
7077              !integer_conversion_supported) {
7078            _mesa_glsl_error(&loc, state, "type mismatch with switch "
7079                             "init-expression and case label (%s != %s)",
7080                             type_a->name, type_b->name);
7081         } else {
7082            /* Conversion of the case label. */
7083            if (type_a->base_type == GLSL_TYPE_INT) {
7084               if (!apply_implicit_conversion(glsl_type::uint_type,
7085                                              label, state))
7086                  _mesa_glsl_error(&loc, state, "implicit type conversion error");
7087            } else {
7088               /* Conversion of the init-expression value. */
7089               if (!apply_implicit_conversion(glsl_type::uint_type,
7090                                              deref_test_var, state))
7091                  _mesa_glsl_error(&loc, state, "implicit type conversion error");
7092            }
7093         }
7094
7095         /* If the implicit conversion was allowed, the types will already be
7096          * the same.  If the implicit conversion wasn't allowed, smash the
7097          * type of the label anyway.  This will prevent the expression
7098          * constructor (below) from failing an assertion.
7099          */
7100         label->type = deref_test_var->type;
7101      }
7102
7103      body.emit(assign(fallthru_var,
7104                       logic_or(fallthru_var, equal(label, deref_test_var))));
7105   } else { /* default case */
7106      if (state->switch_state.previous_default) {
7107         YYLTYPE loc = this->get_location();
7108         _mesa_glsl_error(& loc, state,
7109                          "multiple default labels in one switch");
7110
7111         loc = state->switch_state.previous_default->get_location();
7112         _mesa_glsl_error(& loc, state, "this is the first default label");
7113      }
7114      state->switch_state.previous_default = this;
7115
7116      /* Set fallthru condition on 'run_default' bool. */
7117      body.emit(assign(fallthru_var,
7118                       logic_or(fallthru_var,
7119                                state->switch_state.run_default)));
7120   }
7121
7122   /* Case statements do not have r-values. */
7123   return NULL;
7124}
7125
7126void
7127ast_iteration_statement::condition_to_hir(exec_list *instructions,
7128                                          struct _mesa_glsl_parse_state *state)
7129{
7130   void *ctx = state;
7131
7132   if (condition != NULL) {
7133      ir_rvalue *const cond =
7134         condition->hir(instructions, state);
7135
7136      if ((cond == NULL)
7137          || !cond->type->is_boolean() || !cond->type->is_scalar()) {
7138         YYLTYPE loc = condition->get_location();
7139
7140         _mesa_glsl_error(& loc, state,
7141                          "loop condition must be scalar boolean");
7142      } else {
7143         /* As the first code in the loop body, generate a block that looks
7144          * like 'if (!condition) break;' as the loop termination condition.
7145          */
7146         ir_rvalue *const not_cond =
7147            new(ctx) ir_expression(ir_unop_logic_not, cond);
7148
7149         ir_if *const if_stmt = new(ctx) ir_if(not_cond);
7150
7151         ir_jump *const break_stmt =
7152            new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
7153
7154         if_stmt->then_instructions.push_tail(break_stmt);
7155         instructions->push_tail(if_stmt);
7156      }
7157   }
7158}
7159
7160
7161ir_rvalue *
7162ast_iteration_statement::hir(exec_list *instructions,
7163                             struct _mesa_glsl_parse_state *state)
7164{
7165   void *ctx = state;
7166
7167   /* For-loops and while-loops start a new scope, but do-while loops do not.
7168    */
7169   if (mode != ast_do_while)
7170      state->symbols->push_scope();
7171
7172   if (init_statement != NULL)
7173      init_statement->hir(instructions, state);
7174
7175   ir_loop *const stmt = new(ctx) ir_loop();
7176   instructions->push_tail(stmt);
7177
7178   /* Track the current loop nesting. */
7179   ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
7180
7181   state->loop_nesting_ast = this;
7182
7183   /* Likewise, indicate that following code is closest to a loop,
7184    * NOT closest to a switch.
7185    */
7186   bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
7187   state->switch_state.is_switch_innermost = false;
7188
7189   if (mode != ast_do_while)
7190      condition_to_hir(&stmt->body_instructions, state);
7191
7192   if (rest_expression != NULL)
7193      rest_expression->hir(&rest_instructions, state);
7194
7195   if (body != NULL) {
7196      if (mode == ast_do_while)
7197         state->symbols->push_scope();
7198
7199      body->hir(& stmt->body_instructions, state);
7200
7201      if (mode == ast_do_while)
7202         state->symbols->pop_scope();
7203   }
7204
7205   if (rest_expression != NULL)
7206      stmt->body_instructions.append_list(&rest_instructions);
7207
7208   if (mode == ast_do_while)
7209      condition_to_hir(&stmt->body_instructions, state);
7210
7211   if (mode != ast_do_while)
7212      state->symbols->pop_scope();
7213
7214   /* Restore previous nesting before returning. */
7215   state->loop_nesting_ast = nesting_ast;
7216   state->switch_state.is_switch_innermost = saved_is_switch_innermost;
7217
7218   /* Loops do not have r-values.
7219    */
7220   return NULL;
7221}
7222
7223
7224/**
7225 * Determine if the given type is valid for establishing a default precision
7226 * qualifier.
7227 *
7228 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
7229 *
7230 *     "The precision statement
7231 *
7232 *         precision precision-qualifier type;
7233 *
7234 *     can be used to establish a default precision qualifier. The type field
7235 *     can be either int or float or any of the sampler types, and the
7236 *     precision-qualifier can be lowp, mediump, or highp."
7237 *
7238 * GLSL ES 1.00 has similar language.  GLSL 1.30 doesn't allow precision
7239 * qualifiers on sampler types, but this seems like an oversight (since the
7240 * intention of including these in GLSL 1.30 is to allow compatibility with ES
7241 * shaders).  So we allow int, float, and all sampler types regardless of GLSL
7242 * version.
7243 */
7244static bool
7245is_valid_default_precision_type(const struct glsl_type *const type)
7246{
7247   if (type == NULL)
7248      return false;
7249
7250   switch (type->base_type) {
7251   case GLSL_TYPE_INT:
7252   case GLSL_TYPE_FLOAT:
7253      /* "int" and "float" are valid, but vectors and matrices are not. */
7254      return type->vector_elements == 1 && type->matrix_columns == 1;
7255   case GLSL_TYPE_SAMPLER:
7256   case GLSL_TYPE_TEXTURE:
7257   case GLSL_TYPE_IMAGE:
7258   case GLSL_TYPE_ATOMIC_UINT:
7259      return true;
7260   default:
7261      return false;
7262   }
7263}
7264
7265
7266ir_rvalue *
7267ast_type_specifier::hir(exec_list *instructions,
7268                        struct _mesa_glsl_parse_state *state)
7269{
7270   if (this->default_precision == ast_precision_none && this->structure == NULL)
7271      return NULL;
7272
7273   YYLTYPE loc = this->get_location();
7274
7275   /* If this is a precision statement, check that the type to which it is
7276    * applied is either float or int.
7277    *
7278    * From section 4.5.3 of the GLSL 1.30 spec:
7279    *    "The precision statement
7280    *       precision precision-qualifier type;
7281    *    can be used to establish a default precision qualifier. The type
7282    *    field can be either int or float [...].  Any other types or
7283    *    qualifiers will result in an error.
7284    */
7285   if (this->default_precision != ast_precision_none) {
7286      if (!state->check_precision_qualifiers_allowed(&loc))
7287         return NULL;
7288
7289      if (this->structure != NULL) {
7290         _mesa_glsl_error(&loc, state,
7291                          "precision qualifiers do not apply to structures");
7292         return NULL;
7293      }
7294
7295      if (this->array_specifier != NULL) {
7296         _mesa_glsl_error(&loc, state,
7297                          "default precision statements do not apply to "
7298                          "arrays");
7299         return NULL;
7300      }
7301
7302      const struct glsl_type *const type =
7303         state->symbols->get_type(this->type_name);
7304      if (!is_valid_default_precision_type(type)) {
7305         _mesa_glsl_error(&loc, state,
7306                          "default precision statements apply only to "
7307                          "float, int, and opaque types");
7308         return NULL;
7309      }
7310
7311      if (state->es_shader) {
7312         /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
7313          * spec says:
7314          *
7315          *     "Non-precision qualified declarations will use the precision
7316          *     qualifier specified in the most recent precision statement
7317          *     that is still in scope. The precision statement has the same
7318          *     scoping rules as variable declarations. If it is declared
7319          *     inside a compound statement, its effect stops at the end of
7320          *     the innermost statement it was declared in. Precision
7321          *     statements in nested scopes override precision statements in
7322          *     outer scopes. Multiple precision statements for the same basic
7323          *     type can appear inside the same scope, with later statements
7324          *     overriding earlier statements within that scope."
7325          *
7326          * Default precision specifications follow the same scope rules as
7327          * variables.  So, we can track the state of the default precision
7328          * qualifiers in the symbol table, and the rules will just work.  This
7329          * is a slight abuse of the symbol table, but it has the semantics
7330          * that we want.
7331          */
7332         state->symbols->add_default_precision_qualifier(this->type_name,
7333                                                         this->default_precision);
7334      }
7335
7336      /* FINISHME: Translate precision statements into IR. */
7337      return NULL;
7338   }
7339
7340   /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
7341    * process_record_constructor() can do type-checking on C-style initializer
7342    * expressions of structs, but ast_struct_specifier should only be translated
7343    * to HIR if it is declaring the type of a structure.
