1/* 2 * Copyright © 2019 Valve Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25#include "aco_builder.h" 26#include "aco_ir.h" 27 28#include "util/u_math.h" 29 30#include <set> 31#include <vector> 32 33namespace aco { 34 35namespace { 36 37enum WQMState : uint8_t { 38 Unspecified = 0, 39 Exact = 1 << 0, 40 WQM = 1 << 1, /* with control flow applied */ 41}; 42 43enum mask_type : uint8_t { 44 mask_type_global = 1 << 0, 45 mask_type_exact = 1 << 1, 46 mask_type_wqm = 1 << 2, 47 mask_type_loop = 1 << 3, /* active lanes of a loop */ 48}; 49 50struct wqm_ctx { 51 Program* program; 52 /* state for WQM propagation */ 53 std::set<unsigned> worklist; 54 std::vector<bool> branch_wqm; /* true if the branch condition in this block should be in wqm */ 55 wqm_ctx(Program* program_) 56 : program(program_), branch_wqm(program->blocks.size()) 57 { 58 for (unsigned i = 0; i < program->blocks.size(); i++) 59 worklist.insert(i); 60 } 61}; 62 63struct loop_info { 64 Block* loop_header; 65 uint16_t num_exec_masks; 66 bool has_divergent_break; 67 bool has_divergent_continue; 68 bool has_discard; /* has a discard or demote */ 69 loop_info(Block* b, uint16_t num, bool breaks, bool cont, bool discard) 70 : loop_header(b), num_exec_masks(num), has_divergent_break(breaks), 71 has_divergent_continue(cont), has_discard(discard) 72 {} 73}; 74 75struct block_info { 76 std::vector<std::pair<Operand, uint8_t>> 77 exec; /* Vector of exec masks. Either a temporary or const -1. */ 78 std::vector<WQMState> instr_needs; 79 uint8_t block_needs; 80}; 81 82struct exec_ctx { 83 Program* program; 84 std::vector<block_info> info; 85 std::vector<loop_info> loop; 86 bool handle_wqm = false; 87 exec_ctx(Program* program_) : program(program_), info(program->blocks.size()) {} 88}; 89 90bool 91needs_exact(aco_ptr<Instruction>& instr) 92{ 93 if (instr->isMUBUF()) { 94 return instr->mubuf().disable_wqm; 95 } else if (instr->isMTBUF()) { 96 return instr->mtbuf().disable_wqm; 97 } else if (instr->isMIMG()) { 98 return instr->mimg().disable_wqm; 99 } else if (instr->isFlatLike()) { 100 return instr->flatlike().disable_wqm; 101 } else { 102 /* Require Exact for p_jump_to_epilog because if p_exit_early_if is 103 * emitted inside the same block, the main FS will always jump to the PS 104 * epilog without considering the exec mask. 105 */ 106 return instr->isEXP() || instr->opcode == aco_opcode::p_jump_to_epilog; 107 } 108} 109 110void 111mark_block_wqm(wqm_ctx& ctx, unsigned block_idx) 112{ 113 if (ctx.branch_wqm[block_idx]) 114 return; 115 116 for (Block& block : ctx.program->blocks) { 117 if (block.index >= block_idx && block.kind & block_kind_top_level) 118 break; 119 ctx.branch_wqm[block.index] = true; 120 ctx.worklist.insert(block.index); 121 } 122} 123 124void 125get_block_needs(wqm_ctx& ctx, exec_ctx& exec_ctx, Block* block) 126{ 127 block_info& info = exec_ctx.info[block->index]; 128 129 std::vector<WQMState> instr_needs(block->instructions.size()); 130 131 bool propagate_wqm = ctx.branch_wqm[block->index]; 132 for (int i = block->instructions.size() - 1; i >= 0; --i) { 133 aco_ptr<Instruction>& instr = block->instructions[i]; 134 135 if (instr->opcode == aco_opcode::p_wqm) 136 propagate_wqm = true; 137 138 bool pred_by_exec = needs_exec_mask(instr.get()) || 139 instr->opcode == aco_opcode::p_logical_end || 140 instr->isBranch(); 141 142 if (needs_exact(instr)) 143 instr_needs[i] = Exact; 144 else if (propagate_wqm && pred_by_exec) 145 instr_needs[i] = WQM; 146 else 147 instr_needs[i] = Unspecified; 148 149 info.block_needs |= instr_needs[i]; 150 } 151 152 info.instr_needs = instr_needs; 153 154 /* for "if (<cond>) <wqm code>" or "while (<cond>) <wqm code>", 155 * <cond> should be computed in WQM */ 156 if (info.block_needs & WQM) { 157 mark_block_wqm(ctx, block->index); 158 } 159} 160 161void 162calculate_wqm_needs(exec_ctx& exec_ctx) 163{ 164 wqm_ctx ctx(exec_ctx.program); 165 166 while (!ctx.worklist.empty()) { 167 unsigned block_index = *std::prev(ctx.worklist.end()); 168 ctx.worklist.erase(std::prev(ctx.worklist.end())); 169 