xref: /third_party/mesa3d/src/amd/llvm/ac_llvm_cull.c (revision bf215546)
1/*
2 * Copyright 2019 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the
6 * "Software"), to deal in the Software without restriction, including
7 * without limitation the rights to use, copy, modify, merge, publish,
8 * distribute, sub license, and/or sell copies of the Software, and to
9 * permit persons to whom the Software is furnished to do so, subject to
10 * the following conditions:
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
13 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
15 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
16 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
17 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
18 * USE OR OTHER DEALINGS IN THE SOFTWARE.
19 *
20 * The above copyright notice and this permission notice (including the
21 * next paragraph) shall be included in all copies or substantial portions
22 * of the Software.
23 *
24 */
25
26#include "ac_llvm_cull.h"
27
28#include <llvm-c/Core.h>
29
30struct ac_position_w_info {
31   /* If a primitive intersects the W=0 plane, it causes a reflection
32    * of the determinant used for face culling. Every vertex behind
33    * the W=0 plane negates the determinant, so having 2 vertices behind
34    * the plane has no effect. This is i1 true if the determinant should be
35    * negated.
36    */
37   LLVMValueRef w_reflection;
38
39   /* If we simplify the "-w <= p <= w" view culling equation, we get
40    * "-w <= w", which can't be satisfied when w is negative.
41    * In perspective projection, a negative W means that the primitive
42    * is behind the viewer, but the equation is independent of the type
43    * of projection.
44    *
45    * w_accepted is false when all W are negative and therefore
46    * the primitive is invisible.
47    */
48   LLVMValueRef w_accepted;
49
50   /* The bounding box culling doesn't work and should be skipped when this is true. */
51   LLVMValueRef any_w_negative;
52};
53
54static void ac_analyze_position_w(struct ac_llvm_context *ctx, LLVMValueRef pos[3][4],
55                                  struct ac_position_w_info *w, unsigned num_vertices)
56{
57   LLVMBuilderRef builder = ctx->builder;
58   LLVMValueRef all_w_negative = ctx->i1true;
59
60   w->w_reflection = ctx->i1false;
61   w->any_w_negative = ctx->i1false;
62
63   for (unsigned i = 0; i < num_vertices; i++) {
64      LLVMValueRef neg_w;
65
66      neg_w = LLVMBuildFCmp(builder, LLVMRealOLT, pos[i][3], ctx->f32_0, "");
67      /* If neg_w is true, negate w_reflection. */
68      w->w_reflection = LLVMBuildXor(builder, w->w_reflection, neg_w, "");
69      w->any_w_negative = LLVMBuildOr(builder, w->any_w_negative, neg_w, "");
70      all_w_negative = LLVMBuildAnd(builder, all_w_negative, neg_w, "");
71   }
72   w->w_accepted = LLVMBuildNot(builder, all_w_negative, "");
73}
74
75/* Perform front/back face culling and return true if the primitive is accepted. */
76static LLVMValueRef ac_cull_face(struct ac_llvm_context *ctx, LLVMValueRef pos[3][4],
77                                 struct ac_position_w_info *w, bool cull_front, bool cull_back,
78                                 bool cull_zero_area)
79{
80   LLVMBuilderRef builder = ctx->builder;
81
82   if (cull_front && cull_back)
83      return ctx->i1false;
84
85   if (!cull_front && !cull_back && !cull_zero_area)
86      return ctx->i1true;
87
88   /* Front/back face culling. Also if the determinant == 0, the triangle
89    * area is 0.
90    */
91   LLVMValueRef det_t0 = LLVMBuildFSub(builder, pos[2][0], pos[0][0], "");
92   LLVMValueRef det_t1 = LLVMBuildFSub(builder, pos[1][1], pos[0][1], "");
93   LLVMValueRef det_t2 = LLVMBuildFSub(builder, pos[0][0], pos[1][0], "");
94   LLVMValueRef det_t3 = LLVMBuildFSub(builder, pos[0][1], pos[2][1], "");
95   /* t0 * t1 - t2 * t3  =  t2 * -t3 + t0 * t1  =  fma(t2, -t3, t0 * t1) */
96   LLVMValueRef det = ac_build_fmad(ctx, det_t2, LLVMBuildFNeg(builder, det_t3, ""),
97                                    LLVMBuildFMul(builder, det_t0, det_t1, ""));
98
99   /* Negative W negates the determinant. */
100   det = LLVMBuildSelect(builder, w->w_reflection, LLVMBuildFNeg(builder, det, ""), det, "");
101
102   LLVMValueRef accepted = NULL;
103   if (cull_front) {
104      LLVMRealPredicate cond = cull_zero_area ? LLVMRealOGT : LLVMRealOGE;
105      accepted = LLVMBuildFCmp(builder, cond, det, ctx->f32_0, "");
106   } else if (cull_back) {
107      LLVMRealPredicate cond = cull_zero_area ? LLVMRealOLT : LLVMRealOLE;
108      accepted = LLVMBuildFCmp(builder, cond, det, ctx->f32_0, "");
109   } else if (cull_zero_area) {
110      accepted = LLVMBuildFCmp(builder, LLVMRealONE, det, ctx->f32_0, "");
111   }
112
113   if (accepted) {
114      /* Don't reject NaN and +/-infinity, these are tricky.