7344    *
7345    * The ->is_declaration field is false for initializers of variables
7346    * declared separately from the struct's type definition.
7347    *
7348    *    struct S { ... };              (is_declaration = true)
7349    *    struct T { ... } t = { ... };  (is_declaration = true)
7350    *    S s = { ... };                 (is_declaration = false)
7351    */
7352   if (this->structure != NULL && this->structure->is_declaration)
7353      return this->structure->hir(instructions, state);
7354
7355   return NULL;
7356}
7357
7358
7359/**
7360 * Process a structure or interface block tree into an array of structure fields
7361 *
7362 * After parsing, where there are some syntax differnces, structures and
7363 * interface blocks are almost identical.  They are similar enough that the
7364 * AST for each can be processed the same way into a set of
7365 * \c glsl_struct_field to describe the members.
7366 *
7367 * If we're processing an interface block, var_mode should be the type of the
7368 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
7369 * ir_var_shader_storage).  If we're processing a structure, var_mode should be
7370 * ir_var_auto.
7371 *
7372 * \return
7373 * The number of fields processed.  A pointer to the array structure fields is
7374 * stored in \c *fields_ret.
7375 */
7376static unsigned
7377ast_process_struct_or_iface_block_members(exec_list *instructions,
7378                                          struct _mesa_glsl_parse_state *state,
7379                                          exec_list *declarations,
7380                                          glsl_struct_field **fields_ret,
7381                                          bool is_interface,
7382                                          enum glsl_matrix_layout matrix_layout,
7383                                          bool allow_reserved_names,
7384                                          ir_variable_mode var_mode,
7385                                          ast_type_qualifier *layout,
7386                                          unsigned block_stream,
7387                                          unsigned block_xfb_buffer,
7388                                          unsigned block_xfb_offset,
7389                                          unsigned expl_location,
7390                                          unsigned expl_align)
7391{
7392   unsigned decl_count = 0;
7393   unsigned next_offset = 0;
7394
7395   /* Make an initial pass over the list of fields to determine how
7396    * many there are.  Each element in this list is an ast_declarator_list.
7397    * This means that we actually need to count the number of elements in the
7398    * 'declarations' list in each of the elements.
7399    */
7400   foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7401      decl_count += decl_list->declarations.length();
7402   }
7403
7404   /* Allocate storage for the fields and process the field
7405    * declarations.  As the declarations are processed, try to also convert
7406    * the types to HIR.  This ensures that structure definitions embedded in
7407    * other structure definitions or in interface blocks are processed.
7408    */
7409   glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
7410                                                   decl_count);
7411
7412   bool first_member = true;
7413   bool first_member_has_explicit_location = false;
7414
7415   unsigned i = 0;
7416   foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7417      const char *type_name;
7418      YYLTYPE loc = decl_list->get_location();
7419
7420      decl_list->type->specifier->hir(instructions, state);
7421
7422      /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
7423       *
7424       *    "Anonymous structures are not supported; so embedded structures
7425       *    must have a declarator. A name given to an embedded struct is
7426       *    scoped at the same level as the struct it is embedded in."
7427       *
7428       * The same section of the  GLSL 1.20 spec says:
7429       *
7430       *    "Anonymous structures are not supported. Embedded structures are
7431       *    not supported."
7432       *
7433       * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
7434       * embedded structures in 1.10 only.
7435       */
7436      if (state->language_version != 110 &&
7437          decl_list->type->specifier->structure != NULL)
7438         _mesa_glsl_error(&loc, state,
7439                          "embedded structure declarations are not allowed");
7440
7441      const glsl_type *decl_type =
7442         decl_list->type->glsl_type(& type_name, state);
7443
7444      const struct ast_type_qualifier *const qual =
7445         &decl_list->type->qualifier;
7446
7447      /* From section 4.3.9 of the GLSL 4.40 spec:
7448       *
7449       *    "[In interface blocks] opaque types are not allowed."
7450       *
7451       * It should be impossible for decl_type to be NULL here.  Cases that
7452       * might naturally lead to decl_type being NULL, especially for the
7453       * is_interface case, will have resulted in compilation having
7454       * already halted due to a syntax error.
7455       */
7456      assert(decl_type);
7457
7458      if (is_interface) {
7459         /* From section 4.3.7 of the ARB_bindless_texture spec:
7460          *
7461          *    "(remove the following bullet from the last list on p. 39,
7462          *     thereby permitting sampler types in interface blocks; image
7463          *     types are also permitted in blocks by this extension)"
7464          *
7465          *     * sampler types are not allowed
7466          */
7467         if (decl_type->contains_atomic() ||
7468             (!state->has_bindless() && decl_type->contains_opaque())) {
7469            _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
7470                             "interface block contains %s variable",
7471                             state->has_bindless() ? "atomic" : "opaque");
7472         }
7473      } else {
7474         if (decl_type->contains_atomic()) {
7475            /* From section 4.1.7.3 of the GLSL 4.40 spec:
7476             *
7477             *    "Members of structures cannot be declared as atomic counter
7478             *     types."
7479             */
7480            _mesa_glsl_error(&loc, state, "atomic counter in structure");
7481         }
7482
7483         if (!state->has_bindless() && decl_type->contains_image()) {
7484            /* FINISHME: Same problem as with atomic counters.
7485             * FINISHME: Request clarification from Khronos and add
7486             * FINISHME: spec quotation here.
7487             */
7488            _mesa_glsl_error(&loc, state, "image in structure");
7489         }
7490      }
7491
7492      if (qual->flags.q.explicit_binding) {
7493         _mesa_glsl_error(&loc, state,
7494                          "binding layout qualifier cannot be applied "
7495                          "to struct or interface block members");
7496      }
7497
7498      if (is_interface) {
7499         if (!first_member) {
7500            if (!layout->flags.q.explicit_location &&
7501                ((first_member_has_explicit_location &&
7502                  !qual->flags.q.explicit_location) ||
7503                 (!first_member_has_explicit_location &&
7504                  qual->flags.q.explicit_location))) {
7505               _mesa_glsl_error(&loc, state,
7506                                "when block-level location layout qualifier "
7507                                "is not supplied either all members must "
7508                                "have a location layout qualifier or all "
7509                                "members must not have a location layout "
7510                                "qualifier");
7511            }
7512         } else {
7513            first_member = false;
7514            first_member_has_explicit_location =
7515               qual->flags.q.explicit_location;
7516         }
7517      }
7518
7519      if (qual->flags.q.std140 ||
7520          qual->flags.q.std430 ||
7521          qual->flags.q.packed ||
7522          qual->flags.q.shared) {
7523         _mesa_glsl_error(&loc, state,
7524                          "uniform/shader storage block layout qualifiers "
7525                          "std140, std430, packed, and shared can only be "
7526                          "applied to uniform/shader storage blocks, not "
7527                          "members");
7528      }
7529
7530      if (qual->flags.q.constant) {
7531         _mesa_glsl_error(&loc, state,
7532                          "const storage qualifier cannot be applied "
7533                          "to struct or interface block members");
7534      }
7535
7536      validate_memory_qualifier_for_type(state, &loc, qual, decl_type);
7537      validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
7538
7539      /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
7540       *
7541       *   "A block member may be declared with a stream identifier, but
7542       *   the specified stream must match the stream associated with the
7543       *   containing block."