170 Block& block = exec_ctx.program->blocks[block_index]; 171 get_block_needs(ctx, exec_ctx, &block); 172 } 173 174 exec_ctx.handle_wqm = true; 175} 176 177Operand 178get_exec_op(Operand t) 179{ 180 if (t.isUndefined()) 181 return Operand(exec, t.regClass()); 182 else 183 return t; 184} 185 186void 187transition_to_WQM(exec_ctx& ctx, Builder bld, unsigned idx) 188{ 189 if (ctx.info[idx].exec.back().second & mask_type_wqm) 190 return; 191 if (ctx.info[idx].exec.back().second & mask_type_global) { 192 Operand exec_mask = ctx.info[idx].exec.back().first; 193 if (exec_mask.isUndefined()) { 194 exec_mask = bld.copy(bld.def(bld.lm), Operand(exec, bld.lm)); 195 ctx.info[idx].exec.back().first = exec_mask; 196 } 197 198 exec_mask = bld.sop1(Builder::s_wqm, Definition(exec, bld.lm), bld.def(s1, scc), 199 get_exec_op(exec_mask)); 200 ctx.info[idx].exec.emplace_back(exec_mask, mask_type_global | mask_type_wqm); 201 return; 202 } 203 /* otherwise, the WQM mask should be one below the current mask */ 204 ctx.info[idx].exec.pop_back(); 205 assert(ctx.info[idx].exec.back().second & mask_type_wqm); 206 assert(ctx.info[idx].exec.back().first.size() == bld.lm.size()); 207 assert(ctx.info[idx].exec.back().first.isTemp()); 208 ctx.info[idx].exec.back().first = 209 bld.copy(Definition(exec, bld.lm), ctx.info[idx].exec.back().first); 210} 211 212void 213transition_to_Exact(exec_ctx& ctx, Builder bld, unsigned idx) 214{ 215 if (ctx.info[idx].exec.back().second & mask_type_exact) 216 return; 217 /* We can't remove the loop exec mask, because that can cause exec.size() to 218 * be less than num_exec_masks. The loop exec mask also needs to be kept 219 * around for various uses. */ 220 if ((ctx.info[idx].exec.back().second & mask_type_global) && 221 !(ctx.info[idx].exec.back().second & mask_type_loop)) { 222 ctx.info[idx].exec.pop_back(); 223 assert(ctx.info[idx].exec.back().second & mask_type_exact); 224 assert(ctx.info[idx].exec.back().first.size() == bld.lm.size()); 225 assert(ctx.info[idx].exec.back().first.isTemp()); 226 ctx.info[idx].exec.back().first = 227 bld.copy(Definition(exec, bld.lm), ctx.info[idx].exec.back().first); 228 return; 229 } 230 /* otherwise, we create an exact mask and push to the stack */ 231 Operand wqm = ctx.info[idx].exec.back().first; 232 if (wqm.isUndefined()) { 233 wqm = bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.def(s1, scc), 234 Definition(exec, bld.lm), ctx.info[idx].exec[0].first, Operand(exec, bld.lm)); 235 } else { 236 bld.sop2(Builder::s_and, Definition(exec, bld.lm), bld.def(s1, scc), 237 ctx.info[idx].exec[0].first, wqm); 238 } 239 ctx.info[idx].exec.back().first = Operand(wqm); 240 ctx.info[idx].exec.emplace_back(Operand(bld.lm), mask_type_exact); 241} 242 243unsigned 244add_coupling_code(exec_ctx& ctx, Block* block, std::vector<aco_ptr<Instruction>>& instructions) 245{ 246 unsigned idx = block->index; 247 Builder bld(ctx.program, &instructions); 248 std::vector<unsigned>& preds = block->linear_preds; 249 250 /* start block */ 251 if (idx == 0) { 252 aco_ptr<Instruction>& startpgm = block->instructions[0]; 253 assert(startpgm->opcode == aco_opcode::p_startpgm); 254 bld.insert(std::move(startpgm)); 255 256 unsigned count = 1; 257 if (block->instructions[1]->opcode == aco_opcode::p_init_scratch) { 258 bld.insert(std::move(block->instructions[1])); 259 count++; 260 } 261 262 Operand start_exec(bld.lm); 263 264 /* exec seems to need to be manually initialized with combined shaders */ 265 if (ctx.program->stage.num_sw_stages() > 1 || ctx.program->stage.hw == HWStage::NGG) { 266 start_exec = Operand::c32_or_c64(-1u, bld.lm == s2); 267 bld.copy(Definition(exec, bld.lm), start_exec); 268 } 269 270 if (ctx.handle_wqm) { 271 ctx.info[0].exec.emplace_back(start_exec, mask_type_global | mask_type_exact); 272 /* if this block needs WQM, initialize already */ 273 if (ctx.info[0].block_needs & WQM) 274 transition_to_WQM(ctx, bld, 0); 275 } else { 276 uint8_t mask = mask_type_global; 277 if (ctx.program->needs_wqm) { 278 bld.sop1(Builder::s_wqm, Definition(exec, bld.lm), bld.def(s1, scc), 