1/*
2 * Copyright 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24#ifndef DRM_FOURCC_H
25#define DRM_FOURCC_H
26
27#include "drm.h"
28
29#if defined(__cplusplus)
30extern "C" {
31#endif
32
33/**
34 * DOC: overview
35 *
36 * In the DRM subsystem, framebuffer pixel formats are described using the
37 * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38 * fourcc code, a Format Modifier may optionally be provided, in order to
39 * further describe the buffer's format - for example tiling or compression.
40 *
41 * Format Modifiers
42 * ----------------
43 *
44 * Format modifiers are used in conjunction with a fourcc code, forming a
45 * unique fourcc:modifier pair. This format:modifier pair must fully define the
46 * format and data layout of the buffer, and should be the only way to describe
47 * that particular buffer.
48 *
49 * Having multiple fourcc:modifier pairs which describe the same layout should
50 * be avoided, as such aliases run the risk of different drivers exposing
51 * different names for the same data format, forcing userspace to understand
52 * that they are aliases.
53 *
54 * Format modifiers may change any property of the buffer, including the number
55 * of planes and/or the required allocation size. Format modifiers are
56 * vendor-namespaced, and as such the relationship between a fourcc code and a
57 * modifier is specific to the modifer being used. For example, some modifiers
58 * may preserve meaning - such as number of planes - from the fourcc code,
59 * whereas others may not.
60 *
61 * Modifiers must uniquely encode buffer layout. In other words, a buffer must
62 * match only a single modifier. A modifier must not be a subset of layouts of
63 * another modifier. For instance, it's incorrect to encode pitch alignment in
64 * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
65 * aligned modifier. That said, modifiers can have implicit minimal
66 * requirements.
67 *
68 * For modifiers where the combination of fourcc code and modifier can alias,
69 * a canonical pair needs to be defined and used by all drivers. Preferred
70 * combinations are also encouraged where all combinations might lead to
71 * confusion and unnecessarily reduced interoperability. An example for the
72 * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
73 *
74 * There are two kinds of modifier users:
75 *
76 * - Kernel and user-space drivers: for drivers it's important that modifiers
77 *   don't alias, otherwise two drivers might support the same format but use
78 *   different aliases, preventing them from sharing buffers in an efficient
79 *   format.
80 * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
81 *   see modifiers as opaque tokens they can check for equality and intersect.
82 *   These users musn't need to know to reason about the modifier value
83 *   (i.e. they are not expected to extract information out of the modifier).
84 *
85 * Vendors should document their modifier usage in as much detail as
86 * possible, to ensure maximum compatibility across devices, drivers and
87 * applications.
88 *
89 * The authoritative list of format modifier codes is found in
90 * `include/uapi/drm/drm_fourcc.h`
91 */
92
93#define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
94				 ((__u32)(c) << 16) | ((__u32)(d) << 24))
95
96#define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
97
98/* Reserve 0 for the invalid format specifier */
99#define DRM_FORMAT_INVALID	0
100
101/* color index */
102#define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
103
104/* 8 bpp Red */
105#define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
106
107/* 10 bpp Red */
108#define DRM_FORMAT_R10		fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
109
110/* 12 bpp Red */
111#define DRM_FORMAT_R12		fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
112
113/* 16 bpp Red */
114#define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
115
116/* 16 bpp RG */
117#define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
118#define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
119
120/* 32 bpp RG */
121#define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
122#define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
123
124/* 8 bpp RGB */
125#define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
126#define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
127
128/* 16 bpp RGB */
129#define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
130#define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
131#define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
132#define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
133
134#define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
135#define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
136#define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
137#define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
138
139#define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
140#define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
141#define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
142#define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
143
144#define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
145#define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
146#define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
147#define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
148
149#define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
150#define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
151
152/* 24 bpp RGB */
153#define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
154#define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
155
156/* 32 bpp RGB */
157#define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
158#define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
159#define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
160#define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
161
162#define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
163#define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
164#define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
165#define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
166
167#define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
168#define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
169#define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
170#define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
171
172#define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
173#define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
174#define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
175#define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
176
177/* 64 bpp RGB */
178#define DRM_FORMAT_XRGB16161616	fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
179#define DRM_FORMAT_XBGR16161616	fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
180
181#define DRM_FORMAT_ARGB16161616	fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
182#define DRM_FORMAT_ABGR16161616	fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
183
184/*
185 * Floating point 64bpp RGB
186 * IEEE 754-2008 binary16 half-precision float
187 * [15:0] sign:exponent:mantissa 1:5:10
188 */
189#define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
190#define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
191
192#define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
193#define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
194
195/*
196 * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
197 * of unused padding per component:
198 */
199#define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
200
201/* packed YCbCr */
202#define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
203#define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
204#define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
205#define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
206
207#define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
208#define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
209#define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
210#define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
211
212/*
213 * packed Y2xx indicate for each component, xx valid data occupy msb
214 * 16-xx padding occupy lsb
215 */
216#define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
217#define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
218#define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
219
220/*
221 * packed Y4xx indicate for each component, xx valid data occupy msb
222 * 16-xx padding occupy lsb except Y410
223 */
224#define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
225#define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
226#define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
227
228#define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
229#define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
230#define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
231
232/*
233 * packed YCbCr420 2x2 tiled formats
234 * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
235 */
236/* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
237#define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
238/* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
239#define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
240
241/* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
242#define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
243/* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
244#define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
245
246/*
247 * 1-plane YUV 4:2:0
248 * In these formats, the component ordering is specified (Y, followed by U
249 * then V), but the exact Linear layout is undefined.