115       * Just trust fixed-function HW to handle these cases correctly.
116       */
117      accepted = LLVMBuildOr(builder, accepted, ac_build_is_inf_or_nan(ctx, det), "");
118   }
119
120   return accepted;
121}
122
123static void rotate_45degrees(struct ac_llvm_context *ctx, LLVMValueRef v[2])
124{
125   /* sin(45) == cos(45) */
126   LLVMValueRef sincos45 = LLVMConstReal(ctx->f32, 0.707106781);
127
128   /* x2  =  x*cos45 - y*sin45  =  x*sincos45 - y*sincos45
129    * y2  =  x*sin45 + y*cos45  =  x*sincos45 + y*sincos45
130    */
131   LLVMValueRef first = LLVMBuildFMul(ctx->builder, v[0], sincos45, "");
132
133   /* Doing 2x ffma while duplicating the multiplication is 33% faster than fmul+fadd+fadd. */
134   LLVMValueRef result[2] = {
135      ac_build_fmad(ctx, LLVMBuildFNeg(ctx->builder, v[1], ""), sincos45, first),
136      ac_build_fmad(ctx, v[1], sincos45, first),
137   };
138
139   memcpy(v, result, sizeof(result));
140}
141
142/* Perform view culling and small primitive elimination and return true
143 * if the primitive is accepted and initially_accepted == true. */
144static void cull_bbox(struct ac_llvm_context *ctx, LLVMValueRef pos[3][4],
145                      LLVMValueRef initially_accepted, struct ac_position_w_info *w,
146                      LLVMValueRef vp_scale[2], LLVMValueRef vp_translate[2],
147                      LLVMValueRef small_prim_precision,
148                      LLVMValueRef clip_half_line_width[2],
149                      struct ac_cull_options *options,
150                      ac_cull_accept_func accept_func, void *userdata)
151{
152   LLVMBuilderRef builder = ctx->builder;
153
154   if (!options->cull_view_xy && !options->cull_view_near_z && !options->cull_view_far_z &&
155       !options->cull_small_prims) {
156      if (accept_func)
157         accept_func(ctx, initially_accepted, userdata);
158      return;
159   }
160
161   ac_build_ifcc(ctx, initially_accepted, 10000000);
162   {
163      LLVMValueRef bbox_min[3], bbox_max[3];
164      LLVMValueRef accepted = ctx->i1true;
165
166      /* Compute the primitive bounding box for easy culling. */
167      for (unsigned chan = 0; chan < (options->cull_view_near_z ||
168                                      options->cull_view_far_z ? 3 : 2); chan++) {
169         assert(options->num_vertices >= 2);
170         bbox_min[chan] = ac_build_fmin(ctx, pos[0][chan], pos[1][chan]);
171         bbox_max[chan] = ac_build_fmax(ctx, pos[0][chan], pos[1][chan]);
172
173         if (options->num_vertices == 3) {
174            bbox_min[chan] = ac_build_fmin(ctx, bbox_min[chan], pos[2][chan]);
175            bbox_max[chan] = ac_build_fmax(ctx, bbox_max[chan], pos[2][chan]);
176         }
177
178         if (clip_half_line_width[chan]) {
179            bbox_min[chan] = LLVMBuildFSub(builder, bbox_min[chan], clip_half_line_width[chan], "");
180            bbox_max[chan] = LLVMBuildFAdd(builder, bbox_max[chan], clip_half_line_width[chan], "");
181         }
182      }
183
184      /* View culling. */
185      if (options->cull_view_xy || options->cull_view_near_z || options->cull_view_far_z) {
186         for (unsigned chan = 0; chan < 3; chan++) {
187            LLVMValueRef visible;
188
189            if ((options->cull_view_xy && chan <= 1) || (options->cull_view_near_z && chan == 2)) {
190               float t = chan == 2 && options->use_halfz_clip_space ? 0 : -1;
191               visible = LLVMBuildFCmp(builder, LLVMRealOGE, bbox_max[chan],
192                                       LLVMConstReal(ctx->f32, t), "");
193               accepted = LLVMBuildAnd(builder, accepted, visible, "");
194            }
195
196            if ((options->cull_view_xy && chan <= 1) || (options->cull_view_far_z && chan == 2)) {
197               visible = LLVMBuildFCmp(builder, LLVMRealOLE, bbox_min[chan], ctx->f32_1, "");
198               accepted = LLVMBuildAnd(builder, accepted, visible, "");
199            }
200         }
201      }
202
203      /* Small primitive culling - triangles. */
204      if (options->cull_small_prims && options->num_vertices == 3) {
205         /* Assuming a sample position at (0.5, 0.5), if we round
206          * the bounding box min/max extents and the results of
207          * the rounding are equal in either the X or Y direction,
208          * the bounding box does not intersect the sample.
