1/*
2 * Copyright © 2019 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25#include "aco_builder.h"
26#include "aco_ir.h"
27
28#include <algorithm>
29#include <map>
30#include <unordered_map>
31#include <vector>
32
33/*
34 * Implements an algorithm to lower to Concentional SSA Form (CSSA).
35 * After "Revisiting Out-of-SSA Translation for Correctness, CodeQuality, and Efficiency"
36 * by B. Boissinot, A. Darte, F. Rastello, B. Dupont de Dinechin, C. Guillon,
37 *
38 * By lowering the IR to CSSA, the insertion of parallelcopies is separated from
39 * the register coalescing problem. Additionally, correctness is ensured w.r.t. spilling.
40 * The algorithm coalesces non-interfering phi-resources while taking value-equality
41 * into account. Re-indexes the SSA-defs.
42 */
43
44namespace aco {
45namespace {
46
47typedef std::vector<Temp> merge_set;
48
49struct copy {
50   Definition def;
51   Operand op;
52};
53
54struct merge_node {
55   Operand value = Operand(); /* original value: can be an SSA-def or constant value */
56   uint32_t index = -1u;      /* index into the vector of merge sets */
57   uint32_t defined_at = -1u; /* defining block */
58
59   /* we also remember two dominating defs with the same value: */
60   Temp equal_anc_in = Temp();  /* within the same merge set */
61   Temp equal_anc_out = Temp(); /* from a different set */
62};
63
64struct cssa_ctx {
65   Program* program;
66   std::vector<IDSet>& live_out;                  /* live-out sets per block */
67   std::vector<std::vector<copy>> parallelcopies; /* copies per block */
68   std::vector<merge_set> merge_sets;             /* each vector is one (ordered) merge set */
69   std::unordered_map<uint32_t, merge_node> merge_node_table; /* tempid -> merge node */
70};
71
72/* create (virtual) parallelcopies for each phi instruction and
73 * already merge copy-definitions with phi-defs into merge sets */
74void
75collect_parallelcopies(cssa_ctx& ctx)
76{
77   ctx.parallelcopies.resize(ctx.program->blocks.size());
78   Builder bld(ctx.program);
79   for (Block& block : ctx.program->blocks) {
80      for (aco_ptr<Instruction>& phi : block.instructions) {
81         if (phi->opcode != aco_opcode::p_phi && phi->opcode != aco_opcode::p_linear_phi)
82            break;
83
84         const Definition& def = phi->definitions[0];
85
86         /* if the definition is not temp, it is the exec mask.
87          * We can reload the exec mask directly from the spill slot.
88          */
89         if (!def.isTemp())
90            continue;
91
92         std::vector<unsigned>& preds =
93            phi->opcode == aco_opcode::p_phi ? block.logical_preds : block.linear_preds;
94         uint32_t index = ctx.merge_sets.size();
95         merge_set set;
96
97         bool has_preheader_copy = false;
98         for (unsigned i = 0; i < phi->operands.size(); i++) {
99            Operand op = phi->operands[i];
100            if (op.isUndefined())
101               continue;
102
103            if (def.regClass().type() == RegType::sgpr && !op.isTemp()) {
104               /* SGPR inline constants and literals on GFX10+ can be spilled
105                * and reloaded directly (without intermediate register) */
106               if (op.isConstant()) {
107                  if (ctx.program->gfx_level >= GFX10)
108                     continue;
109                  if (op.size() == 1 && !op.isLiteral())
110                     continue;
111               } else {
112                  assert(op.isFixed() && op.physReg() == exec);
113                  continue;
114               }
115            }
116
117            /* create new temporary and rename operands */
118            Temp tmp = bld.tmp(def.regClass());
119            ctx.parallelcopies[preds[i]].emplace_back(copy{Definition(tmp), op});
120            phi->operands[i] = Operand(tmp);
121
122            /* place the new operands in the same merge set */
123            set.emplace_back(tmp);
124            ctx.merge_node_table[tmp.id()] = {op, index, preds[i]};
125
126            /* update the liveness information */
127            if (op.isKill())
128               ctx.live_out[preds[i]].erase(op.tempId());
129            ctx.live_out[preds[i]].insert(tmp.id());
130
131            has_preheader_copy |= i == 0 && block.kind & block_kind_loop_header;