7544       */
7545      if (qual->flags.q.explicit_stream) {
7546         unsigned qual_stream;
7547         if (process_qualifier_constant(state, &loc, "stream",
7548                                        qual->stream, &qual_stream) &&
7549             qual_stream != block_stream) {
7550            _mesa_glsl_error(&loc, state, "stream layout qualifier on "
7551                             "interface block member does not match "
7552                             "the interface block (%u vs %u)", qual_stream,
7553                             block_stream);
7554         }
7555      }
7556
7557      int xfb_buffer;
7558      unsigned explicit_xfb_buffer = 0;
7559      if (qual->flags.q.explicit_xfb_buffer) {
7560         unsigned qual_xfb_buffer;
7561         if (process_qualifier_constant(state, &loc, "xfb_buffer",
7562                                        qual->xfb_buffer, &qual_xfb_buffer)) {
7563            explicit_xfb_buffer = 1;
7564            if (qual_xfb_buffer != block_xfb_buffer)
7565               _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
7566                                "interface block member does not match "
7567                                "the interface block (%u vs %u)",
7568                                qual_xfb_buffer, block_xfb_buffer);
7569         }
7570         xfb_buffer = (int) qual_xfb_buffer;
7571      } else {
7572         if (layout)
7573            explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
7574         xfb_buffer = (int) block_xfb_buffer;
7575      }
7576
7577      int xfb_stride = -1;
7578      if (qual->flags.q.explicit_xfb_stride) {
7579         unsigned qual_xfb_stride;
7580         if (process_qualifier_constant(state, &loc, "xfb_stride",
7581                                        qual->xfb_stride, &qual_xfb_stride)) {
7582            xfb_stride = (int) qual_xfb_stride;
7583         }
7584      }
7585
7586      if (qual->flags.q.uniform && qual->has_interpolation()) {
7587         _mesa_glsl_error(&loc, state,
7588                          "interpolation qualifiers cannot be used "
7589                          "with uniform interface blocks");
7590      }
7591
7592      if ((qual->flags.q.uniform || !is_interface) &&
7593          qual->has_auxiliary_storage()) {
7594         _mesa_glsl_error(&loc, state,
7595                          "auxiliary storage qualifiers cannot be used "
7596                          "in uniform blocks or structures.");
7597      }
7598
7599      if (qual->flags.q.row_major || qual->flags.q.column_major) {
7600         if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
7601            _mesa_glsl_error(&loc, state,
7602                             "row_major and column_major can only be "
7603                             "applied to interface blocks");
7604         } else
7605            validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
7606      }
7607
7608      foreach_list_typed (ast_declaration, decl, link,
7609                          &decl_list->declarations) {
7610         YYLTYPE loc = decl->get_location();
7611
7612         if (!allow_reserved_names)
7613            validate_identifier(decl->identifier, loc, state);
7614
7615         const struct glsl_type *field_type =
7616            process_array_type(&loc, decl_type, decl->array_specifier, state);
7617         validate_array_dimensions(field_type, state, &loc);
7618         fields[i].type = field_type;
7619         fields[i].name = decl->identifier;
7620         fields[i].interpolation =
7621            interpret_interpolation_qualifier(qual, field_type,
7622                                              var_mode, state, &loc);
7623         fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
7624         fields[i].sample = qual->flags.q.sample ? 1 : 0;
7625         fields[i].patch = qual->flags.q.patch ? 1 : 0;
7626         fields[i].offset = -1;
7627         fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
7628         fields[i].xfb_buffer = xfb_buffer;
7629         fields[i].xfb_stride = xfb_stride;
7630
7631         if (qual->flags.q.explicit_location) {
7632            unsigned qual_location;
7633            if (process_qualifier_constant(state, &loc, "location",
7634                                           qual->location, &qual_location)) {
7635               fields[i].location = qual_location +
7636                  (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
7637               expl_location = fields[i].location +
7638                  fields[i].type->count_attribute_slots(false);
7639            }
7640         } else {
7641            if (layout && layout->flags.q.explicit_location) {
7642               fields[i].location = expl_location;
7643               expl_location += fields[i].type->count_attribute_slots(false);
7644            } else {
7645               fields[i].location = -1;
7646            }
7647         }
7648
7649         if (qual->flags.q.explicit_component) {
7650            unsigned qual_component;
7651            if (process_qualifier_constant(state, &loc, "component",
7652                                           qual->component, &qual_component)) {
7653               validate_component_layout_for_type(state, &loc, fields[i].type,
7654                                                  qual_component);
7655               fields[i].component = qual_component;
7656            }
7657         } else {
7658            fields[i].component = -1;
7659         }
7660
7661         /* Offset can only be used with std430 and std140 layouts an initial
7662          * value of 0 is used for error detection.
7663          */
7664         unsigned align = 0;
7665         unsigned size = 0;
7666         if (layout) {
7667            bool row_major;
7668            if (qual->flags.q.row_major ||
7669                matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7670               row_major = true;
7671            } else {
7672               row_major = false;
7673            }
7674
7675            if(layout->flags.q.std140) {
7676               align = field_type->std140_base_alignment(row_major);
7677               size = field_type->std140_size(row_major);
7678            } else if (layout->flags.q.std430) {
7679               align = field_type->std430_base_alignment(row_major);
7680               size = field_type->std430_size(row_major);
7681            }
7682         }
7683
7684         if (qual->flags.q.explicit_offset) {
7685            unsigned qual_offset;
7686            if (process_qualifier_constant(state, &loc, "offset",
7687                                           qual->offset, &qual_offset)) {
7688               if (align != 0 && size != 0) {
7689                   if (next_offset > qual_offset)
7690                      _mesa_glsl_error(&loc, state, "layout qualifier "
7691                                       "offset overlaps previous member");
7692
7693                  if (qual_offset % align) {
7694                     _mesa_glsl_error(&loc, state, "layout qualifier offset "
7695                                      "must be a multiple of the base "
7696                                      "alignment of %s", field_type->name);
7697                  }
7698                  fields[i].offset = qual_offset;
7699                  next_offset = qual_offset + size;
7700               } else {
7701                  _mesa_glsl_error(&loc, state, "offset can only be used "
7702                                   "with std430 and std140 layouts");
7703               }
7704            }
7705         }
7706
7707         if (qual->flags.q.explicit_align || expl_align != 0) {
7708            unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7709               next_offset;
7710            if (align == 0 || size == 0) {
7711               _mesa_glsl_error(&loc, state, "align can only be used with "
7712                                "std430 and std140 layouts");
7713            } else if (qual->flags.q.explicit_align) {
7714               unsigned member_align;
7715               if (process_qualifier_constant(state, &loc, "align",
7716                                              qual->align, &member_align)) {
7717                  if (member_align == 0 ||
7718                      member_align & (member_align - 1)) {
7719                     _mesa_glsl_error(&loc, state, "align layout qualifier "
7720                                      "is not a power of 2");
7721                  } else {
7722                     fields[i].offset = glsl_align(offset, member_align);
7723                     next_offset = fields[i].offset + size;
7724                  }
7725               }
7726            } else {
7727               fields[i].offset = glsl_align(offset, expl_align);
7728               next_offset = fields[i].offset + size;
7729            }
7730         } else if (!qual->flags.q.explicit_offset) {
7731            if (align != 0 && size != 0)
7732               next_offset = glsl_align(next_offset, align) + size;
7733         }
7734
7735         /* From the ARB_enhanced_layouts spec:
7736          *
7737          *    "The given offset applies to the first component of the first
7738          *    member of the qualified entity.  Then, within the qualified
7739          *    entity, subsequent components are each assigned, in order, to
7740          *    the next available offset aligned to a multiple of that
7741          *    component's size.  Aggregate types are flattened down to the
7742          *    component level to get this sequence of components."
7743          */
7744         if (qual->flags.q.explicit_xfb_offset) {
7745            unsigned xfb_offset;
7746            if (process_qualifier_constant(state, &loc, "xfb_offset",
7747                                           qual->offset, &xfb_offset)) {
7748               fields[i].offset = xfb_offset;
7749               block_xfb_offset = fields[i].offset +
7750                  4 * field_type->component_slots();
7751            }
7752         } else {
7753            if (layout && layout->flags.q.explicit_xfb_offset) {
7754               unsigned align = field_type->is_64bit() ? 8 : 4;
7755               fields[i].offset = glsl_align(block_xfb_offset, align);
7756               block_xfb_offset += 4 * field_type->component_slots();
7757            }
7758         }
7759
7760         /* Propogate row- / column-major information down the fields of the
7761          * structure or interface block.  Structures need this data because
7762          * the structure may contain a structure that contains ... a matrix
7763          * that need the proper layout.
7764          */
7765         if (is_interface && layout &&
7766             (layout->flags.q.uniform || layout->flags.q.buffer) &&
7767             (field_type->without_array()->is_matrix()
7768              || field_type->without_array()->is_struct())) {
7769            /* If no layout is specified for the field, inherit the layout
7770             * from the block.
7771             */
7772            fields[i].matrix_layout = matrix_layout;
7773
7774            if (qual->flags.q.row_major)
7775               fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7776            else if (qual->flags.q.column_major)
7777               fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7778
7779            /* If we're processing an uniform or buffer block, the matrix
7780             * layout must be decided by this point.
7781             */
7782            assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7783                   || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7784         }
7785
7786         /* Memory qualifiers are allowed on buffer and image variables, while
7787          * the format qualifier is only accepted for images.
7788          */
7789         if (var_mode == ir_var_shader_storage ||
7790             field_type->without_array()->is_image()) {
7791            /* For readonly and writeonly qualifiers the field definition,
7792             * if set, overwrites the layout qualifier.