250 * These formats can only be used with a non-Linear modifier.
251 */
252#define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
253#define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
254
255/*
256 * 2 plane RGB + A
257 * index 0 = RGB plane, same format as the corresponding non _A8 format has
258 * index 1 = A plane, [7:0] A
259 */
260#define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
261#define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
262#define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
263#define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
264#define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
265#define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
266#define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
267#define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
268
269/*
270 * 2 plane YCbCr
271 * index 0 = Y plane, [7:0] Y
272 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
273 * or
274 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
275 */
276#define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
277#define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
278#define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
279#define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
280#define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
281#define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
282/*
283 * 2 plane YCbCr
284 * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
285 * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
286 */
287#define DRM_FORMAT_NV15		fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
288
289/*
290 * 2 plane YCbCr MSB aligned
291 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
292 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
293 */
294#define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
295
296/*
297 * 2 plane YCbCr MSB aligned
298 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
299 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
300 */
301#define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
302
303/*
304 * 2 plane YCbCr MSB aligned
305 * index 0 = Y plane, [15:0] Y:x [12:4] little endian
306 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
307 */
308#define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
309
310/*
311 * 2 plane YCbCr MSB aligned
312 * index 0 = Y plane, [15:0] Y little endian
313 * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
314 */
315#define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
316
317/* 2 plane YCbCr420.
318 * 3 10 bit components and 2 padding bits packed into 4 bytes.
319 * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian
320 * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
321 */
322#define DRM_FORMAT_P030		fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */
323
324/* 3 plane non-subsampled (444) YCbCr
325 * 16 bits per component, but only 10 bits are used and 6 bits are padded
326 * index 0: Y plane, [15:0] Y:x [10:6] little endian
327 * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
328 * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
329 */
330#define DRM_FORMAT_Q410		fourcc_code('Q', '4', '1', '0')
331
332/* 3 plane non-subsampled (444) YCrCb
333 * 16 bits per component, but only 10 bits are used and 6 bits are padded
334 * index 0: Y plane, [15:0] Y:x [10:6] little endian
335 * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
336 * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
337 */
338#define DRM_FORMAT_Q401		fourcc_code('Q', '4', '0', '1')
339
340/*
341 * 3 plane YCbCr
342 * index 0: Y plane, [7:0] Y
343 * index 1: Cb plane, [7:0] Cb
344 * index 2: Cr plane, [7:0] Cr
345 * or
346 * index 1: Cr plane, [7:0] Cr
347 * index 2: Cb plane, [7:0] Cb
348 */
349#define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
350#define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
351#define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
352#define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
353#define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
354#define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
355#define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
356#define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
357#define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
358#define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
359
360
361/*
362 * Format Modifiers:
363 *
364 * Format modifiers describe, typically, a re-ordering or modification
365 * of the data in a plane of an FB.  This can be used to express tiled/
366 * swizzled formats, or compression, or a combination of the two.
367 *
368 * The upper 8 bits of the format modifier are a vendor-id as assigned
369 * below.  The lower 56 bits are assigned as vendor sees fit.
370 */
371
372/* Vendor Ids: */
373#define DRM_FORMAT_MOD_VENDOR_NONE    0
374#define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
375#define DRM_FORMAT_MOD_VENDOR_AMD     0x02
376#define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
377#define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
378#define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
379#define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
380#define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
381#define DRM_FORMAT_MOD_VENDOR_ARM     0x08
382#define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
383#define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
384
385/* add more to the end as needed */
386
387#define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
388
389#define fourcc_mod_get_vendor(modifier) \
390	(((modifier) >> 56) & 0xff)
391
392#define fourcc_mod_is_vendor(modifier, vendor) \
393	(fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
394
395#define fourcc_mod_code(vendor, val) \
396	((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
397
398/*
399 * Format Modifier tokens:
400 *
401 * When adding a new token please document the layout with a code comment,
402 * similar to the fourcc codes above. drm_fourcc.h is considered the
403 * authoritative source for all of these.
404 *
405 * Generic modifier names:
406 *
407 * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
408 * for layouts which are common across multiple vendors. To preserve
409 * compatibility, in cases where a vendor-specific definition already exists and
410 * a generic name for it is desired, the common name is a purely symbolic alias
411 * and must use the same numerical value as the original definition.
412 *
413 * Note that generic names should only be used for modifiers which describe
414 * generic layouts (such as pixel re-ordering), which may have
415 * independently-developed support across multiple vendors.
416 *
417 * In future cases where a generic layout is identified before merging with a
418 * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
419 * 'NONE' could be considered. This should only be for obvious, exceptional
420 * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
421 * apply to a single vendor.
422 *
423 * Generic names should not be used for cases where multiple hardware vendors
424 * have implementations of the same standardised compression scheme (such as
425 * AFBC). In those cases, all implementations should use the same format
426 * modifier(s), reflecting the vendor of the standard.
427 */
428
429#define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
430
431/*
432 * Invalid Modifier
433 *
434 * This modifier can be used as a sentinel to terminate the format modifiers
435 * list, or to initialize a variable with an invalid modifier. It might also be
436 * used to report an error back to userspace for certain APIs.
437 */
438#define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
439
440/*
441 * Linear Layout
442 *
443 * Just plain linear layout. Note that this is different from no specifying any
444 * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
445 * which tells the driver to also take driver-internal information into account
446 * and so might actually result in a tiled framebuffer.