209          *
210          * See these GDC slides for pictures:
211          * https://frostbite-wp-prd.s3.amazonaws.com/wp-content/uploads/2016/03/29204330/GDC_2016_Compute.pdf
212          */
213         LLVMValueRef min, max, not_equal[2], visible;
214
215         for (unsigned chan = 0; chan < 2; chan++) {
216            /* Convert the position to screen-space coordinates. */
217            min = ac_build_fmad(ctx, bbox_min[chan], vp_scale[chan], vp_translate[chan]);
218            max = ac_build_fmad(ctx, bbox_max[chan], vp_scale[chan], vp_translate[chan]);
219            /* Scale the bounding box according to the precision of
220             * the rasterizer and the number of MSAA samples. */
221            min = LLVMBuildFSub(builder, min, small_prim_precision, "");
222            max = LLVMBuildFAdd(builder, max, small_prim_precision, "");
223
224            /* Determine if the bbox intersects the sample point.
225             * It also works for MSAA, but vp_scale, vp_translate,
226             * and small_prim_precision are computed differently.
227             */
228            min = ac_build_round(ctx, min);
229            max = ac_build_round(ctx, max);
230            not_equal[chan] = LLVMBuildFCmp(builder, LLVMRealONE, min, max, "");
231         }
232         visible = LLVMBuildAnd(builder, not_equal[0], not_equal[1], "");
233         accepted = LLVMBuildAnd(builder, accepted, visible, "");
234      }
235
236      /* Small primitive culling - lines. */
237      if (options->cull_small_prims && options->num_vertices == 2) {
238         /* This only works with lines without perpendicular end caps (lines with perpendicular
239          * end caps are rasterized as quads and thus can't be culled as small prims in 99% of
240          * cases because line_width >= 1).
241          *
242          * This takes advantage of the diamont exit rule, which says that every pixel
243          * has a diamond inside it touching the pixel boundary and only if a line exits
244          * the diamond, that pixel is filled. If a line enters the diamond or stays
245          * outside the diamond, the pixel isn't filled.
246          *
247          * This algorithm is a little simpler than that. The space outside all diamonds also
248          * has the same diamond shape, which we'll call corner diamonds.
249          *
250          * The idea is to cull all lines that are entirely inside a diamond, including
251          * corner diamonds. If a line is entirely inside a diamond, it can be culled because
252          * it doesn't exit it. If a line is entirely inside a corner diamond, it can be culled
253          * because it doesn't enter any diamond and thus can't exit any diamond.
254          *
255          * The viewport is rotated by 45 degress to turn diamonds into squares, and a bounding
256          * box test is used to determine whether a line is entirely inside any square (diamond).
257          *
258          * The line width doesn't matter. Wide lines only duplicate filled pixels in either X or
259          * Y direction from the filled pixels. MSAA also doesn't matter. MSAA should ideally use
260          * perpendicular end caps that enable quad rasterization for lines. Thus, this should
261          * always use non-MSAA viewport transformation and non-MSAA small prim precision.
262          *
263          * A good test is piglit/lineloop because it draws 10k subpixel lines in a circle.
264          * It should contain no holes if this matches hw behavior.