279 Operand(exec, bld.lm)); 280 mask |= mask_type_wqm; 281 } else { 282 mask |= mask_type_exact; 283 } 284 ctx.info[0].exec.emplace_back(start_exec, mask); 285 } 286 287 return count; 288 } 289 290 /* loop entry block */ 291 if (block->kind & block_kind_loop_header) { 292 assert(preds[0] == idx - 1); 293 ctx.info[idx].exec = ctx.info[idx - 1].exec; 294 loop_info& info = ctx.loop.back(); 295 while (ctx.info[idx].exec.size() > info.num_exec_masks) 296 ctx.info[idx].exec.pop_back(); 297 298 /* create ssa names for outer exec masks */ 299 if (info.has_discard) { 300 aco_ptr<Pseudo_instruction> phi; 301 for (int i = 0; i < info.num_exec_masks - 1; i++) { 302 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, 303 Format::PSEUDO, preds.size(), 1)); 304 phi->definitions[0] = bld.def(bld.lm); 305 phi->operands[0] = get_exec_op(ctx.info[preds[0]].exec[i].first); 306 ctx.info[idx].exec[i].first = bld.insert(std::move(phi)); 307 } 308 } 309 310 /* create ssa name for restore mask */ 311 if (info.has_divergent_break) { 312 /* this phi might be trivial but ensures a parallelcopy on the loop header */ 313 aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>( 314 aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)}; 315 phi->definitions[0] = bld.def(bld.lm); 316 phi->operands[0] = get_exec_op(ctx.info[preds[0]].exec[info.num_exec_masks - 1].first); 317 ctx.info[idx].exec.back().first = bld.insert(std::move(phi)); 318 } 319 320 /* create ssa name for loop active mask */ 321 aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>( 322 aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)}; 323 if (info.has_divergent_continue) 324 phi->definitions[0] = bld.def(bld.lm); 325 else 326 phi->definitions[0] = Definition(exec, bld.lm); 327 phi->operands[0] = get_exec_op(ctx.info[preds[0]].exec.back().first); 328 Temp loop_active = bld.insert(std::move(phi)); 329 330 if (info.has_divergent_break) { 331 uint8_t mask_type = 332 (ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact)) | mask_type_loop; 333 ctx.info[idx].exec.emplace_back(loop_active, mask_type); 334 } else { 335 ctx.info[idx].exec.back().first = Operand(loop_active); 336 ctx.info[idx].exec.back().second |= mask_type_loop; 337 } 338 339 /* create a parallelcopy to move the active mask to exec */ 340 unsigned i = 0; 341 if (info.has_divergent_continue) { 342 while (block->instructions[i]->opcode != aco_opcode::p_logical_start) { 343 bld.insert(std::move(block->instructions[i])); 344 i++; 345 } 346 uint8_t mask_type = ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact); 347 assert(ctx.info[idx].exec.back().first.size() == bld.lm.size()); 348 ctx.info[idx].exec.emplace_back( 349 bld.copy(Definition(exec, bld.lm), ctx.info[idx].exec.back().first), mask_type); 350 } 351 352 return i; 353 } 354 355 /* loop exit block */ 356 if (block->kind & block_kind_loop_exit) { 357 Block* header = ctx.loop.back().loop_header; 358 loop_info& info = ctx.loop.back(); 359 360 for (ASSERTED unsigned pred : preds) 361 assert(ctx.info[pred].exec.size() >= info.num_exec_masks); 362 363 /* fill the loop header phis */ 364 std::vector<unsigned>& header_preds = header->linear_preds; 365 int instr_idx = 0; 366 if (info.has_discard) { 367 while (instr_idx < info.num_exec_masks - 1) { 368 aco_ptr<Instruction>& phi = header->instructions[instr_idx]; 369 assert(phi->opcode == aco_opcode::p_linear_phi); 370 for (unsigned i = 1; i < phi->operands.size(); i++) 371 phi->operands[i] = get_exec_op(ctx.info[header_preds[i]].exec[instr_idx].first); 372 instr_idx++; 373 } 374 } 375 376 { 377 aco_ptr<Instruction>& phi = header->instructions[instr_idx++]; 378 assert(phi->opcode == aco_opcode::p_linear_phi); 379 for (unsigned i = 1; i < phi->operands.size(); i++) 380 phi->operands[i] = 381 get_exec_op(ctx.info[header_preds[i]].exec[info.num_exec_masks - 1].first); 382 } 383 384 if (info.has_divergent_break) { 385 aco_ptr<Instruction>& phi = header->instructions[instr_idx]; 386 assert(phi->opcode == aco_opcode::p_linear_phi); 387 for (unsigned i = 1; i < phi->operands.size(); i++) 388 phi->operands[i] = 389 get_exec_op(ctx.info[header_preds[i]].exec[info.num_exec_masks].first); 390 } 391 392 assert(!