132         }
133
134         if (set.empty())
135            continue;
136
137         /* place the definition in dominance-order */
138         if (def.isTemp()) {
139            if (has_preheader_copy)
140               set.emplace(std::next(set.begin()), def.getTemp());
141            else if (block.kind & block_kind_loop_header)
142               set.emplace(set.begin(), def.getTemp());
143            else
144               set.emplace_back(def.getTemp());
145            ctx.merge_node_table[def.tempId()] = {Operand(def.getTemp()), index, block.index};
146         }
147         ctx.merge_sets.emplace_back(set);
148      }
149   }
150}
151
152/* check whether the definition of a comes after b. */
153inline bool
154defined_after(cssa_ctx& ctx, Temp a, Temp b)
155{
156   merge_node& node_a = ctx.merge_node_table[a.id()];
157   merge_node& node_b = ctx.merge_node_table[b.id()];
158   if (node_a.defined_at == node_b.defined_at)
159      return a.id() > b.id();
160
161   return node_a.defined_at > node_b.defined_at;
162}
163
164/* check whether a dominates b where b is defined after a */
165inline bool
166dominates(cssa_ctx& ctx, Temp a, Temp b)
167{
168   assert(defined_after(ctx, b, a));
169   merge_node& node_a = ctx.merge_node_table[a.id()];
170   merge_node& node_b = ctx.merge_node_table[b.id()];
171   unsigned idom = node_b.defined_at;
172   while (idom > node_a.defined_at)
173      idom = b.regClass().type() == RegType::vgpr ? ctx.program->blocks[idom].logical_idom
174                                                  : ctx.program->blocks[idom].linear_idom;
175
176   return idom == node_a.defined_at;
177}
178
179/* check intersection between var and parent:
180 * We already know that parent dominates var. */
181inline bool
182intersects(cssa_ctx& ctx, Temp var, Temp parent)
183{
184   merge_node& node_var = ctx.merge_node_table[var.id()];
185   merge_node& node_parent = ctx.merge_node_table[parent.id()];
186   assert(node_var.index != node_parent.index);
187   uint32_t block_idx = node_var.defined_at;
188
189   /* if the parent is live-out at the definition block of var, they intersect */
190   bool parent_live = ctx.live_out[block_idx].count(parent.id());
191   if (parent_live)
192      return true;
193
194   /* parent is defined in a different block than var */
195   if (node_parent.defined_at < node_var.defined_at) {
196      /* if the parent is not live-in, they don't interfere */
197      std::vector<uint32_t>& preds = var.type() == RegType::vgpr
198                                        ? ctx.program->blocks[block_idx].logical_preds
199                                        : ctx.program->blocks[block_idx].linear_preds;
200      for (uint32_t pred : preds) {
201         if (!ctx.live_out[pred].count(parent.id()))
202            return false;
203      }
204   }
205
206   for (const copy& cp : ctx.parallelcopies[block_idx]) {
207      /* if var is defined at the edge, they don't intersect */
208      if (cp.def.getTemp() == var)
209         return false;
210      if (cp.op.isTemp() && cp.op.getTemp() == parent)
211         parent_live = true;
212   }
213   /* if the parent is live at the edge, they intersect */
214   if (parent_live)
215      return true;
216
217   /* both, parent and var, are present in the same block */
218   const Block& block = ctx.program->blocks[block_idx];
219   for (auto it = block.instructions.crbegin(); it != block.instructions.crend(); ++it) {
220      /* if the parent was not encountered yet, it can only be used by a phi */
221      if (is_phi(it->get()))
222         break;
223
224      for (const Definition& def : (*it)->definitions) {
225         if (!def.isTemp())
226            continue;
227         /* if parent was not found yet, they don't intersect */
228         if (def.getTemp() == var)
229            return false;
230      }
231
232      for (const Operand& op : (*it)->operands) {
233         if (!op.isTemp())
234            continue;
235         /* if the var was defined before this point, they intersect */
236         if (op.getTemp() == parent)
237            return true;
238      }
239   }
240
241   return false;
242}
243
244/* check interference between var and parent:
245 * i.e. they have different values and intersect.