447 */
448#define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
449
450/*
451 * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
452 *
453 * The "none" format modifier doesn't actually mean that the modifier is
454 * implicit, instead it means that the layout is linear. Whether modifiers are
455 * used is out-of-band information carried in an API-specific way (e.g. in a
456 * flag for drm_mode_fb_cmd2).
457 */
458#define DRM_FORMAT_MOD_NONE	0
459
460/* Intel framebuffer modifiers */
461
462/*
463 * Intel X-tiling layout
464 *
465 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
466 * in row-major layout. Within the tile bytes are laid out row-major, with
467 * a platform-dependent stride. On top of that the memory can apply
468 * platform-depending swizzling of some higher address bits into bit6.
469 *
470 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
471 * On earlier platforms the is highly platforms specific and not useful for
472 * cross-driver sharing. It exists since on a given platform it does uniquely
473 * identify the layout in a simple way for i915-specific userspace, which
474 * facilitated conversion of userspace to modifiers. Additionally the exact
475 * format on some really old platforms is not known.
476 */
477#define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
478
479/*
480 * Intel Y-tiling layout
481 *
482 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
483 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
484 * chunks column-major, with a platform-dependent height. On top of that the
485 * memory can apply platform-depending swizzling of some higher address bits
486 * into bit6.
487 *
488 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
489 * On earlier platforms the is highly platforms specific and not useful for
490 * cross-driver sharing. It exists since on a given platform it does uniquely
491 * identify the layout in a simple way for i915-specific userspace, which
492 * facilitated conversion of userspace to modifiers. Additionally the exact
493 * format on some really old platforms is not known.
494 */
495#define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
496
497/*
498 * Intel Yf-tiling layout
499 *
500 * This is a tiled layout using 4Kb tiles in row-major layout.
501 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
502 * are arranged in four groups (two wide, two high) with column-major layout.
503 * Each group therefore consits out of four 256 byte units, which are also laid
504 * out as 2x2 column-major.
505 * 256 byte units are made out of four 64 byte blocks of pixels, producing
506 * either a square block or a 2:1 unit.
507 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
508 * in pixel depends on the pixel depth.
509 */
510#define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
511
512/*
513 * Intel color control surface (CCS) for render compression
514 *
515 * The framebuffer format must be one of the 8:8:8:8 RGB formats.
516 * The main surface will be plane index 0 and must be Y/Yf-tiled,
517 * the CCS will be plane index 1.
518 *
519 * Each CCS tile matches a 1024x512 pixel area of the main surface.
520 * To match certain aspects of the 3D hardware the CCS is
521 * considered to be made up of normal 128Bx32 Y tiles, Thus
522 * the CCS pitch must be specified in multiples of 128 bytes.
523 *
524 * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
525 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
526 * But that fact is not relevant unless the memory is accessed
527 * directly.
528 */
529#define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
530#define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
531
532/*
533 * Intel color control surfaces (CCS) for Gen-12 render compression.
534 *
535 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
536 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
537 * main surface. In other words, 4 bits in CCS map to a main surface cache
538 * line pair. The main surface pitch is required to be a multiple of four
539 * Y-tile widths.
540 */
541#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
542
543/*
544 * Intel color control surfaces (CCS) for Gen-12 media compression
545 *
546 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
547 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
548 * main surface. In other words, 4 bits in CCS map to a main surface cache
549 * line pair. The main surface pitch is required to be a multiple of four
550 * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
551 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
552 * planes 2 and 3 for the respective CCS.
553 */
554#define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
555
556/*
557 * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
558 * compression.
559 *
560 * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
561 * and at index 1. The clear color is stored at index 2, and the pitch should
562 * be ignored. The clear color structure is 256 bits. The first 128 bits
563 * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
564 * by 32 bits. The raw clear color is consumed by the 3d engine and generates
565 * the converted clear color of size 64 bits. The first 32 bits store the Lower
566 * Converted Clear Color value and the next 32 bits store the Higher Converted
567 * Clear Color value when applicable. The Converted Clear Color values are
568 * consumed by the DE. The last 64 bits are used to store Color Discard Enable
569 * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
570 * corresponds to an area of 4x1 tiles in the main surface. The main surface
571 * pitch is required to be a multiple of 4 tile widths.
572 */
573#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
574
575/*
576 * Intel Tile 4 layout
577 *
578 * This is a tiled layout using 4KB tiles in a row-major layout. It has the same
579 * shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It
580 * only differs from Tile Y at the 256B granularity in between. At this
581 * granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape
582 * of 64B x 8 rows.
583 */
584#define I915_FORMAT_MOD_4_TILED         fourcc_mod_code(INTEL, 9)
585
586/*
587 * Intel color control surfaces (CCS) for DG2 render compression.
588 *
589 * The main surface is Tile 4 and at plane index 0. The CCS data is stored
590 * outside of the GEM object in a reserved memory area dedicated for the
591 * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
592 * main surface pitch is required to be a multiple of four Tile 4 widths.
593 */
594#define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10)
595
596/*
597 * Intel color control surfaces (CCS) for DG2 media compression.
598 *
599 * The main surface is Tile 4 and at plane index 0. For semi-planar formats
600 * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
601 * 0 and 1, respectively. The CCS for all planes are stored outside of the
602 * GEM object in a reserved memory area dedicated for the storage of the
603 * CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface
604 * pitch is required to be a multiple of four Tile 4 widths.