(block->kind & block_kind_top_level) || info.num_exec_masks <= 2); 393 394 /* create the loop exit phis if not trivial */ 395 for (unsigned exec_idx = 0; exec_idx < info.num_exec_masks; exec_idx++) { 396 Operand same = ctx.info[preds[0]].exec[exec_idx].first; 397 uint8_t type = ctx.info[header_preds[0]].exec[exec_idx].second; 398 bool trivial = true; 399 400 for (unsigned i = 1; i < preds.size() && trivial; i++) { 401 if (ctx.info[preds[i]].exec[exec_idx].first != same) 402 trivial = false; 403 } 404 405 if (trivial) { 406 ctx.info[idx].exec.emplace_back(same, type); 407 } else { 408 /* create phi for loop footer */ 409 aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>( 410 aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)}; 411 phi->definitions[0] = bld.def(bld.lm); 412 if (exec_idx == info.num_exec_masks - 1u) { 413 phi->definitions[0] = Definition(exec, bld.lm); 414 } 415 for (unsigned i = 0; i < phi->operands.size(); i++) 416 phi->operands[i] = get_exec_op(ctx.info[preds[i]].exec[exec_idx].first); 417 ctx.info[idx].exec.emplace_back(bld.insert(std::move(phi)), type); 418 } 419 } 420 421 assert(ctx.info[idx].exec.size() == info.num_exec_masks); 422 ctx.loop.pop_back(); 423 424 } else if (preds.size() == 1) { 425 ctx.info[idx].exec = ctx.info[preds[0]].exec; 426 } else { 427 assert(preds.size() == 2); 428 /* if one of the predecessors ends in exact mask, we pop it from stack */ 429 unsigned num_exec_masks = 430 std::min(ctx.info[preds[0]].exec.size(), ctx.info[preds[1]].exec.size()); 431 432 if (block->kind & block_kind_merge) 433 num_exec_masks--; 434 if (block->kind & block_kind_top_level) 435 num_exec_masks = std::min(num_exec_masks, 2u); 436 437 /* create phis for diverged exec masks */ 438 for (unsigned i = 0; i < num_exec_masks; i++) { 439 /* skip trivial phis */ 440 if (ctx.info[preds[0]].exec[i].first == ctx.info[preds[1]].exec[i].first) { 441 Operand t = ctx.info[preds[0]].exec[i].first; 442 /* discard/demote can change the state of the current exec mask */ 443 assert(!t.isTemp() || 444 ctx.info[preds[0]].exec[i].second == ctx.info[preds[1]].exec[i].second); 445 uint8_t mask = ctx.info[preds[0]].exec[i].second & ctx.info[preds[1]].exec[i].second; 446 ctx.info[idx].exec.emplace_back(t, mask); 447 continue; 448 } 449 450 Temp phi = bld.pseudo(aco_opcode::p_linear_phi, bld.def(bld.lm), 451 get_exec_op(ctx.info[preds[0]].exec[i].first), 452 get_exec_op(ctx.info[preds[1]].exec[i].first)); 453 uint8_t mask_type = ctx.info[preds[0]].exec[i].second & ctx.info[preds[1]].exec[i].second; 454 ctx.info[idx].exec.emplace_back(phi, mask_type); 455 } 456 } 457 458 unsigned i = 0; 459 while (block->instructions[i]->opcode == aco_opcode::p_phi || 460 block->instructions[i]->opcode == aco_opcode::p_linear_phi) { 461 bld.insert(std::move(block->instructions[i])); 462 i++; 463 } 464 465 /* try to satisfy the block's needs */ 466 if (ctx.handle_wqm) { 467 if (block->kind & block_kind_top_level && ctx.info[idx].exec.size() == 2) { 468 if (ctx.info[idx].block_needs == 0 || ctx.info[idx].block_needs == Exact) { 469 ctx.info[idx].exec.back().second |= mask_type_global; 470 transition_to_Exact(ctx, bld, idx); 471 ctx.handle_wqm = false; 472 } 473 } 474 } 475 476 /* restore exec mask after divergent control flow */ 477 if (block->kind & (block_kind_loop_exit | block_kind_merge) && 478 !ctx.info[idx].exec.back().first.isUndefined()) { 479 Operand restore = ctx.info[idx].exec.back().first; 480 assert(restore.size() == bld.lm.size()); 481 bld.copy(Definition(exec, bld.lm), restore); 482 if (!restore.isConstant()) 483 ctx.info[idx].exec.back().first = Operand(bld.lm); 484 } 485 486 return i; 487} 488 489/* Avoid live-range splits in Exact mode: 490 * Because the data register of atomic VMEM instructions 491 * is shared between src and dst, it might be necessary 492 * to create live-range splits during RA. 493 * Make the live-range splits explicit in WQM mode. 494 */ 495void 496handle_atomic_data(exec_ctx& ctx, Builder& bld, unsigned block_idx, aco_ptr<Instruction>& instr) 497{ 498 /* check if this is an atomic VMEM instruction */ 499 int idx = -1; 500 if (!instr->isVMEM() || instr->definitions.empty()) 501 return; 502 else if (instr->isMIMG()) 503 idx = instr->operands[2].isTemp() ? 