7793             */
7794            if (qual->flags.q.read_only || qual->flags.q.write_only) {
7795               fields[i].memory_read_only = qual->flags.q.read_only;
7796               fields[i].memory_write_only = qual->flags.q.write_only;
7797            } else {
7798               fields[i].memory_read_only =
7799                  layout ? layout->flags.q.read_only : 0;
7800               fields[i].memory_write_only =
7801                  layout ? layout->flags.q.write_only : 0;
7802            }
7803
7804            /* For other qualifiers, we set the flag if either the layout
7805             * qualifier or the field qualifier are set
7806             */
7807            fields[i].memory_coherent = qual->flags.q.coherent ||
7808                                        (layout && layout->flags.q.coherent);
7809            fields[i].memory_volatile = qual->flags.q._volatile ||
7810                                        (layout && layout->flags.q._volatile);
7811            fields[i].memory_restrict = qual->flags.q.restrict_flag ||
7812                                        (layout && layout->flags.q.restrict_flag);
7813
7814            if (field_type->without_array()->is_image()) {
7815               if (qual->flags.q.explicit_image_format) {
7816                  if (qual->image_base_type !=
7817                      field_type->without_array()->sampled_type) {
7818                     _mesa_glsl_error(&loc, state, "format qualifier doesn't "
7819                                      "match the base data type of the image");
7820                  }
7821
7822                  fields[i].image_format = qual->image_format;
7823               } else {
7824                  if (!qual->flags.q.write_only) {
7825                     _mesa_glsl_error(&loc, state, "image not qualified with "
7826                                      "`writeonly' must have a format layout "
7827                                      "qualifier");
7828                  }
7829
7830                  fields[i].image_format = PIPE_FORMAT_NONE;
7831               }
7832            }
7833         }
7834
7835         /* Precision qualifiers do not hold any meaning in Desktop GLSL */
7836         if (state->es_shader) {
7837            fields[i].precision = select_gles_precision(qual->precision,
7838                                                        field_type,
7839                                                        state,
7840                                                        &loc);
7841         } else {
7842            fields[i].precision = qual->precision;
7843         }
7844
7845         i++;
7846      }
7847   }
7848
7849   assert(i == decl_count);
7850
7851   *fields_ret = fields;
7852   return decl_count;
7853}
7854
7855
7856ir_rvalue *
7857ast_struct_specifier::hir(exec_list *instructions,
7858                          struct _mesa_glsl_parse_state *state)
7859{
7860   YYLTYPE loc = this->get_location();
7861
7862   unsigned expl_location = 0;
7863   if (layout && layout->flags.q.explicit_location) {
7864      if (!process_qualifier_constant(state, &loc, "location",
7865                                      layout->location, &expl_location)) {
7866         return NULL;
7867      } else {
7868         expl_location = VARYING_SLOT_VAR0 + expl_location;
7869      }
7870   }
7871
7872   glsl_struct_field *fields;
7873   unsigned decl_count =
7874      ast_process_struct_or_iface_block_members(instructions,
7875                                                state,
7876                                                &this->declarations,
7877                                                &fields,
7878                                                false,
7879                                                GLSL_MATRIX_LAYOUT_INHERITED,
7880                                                false /* allow_reserved_names */,
7881                                                ir_var_auto,
7882                                                layout,
7883                                                0, /* for interface only */
7884                                                0, /* for interface only */
7885                                                0, /* for interface only */
7886                                                expl_location,
7887                                                0 /* for interface only */);
7888
7889   validate_identifier(this->name, loc, state);
7890
7891   type = glsl_type::get_struct_instance(fields, decl_count, this->name);
7892
7893   if (!type->is_anonymous() && !state->symbols->add_type(name, type)) {
7894      const glsl_type *match = state->symbols->get_type(name);
7895      /* allow struct matching for desktop GL - older UE4 does this */
7896      if (match != NULL && state->is_version(130, 0) && match->record_compare(type, true, false))
7897         _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7898      else
7899         _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7900   } else {
7901      const glsl_type **s = reralloc(state, state->user_structures,
7902                                     const glsl_type *,
7903                                     state->num_user_structures + 1);
7904      if (s != NULL) {
7905         s[state->num_user_structures] = type;
7906         state->user_structures = s;
7907         state->num_user_structures++;
7908      }
7909   }
7910
7911   /* Structure type definitions do not have r-values.
7912    */
7913   return NULL;
7914}
7915
7916
7917/**
7918 * Visitor class which detects whether a given interface block has been used.
7919 */
7920class interface_block_usage_visitor : public ir_hierarchical_visitor
7921{
7922public:
7923   interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7924      : mode(mode), block(block), found(false)
7925   {
7926   }
7927
7928   virtual ir_visitor_status visit(ir_dereference_variable *ir)
7929   {
7930      if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7931         found = true;
7932         return visit_stop;
7933      }
7934      return visit_continue;
7935   }
7936
7937   bool usage_found() const
7938   {
7939      return this->found;
7940   }
7941
7942private:
7943   ir_variable_mode mode;
7944   const glsl_type *block;
7945   bool found;
7946};
7947
7948static bool
7949is_unsized_array_last_element(ir_variable *v)
7950{
7951   const glsl_type *interface_type = v->get_interface_type();
7952   int length = interface_type->length;
7953
7954   assert(v->type->is_unsized_array());
7955
7956   /* Check if it is the last element of the interface */
7957   if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7958      return true;
7959   return false;
7960}
7961
7962static void
7963apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7964{
7965   var->data.memory_read_only = field.memory_read_only;
7966   var->data.memory_write_only = field.memory_write_only;
7967   var->data.memory_coherent = field.memory_coherent;
7968   var->data.memory_volatile = field.memory_volatile;
7969   var->data.memory_restrict = field.memory_restrict;
7970}
7971
7972ir_rvalue *
7973ast_interface_block::hir(exec_list *instructions,
7974                         struct _mesa_glsl_parse_state *state)
7975{
7976   YYLTYPE loc = this->get_location();
7977
7978   /* Interface blocks must be declared at global scope */
7979   if (state->current_function != NULL) {
7980      _mesa_glsl_error(&loc, state,
7981                       "Interface block `%s' must be declared "
7982                       "at global scope",
7983                       this->block_name);
7984   }
7985
7986   /* Validate qualifiers:
7987    *
7988    * - Layout Qualifiers as per the table in Section 4.4
7989    *   ("Layout Qualifiers") of the GLSL 4.50 spec.
7990    *
7991    * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7992    *   GLSL 4.50 spec:
7993    *
7994    *     "Additionally, memory qualifiers may also be used in the declaration
7995    *      of shader storage blocks"
7996    *
7997    * Note the table in Section 4.4 says std430 is allowed on both uniform and
7998    * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7999    * Layout Qualifiers) of the GLSL 4.50 spec says:
8000    *
8001    *    "The std430 qualifier is supported only for shader storage blocks;
8002    *    using std430 on a uniform block will result in a compile-time error."
8003    */
8004   ast_type_qualifier allowed_blk_qualifiers;
8005   allowed_blk_qualifiers.flags.i = 0;
8006   if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
8007      allowed_blk_qualifiers.flags.q.shared = 1;
8008      allowed_blk_qualifiers.flags.q.packed = 1;
8009      allowed_blk_qualifiers.flags.q.std140 = 1;
8010      allowed_blk_qualifiers.flags.q.row_major = 1;
8011      allowed_blk_qualifiers.flags.q.column_major = 1;
8012      allowed_blk_qualifiers.flags.q.explicit_align = 1;
8013      allowed_blk_qualifiers.flags.q.explicit_binding = 1;
8014      if (this->layout.flags.q.buffer) {
8015         allowed_blk_qualifiers.flags.q.buffer = 1;
8016         allowed_blk_qualifiers.flags.q.std430 = 1;
8017         allowed_blk_qualifiers.flags.q.coherent = 1;
8018         allowed_blk_qualifiers.flags.q._volatile = 1;
8019         allowed_blk_qualifiers.flags.q.restrict_flag = 1;
8020         allowed_blk_qualifiers.flags.q.read_only = 1;
8021         allowed_blk_qualifiers.flags.q.write_only = 1;
8022      } else {
8023         allowed_blk_qualifiers.flags.q.uniform = 1;
8024      }
8025   } else {
8026      /* Interface block */
8027      assert(this->layout.flags.q.in || this->layout.flags.q.out);
8028
8029      allowed_blk_qualifiers.flags.q.explicit_location = 1;
8030      if (this->layout.flags.q.out) {
8031         allowed_blk_qualifiers.flags.q.out = 1;
8032         if (state->stage == MESA_SHADER_GEOMETRY ||
8033             state->stage == MESA_SHADER_TESS_CTRL ||
8034             state->stage == MESA_SHADER_TESS_EVAL ||
8035             state->stage == MESA_SHADER_VERTEX ) {
8036            allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
8037            allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
8038            allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
8039            allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
8040            allowed_blk_qualifiers.flags.q.xfb_stride = 1;
8041         }
8042         if (state->stage == MESA_SHADER_GEOMETRY) {
8043            allowed_blk_qualifiers.flags.q.stream = 1;
8044            allowed_blk_qualifiers.flags.q.explicit_stream = 1;
8045         }
8046         if (state->stage == MESA_SHADER_TESS_CTRL) {
8047            allowed_blk_qualifiers.flags.q.patch = 1;
8048         }
8049      } else {
8050         allowed_blk_qualifiers.flags.q.in = 1;
8051         if (state->stage == MESA_SHADER_TESS_EVAL) {
8052            allowed_blk_qualifiers.flags.q.patch = 1;
8053         }
8054      }
8055   }
8056
8057   this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
8058                               "invalid qualifier for block",
8059                               this->block_name);
8060
8061   enum glsl_interface_packing packing;
8062   if (this->layout.flags.q.std140) {
8063      packing = GLSL_INTERFACE_PACKING_STD140;
8064   } else if (this->layout.flags.q.packed) {
8065      packing = GLSL_INTERFACE_PACKING_PACKED;
8066   } else if (this->layout.flags.q.std430) {
8067      packing = GLSL_INTERFACE_PACKING_STD430;
8068   } else {
8069      /* The default layout is shared.
8070       */
8071      packing = GLSL_INTERFACE_PACKING_SHARED;
8072   }
8073
8074   ir_variable_mode var_mode;
8075   const char *iface_type_name;
8076   if (this->layout.flags.q.in) {
8077      var_mode = ir_var_shader_in;
8078      iface_type_name = "in";
8079   } else if (this->layout.flags.q.out) {
8080      var_mode = ir_var_shader_out;
8081      iface_type_name = "out";
8082   } else if (this->layout.flags.q.uniform) {
8083      var_mode = ir_var_uniform;
8084      iface_type_name = "uniform";
8085   } else if (this->layout.flags.q.buffer) {
8086      var_mode = ir_var_shader_storage;
8087      iface_type_name = "buffer";
8088   } else {
8089      var_mode = ir_var_auto;
8090      iface_type_name = "UNKNOWN";
8091      assert(!"interface block layout qualifier not found!");
8092   }
8093
8094   enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
8095   if (this->layout.flags.q.row_major)
8096      matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
8097   else if (this->layout.flags.q.column_major)
8098      matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
8099
8100   bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
8101   exec_list declared_variables;
8102   glsl_struct_field *fields;
8103
8104   /* For blocks that accept memory qualifiers (i.e. shader storage), verify
8105    * that we don't have incompatible qualifiers
8106    */
8107   if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
8108      _mesa_glsl_error(&loc, state,
8109                       "Interface block sets both readonly and writeonly");
8110   }
8111
8112   unsigned qual_stream;
8113   if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
8114                                   &qual_stream) ||
8115       !validate_stream_qualifier(&loc, state, qual_stream)) {
8116      /* If the stream qualifier is invalid it doesn't make sense to continue
8117       * on and try to compare stream layouts on member variables against it
8118       * so just return early.