605 */
606#define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11)
607
608/*
609 * Intel Color Control Surface with Clear Color (CCS) for DG2 render compression.
610 *
611 * The main surface is Tile 4 and at plane index 0. The CCS data is stored
612 * outside of the GEM object in a reserved memory area dedicated for the
613 * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
614 * main surface pitch is required to be a multiple of four Tile 4 widths. The
615 * clear color is stored at plane index 1 and the pitch should be ignored. The
616 * format of the 256 bits of clear color data matches the one used for the
617 * I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description
618 * for details.
619 */
620#define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12)
621
622/*
623 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
624 *
625 * Macroblocks are laid in a Z-shape, and each pixel data is following the
626 * standard NV12 style.
627 * As for NV12, an image is the result of two frame buffers: one for Y,
628 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
629 * Alignment requirements are (for each buffer):
630 * - multiple of 128 pixels for the width
631 * - multiple of  32 pixels for the height
632 *
633 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
634 */
635#define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
636
637/*
638 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
639 *
640 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
641 * layout. For YCbCr formats Cb/Cr components are taken in such a way that
642 * they correspond to their 16x16 luma block.
643 */
644#define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
645
646/*
647 * Qualcomm Compressed Format
648 *
649 * Refers to a compressed variant of the base format that is compressed.
650 * Implementation may be platform and base-format specific.
651 *
652 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
653 * Pixel data pitch/stride is aligned with macrotile width.
654 * Pixel data height is aligned with macrotile height.
655 * Entire pixel data buffer is aligned with 4k(bytes).
656 */
657#define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
658
659/* Vivante framebuffer modifiers */
660
661/*
662 * Vivante 4x4 tiling layout
663 *
664 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
665 * layout.
666 */
667#define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
668
669/*
670 * Vivante 64x64 super-tiling layout
671 *
672 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
673 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
674 * major layout.
675 *
676 * For more information: see
677 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
678 */
679#define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
680
681/*
682 * Vivante 4x4 tiling layout for dual-pipe
683 *
684 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
685 * different base address. Offsets from the base addresses are therefore halved
686 * compared to the non-split tiled layout.
687 */
688#define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
689
690/*
691 * Vivante 64x64 super-tiling layout for dual-pipe
692 *
693 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
694 * starts at a different base address. Offsets from the base addresses are
695 * therefore halved compared to the non-split super-tiled layout.
696 */
697#define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
698
699/* NVIDIA frame buffer modifiers */
700
701/*
702 * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
703 *
704 * Pixels are arranged in simple tiles of 16 x 16 bytes.
705 */
706#define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
707
708/*
709 * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
710 * and Tegra GPUs starting with Tegra K1.
711 *
712 * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
713 * based on the architecture generation.  GOBs themselves are then arranged in
714 * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
715 * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
716 * a block depth or height of "4").
717 *
718 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
719 * in full detail.
720 *
721 *       Macro
722 * Bits  Param Description
723 * ----  ----- -----------------------------------------------------------------
724 *
725 *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
726 *             compatibility with the existing
727 *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
728 *
729 *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
730 *             compatibility with the existing
731 *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
732 *
733 *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
734 *             size).  Must be zero.
735 *
736 *             Note there is no log2(width) parameter.  Some portions of the
737 *             hardware support a block width of two gobs, but it is impractical
738 *             to use due to lack of support elsewhere, and has no known
739 *             benefits.
740 *
741 * 11:9  -     Reserved (To support 2D-array textures with variable array stride
742 *             in blocks, specified via log2(tile width in blocks)).  Must be
743 *             zero.
744 *
745 * 19:12 k     Page Kind.  This value directly maps to a field in the page
746 *             tables of all GPUs >= NV50.  It affects the exact layout of bits
747 *             in memory and can be derived from the tuple
748 *
749 *               (format, GPU model, compression type, samples per pixel)
750 *
751 *             Where compression type is defined below.  If GPU model were
752 *             implied by the format modifier, format, or memory buffer, page
753 *             kind would not need to be included in the modifier itself, but
754 *             since the modifier should define the layout of the associated
755 *             memory buffer independent from any device or other context, it
756 *             must be included here.
757 *
758 * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
759 *             starting with Fermi GPUs.  Additionally, the mapping between page
760 *             kind and bit layout has changed at various points.
761 *
762 *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
763 *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
764 *               2 = Gob Height 8, Turing+ Page Kind mapping
765 *               3 = Reserved for future use.
766 *
767 * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
768 *             bit remapping step that occurs at an even lower level than the
769 *             page kind and block linear swizzles.  This causes the layout of
770 *             surfaces mapped in those SOC's GPUs to be incompatible with the
771 *             equivalent mapping on other GPUs in the same system.
772 *
773 *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
774 *               1 = Desktop GPU and Tegra Xavier+ Layout
775 *
776 * 25:23 c     Lossless Framebuffer Compression type.
777 *
778 *               0 = none
779 *               1 = ROP/3D, layout 1, exact compression format implied by Page
780 *                   Kind field
781 *               2 = ROP/3D, layout 2, exact compression format implied by Page
782 *                   Kind field
783 *               3 = CDE horizontal
784 *               4 = CDE vertical
785 *               5 = Reserved for future use
786 *               6 = Reserved for future use
787 *               7 = Reserved for future use
788 *
789 * 55:25 -     Reserved for future use.  Must be zero.