2 : -1; 504 else if (instr->operands.size() == 4) 505 idx = 3; 506 507 if (idx != -1) { 508 /* insert explicit copy of atomic data in WQM-mode */ 509 transition_to_WQM(ctx, bld, block_idx); 510 Temp data = instr->operands[idx].getTemp(); 511 data = bld.copy(bld.def(data.regClass()), data); 512 instr->operands[idx].setTemp(data); 513 } 514} 515 516void 517process_instructions(exec_ctx& ctx, Block* block, std::vector<aco_ptr<Instruction>>& instructions, 518 unsigned idx) 519{ 520 WQMState state; 521 if (ctx.info[block->index].exec.back().second & mask_type_wqm) { 522 state = WQM; 523 } else { 524 assert(!ctx.handle_wqm || ctx.info[block->index].exec.back().second & mask_type_exact); 525 state = Exact; 526 } 527 528 /* if the block doesn't need both, WQM and Exact, we can skip processing the instructions */ 529 bool process = (ctx.handle_wqm && (ctx.info[block->index].block_needs & state) != 530 (ctx.info[block->index].block_needs & (WQM | Exact))) || 531 block->kind & block_kind_uses_discard || block->kind & block_kind_needs_lowering; 532 if (!process) { 533 std::vector<aco_ptr<Instruction>>::iterator it = std::next(block->instructions.begin(), idx); 534 instructions.insert(instructions.end(), 535 std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(it), 536 std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>( 537 block->instructions.end())); 538 return; 539 } 540 541 Builder bld(ctx.program, &instructions); 542 543 for (; idx < block->instructions.size(); idx++) { 544 aco_ptr<Instruction> instr = std::move(block->instructions[idx]); 545 546 WQMState needs = ctx.handle_wqm ? ctx.info[block->index].instr_needs[idx] : Unspecified; 547 548 if (needs == WQM && state != WQM) { 549 transition_to_WQM(ctx, bld, block->index); 550 state = WQM; 551 } else if (needs == Exact) { 552 if (ctx.info[block->index].block_needs & WQM) 553 handle_atomic_data(ctx, bld, block->index, instr); 554 transition_to_Exact(ctx, bld, block->index); 555 state = Exact; 556 } 557 558 if (instr->opcode == aco_opcode::p_discard_if) { 559 Operand current_exec = Operand(exec, bld.lm); 560 561 if (ctx.info[block->index].exec.size() >= 2) { 562 if (needs == WQM) { 563 /* Preserve the WQM mask */ 564 ctx.info[block->index].exec[1].second &= ~mask_type_global; 565 } else if (block->kind & block_kind_top_level) { 566 /* Transition to Exact without extra instruction. Since needs != WQM, we won't need 567 * WQM again. 568 */ 569 ctx.info[block->index].exec.resize(1); 570 assert(ctx.info[block->index].exec[0].second == (mask_type_exact | mask_type_global)); 571 current_exec = get_exec_op(ctx.info[block->index].exec.back().first); 572 ctx.info[block->index].exec[0].first = Operand(bld.lm); 573 } 574 } 575 576 Temp cond, exit_cond; 577 if (instr->operands[0].isConstant()) { 578 assert(instr->operands[0].constantValue() == -1u); 579 /* save condition and set exec to zero */ 580 exit_cond = bld.tmp(s1); 581 cond = 582 bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.scc(Definition(exit_cond)), 583 Definition(exec, bld.lm), Operand::zero(), Operand(exec, bld.lm)); 584 } else { 585 cond = instr->operands[0].getTemp(); 586 /* discard from current exec */ 587 exit_cond = bld.sop2(Builder::s_andn2, Definition(exec, bld.lm), bld.def(s1, scc), 588 current_exec, cond) 589 .def(1) 590 .getTemp(); 591 } 592 593 /* discard from inner to outer exec mask on stack */ 594 int num = ctx.info[block->index].exec.size() - 2; 595 for (int i = num; i >= 0; i--) { 596 Instruction* andn2 = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), 597 ctx.info[block->index].exec[i].first, cond); 598 ctx.info[block->index].exec[i].first = Operand(andn2->definitions[0].getTemp()); 599 exit_cond = andn2->definitions[1].getTemp(); 600 } 601 602 instr->opcode = aco_opcode::p_exit_early_if; 603 instr->operands[0] = bld.scc(exit_cond); 604 assert(!ctx.handle_wqm || (ctx.info[block->index].exec[0].second & mask_type_wqm) == 0); 605 606 } else if (instr->opcode == aco_opcode::p_is_helper) { 607 Definition dst = instr->definitions[0]; 608 assert(dst.size() == bld.lm.size()); 609 if (state == Exact) { 610 instr.reset(create_instruction<SOP1_instruction>(bld.w64or32(Builder::s_mov), 611 Format::SOP1, 1, 1)); 612 instr->operands[0] = Operand::zero(); 613 instr->definitions[0] = dst; 614 } else { 615 std::pair<Operand, uint8_t>& exact_mask = ctx.info[block->index].exec[0]; 616 assert(exact_mask.second & mask_type_exact); 617 618 instr.reset(create_instruction<SOP2_instruction>(bld.w64or32(Builder::s_andn2), 619 Format::SOP2, 2, 2)); 620 instr->operands[0] = Operand(exec, bld.lm); /* current exec */ 621 instr->operands[1] = Operand(exact_mask.first); 622 instr->definitions[0] = dst; 623 instr->definitions[1] = bld.def(s1, scc); 624 } 625 } else if (instr->opcode == aco_opcode::p_demote_to_helper) { 626 /* turn demote into discard_if with only exact masks */ 627 assert((ctx.info[block->index].exec[0].second & mask_type_exact) && 628 (ctx.info[block->index].exec[0].second & mask_type_global)); 629 630 int num; 631 Temp cond, exit_cond; 632 if (instr->operands[0].isConstant()) { 633 assert(instr->operands[0].constantValue() == -1u); 634 /* transition to exact and set exec to zero */ 635 exit_cond = bld.tmp(s1); 636 cond = 637 bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.scc(Definition(exit_cond)), 638 Definition(exec, bld.lm), Operand::zero(), Operand(exec, bld.lm)); 639 640 num = ctx.info[block->index].exec.size() - 2; 641 if (!(ctx.info[block->index].exec.back().second & mask_type_exact)) { 642 ctx.info[block->index].exec.back().first = Operand(cond); 643 ctx.info[block->index].exec.emplace_back(Operand(bld.lm), mask_type_exact); 644 } 645 } else { 646 /* demote_if: transition to exact */ 647 if (block->kind & block_kind_top_level && ctx.info[block->index].exec.size() == 2 && 648 ctx.info[block->index].exec.back().second & mask_type_global) { 649 /* We don't need to actually copy anything into exact, since the s_andn2 650 * instructions later will do that. 651 */ 652 ctx.info[block->index].exec.pop_back(); 653 } else { 654 transition_to_Exact(ctx, bld, block->index); 655 } 656 assert(instr->operands[0].isTemp()); 657 cond = instr->operands[0].getTemp(); 658 num = ctx.info[block->index].exec.size() - 1; 659 } 660 661 for (int i = num; i >= 0; i--) { 662 if (ctx.info[block->index].exec[i].second & mask_type_exact) { 663 Instruction* andn2 = 664 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), 665 get_exec_op(ctx.info[block->index].exec[i].first), cond); 666 if (i == (int)ctx.info[block->index].exec.size() - 1) 667 andn2->definitions[0] = Definition(exec, bld.lm); 668 669 ctx.info[block->index].exec[i].first = Operand(andn2->definitions[0].getTemp()); 670 exit_cond = andn2->definitions[1].getTemp(); 671 } else { 672 assert(i != 0); 673 } 674 } 675 instr->opcode = aco_opcode::p_exit_early_if; 676 instr->operands[0] = bld.scc(exit_cond); 677 state = Exact; 678 679 } else if (instr->opcode == aco_opcode::p_elect) { 680 bool all_lanes_enabled = ctx.info[block->index].exec.back().first.constantEquals(-1u); 681 Definition dst = instr->definitions[0]; 682 683 if (all_lanes_enabled) { 684 bld.copy(Definition(dst), Operand::c32_or_c64(1u, dst.size() == 2)); 685 } else { 686 Temp first_lane_idx = bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)); 687 bld.sop2(Builder::s_lshl, Definition(dst), bld.def(s1, scc), 688 Operand::c32_or_c64(1u, dst.size() == 2), Operand(first_lane_idx)); 689 } 690 instr.reset(); 691 continue; 692 } 693 694 bld.insert(std::move(instr)); 695 } 696} 697 698void 699add_branch_code(exec_ctx& ctx, Block* block) 700{ 701 unsigned idx = block->index; 702 Builder bld(ctx.program, block); 703 704 if (idx == ctx.program->blocks.size() - 1) 705 return; 706 707 /* try to disable wqm handling */ 708 if (ctx.handle_wqm && block->kind & block_kind_top_level) { 709 if (ctx.info[idx].exec.size() == 3) { 710 assert(ctx.info[idx].exec[1].second == mask_type_wqm); 711 ctx.info[idx].exec.pop_back(); 712 } 713 assert(ctx.info[idx].exec.size() <= 2); 714 715 if (!