8119       */
8120      return NULL;
8121   }
8122
8123   unsigned qual_xfb_buffer = 0;
8124   if (layout.flags.q.xfb_buffer) {
8125      if (!process_qualifier_constant(state, &loc, "xfb_buffer",
8126                                      layout.xfb_buffer, &qual_xfb_buffer) ||
8127          !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
8128         return NULL;
8129      }
8130   }
8131
8132   unsigned qual_xfb_offset = 0;
8133   if (layout.flags.q.explicit_xfb_offset) {
8134      if (!process_qualifier_constant(state, &loc, "xfb_offset",
8135                                      layout.offset, &qual_xfb_offset)) {
8136         return NULL;
8137      }
8138   }
8139
8140   unsigned qual_xfb_stride = 0;
8141   if (layout.flags.q.explicit_xfb_stride) {
8142      if (!process_qualifier_constant(state, &loc, "xfb_stride",
8143                                      layout.xfb_stride, &qual_xfb_stride)) {
8144         return NULL;
8145      }
8146   }
8147
8148   unsigned expl_location = 0;
8149   if (layout.flags.q.explicit_location) {
8150      if (!process_qualifier_constant(state, &loc, "location",
8151                                      layout.location, &expl_location)) {
8152         return NULL;
8153      } else {
8154         expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
8155                                                     : VARYING_SLOT_VAR0;
8156      }
8157   }
8158
8159   unsigned expl_align = 0;
8160   if (layout.flags.q.explicit_align) {
8161      if (!process_qualifier_constant(state, &loc, "align",
8162                                      layout.align, &expl_align)) {
8163         return NULL;
8164      } else {
8165         if (expl_align == 0 || expl_align & (expl_align - 1)) {
8166            _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
8167                             "power of 2.");
8168            return NULL;
8169         }
8170      }
8171   }
8172
8173   unsigned int num_variables =
8174      ast_process_struct_or_iface_block_members(&declared_variables,
8175                                                state,
8176                                                &this->declarations,
8177                                                &fields,
8178                                                true,
8179                                                matrix_layout,
8180                                                redeclaring_per_vertex,
8181                                                var_mode,
8182                                                &this->layout,
8183                                                qual_stream,
8184                                                qual_xfb_buffer,
8185                                                qual_xfb_offset,
8186                                                expl_location,
8187                                                expl_align);
8188
8189   if (!redeclaring_per_vertex) {
8190      validate_identifier(this->block_name, loc, state);
8191
8192      /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
8193       *
8194       *     "Block names have no other use within a shader beyond interface
8195       *     matching; it is a compile-time error to use a block name at global
8196       *     scope for anything other than as a block name."
8197       */
8198      ir_variable *var = state->symbols->get_variable(this->block_name);
8199      if (var && !var->type->is_interface()) {
8200         _mesa_glsl_error(&loc, state, "Block name `%s' is "
8201                          "already used in the scope.",
8202                          this->block_name);
8203      }
8204   }
8205
8206   const glsl_type *earlier_per_vertex = NULL;
8207   if (redeclaring_per_vertex) {
8208      /* Find the previous declaration of gl_PerVertex.  If we're redeclaring
8209       * the named interface block gl_in, we can find it by looking at the
8210       * previous declaration of gl_in.  Otherwise we can find it by looking
8211       * at the previous decalartion of any of the built-in outputs,
8212       * e.g. gl_Position.
8213       *
8214       * Also check that the instance name and array-ness of the redeclaration
8215       * are correct.
8216       */
8217      switch (var_mode) {
8218      case ir_var_shader_in:
8219         if (ir_variable *earlier_gl_in =
8220             state->symbols->get_variable("gl_in")) {
8221            earlier_per_vertex = earlier_gl_in->get_interface_type();
8222         } else {
8223            _mesa_glsl_error(&loc, state,
8224                             "redeclaration of gl_PerVertex input not allowed "
8225                             "in the %s shader",
8226                             _mesa_shader_stage_to_string(state->stage));
8227         }
8228         if (this->instance_name == NULL ||
8229             strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
8230             !this->array_specifier->is_single_dimension()) {
8231            _mesa_glsl_error(&loc, state,
8232                             "gl_PerVertex input must be redeclared as "
8233                             "gl_in[]");
8234         }
8235         break;
8236      case ir_var_shader_out:
8237         if (ir_variable *earlier_gl_Position =
8238             state->symbols->get_variable("gl_Position")) {
8239            earlier_per_vertex = earlier_gl_Position->get_interface_type();
8240         } else if (ir_variable *earlier_gl_out =
8241               state->symbols->get_variable("gl_out")) {
8242            earlier_per_vertex = earlier_gl_out->get_interface_type();
8243         } else {
8244            _mesa_glsl_error(&loc, state,
8245                             "redeclaration of gl_PerVertex output not "
8246                             "allowed in the %s shader",
8247                             _mesa_shader_stage_to_string(state->stage));
8248         }
8249         if (state->stage == MESA_SHADER_TESS_CTRL) {
8250            if (this->instance_name == NULL ||
8251                strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
8252               _mesa_glsl_error(&loc, state,
8253                                "gl_PerVertex output must be redeclared as "
8254                                "gl_out[]");
8255            }
8256         } else {
8257            if (this->instance_name != NULL) {
8258               _mesa_glsl_error(&loc, state,
8259                                "gl_PerVertex output may not be redeclared with "
8260                                "an instance name");
8261            }
8262         }
8263         break;
8264      default:
8265         _mesa_glsl_error(&loc, state,
8266                          "gl_PerVertex must be declared as an input or an "
8267                          "output");
8268         break;
8269      }
8270
8271      if (earlier_per_vertex == NULL) {
8272         /* An error has already been reported.  Bail out to avoid null
8273          * dereferences later in this function.
8274          */
8275         return NULL;
8276      }
8277
8278      /* Copy locations from the old gl_PerVertex interface block. */
8279      for (unsigned i = 0; i < num_variables; i++) {
8280         int j = earlier_per_vertex->field_index(fields[i].name);
8281         if (j == -1) {
8282            _mesa_glsl_error(&loc, state,
8283                             "redeclaration of gl_PerVertex must be a subset "
8284                             "of the built-in members of gl_PerVertex");
8285         } else {
8286            fields[i].location =
8287               earlier_per_vertex->fields.structure[j].location;
8288            fields[i].offset =
8289               earlier_per_vertex->fields.structure[j].offset;
8290            fields[i].interpolation =
8291               earlier_per_vertex->fields.structure[j].interpolation;
8292            fields[i].centroid =
8293               earlier_per_vertex->fields.structure[j].centroid;
8294            fields[i].sample =
8295               earlier_per_vertex->fields.structure[j].sample;
8296            fields[i].patch =
8297               earlier_per_vertex->fields.structure[j].patch;
8298            fields[i].precision =
8299               earlier_per_vertex->fields.structure[j].precision;
8300            fields[i].explicit_xfb_buffer =
8301               earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
8302            fields[i].xfb_buffer =
8303               earlier_per_vertex->fields.structure[j].xfb_buffer;
8304            fields[i].xfb_stride =
8305               earlier_per_vertex->fields.structure[j].xfb_stride;
8306         }
8307      }
8308
8309      /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
8310       * spec:
8311       *
8312       *     If a built-in interface block is redeclared, it must appear in
8313       *     the shader before any use of any member included in the built-in
8314       *     declaration, or a compilation error will result.
8315       *
8316       * This appears to be a clarification to the behaviour established for
8317       * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
8318       * regardless of GLSL version.
8319       */
8320      interface_block_usage_visitor v(var_mode, earlier_per_vertex);
8321      v.run(instructions);
8322      if (v.usage_found()) {
8323         _mesa_glsl_error(&loc, state,
8324                          "redeclaration of a built-in interface block must "
8325                          "appear before any use of any member of the "
8326                          "interface block");
8327      }
8328   }
8329
8330   const glsl_type *block_type =
8331      glsl_type::get_interface_instance(fields,
8332                                        num_variables,
8333                                        packing,
8334                                        matrix_layout ==
8335                                           GLSL_MATRIX_LAYOUT_ROW_MAJOR,
8336                                        this->block_name);
8337
8338   unsigned component_size = block_type->contains_double() ? 8 : 4;
8339   int xfb_offset =
8340      layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
8341   validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
8342                                 component_size);
8343
8344   if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
8345      YYLTYPE loc = this->get_location();
8346      _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
8347                       "already taken in the current scope",
8348                       this->block_name, iface_type_name);
8349   }
8350
8351   /* Since interface blocks cannot contain statements, it should be
8352    * impossible for the block to generate any instructions.