790 */
791#define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
792	fourcc_mod_code(NVIDIA, (0x10 | \
793				 ((h) & 0xf) | \
794				 (((k) & 0xff) << 12) | \
795				 (((g) & 0x3) << 20) | \
796				 (((s) & 0x1) << 22) | \
797				 (((c) & 0x7) << 23)))
798
799/* To grandfather in prior block linear format modifiers to the above layout,
800 * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
801 * with block-linear layouts, is remapped within drivers to the value 0xfe,
802 * which corresponds to the "generic" kind used for simple single-sample
803 * uncompressed color formats on Fermi - Volta GPUs.
804 */
805static inline __u64
806drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
807{
808	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
809		return modifier;
810	else
811		return modifier | (0xfe << 12);
812}
813
814/*
815 * 16Bx2 Block Linear layout, used by Tegra K1 and later
816 *
817 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
818 * vertically by a power of 2 (1 to 32 GOBs) to form a block.
819 *
820 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
821 *
822 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
823 * Valid values are:
824 *
825 * 0 == ONE_GOB
826 * 1 == TWO_GOBS
827 * 2 == FOUR_GOBS
828 * 3 == EIGHT_GOBS
829 * 4 == SIXTEEN_GOBS
830 * 5 == THIRTYTWO_GOBS
831 *
832 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
833 * in full detail.
834 */
835#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
836	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
837
838#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
839	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
840#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
841	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
842#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
843	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
844#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
845	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
846#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
847	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
848#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
849	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
850
851/*
852 * Some Broadcom modifiers take parameters, for example the number of
853 * vertical lines in the image. Reserve the lower 32 bits for modifier
854 * type, and the next 24 bits for parameters. Top 8 bits are the
855 * vendor code.
856 */
857#define __fourcc_mod_broadcom_param_shift 8
858#define __fourcc_mod_broadcom_param_bits 48
859#define fourcc_mod_broadcom_code(val, params) \
860	fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
861#define fourcc_mod_broadcom_param(m) \
862	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
863	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
864#define fourcc_mod_broadcom_mod(m) \
865	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
866		 __fourcc_mod_broadcom_param_shift))
867
868/*
869 * Broadcom VC4 "T" format
870 *
871 * This is the primary layout that the V3D GPU can texture from (it
872 * can't do linear).  The T format has:
873 *
874 * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
875 *   pixels at 32 bit depth.
876 *
877 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
878 *   16x16 pixels).
879 *
880 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
881 *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
882 *   they're (TR, BR, BL, TL), where bottom left is start of memory.
883 *
884 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
885 *   tiles) or right-to-left (odd rows of 4k tiles).
886 */
887#define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
888
889/*
890 * Broadcom SAND format
891 *
892 * This is the native format that the H.264 codec block uses.  For VC4
893 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
894 *
895 * The image can be considered to be split into columns, and the
896 * columns are placed consecutively into memory.  The width of those
897 * columns can be either 32, 64, 128, or 256 pixels, but in practice
898 * only 128 pixel columns are used.
899 *
900 * The pitch between the start of each column is set to optimally
901 * switch between SDRAM banks. This is passed as the number of lines
902 * of column width in the modifier (we can't use the stride value due
903 * to various core checks that look at it , so you should set the
904 * stride to width*cpp).
905 *
906 * Note that the column height for this format modifier is the same
907 * for all of the planes, assuming that each column contains both Y
908 * and UV.  Some SAND-using hardware stores UV in a separate tiled
909 * image from Y to reduce the column height, which is not supported
910 * with these modifiers.
911 *
912 * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also
913 * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes
914 * wide, but as this is a 10 bpp format that translates to 96 pixels.
915 */
916
917#define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
918	fourcc_mod_broadcom_code(2, v)
919#define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
920	fourcc_mod_broadcom_code(3, v)
921#define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
922	fourcc_mod_broadcom_code(4, v)
923#define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
924	fourcc_mod_broadcom_code(5, v)
925
926#define DRM_FORMAT_MOD_BROADCOM_SAND32 \
927	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
928#define DRM_FORMAT_MOD_BROADCOM_SAND64 \
929	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
930#define DRM_FORMAT_MOD_BROADCOM_SAND128 \
931	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
932#define DRM_FORMAT_MOD_BROADCOM_SAND256 \
933	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
934
935/* Broadcom UIF format
936 *
937 * This is the common format for the current Broadcom multimedia
938 * blocks, including V3D 3.x and newer, newer video codecs, and
939 * displays.
940 *
941 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
942 * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
943 * stored in columns, with padding between the columns to ensure that
944 * moving from one column to the next doesn't hit the same SDRAM page
945 * bank.
946 *
947 * To calculate the padding, it is assumed that each hardware block
948 * and the software driving it knows the platform's SDRAM page size,
949 * number of banks, and XOR address, and that it's identical between
950 * all blocks using the format.  This tiling modifier will use XOR as
951 * necessary to reduce the padding.  If a hardware block can't do XOR,
952 * the assumption is that a no-XOR tiling modifier will be created.
953 */
954#define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
955
956/*
957 * Arm Framebuffer Compression (AFBC) modifiers
958 *
959 * AFBC is a proprietary lossless image compression protocol and format.
960 * It provides fine-grained random access and minimizes the amount of data
961 * transferred between IP blocks.
962 *
963 * AFBC has several features which may be supported and/or used, which are
964 * represented using bits in the modifier. Not all combinations are valid,
965 * and different devices or use-cases may support different combinations.