246 * If parent and var share the same value, also updates the equal ancestor. */
247inline bool
248interference(cssa_ctx& ctx, Temp var, Temp parent)
249{
250   assert(var != parent);
251   merge_node& node_var = ctx.merge_node_table[var.id()];
252   node_var.equal_anc_out = Temp();
253
254   if (node_var.index == ctx.merge_node_table[parent.id()].index) {
255      /* check/update in other set */
256      parent = ctx.merge_node_table[parent.id()].equal_anc_out;
257   }
258
259   Temp tmp = parent;
260   /* check if var intersects with parent or any equal-valued ancestor */
261   while (tmp != Temp() && !intersects(ctx, var, tmp)) {
262      merge_node& node_tmp = ctx.merge_node_table[tmp.id()];
263      tmp = node_tmp.equal_anc_in;
264   }
265
266   /* no intersection found */
267   if (tmp == Temp())
268      return false;
269
270   /* var and parent, same value, but in different sets */
271   if (node_var.value == ctx.merge_node_table[parent.id()].value) {
272      node_var.equal_anc_out = tmp;
273      return false;
274   }
275
276   /* var and parent, different values and intersect */
277   return true;
278}
279
280/* tries to merge set_b into set_a of given temporary and
281 * drops that temporary as it is being coalesced */
282bool
283try_merge_merge_set(cssa_ctx& ctx, Temp dst, merge_set& set_b)
284{
285   auto def_node_it = ctx.merge_node_table.find(dst.id());
286   uint32_t index = def_node_it->second.index;
287   merge_set& set_a = ctx.merge_sets[index];
288   std::vector<Temp> dom; /* stack of the traversal */
289   merge_set union_set;   /* the new merged merge-set */
290   uint32_t i_a = 0;
291   uint32_t i_b = 0;
292
293   while (i_a < set_a.size() || i_b < set_b.size()) {
294      Temp current;
295      if (i_a == set_a.size())
296         current = set_b[i_b++];
297      else if (i_b == set_b.size())
298         current = set_a[i_a++];
299      /* else pick the one defined first */
300      else if (defined_after(ctx, set_a[i_a], set_b[i_b]))
301         current = set_b[i_b++];
302      else
303         current = set_a[i_a++];
304
305      while (!dom.empty() && !dominates(ctx, dom.back(), current))
306         dom.pop_back(); /* not the desired parent, remove */
307
308      if (!dom.empty() && interference(ctx, current, dom.back()))
309         return false; /* intersection detected */
310
311      dom.emplace_back(current); /* otherwise, keep checking */
312      if (current != dst)
313         union_set.emplace_back(current); /* maintain the new merge-set sorted */
314   }
315
316   /* update hashmap */
317   for (Temp t : union_set) {
318      merge_node& node = ctx.merge_node_table[t.id()];
319      /* update the equal ancestors:
320       * i.e. the 'closest' dominating def with the same value */
321      Temp in = node.equal_anc_in;
322      Temp out = node.equal_anc_out;
323      if (in == Temp() || (out != Temp() && defined_after(ctx, out, in)))
324         node.equal_anc_in = out;
325      node.equal_anc_out = Temp();
326      /* update merge-set index */
327      node.index = index;
328   }
329   set_b = merge_set(); /* free the old set_b */
330   ctx.merge_sets[index] = union_set;
331   ctx.merge_node_table.erase(dst.id()); /* remove the temporary */
332