8353    */
8354   assert(declared_variables.is_empty());
8355
8356   /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
8357    *
8358    *     Geometry shader input variables get the per-vertex values written
8359    *     out by vertex shader output variables of the same names. Since a
8360    *     geometry shader operates on a set of vertices, each input varying
8361    *     variable (or input block, see interface blocks below) needs to be
8362    *     declared as an array.
8363    */
8364   if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
8365       var_mode == ir_var_shader_in) {
8366      _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
8367   } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8368               state->stage == MESA_SHADER_TESS_EVAL) &&
8369              !this->layout.flags.q.patch &&
8370              this->array_specifier == NULL &&
8371              var_mode == ir_var_shader_in) {
8372      _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
8373   } else if (state->stage == MESA_SHADER_TESS_CTRL &&
8374              !this->layout.flags.q.patch &&
8375              this->array_specifier == NULL &&
8376              var_mode == ir_var_shader_out) {
8377      _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
8378   }
8379
8380
8381   /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
8382    * says:
8383    *
8384    *     "If an instance name (instance-name) is used, then it puts all the
8385    *     members inside a scope within its own name space, accessed with the
8386    *     field selector ( . ) operator (analogously to structures)."
8387    */
8388   if (this->instance_name) {
8389      if (redeclaring_per_vertex) {
8390         /* When a built-in in an unnamed interface block is redeclared,
8391          * get_variable_being_redeclared() calls
8392          * check_builtin_array_max_size() to make sure that built-in array
8393          * variables aren't redeclared to illegal sizes.  But we're looking
8394          * at a redeclaration of a named built-in interface block.  So we
8395          * have to manually call check_builtin_array_max_size() for all parts
8396          * of the interface that are arrays.
8397          */
8398         for (unsigned i = 0; i < num_variables; i++) {
8399            if (fields[i].type->is_array()) {
8400               const unsigned size = fields[i].type->array_size();
8401               check_builtin_array_max_size(fields[i].name, size, loc, state);
8402            }
8403         }
8404      } else {
8405         validate_identifier(this->instance_name, loc, state);
8406      }
8407
8408      ir_variable *var;
8409
8410      if (this->array_specifier != NULL) {
8411         const glsl_type *block_array_type =
8412            process_array_type(&loc, block_type, this->array_specifier, state);
8413
8414         /* From Section 4.4.1 (Input Layout Qualifiers) of the GLSL 4.50 spec:
8415          *
8416          *    "For some blocks declared as arrays, the location can only be applied
8417          *    at the block level: When a block is declared as an array where
8418          *    additional locations are needed for each member for each block array
8419          *    element, it is a compile-time error to specify locations on the block
8420          *    members. That is, when locations would be under specified by applying
8421          *    them on block members, they are not allowed on block members. For
8422          *    arrayed interfaces (those generally having an extra level of
8423          *    arrayness due to interface expansion), the outer array is stripped
8424          *    before applying this rule"
8425          *
8426          * From 4.4.1 (Input Layout Qualifiers) and
8427          * 4.4.2 (Output Layout Qualifiers) of GLSL ES 3.20
8428          *
8429          *    "If an input is declared as an array of blocks, excluding
8430          *     per-vertex-arrays as required for tessellation, it is an error
8431          *     to declare a member of the block with a location qualifier."
8432          *
8433          *    "If an output is declared as an array of blocks, excluding
8434          *     per-vertex-arrays as required for tessellation, it is an error
8435          *     to declare a member of the block with a location qualifier."
8436          */
8437         if (!redeclaring_per_vertex &&
8438             (state->has_enhanced_layouts() || state->has_shader_io_blocks())) {
8439            bool allow_location;
8440            switch (state->stage)
8441            {
8442            case MESA_SHADER_TESS_CTRL:
8443               allow_location = this->array_specifier->is_single_dimension();
8444               break;
8445            case MESA_SHADER_TESS_EVAL:
8446            case MESA_SHADER_GEOMETRY:
8447               allow_location = (this->array_specifier->is_single_dimension()
8448                                 && var_mode == ir_var_shader_in);
8449               break;
8450            default:
8451               allow_location = false;
8452               break;
8453            }
8454
8455            if (!allow_location) {
8456               for (unsigned i = 0; i < num_variables; i++) {
8457                  if (fields[i].location != -1) {
8458                     _mesa_glsl_error(&loc, state,
8459                                       "explicit member locations are not allowed in "
8460                                       "blocks declared as arrays %s shader",
8461                                       _mesa_shader_stage_to_string(state->stage));
8462                  }
8463               }
8464            }
8465         }
8466
8467         /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
8468          *
8469          *     For uniform blocks declared an array, each individual array
8470          *     element corresponds to a separate buffer object backing one
8471          *     instance of the block. As the array size indicates the number
8472          *     of buffer objects needed, uniform block array declarations
8473          *     must specify an array size.
8474          *
8475          * And a few paragraphs later:
8476          *
8477          *     Geometry shader input blocks must be declared as arrays and
8478          *     follow the array declaration and linking rules for all
8479          *     geometry shader inputs. All other input and output block
8480          *     arrays must specify an array size.
8481          *
8482          * The same applies to tessellation shaders.
8483          *
8484          * The upshot of this is that the only circumstance where an
8485          * interface array size *doesn't* need to be specified is on a
8486          * geometry shader input, tessellation control shader input,
8487          * tessellation control shader output, and tessellation evaluation
8488          * shader input.
8489          */
8490         if (block_array_type->is_unsized_array()) {
8491            bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
8492                                state->stage == MESA_SHADER_TESS_CTRL ||
8493                                state->stage == MESA_SHADER_TESS_EVAL;
8494            bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
8495
8496            if (this->layout.flags.q.in) {
8497               if (!allow_inputs)
8498                  _mesa_glsl_error(&loc, state,
8499                                   "unsized input block arrays not allowed in "
8500                                   "%s shader",
8501                                   _mesa_shader_stage_to_string(state->stage));
8502            } else if (this->layout.flags.q.out) {
8503               if (!allow_outputs)
8504                  _mesa_glsl_error(&loc, state,
8505                                   "unsized output block arrays not allowed in "
8506                                   "%s shader",
8507                                   _mesa_shader_stage_to_string(state->stage));
8508            } else {
8509               /* by elimination, this is a uniform block array */
8510               _mesa_glsl_error(&loc, state,
8511                                "unsized uniform block arrays not allowed in "
8512                                "%s shader",
8513                                _mesa_shader_stage_to_string(state->stage));
8514            }
8515         }
8516
8517         /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
8518          *
8519          *     * Arrays of arrays of blocks are not allowed
8520          */
8521         if (state->es_shader && block_array_type->is_array() &&
8522             block_array_type->fields.array->is_array()) {
8523            _mesa_glsl_error(&loc, state,
8524                             "arrays of arrays interface blocks are "
8525                             "not allowed");
8526         }
8527
8528         var = new(state) ir_variable(block_array_type,
8529                                      this->instance_name,
8530                                      var_mode);
8531      } else {
8532         var = new(state) ir_variable(block_type,
8533                                      this->instance_name,
8534                                      var_mode);
8535      }
8536
8537      var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8538         ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8539
8540      if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8541         var->data.read_only = true;
8542
8543      var->data.patch = this->layout.flags.q.patch;
8544
8545      if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
8546         handle_geometry_shader_input_decl(state, loc, var);
8547      else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8548           state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
8549         handle_tess_shader_input_decl(state, loc, var);
8550      else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
8551         handle_tess_ctrl_shader_output_decl(state, loc, var);
8552
8553      for (unsigned i = 0; i < num_variables; i++) {
8554         if (var->data.mode == ir_var_shader_storage)
8555            apply_memory_qualifiers(var, fields[i]);
8556      }
8557
8558      if (ir_variable *earlier =
8559          state->symbols->get_variable(this->instance_name)) {
8560         if (!redeclaring_per_vertex) {
8561            _mesa_glsl_error(&loc, state, "`%s' redeclared",
8562                             this->instance_name);
8563         }
8564         earlier->data.how_declared = ir_var_declared_normally;
8565         earlier->type = var->type;
8566         earlier->reinit_interface_type(block_type);
8567         delete var;
8568      } else {
8569         if (this->layout.flags.q.explicit_binding) {
8570            apply_explicit_binding(state, &loc, var, var->type,
8571                                   &this->layout);
8572         }
8573
8574         var->data.stream = qual_stream;
8575         if (layout.flags.q.explicit_location) {
8576            var->data.location = expl_location;
8577            var->data.explicit_location = true;
8578         }
8579
8580         state->symbols->add_variable(var);
8581         instructions->push_tail(var);
8582      }
8583   } else {
8584      /* In order to have an array size, the block must also be declared with
8585       * an instance name.