265          */
266         LLVMValueRef v0[2], v1[2];
267
268         /* Get vertex positions in pixels. */
269         for (unsigned chan = 0; chan < 2; chan++) {
270            v0[chan] = ac_build_fmad(ctx, pos[0][chan], vp_scale[chan], vp_translate[chan]);
271            v1[chan] = ac_build_fmad(ctx, pos[1][chan], vp_scale[chan], vp_translate[chan]);
272         }
273
274         /* Rotate the viewport by 45 degress, so that diamonds become squares. */
275         rotate_45degrees(ctx, v0);
276         rotate_45degrees(ctx, v1);
277
278         LLVMValueRef not_equal[2];
279
280         for (unsigned chan = 0; chan < 2; chan++) {
281            /* The width of each square is sqrt(0.5), so scale it to 1 because we want
282             * round() to give us the position of the closest center of a square (diamond).
283             */
284            v0[chan] = LLVMBuildFMul(builder, v0[chan], LLVMConstReal(ctx->f32, 1.414213562), "");
285            v1[chan] = LLVMBuildFMul(builder, v1[chan], LLVMConstReal(ctx->f32, 1.414213562), "");
286
287            /* Compute the bounding box around both vertices. We do this because we must
288             * enlarge the line area by the precision of the rasterizer.
289             */
290            LLVMValueRef min = ac_build_fmin(ctx, v0[chan], v1[chan]);
291            LLVMValueRef max = ac_build_fmax(ctx, v0[chan], v1[chan]);
292
293            /* Enlarge the bounding box by the precision of the rasterizer. */
294            min = LLVMBuildFSub(builder, min, small_prim_precision, "");
295            max = LLVMBuildFAdd(builder, max, small_prim_precision, "");
296
297            /* Round the bounding box corners. If both rounded corners are equal,
298             * the bounding box is entirely inside a square (diamond).
299             */
300            min = ac_build_round(ctx, min);
301            max = ac_build_round(ctx, max);
302            not_equal[chan] = LLVMBuildFCmp(builder, LLVMRealONE, min, max, "");
303         }
304
305         accepted = LLVMBuildAnd(builder, accepted,
306                                 LLVMBuildOr(builder, not_equal[0], not_equal[1], ""), "");
307      }
308
309      /* Disregard the bounding box culling if any W is negative because the code
310       * doesn't work with that.
311       */
312      accepted = LLVMBuildOr(builder, accepted, w->any_w_negative, "");
313
314      if (accept_func)
315         accept_func(ctx, accepted, userdata);
316   }
317   ac_build_endif(ctx, 10000000);
318}
319
320/**
321 * Return i1 true if the primitive is accepted (not culled).
322 *
323 * \param pos                   Vertex positions 3x vec4
324 * \param initially_accepted    AND'ed with the result. Some computations can be
325 *                              skipped if this is false.
326 * \param vp_scale              Viewport scale XY.
327 *                              For MSAA, multiply them by the number of samples.
328 * \param vp_translate          Viewport translation XY.
329 *                              For MSAA, multiply them by the number of samples.
330 * \param small_prim_precision  Precision of small primitive culling. This should
331 *                              be the same as or greater than the precision of
332 *                              the rasterizer. Set to num_samples / 2^subpixel_bits.
333 *                              subpixel_bits are defined by the quantization mode.
334 * \param options               See ac_cull_options.
335 * \param accept_func           Callback invoked in the inner-most branch where the primitive is accepted.
336 */
337void ac_cull_primitive(struct ac_llvm_context *ctx, LLVMValueRef pos[3][4],
338                       LLVMValueRef initially_accepted, LLVMValueRef vp_scale[2],
339                       LLVMValueRef vp_translate[2], LLVMValueRef small_prim_precision,
340                       LLVMValueRef clip_half_line_width[2], struct ac_cull_options *options,
341                       ac_cull_accept_func accept_func, void *userdata)
342{
343   struct ac_position_w_info w;
344   ac_analyze_position_w(ctx, pos, &w, options->num_vertices);
345
346   /* W culling. */
347   LLVMValueRef accepted = options->cull_w ? w.w_accepted : ctx->i1true;
348   accepted = LLVMBuildAnd(ctx->builder, accepted, initially_accepted, "");
349
350   /* Face culling. */
351   accepted = LLVMBuildAnd(
352      ctx->builder, accepted,
353      ac_cull_face(ctx, pos, &w, options->cull_front, options->cull_back, options->cull_zero_area),
354      "");
355
356   /* View culling and small primitive elimination. */
357   cull_bbox(ctx, pos, accepted, &w, vp_scale, vp_translate, small_prim_precision,
358             clip_half_line_width, options, accept_func, userdata);
359}
360