333   return true;
334}
335
336/* returns true if the copy can safely be omitted */
337bool
338try_coalesce_copy(cssa_ctx& ctx, copy copy, uint32_t block_idx)
339{
340   /* we can only coalesce temporaries */
341   if (!copy.op.isTemp())
342      return false;
343
344   /* try emplace a merge_node for the copy operand */
345   merge_node& op_node = ctx.merge_node_table[copy.op.tempId()];
346   if (op_node.defined_at == -1u) {
347      /* find defining block of operand */
348      uint32_t pred = block_idx;
349      do {
350         block_idx = pred;
351         pred = copy.op.regClass().type() == RegType::vgpr ? ctx.program->blocks[pred].logical_idom
352                                                           : ctx.program->blocks[pred].linear_idom;
353      } while (block_idx != pred && ctx.live_out[pred].count(copy.op.tempId()));
354      op_node.defined_at = block_idx;
355      op_node.value = copy.op;
356   }
357
358   /* we can only coalesce copies of the same register class */
359   if (copy.op.regClass() != copy.def.regClass())
360      return false;
361
362   /* check if this operand has not yet been coalesced */
363   if (op_node.index == -1u) {
364      merge_set op_set = merge_set{copy.op.getTemp()};
365      return try_merge_merge_set(ctx, copy.def.getTemp(), op_set);
366   }
367
368   /* check if this operand has been coalesced into the same set */
369   assert(ctx.merge_node_table.count(copy.def.tempId()));
370   if (op_node.index == ctx.merge_node_table[copy.def.tempId()].index)
371      return true;
372
373   /* otherwise, try to coalesce both merge sets */
374   return try_merge_merge_set(ctx, copy.def.getTemp(), ctx.merge_sets[op_node.index]);
375}
376
377/* node in the location-transfer-graph */
378struct ltg_node {
379   copy cp;
380   uint32_t read_idx;
381   uint32_t num_uses = 0;
382};
383
384/* emit the copies in an order that does not
385 * create interferences within a merge-set */
386void
387emit_copies_block(Builder& bld, std::map<uint32_t, ltg_node>& ltg, RegType type)
388{
389   auto&& it = ltg.begin();
390   while (it != ltg.end()) {
391      const copy& cp = it->second.cp;
392      /* wrong regclass or still needed as operand */
393      if (cp.def.regClass().type() != type || it->second.num_uses > 0) {
394         ++it;
395         continue;
396      }
397
398      /* emit the copy */
399      bld.copy(cp.def, it->second.cp.op);
400
401      /* update the location transfer graph */
402      if (it->second.read_idx != -1u) {
403         auto&& other = ltg.find(it->second.read_idx);
404         if (other != ltg.end())
405            other->second.num_uses--;
406      }
407      ltg.erase(it);
408      it = ltg.begin();
409   }
410
411   /* count the number of remaining circular dependencies */
412   unsigned num = std::count_if(ltg.begin(), ltg.end(),
413                                [&](auto& n) { return n.second.cp.def.regClass().type() == type; });
414
415   /* if there are circular dependencies, we just emit them as single parallelcopy */
416   if (num) {
417      // TODO: this should be restricted to a feasible number of registers
418      // and otherwise use a temporary to avoid having to reload more (spilled)
419      // variables than we have registers.