8586       */
8587      assert(this->array_specifier == NULL);
8588
8589      for (unsigned i = 0; i < num_variables; i++) {
8590         ir_variable *var =
8591            new(state) ir_variable(fields[i].type,
8592                                   ralloc_strdup(state, fields[i].name),
8593                                   var_mode);
8594         var->data.interpolation = fields[i].interpolation;
8595         var->data.centroid = fields[i].centroid;
8596         var->data.sample = fields[i].sample;
8597         var->data.patch = fields[i].patch;
8598         var->data.stream = qual_stream;
8599         var->data.location = fields[i].location;
8600
8601         if (fields[i].location != -1)
8602            var->data.explicit_location = true;
8603
8604         var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
8605         var->data.xfb_buffer = fields[i].xfb_buffer;
8606
8607         if (fields[i].offset != -1)
8608            var->data.explicit_xfb_offset = true;
8609         var->data.offset = fields[i].offset;
8610
8611         var->init_interface_type(block_type);
8612
8613         if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8614            var->data.read_only = true;
8615
8616         /* Precision qualifiers do not have any meaning in Desktop GLSL */
8617         if (state->es_shader) {
8618            var->data.precision =
8619               select_gles_precision(fields[i].precision, fields[i].type,
8620                                     state, &loc);
8621         }
8622
8623         if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
8624            var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8625               ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8626         } else {
8627            var->data.matrix_layout = fields[i].matrix_layout;
8628         }
8629
8630         if (var->data.mode == ir_var_shader_storage)
8631            apply_memory_qualifiers(var, fields[i]);
8632
8633         /* Examine var name here since var may get deleted in the next call */
8634         bool var_is_gl_id = is_gl_identifier(var->name);
8635
8636         if (redeclaring_per_vertex) {
8637            bool is_redeclaration;
8638            var =
8639               get_variable_being_redeclared(&var, loc, state,
8640                                             true /* allow_all_redeclarations */,
8641                                             &is_redeclaration);
8642            if (!var_is_gl_id || !is_redeclaration) {
8643               _mesa_glsl_error(&loc, state,
8644                                "redeclaration of gl_PerVertex can only "
8645                                "include built-in variables");
8646            } else if (var->data.how_declared == ir_var_declared_normally) {
8647               _mesa_glsl_error(&loc, state,
8648                                "`%s' has already been redeclared",
8649                                var->name);
8650            } else {
8651               var->data.how_declared = ir_var_declared_in_block;
8652               var->reinit_interface_type(block_type);
8653            }
8654            continue;
8655         }
8656
8657         if (state->symbols->get_variable(var->name) != NULL)
8658            _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
8659
8660         /* Propagate the "binding" keyword into this UBO/SSBO's fields.
8661          * The UBO declaration itself doesn't get an ir_variable unless it
8662          * has an instance name.  This is ugly.
8663          */
8664         if (this->layout.flags.q.explicit_binding) {
8665            apply_explicit_binding(state, &loc, var,
8666                                   var->get_interface_type(), &this->layout);
8667         }
8668
8669         if (var->type->is_unsized_array()) {
8670            if (var->is_in_shader_storage_block() &&
8671                is_unsized_array_last_element(var)) {
8672               var->data.from_ssbo_unsized_array = true;
8673            } else {
8674               /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
8675                *
8676                * "If an array is declared as the last member of a shader storage
8677                * block and the size is not specified at compile-time, it is
8678                * sized at run-time. In all other cases, arrays are sized only
8679                * at compile-time."
8680                *
8681                * In desktop GLSL it is allowed to have unsized-arrays that are
8682                * not last, as long as we can determine that they are implicitly
8683                * sized.
8684                */
8685               if (state->es_shader) {
8686                  _mesa_glsl_error(&loc, state, "unsized array `%s' "
8687                                   "definition: only last member of a shader "
8688                                   "storage block can be defined as unsized "
8689                                   "array", fields[i].name);
8690               }
8691            }
8692         }
8693
8694         state->symbols->add_variable(var);
8695         instructions->push_tail(var);
8696      }
8697
8698      if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
8699         /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
8700          *
8701          *     It is also a compilation error ... to redeclare a built-in
8702          *     block and then use a member from that built-in block that was
8703          *     not included in the redeclaration.
8704          *
8705          * This appears to be a clarification to the behaviour established
8706          * for gl_PerVertex by GLSL 1.50, therefore we implement this
8707          * behaviour regardless of GLSL version.
8708          *
8709          * To prevent the shader from using a member that was not included in
8710          * the redeclaration, we disable any ir_variables that are still
8711          * associated with the old declaration of gl_PerVertex (since we've
8712          * already updated all of the variables contained in the new
8713          * gl_PerVertex to point to it).
8714          *
8715          * As a side effect this will prevent
8716          * validate_intrastage_interface_blocks() from getting confused and
8717          * thinking there are conflicting definitions of gl_PerVertex in the
8718          * shader.
8719          */
8720         foreach_in_list_safe(ir_instruction, node, instructions) {
8721            ir_variable *const var = node->as_variable();
8722            if (var != NULL &&
8723                var->get_interface_type() == earlier_per_vertex &&
8724                var->data.mode == var_mode) {
8725               if (var->data.how_declared == ir_var_declared_normally) {
8726                  _mesa_glsl_error(&loc, state,
8727                                   "redeclaration of gl_PerVertex cannot "
8728                                   "follow a redeclaration of `%s'",
8729                                   var->name);
8730               }
8731               state->symbols->disable_variable(var->name);
8732               var->remove();
8733            }
8734         }
8735      }
8736   }
8737
8738   return NULL;
8739}
8740
8741
8742ir_rvalue *
8743ast_tcs_output_layout::hir(exec_list *instructions,
8744                           struct _mesa_glsl_parse_state *state)
8745{
8746   YYLTYPE loc = this->get_location();
8747
8748   unsigned num_vertices;
8749   if (!state->out_qualifier->vertices->
8750          process_qualifier_constant(state, "vertices", &num_vertices,
8751                                     false)) {
8752      /* return here to stop cascading incorrect error messages */
8753     return NULL;
8754   }
8755
8756   /* If any shader outputs occurred before this declaration and specified an
8757    * array size, make sure the size they specified is consistent with the
8758    * primitive type.
8759    */
8760   if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8761      _mesa_glsl_error(&loc, state,
8762                       "this tessellation control shader output layout "
8763                       "specifies %u vertices, but a previous output "
8764                       "is declared with size %u",
8765                       num_vertices, state->tcs_output_size);
8766      return NULL;
8767   }
8768
8769   state->tcs_output_vertices_specified = true;
8770
8771   /* If any shader outputs occurred before this declaration and did not
8772    * specify an array size, their size is determined now.
8773    */
8774   foreach_in_list (ir_instruction, node, instructions) {
8775      ir_variable *var = node->as_variable();
8776      if (var == NULL || var->data.mode != ir_var_shader_out)
8777         continue;
8778
8779      /* Note: Not all tessellation control shader output are arrays. */
8780      if (!var->type->is_unsized_array() || var->data.patch)
8781         continue;
8782
8783      if (var->data.max_array_access >= (int)num_vertices) {
8784         _mesa_glsl_error(&loc, state,
8785                          "this tessellation control shader output layout "
8786                          "specifies %u vertices, but an access to element "
8787                          "%u of output `%s' already exists", num_vertices,
8788                          var->data.max_array_access, var->name);
8789      } else {
8790         var->type = glsl_type::get_array_instance(var->type->fields.array,
8791                                                   num_vertices);
8792      }
8793   }
8794
8795   return NULL;
8796}
8797
8798
8799ir_rvalue *
8800ast_gs_input_layout::hir(exec_list *instructions,
8801                         struct _mesa_glsl_parse_state *state)
8802{
8803   YYLTYPE loc = this->get_location();
8804
8805   /* Should have been prevented by the parser. */
8806   assert(!state->gs_input_prim_type_specified
8807          || state->in_qualifier->prim_type == this->prim_type);
8808
8809   /* If any shader inputs occurred before this declaration and specified an
8810    * array size, make sure the size they specified is consistent with the
8811    * primitive type.
8812    */
8813   unsigned num_vertices = vertices_per_prim(this->prim_type);
8814   if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8815      _mesa_glsl_error(&loc, state,
8816                       "this geometry shader input layout implies %u vertices"
8817                       " per primitive, but a previous input is declared"
8818                       " with size %u", num_vertices, state->gs_input_size);
8819      return NULL;
8820   }
8821
8822   state->gs_input_prim_type_specified = true;
8823
8824   /* If any shader inputs occurred before this declaration and did not
8825    * specify an array size, their size is determined now.
8826    */
8827   foreach_in_list(ir_instruction, node, instructions) {
8828      ir_variable *var = node->as_variable();
8829      if (var == NULL || var->data.mode != ir_var_shader_in)
8830         continue;
8831
8832      /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8833       * array; skip it.
8834       */
8835
8836      if (var->type->is_unsized_array()) {
8837         if (var->data.max_array_access >= (int)num_vertices) {
8838            _mesa_glsl_error(&loc, state,
8839                             "this geometry shader input layout implies %u"
8840                             " vertices, but an access to element %u of input"
8841                             " `%s' already exists", num_vertices,
8842                             var->data.max_array_access, var->name);
8843         } else {
8844            var->type = glsl_type::get_array_instance(var->type->fields.array,
8845                                                      num_vertices);
8846         }
8847      }
8848   }
8849
8850   return NULL;
8851}
8852
8853
8854ir_rvalue *
8855ast_cs_input_layout::hir(exec_list *instructions,
8856                         struct _mesa_glsl_parse_state *state)
8857{
8858   YYLTYPE loc = this->get_location();
8859
8860   /* From the ARB_compute_shader specification:
8861    *
8862    *     If the local size of the shader in any dimension is greater
8863    *     than the maximum size supported by the implementation for that
8864    *     dimension, a compile-time error results.
8865    *
8866    * It is not clear from the spec how the error should be reported if
8867    * the total size of the work group exceeds
8868    * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8869    * report it at compile time as well.