(ctx.info[idx].instr_needs.back() & WQM)) { 716 /* transition to Exact if the branch doesn't need WQM */ 717 aco_ptr<Instruction> branch = std::move(block->instructions.back()); 718 block->instructions.pop_back(); 719 ctx.info[idx].exec.back().second |= mask_type_global; 720 transition_to_Exact(ctx, bld, idx); 721 bld.insert(std::move(branch)); 722 ctx.handle_wqm = false; 723 } 724 } 725 726 if (block->kind & block_kind_loop_preheader) { 727 /* collect information about the succeeding loop */ 728 bool has_divergent_break = false; 729 bool has_divergent_continue = false; 730 bool has_discard = false; 731 unsigned loop_nest_depth = ctx.program->blocks[idx + 1].loop_nest_depth; 732 733 for (unsigned i = idx + 1; ctx.program->blocks[i].loop_nest_depth >= loop_nest_depth; i++) { 734 Block& loop_block = ctx.program->blocks[i]; 735 736 if (loop_block.kind & block_kind_uses_discard) 737 has_discard = true; 738 if (loop_block.loop_nest_depth != loop_nest_depth) 739 continue; 740 741 if (loop_block.kind & block_kind_uniform) 742 continue; 743 else if (loop_block.kind & block_kind_break) 744 has_divergent_break = true; 745 else if (loop_block.kind & block_kind_continue) 746 has_divergent_continue = true; 747 } 748 749 unsigned num_exec_masks = ctx.info[idx].exec.size(); 750 if (block->kind & block_kind_top_level) 751 num_exec_masks = std::min(num_exec_masks, 2u); 752 753 ctx.loop.emplace_back(&ctx.program->blocks[block->linear_succs[0]], num_exec_masks, 754 has_divergent_break, has_divergent_continue, has_discard); 755 } 756 757 /* For normal breaks, this is the exec mask. For discard+break, it's the 758 * old exec mask before it was zero'd. 759 */ 760 Operand break_cond = Operand(exec, bld.lm); 761 762 if (block->kind & block_kind_continue_or_break) { 763 assert(ctx.program->blocks[ctx.program->blocks[block->linear_succs[1]].linear_succs[0]].kind & 764 block_kind_loop_header); 765 assert(ctx.program->blocks[ctx.program->blocks[block->linear_succs[0]].linear_succs[0]].kind & 766 block_kind_loop_exit); 767 assert(block->instructions.back()->opcode == aco_opcode::p_branch); 768 block->instructions.pop_back(); 769 770 bool need_parallelcopy = false; 771 while (!(ctx.info[idx].exec.back().second & mask_type_loop)) { 772 ctx.info[idx].exec.pop_back(); 773 need_parallelcopy = true; 774 } 775 776 if (need_parallelcopy) 777 ctx.info[idx].exec.back().first = 778 bld.copy(Definition(exec, bld.lm), ctx.info[idx].exec.back().first); 779 bld.branch(aco_opcode::p_cbranch_nz, bld.def(s2), Operand(exec, bld.lm), 780 block->linear_succs[1], block->linear_succs[0]); 781 return; 782 } 783 784 if (block->kind & block_kind_uniform) { 785 Pseudo_branch_instruction& branch = block->instructions.back()->branch(); 786 if (branch.opcode == aco_opcode::p_branch) { 787 branch.target[0] = block->linear_succs[0]; 788 } else { 789 branch.target[0] = block->linear_succs[1]; 790 branch.target[1] = block->linear_succs[0]; 791 } 792 return; 793 } 794 795 if (block->kind & block_kind_branch) { 796 // orig = s_and_saveexec_b64 797 assert(block->linear_succs.size() == 2); 798 assert(block->instructions.back()->opcode == aco_opcode::p_cbranch_z); 799 Temp cond = block->instructions.back()->operands[0].getTemp(); 800 block->instructions.pop_back(); 801 802 uint8_t mask_type = ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact); 803 if (ctx.info[idx].exec.back().first.constantEquals(-1u)) { 804 bld.copy(Definition(exec, bld.lm), cond); 805 } else { 806 Temp old_exec = bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.def(s1, scc), 807 Definition(exec, bld.lm), cond, Operand(exec, bld.lm)); 808 809 ctx.info[idx].exec.back().first = Operand(old_exec); 810 } 811 812 /* add next current exec to the stack */ 813 ctx.info[idx].exec.emplace_back(Operand(bld.lm), mask_type); 