966 *
967 * Further information on the use of AFBC modifiers can be found in
968 * Documentation/gpu/afbc.rst
969 */
970
971/*
972 * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
973 * modifiers) denote the category for modifiers. Currently we have three
974 * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
975 * sixteen different categories.
976 */
977#define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
978	fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
979
980#define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
981#define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
982
983#define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
984	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
985
986/*
987 * AFBC superblock size
988 *
989 * Indicates the superblock size(s) used for the AFBC buffer. The buffer
990 * size (in pixels) must be aligned to a multiple of the superblock size.
991 * Four lowest significant bits(LSBs) are reserved for block size.
992 *
993 * Where one superblock size is specified, it applies to all planes of the
994 * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
995 * the first applies to the Luma plane and the second applies to the Chroma
996 * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
997 * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
998 */
999#define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
1000#define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
1001#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
1002#define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
1003#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
1004
1005/*
1006 * AFBC lossless colorspace transform
1007 *
1008 * Indicates that the buffer makes use of the AFBC lossless colorspace
1009 * transform.
1010 */
1011#define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
1012
1013/*
1014 * AFBC block-split
1015 *
1016 * Indicates that the payload of each superblock is split. The second
1017 * half of the payload is positioned at a predefined offset from the start
1018 * of the superblock payload.
1019 */
1020#define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
1021
1022/*
1023 * AFBC sparse layout
1024 *
1025 * This flag indicates that the payload of each superblock must be stored at a
1026 * predefined position relative to the other superblocks in the same AFBC
1027 * buffer. This order is the same order used by the header buffer. In this mode
1028 * each superblock is given the same amount of space as an uncompressed
1029 * superblock of the particular format would require, rounding up to the next
1030 * multiple of 128 bytes in size.
1031 */
1032#define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
1033
1034/*
1035 * AFBC copy-block restrict
1036 *
1037 * Buffers with this flag must obey the copy-block restriction. The restriction
1038 * is such that there are no copy-blocks referring across the border of 8x8
1039 * blocks. For the subsampled data the 8x8 limitation is also subsampled.
1040 */
1041#define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
1042
1043/*
1044 * AFBC tiled layout
1045 *
1046 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
1047 * superblocks inside a tile are stored together in memory. 8x8 tiles are used
1048 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
1049 * larger bpp formats. The order between the tiles is scan line.
1050 * When the tiled layout is used, the buffer size (in pixels) must be aligned
1051 * to the tile size.
1052 */
1053#define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
1054
1055/*
1056 * AFBC solid color blocks
1057 *
1058 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
1059 * can be reduced if a whole superblock is a single color.
1060 */
1061#define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
1062
1063/*
1064 * AFBC double-buffer
1065 *
1066 * Indicates that the buffer is allocated in a layout safe for front-buffer
1067 * rendering.
1068 */
1069#define AFBC_FORMAT_MOD_DB      (1ULL << 10)
1070
1071/*
1072 * AFBC buffer content hints
1073 *
1074 * Indicates that the buffer includes per-superblock content hints.
1075 */
1076#define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
1077
1078/* AFBC uncompressed storage mode
1079 *
1080 * Indicates that the buffer is using AFBC uncompressed storage mode.
1081 * In this mode all superblock payloads in the buffer use the uncompressed
1082 * storage mode, which is usually only used for data which cannot be compressed.
1083 * The buffer layout is the same as for AFBC buffers without USM set, this only
1084 * affects the storage mode of the individual superblocks. Note that even a
1085 * buffer without USM set may use uncompressed storage mode for some or all
1086 * superblocks, USM just guarantees it for all.
1087 */
1088#define AFBC_FORMAT_MOD_USM	(1ULL << 12)
1089
1090/*
1091 * Arm Fixed-Rate Compression (AFRC) modifiers
1092 *
1093 * AFRC is a proprietary fixed rate image compression protocol and format,
1094 * designed to provide guaranteed bandwidth and memory footprint
1095 * reductions in graphics and media use-cases.
1096 *
1097 * AFRC buffers consist of one or more planes, with the same components
1098 * and meaning as an uncompressed buffer using the same pixel format.
1099 *
1100 * Within each plane, the pixel/luma/chroma values are grouped into
1101 * "coding unit" blocks which are individually compressed to a
1102 * fixed size (in bytes). All coding units within a given plane of a buffer
1103 * store the same number of values, and have the same compressed size.
1104 *
1105 * The coding unit size is configurable, allowing different rates of compression.
1106 *
1107 * The start of each AFRC buffer plane must be aligned to an alignment granule which
1108 * depends on the coding unit size.
1109 *
1110 * Coding Unit Size   Plane Alignment
1111 * ----------------   ---------------
1112 * 16 bytes           1024 bytes
1113 * 24 bytes           512  bytes
1114 * 32 bytes           2048 bytes
1115 *
1116 * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned
1117 * to a multiple of the paging tile dimensions.
1118 * The dimensions of each paging tile depend on whether the buffer is optimised for
1119 * scanline (SCAN layout) or rotated (ROT layout) access.
1120 *
1121 * Layout   Paging Tile Width   Paging Tile Height
1122 * ------   -----------------   ------------------
1123 * SCAN     16 coding units     4 coding units
1124 * ROT      8  coding units     8 coding units
1125 *
1126 * The dimensions of each coding unit depend on the number of components
1127 * in the compressed plane and whether the buffer is optimised for
1128 * scanline (SCAN layout) or rotated (ROT layout) access.