8870    */
8871   GLuint64 total_invocations = 1;
8872   unsigned qual_local_size[3];
8873   for (int i = 0; i < 3; i++) {
8874
8875      char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8876                                             'x' + i);
8877      /* Infer a local_size of 1 for unspecified dimensions */
8878      if (this->local_size[i] == NULL) {
8879         qual_local_size[i] = 1;
8880      } else if (!this->local_size[i]->
8881             process_qualifier_constant(state, local_size_str,
8882                                        &qual_local_size[i], false)) {
8883         ralloc_free(local_size_str);
8884         return NULL;
8885      }
8886      ralloc_free(local_size_str);
8887
8888      if (qual_local_size[i] > state->consts->MaxComputeWorkGroupSize[i]) {
8889         _mesa_glsl_error(&loc, state,
8890                          "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8891                          " (%d)", 'x' + i,
8892                          state->consts->MaxComputeWorkGroupSize[i]);
8893         break;
8894      }
8895      total_invocations *= qual_local_size[i];
8896      if (total_invocations >
8897          state->consts->MaxComputeWorkGroupInvocations) {
8898         _mesa_glsl_error(&loc, state,
8899                          "product of local_sizes exceeds "
8900                          "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8901                          state->consts->MaxComputeWorkGroupInvocations);
8902         break;
8903      }
8904   }
8905
8906   /* If any compute input layout declaration preceded this one, make sure it
8907    * was consistent with this one.
8908    */
8909   if (state->cs_input_local_size_specified) {
8910      for (int i = 0; i < 3; i++) {
8911         if (state->cs_input_local_size[i] != qual_local_size[i]) {
8912            _mesa_glsl_error(&loc, state,
8913                             "compute shader input layout does not match"
8914                             " previous declaration");
8915            return NULL;
8916         }
8917      }
8918   }
8919
8920   /* The ARB_compute_variable_group_size spec says:
8921    *
8922    *     If a compute shader including a *local_size_variable* qualifier also
8923    *     declares a fixed local group size using the *local_size_x*,
8924    *     *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8925    *     results
8926    */
8927   if (state->cs_input_local_size_variable_specified) {
8928      _mesa_glsl_error(&loc, state,
8929                       "compute shader can't include both a variable and a "
8930                       "fixed local group size");
8931      return NULL;
8932   }
8933
8934   state->cs_input_local_size_specified = true;
8935   for (int i = 0; i < 3; i++)
8936      state->cs_input_local_size[i] = qual_local_size[i];
8937
8938   /* We may now declare the built-in constant gl_WorkGroupSize (see
8939    * builtin_variable_generator::generate_constants() for why we didn't
8940    * declare it earlier).
8941    */
8942   ir_variable *var = new(state->symbols)
8943      ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8944   var->data.how_declared = ir_var_declared_implicitly;
8945   var->data.read_only = true;
8946   instructions->push_tail(var);
8947   state->symbols->add_variable(var);
8948   ir_constant_data data;
8949   memset(&data, 0, sizeof(data));
8950   for (int i = 0; i < 3; i++)
8951      data.u[i] = qual_local_size[i];
8952   var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8953   var->constant_initializer =
8954      new(var) ir_constant(glsl_type::uvec3_type, &data);
8955   var->data.has_initializer = true;
8956   var->data.is_implicit_initializer = false;
8957
8958   return NULL;
8959}
8960
8961
8962static void
8963detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8964                               exec_list *instructions)
8965{
8966   bool gl_FragColor_assigned = false;
8967   bool gl_FragData_assigned = false;
8968   bool gl_FragSecondaryColor_assigned = false;
8969   bool gl_FragSecondaryData_assigned = false;
8970   bool user_defined_fs_output_assigned = false;
8971   ir_variable *user_defined_fs_output = NULL;
8972
8973   /* It would be nice to have proper location information. */
8974   YYLTYPE loc;
8975   memset(&loc, 0, sizeof(loc));
8976
8977   foreach_in_list(ir_instruction, node, instructions) {
8978      ir_variable *var = node->as_variable();
8979
8980      if (!var || !var->data.assigned)
8981         continue;
8982
8983      if (strcmp(var->name, "gl_FragColor") == 0) {
8984         gl_FragColor_assigned = true;
8985         if (!var->constant_initializer && state->zero_init) {
8986            const ir_constant_data data = { { 0 } };
8987            var->data.has_initializer = true;
8988            var->data.is_implicit_initializer = true;
8989            var->constant_initializer = new(var) ir_constant(var->type, &data);
8990         }
8991      }
8992      else if (strcmp(var->name, "gl_FragData") == 0)
8993         gl_FragData_assigned = true;
8994        else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8995         gl_FragSecondaryColor_assigned = true;
8996        else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8997         gl_FragSecondaryData_assigned = true;
8998      else if (!is_gl_identifier(var->name)) {
8999         if (state->stage == MESA_SHADER_FRAGMENT &&
9000             var->data.mode == ir_var_shader_out) {
9001            user_defined_fs_output_assigned = true;
9002            user_defined_fs_output = var;
9003         }
9004      }
9005   }
9006
9007   /* From the GLSL 1.30 spec:
9008    *
9009    *     "If a shader statically assigns a value to gl_FragColor, it
9010    *      may not assign a value to any element of gl_FragData. If a
9011    *      shader statically writes a value to any element of
9012    *      gl_FragData, it may not assign a value to
9013    *      gl_FragColor. That is, a shader may assign values to either
9014    *      gl_FragColor or gl_FragData, but not both. Multiple shaders
9015    *      linked together must also consistently write just one of
9016    *      these variables.  Similarly, if user declared output
9017    *      variables are in use (statically assigned to), then the
9018    *      built-in variables gl_FragColor and gl_FragData may not be
9019    *      assigned to. These incorrect usages all generate compile
9020    *      time errors."
9021    */
9022   if (gl_FragColor_assigned && gl_FragData_assigned) {
9023      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9024                       "`gl_FragColor' and `gl_FragData'");
9025   } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
9026      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9027                       "`gl_FragColor' and `%s'",
9028                       user_defined_fs_output->name);
9029   } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
9030      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9031                       "`gl_FragSecondaryColorEXT' and"
9032                       " `gl_FragSecondaryDataEXT'");
9033   } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
9034      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9035                       "`gl_FragColor' and"
9036                       " `gl_FragSecondaryDataEXT'");
9037   } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
9038      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9039                       "`gl_FragData' and"
9040                       " `gl_FragSecondaryColorEXT'");
9041   } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
9042      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9043                       "`gl_FragData' and `%s'",
9044                       user_defined_fs_output->name);
9045   }
9046
9047   if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
9048       !state->EXT_blend_func_extended_enable) {
9049      _mesa_glsl_error(&loc, state,
9050                       "Dual source blending requires EXT_blend_func_extended");
9051   }
9052}
9053
9054static void
9055verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state)
9056{
9057   YYLTYPE loc;
9058   memset(&loc, 0, sizeof(loc));
9059
9060   /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says:
9061    *
9062    *   "A program will fail to compile or link if any shader
9063    *    or stage contains two or more functions with the same
9064    *    name if the name is associated with a subroutine type."
9065    */
9066
9067   for (int i = 0; i < state->num_subroutines; i++) {
9068      unsigned definitions = 0;
9069      ir_function *fn = state->subroutines[i];
9070      /* Calculate number of function definitions with the same name */
9071      foreach_in_list(ir_function_signature, sig, &fn->signatures) {
9072         if (sig->is_defined) {
9073            if (++definitions > 1) {
9074               _mesa_glsl_error(&loc, state,
9075                     "%s shader contains two or more function "
9076                     "definitions with name `%s', which is "
9077                     "associated with a subroutine type.\n",
9078                     _mesa_shader_stage_to_string(state->stage),
9079                     fn->name);
9080               return;
9081            }
9082         }
9083      }
9084   }
9085}
9086
9087static void
9088remove_per_vertex_blocks(exec_list *instructions,
9089                         _mesa_glsl_parse_state *state, ir_variable_mode mode)
9090{
9091   /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
9092    * if it exists in this shader type.
9093    */
9094   const glsl_type *per_vertex = NULL;
9095   switch (mode) {
9096   case ir_var_shader_in:
9097      if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
9098         per_vertex = gl_in->get_interface_type();
9099      break;
9100   case ir_var_shader_out:
9101      if (ir_variable *gl_Position =
9102          state->symbols->get_variable("gl_Position")) {
9103         per_vertex = gl_Position->get_interface_type();
9104      }
9105      break;
9106   default:
9107      assert(!"Unexpected mode");
9108      break;
9109   }
9110
9111   /* If we didn't find a built-in gl_PerVertex interface block, then we don't
9112    * need to do anything.
9113    */
9114   if (per_vertex == NULL)
9115      return;
9116
9117   /* If the interface block is used by the shader, then we don't need to do
9118    * anything.
9119    */
9120   interface_block_usage_visitor v(mode, per_vertex);
9121   v.run(instructions);
9122   if (v.usage_found())
9123      return;
9124
9125   /* Remove any ir_variable declarations that refer to the interface block
9126    * we're removing.
9127    */
9128   foreach_in_list_safe(ir_instruction, node, instructions) {
9129      ir_variable *const var = node->as_variable();
9130      if (var != NULL && var->get_interface_type() == per_vertex &&
9131          var->data.mode == mode) {
9132         state->symbols->disable_variable(var->name);
9133         var->remove();
9134      }
9135   }
9136}
9137
9138ir_rvalue *
9139ast_warnings_toggle::hir(exec_list *,
9140                         struct _mesa_glsl_parse_state *state)
9141{
9142   state->warnings_enabled = enable;
9143   return NULL;
9144}
9145