814 815 bld.branch(aco_opcode::p_cbranch_z, bld.def(s2), Operand(exec, bld.lm), 816 block->linear_succs[1], block->linear_succs[0]); 817 return; 818 } 819 820 if (block->kind & block_kind_invert) { 821 // exec = s_andn2_b64 (original_exec, exec) 822 assert(block->instructions.back()->opcode == aco_opcode::p_branch); 823 block->instructions.pop_back(); 824 assert(ctx.info[idx].exec.size() >= 2); 825 Operand orig_exec = ctx.info[idx].exec[ctx.info[idx].exec.size() - 2].first; 826 bld.sop2(Builder::s_andn2, Definition(exec, bld.lm), bld.def(s1, scc), orig_exec, 827 Operand(exec, bld.lm)); 828 829 bld.branch(aco_opcode::p_cbranch_z, bld.def(s2), Operand(exec, bld.lm), 830 block->linear_succs[1], block->linear_succs[0]); 831 return; 832 } 833 834 if (block->kind & block_kind_break) { 835 // loop_mask = s_andn2_b64 (loop_mask, exec) 836 assert(block->instructions.back()->opcode == aco_opcode::p_branch); 837 block->instructions.pop_back(); 838 839 Temp cond = Temp(); 840 for (int exec_idx = ctx.info[idx].exec.size() - 2; exec_idx >= 0; exec_idx--) { 841 cond = bld.tmp(s1); 842 Operand exec_mask = ctx.info[idx].exec[exec_idx].first; 843 exec_mask = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.scc(Definition(cond)), 844 exec_mask, break_cond); 845 ctx.info[idx].exec[exec_idx].first = exec_mask; 846 if (ctx.info[idx].exec[exec_idx].second & mask_type_loop) 847 break; 848 } 849 850 /* check if the successor is the merge block, otherwise set exec to 0 */ 851 // TODO: this could be done better by directly branching to the merge block 852 unsigned succ_idx = ctx.program->blocks[block->linear_succs[1]].linear_succs[0]; 853 Block& succ = ctx.program->blocks[succ_idx]; 854 if (!(succ.kind & block_kind_invert || succ.kind & block_kind_merge)) { 855 bld.copy(Definition(exec, bld.lm), Operand::zero(bld.lm.bytes())); 856 } 857 858 bld.branch(aco_opcode::p_cbranch_nz, bld.def(s2), bld.scc(cond), block->linear_succs[1], 859 block->linear_succs[0]); 860 return; 861 } 862 863 if (block->kind & block_kind_continue) { 864 assert(block->instructions.back()->opcode == aco_opcode::p_branch); 865 block->instructions.pop_back(); 866 867 Temp cond = Temp(); 868 for (int exec_idx = ctx.info[idx].exec.size() - 2; exec_idx >= 0; exec_idx--) { 869 if (ctx.info[idx].exec[exec_idx].second & mask_type_loop) 870 break; 871 cond = bld.tmp(s1); 872 Operand exec_mask = ctx.info[idx].exec[exec_idx].first; 873 exec_mask = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.scc(Definition(cond)), 874 exec_mask, Operand(exec, bld.lm)); 875 ctx.info[idx].exec[exec_idx].first = exec_mask; 876 } 877 assert(cond != Temp()); 878 879 /* check if the successor is the merge block, otherwise set exec to 0 */ 880 // TODO: this could be done better by directly branching to the merge block 881 unsigned succ_idx = ctx.program->blocks[block->linear_succs[1]].linear_succs[0]; 882 Block& succ = ctx.program->blocks[succ_idx]; 883 if (!(succ.kind & block_kind_invert || succ.kind & block_kind_merge)) { 884 bld.copy(Definition(exec, bld.lm), Operand::zero(bld.lm.bytes())); 885 } 886 887 bld.branch(aco_opcode::p_cbranch_nz, bld.def(s2), bld.scc(cond), block->linear_succs[1], 888 block->linear_succs[0]); 889 return; 890 } 891} 892 893void 894process_block(exec_ctx& ctx, Block* block) 895{ 896 std::vector<aco_ptr<Instruction>> instructions; 897 instructions.reserve(block->instructions.size()); 898 899 unsigned idx = add_coupling_code(ctx, block, instructions); 900 901 assert(block->index != ctx.program->blocks.size() - 1 || 902 ctx.info[block->index].exec.size() <= 2); 903 904 process_instructions(ctx, block, instructions, idx); 905 906 block->instructions = std::move(instructions); 907 908 add_branch_code(ctx, block); 909} 910 911} /* end namespace */ 912 913void 914insert_exec_mask(Program* program) 915{ 916 exec_ctx ctx(program); 917 918 if (program->needs_wqm && program->needs_exact) 919 calculate_wqm_needs(ctx); 920 921 for (Block& block : program->blocks) 922 process_block(ctx, &block); 923} 924 925} // namespace aco 926