420      aco_ptr<Pseudo_instruction> copy{create_instruction<Pseudo_instruction>(
421         aco_opcode::p_parallelcopy, Format::PSEUDO, num, num)};
422      it = ltg.begin();
423      for (unsigned i = 0; i < num; i++) {
424         while (it->second.cp.def.regClass().type() != type)
425            ++it;
426
427         copy->definitions[i] = it->second.cp.def;
428         copy->operands[i] = it->second.cp.op;
429         it = ltg.erase(it);
430      }
431      bld.insert(std::move(copy));
432   }
433}
434
435/* either emits or coalesces all parallelcopies and
436 * renames the phi-operands accordingly. */
437void
438emit_parallelcopies(cssa_ctx& ctx)
439{
440   std::unordered_map<uint32_t, Operand> renames;
441
442   /* we iterate backwards to prioritize coalescing in else-blocks */
443   for (int i = ctx.program->blocks.size() - 1; i >= 0; i--) {
444      if (ctx.parallelcopies[i].empty())
445         continue;
446
447      std::map<uint32_t, ltg_node> ltg;
448      bool has_vgpr_copy = false;
449      bool has_sgpr_copy = false;
450
451      /* first, try to coalesce all parallelcopies */
452      for (const copy& cp : ctx.parallelcopies[i]) {
453         if (try_coalesce_copy(ctx, cp, i)) {
454            renames.emplace(cp.def.tempId(), cp.op);
455            /* update liveness info */
456            ctx.live_out[i].erase(cp.def.tempId());
457            ctx.live_out[i].insert(cp.op.tempId());
458         } else {
459            uint32_t read_idx = -1u;
460            if (cp.op.isTemp())
461               read_idx = ctx.merge_node_table[cp.op.tempId()].index;
462            uint32_t write_idx = ctx.merge_node_table[cp.def.tempId()].index;
463            assert(write_idx != -1u);
464            ltg[write_idx] = {cp, read_idx};
465
466            bool is_vgpr = cp.def.regClass().type() == RegType::vgpr;
467            has_vgpr_copy |= is_vgpr;
468            has_sgpr_copy |= !is_vgpr;
469         }
470      }
471
472      /* build location-transfer-graph */
473      for (auto& pair : ltg) {
474         if (pair.second.read_idx == -1u)
475            continue;
476         auto&& it = ltg.find(pair.second.read_idx);
477         if (it != ltg.end())
478            it->second.num_uses++;
479      }
480
481      /* emit parallelcopies ordered */
482      Builder bld(ctx.program);
483      Block& block = ctx.program->blocks[i];
484
485      if (has_vgpr_copy) {
486         /* emit VGPR copies */
487         auto IsLogicalEnd = [](const aco_ptr<Instruction>& inst) -> bool
488         { return inst->opcode == aco_opcode::p_logical_end; };
489         auto it =
490            std::find_if(block.instructions.rbegin(), block.instructions.rend(), IsLogicalEnd);
491         bld.reset(&block.instructions, std::prev(it.base()));
492         emit_copies_block(bld, ltg, RegType::vgpr);
493      }
494
495      if (has_sgpr_copy) {
496         /* emit SGPR copies */
497         aco_ptr<Instruction> branch = std::move(block.instructions.back());
498         block.instructions.pop_back();
499         bld.reset(&block.instructions);
500         emit_copies_block(bld, ltg, RegType::sgpr);
501         bld.insert(std::move(branch));
502      }
503   }
504
505   /* finally, rename coalesced phi operands */
506   for (Block& block : ctx.program->blocks) {
507      for (aco_ptr<Instruction>& phi : block.instructions) {
508         if (phi->opcode != aco_opcode::p_phi && phi->opcode != aco_opcode::p_linear_phi)
509            break;
510
511         for (Operand& op : phi->operands) {
512            if (!op.isTemp())
513               continue;
514            auto&& it = renames.find(op.tempId());
515            if (it != renames.end()) {
516               op = it->second;
517               renames.erase(it);
518            }
519         }
520      }
521   }
522   assert(renames.empty());
523}
524
525} /* end namespace */
526
527void
528lower_to_cssa(Program* program, live& live_vars)
529{
530   reindex_ssa(program, live_vars.live_out);
531   cssa_ctx ctx = {program, live_vars.live_out};
532   collect_parallelcopies(ctx);
533   emit_parallelcopies(ctx);
534
535   /* update live variable information */
536   live_vars = live_var_analysis(program);
537}
538} // namespace aco
539