1129 *
1130 * Number of Components in Plane   Layout      Coding Unit Width   Coding Unit Height
1131 * -----------------------------   ---------   -----------------   ------------------
1132 * 1                               SCAN        16 samples          4 samples
1133 * Example: 16x4 luma samples in a 'Y' plane
1134 *          16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1135 * -----------------------------   ---------   -----------------   ------------------
1136 * 1                               ROT         8 samples           8 samples
1137 * Example: 8x8 luma samples in a 'Y' plane
1138 *          8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1139 * -----------------------------   ---------   -----------------   ------------------
1140 * 2                               DONT CARE   8 samples           4 samples
1141 * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
1142 * -----------------------------   ---------   -----------------   ------------------
1143 * 3                               DONT CARE   4 samples           4 samples
1144 * Example: 4x4 pixels in an RGB buffer without alpha
1145 * -----------------------------   ---------   -----------------   ------------------
1146 * 4                               DONT CARE   4 samples           4 samples
1147 * Example: 4x4 pixels in an RGB buffer with alpha
1148 */
1149
1150#define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02
1151
1152#define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \
1153	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)
1154
1155/*
1156 * AFRC coding unit size modifier.
1157 *
1158 * Indicates the number of bytes used to store each compressed coding unit for
1159 * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance
1160 * is the same for both Cb and Cr, which may be stored in separate planes.
1161 *
1162 * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
1163 * each compressed coding unit in the first plane of the buffer. For RGBA buffers
1164 * this is the only plane, while for semi-planar and fully-planar YUV buffers,
1165 * this corresponds to the luma plane.
1166 *
1167 * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
1168 * each compressed coding unit in the second and third planes in the buffer.
1169 * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
1170 *
1171 * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
1172 * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.
1173 * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
1174 * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.
1175 */
1176#define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf
1177#define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
1178#define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)
1179#define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)
1180
1181#define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)
1182#define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
1183
1184/*
1185 * AFRC scanline memory layout.
1186 *
1187 * Indicates if the buffer uses the scanline-optimised layout
1188 * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
1189 * The memory layout is the same for all planes.
1190 */
1191#define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
1192
1193/*
1194 * Arm 16x16 Block U-Interleaved modifier
1195 *
1196 * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1197 * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1198 * in the block are reordered.
1199 */
1200#define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1201	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1202
1203/*
1204 * Allwinner tiled modifier
1205 *
1206 * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1207 * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1208 * planes.
1209 *
1210 * With this tiling, the luminance samples are disposed in tiles representing
1211 * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1212 * The pixel order in each tile is linear and the tiles are disposed linearly,
1213 * both in row-major order.
1214 */
1215#define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1216
1217/*
1218 * Amlogic Video Framebuffer Compression modifiers
1219 *
1220 * Amlogic uses a proprietary lossless image compression protocol and format
1221 * for their hardware video codec accelerators, either video decoders or
1222 * video input encoders.
1223 *
1224 * It considerably reduces memory bandwidth while writing and reading
1225 * frames in memory.
1226 *
1227 * The underlying storage is considered to be 3 components, 8bit or 10-bit
1228 * per component YCbCr 420, single plane :
1229 * - DRM_FORMAT_YUV420_8BIT
1230 * - DRM_FORMAT_YUV420_10BIT
1231 *
1232 * The first 8 bits of the mode defines the layout, then the following 8 bits
1233 * defines the options changing the layout.
1234 *
1235 * Not all combinations are valid, and different SoCs may support different
1236 * combinations of layout and options.
1237 */
1238#define __fourcc_mod_amlogic_layout_mask 0xff
1239#define __fourcc_mod_amlogic_options_shift 8
1240#define __fourcc_mod_amlogic_options_mask 0xff
1241
1242#define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1243	fourcc_mod_code(AMLOGIC, \
1244			((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1245			(((__options) & __fourcc_mod_amlogic_options_mask) \
1246			 << __fourcc_mod_amlogic_options_shift))
1247
1248/* Amlogic FBC Layouts */
1249
1250/*
1251 * Amlogic FBC Basic Layout
1252 *
1253 * The basic layout is composed of:
1254 * - a body content organized in 64x32 superblocks with 4096 bytes per
1255 *   superblock in default mode.
1256 * - a 32 bytes per 128x64 header block
1257 *
1258 * This layout is transferrable between Amlogic SoCs supporting this modifier.
1259 */
1260#define AMLOGIC_FBC_LAYOUT_BASIC		(1ULL)
1261
1262/*
1263 * Amlogic FBC Scatter Memory layout
1264 *
1265 * Indicates the header contains IOMMU references to the compressed
1266 * frames content to optimize memory access and layout.
1267 *
1268 * In this mode, only the header memory address is needed, thus the
1269 * content memory organization is tied to the current producer
1270 * execution and cannot be saved/dumped neither transferrable between
1271 * Amlogic SoCs supporting this modifier.
1272 *
1273 * Due to the nature of the layout, these buffers are not expected to
1274 * be accessible by the user-space clients, but only accessible by the
1275 * hardware producers and consumers.
1276 *
1277 * The user-space clients should expect a failure while trying to mmap
1278 * the DMA-BUF handle returned by the producer.
1279 */
1280#define AMLOGIC_FBC_LAYOUT_SCATTER		(2ULL)
1281
1282/* Amlogic FBC Layout Options Bit Mask */
1283
1284/*
1285 * Amlogic FBC Memory Saving mode
1286 *
1287 * Indicates the storage is packed when pixel size is multiple of word
1288 * boudaries, i.e. 8bit should be stored in this mode to save allocation
1289 * memory.
1290 *
1291 * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1292 * the basic layout and 3200 bytes per 64x32 superblock combined with
1293 * the scatter layout.
1294 */
1295#define AMLOGIC_FBC_OPTION_MEM_SAVING		(1ULL << 0)
1296
1297/*
1298 * AMD modifiers
1299 *
1300 * Memory layout:
1301 *
1302 * without DCC:
1303 *   - main surface
1304 *
1305 * with DCC & without DCC_RETILE:
1306 *   - main surface in plane 0
1307 *   - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1308 *
1309 * with DCC & DCC_RETILE:
1310 *   - main surface in plane 0
1311 *   - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1312 *   - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1313 *
1314 * For multi-plane formats the above surfaces get merged into one plane for
1315 * each format plane, based on the required alignment only.
1316 *
1317 * Bits  Parameter                Notes
1318 * ----- ------------------------ ---------------------------------------------
1319 *
1320 *   7:0 TILE_VERSION             Values are AMD_FMT_MOD_TILE_VER_*
1321 *  12:8 TILE                     Values are AMD_FMT_MOD_TILE_<version>_*
1322 *    13 DCC
1323 *    14 DCC_RETILE
1324 *    15 DCC_PIPE_ALIGN
1325 *    16 DCC_INDEPENDENT_64B
1326 *    17 DCC_INDEPENDENT_128B
1327 * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1328 *    20 DCC_CONSTANT_ENCODE
1329 * 23:21 PIPE_XOR_BITS            Only for some chips
1330 * 26:24 BANK_XOR_BITS            Only for some chips
1331 * 29:27 PACKERS                  Only for some chips
1332 * 32:30 RB                       Only for some chips
1333 * 35:33 PIPE                     Only for some chips
1334 * 55:36 -                        Reserved for future use, must be zero
1335 */
1336#define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1337
1338#define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1339
1340/* Reserve 0 for GFX8 and older */
1341#define AMD_FMT_MOD_TILE_VER_GFX9 1
1342#define AMD_FMT_MOD_TILE_VER_GFX10 2
1343#define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1344#define AMD_FMT_MOD_TILE_VER_GFX11 4
1345
1346/*
1347 * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1348 * version.
1349 */
1350#define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1351
1352/*
1353 * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1354 * GFX9 as canonical version.
1355 */
1356#define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1357#define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1358#define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1359#define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1360#define AMD_FMT_MOD_TILE_GFX11_256K_R_X 31
1361
1362#define AMD_FMT_MOD_DCC_BLOCK_64B 0
1363#define AMD_FMT_MOD_DCC_BLOCK_128B 1
1364#define AMD_FMT_MOD_DCC_BLOCK_256B 2
1365
1366#define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1367#define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1368#define AMD_FMT_MOD_TILE_SHIFT 8
1369#define AMD_FMT_MOD_TILE_MASK 0x1F
1370
1371/* Whether DCC compression is enabled. */
1372#define AMD_FMT_MOD_DCC_SHIFT 13
1373#define AMD_FMT_MOD_DCC_MASK 0x1
1374
1375/*
1376 * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1377 * one which is not-aligned.
1378 */
1379#define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1380#define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1381
1382/* Only set if DCC_RETILE = false */
1383#define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1384#define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1385
1386#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1387#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1388#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1389#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1390#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1391#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1392
1393/*
1394 * DCC supports embedding some clear colors directly in the DCC surface.
1395 * However, on older GPUs the rendering HW ignores the embedded clear color
1396 * and prefers the driver provided color. This necessitates doing a fastclear
1397 * eliminate operation before a process transfers control.
1398 *
1399 * If this bit is set that means the fastclear eliminate is not needed for these
1400 * embeddable colors.
1401 */
1402#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1403#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1404
1405/*
1406 * The below fields are for accounting for per GPU differences. These are only
1407 * relevant for GFX9 and later and if the tile field is *_X/_T.
1408 *
1409 * PIPE_XOR_BITS = always needed
1410 * BANK_XOR_BITS = only for TILE_VER_GFX9
1411 * PACKERS = only for TILE_VER_GFX10_RBPLUS
1412 * RB = only for TILE_VER_GFX9 & DCC
1413 * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1414 */
1415#define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1416#define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1417#define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1418#define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1419#define AMD_FMT_MOD_PACKERS_SHIFT 27
1420#define AMD_FMT_MOD_PACKERS_MASK 0x7
1421#define AMD_FMT_MOD_RB_SHIFT 30
1422#define AMD_FMT_MOD_RB_MASK 0x7
1423#define AMD_FMT_MOD_PIPE_SHIFT 33
1424#define AMD_FMT_MOD_PIPE_MASK 0x7
1425
1426#define AMD_FMT_MOD_SET(field, value) \
1427	((uint64_t)(value) << AMD_FMT_MOD_##field##_SHIFT)
1428#define AMD_FMT_MOD_GET(field, value) \
1429	(((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1430#define AMD_FMT_MOD_CLEAR(field) \
1431	(~((uint64_t)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1432
1433#if defined(__cplusplus)
1434}
1435#endif
1436
1437#endif /* DRM_FOURCC_H */
1438